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Formal verification of reactive concurrent systems is important since many hard-
ware and software components of our computing environment can be modeled as
reactive concurrent systems. Algorithmic techniques for verifying concurrent systems
such as model checking can be applied to only finite state systems. This dissertation
investigates the verification of a common class of infinite state systems, namely pa-
rameterized systems. Such systems are parameterized by the number of component
processes, for example an n process token ring for any n. Verifying the entire infinite
family represented by a parameterized system lies beyond the reach of traditional
model checking. On the other hand, deductive techniques to verify infinite state
systems often require substantial user guidance.

The goal of this dissertation is to integrate algorithmic and deductive techniques
for automating proofs of temporal properties of parameterized systems. Here, the
parameterized system to be verified and the temporal property are encoded together
as a logic program. The problem of verifying the temporal property is then reduced
to the problem of determining equivalence of predicates in this logic program. These
predicate equivalences are established by transforming the program such that the
semantic equivalence of the predicates can be inferred from the structure of their
clauses in the transformed program. For transforming the predicates, we use the
well-established unfold /fold transformations of logic programs. Unfolding represents
a step of resolution and can be used to evaluate the base case and the finite part of
the induction step in an induction proof. Folding and other transformations represent
deductive reasoning and can be used to recognize the induction hypothesis. Together

these transformations are used to construct induction proofs of temporal properties.

il



The first part of the dissertation develops new, more powerful unfold /fold transfor-
mation rules for this purpose. To ensure preservation of program semantics, existing
unfold /fold transformation rules impose severe restrictions on program syntax for a
folding step to be applicable. This renders them unsuitable for constructing proofs
of temporal properties. This dissertation develops unfold/fold transformation rules
where the applicability of any rule is not restricted by program syntax. Instead, book-
keeping is performed at every transformation step and this book-keeping is used to
restrict the applicability of the transformation rules, thereby ensuring that the trans-
formations preserve program semantics. The application of each transformation rule
is fully automated.

The second part of the dissertation presents strategies to guide the application of
the transformation rules for verifying parameterized systems. The strategies are used
to verify parameterized systems of different control structures including chain, ring,
tree and star networks. These strategies allow interleaving of algorithmic and deduc-
tive steps in a verification proof. Furthermore, since deductive steps are applied lazily,
model checking emerges as a special case of the proof technique. The transformation
rules and strategies have been implemented to yield an automatic and programmable
first order theorem prover for parameterized systems. Case studies include cache co-
herence protocols and the Java Meta-Locking protocol from Sun Microsystems. The
program transformation based prover has been used to automatically prove various

safety properties of these protocols.
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Chapter 1

Introduction

Many hardware and software components of our everyday computing environment can
be modeled as a reactive concurrent program. These include hardware controllers, op-
erating systems, network protocols, and distributed applications e.g. air traffic control
system. Intuitively, a reactive concurrent program is a collection of nonterminating
processes which run concurrently, and communicate with each other as well as an ex-
ternal environment to perform a common task. Proving correctness of such a program
involves showing that it displays some desired behavior. Formally proving correctness
of such systems has been a topic of intense research for the past two decades, leading
to the birth of successful techniques like model checking [CES86, LP85, QS82].

Formal verification of reactive programs involves: (i) constructing the “specifica-
tion” i.e. the description of the desired behavior(s) of the program, (7i) constructing
the “implementation” i.e. the formal description of the reactive system being ver-
ified, and (7ii) formally proving that the implementation satisfies the specification.
There are several formalisms for expressing specification and implementation: tempo-
ral logic [MP91], w automata [Kur94], process calculi such as CCS [Mil89] and CSP
[Hoa85]. Essentially all of these formalisms can be viewed as languages for expressing
behaviors of transition systems.

Given appropriate formalisms for expressing the specification and implementation,
we then need a proof system for establishing that a given implementation satisfies
a given specification. A proof system is essentially a collection of proof rules cor-
responding to the operators of the languages chosen for expressing the specification
and the implementation. Given a proof system and a proof obligation (i.e. a given
implementation and specification), one needs to construct a proof tree by repeated

application of the rules to the proof obligation. In general, this proof tree construction
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is undecidable [MP91].

However, for finite state concurrent programs, this can be achieved algorithmically
by searching the finite model of the implementation, i.e. by searching the states of
the finite state transition system represented by the concurrent program. This is the
basic idea behind model checking. Model checking [CES86, LP85, QS82] is an auto-
mated formal verification technique for proving properties of finite state concurrent
programs. Here the specification is typically provided as a temporal logic formula.
The implementation is often expressed using a process calculus, which is translated
to a finite state transition system. Verifying the truth of the temporal formula is
accomplished by traversing the states of this transition system based on the structure
of the temporal formula. If the formula is true, then the search succeeds; otherwise

the search fails and yields a counterexample.

The problem addressed: The applicability of model checking is inherently re-
stricted to finite state concurrent systems. Many of the verification tasks one would
like to conduct however deal with infinite state systems. In particular, we often need
to verify “parameterized” systems such as an n-bit adder or an n process token ring
for any n. Intuitively, a parameterized system is an infinite family of finite state
systems parameterized by a recursively defined type e.g. N. Thus an n bit adder is
a parameterized system, the parameter in question being n € N, the width of the
adder circuit. Verification of distributed algorithms can be naturally cast as verifying
parameterized systems, the parameter being the number of processes. For example,
consider a distributed algorithm where n users share a resource and follow some pro-
tocol to ensure mutually exclusive access. Using model checking, we can verify mutual
exclusion for only finite instances of the algorithm, i.e. for n = 3, n = 4,..., but
never the entire algorithm for any n. The verification of parameterized systems lies
beyond the reach of traditional model checkers: the representations and the model-
checking algorithms that manipulate these representations are designed to work on
finite state systems and it is not at all trivial (or even possible) to adapt them to
verify parameterized systems.

In general, automated verification of parameterized systems has been shown to
be undecidable [AK86]. Thus, verification of parameterized systems is often accom-
plished via theorem proving [BM90, OSR92], i.e. mechanically checking the steps of a
human proof using a deductive system. Even with substantial help from the deductive

system in dispensing routine parts of the proof, such theorem proving efforts require
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considerable user guidance. Alternatively, one can identify subclasses of parameter-
ized systems for which verification is decidable [GS92, Nam98|. Using this approach
meaningful subclasses have been identified, such as token rings of similar processes

[EN95] and classes of parameterized synchronous systems [EN96].

The approach taken in this dissertation: Recall that a parameterized system
represents an infinite family parameterized by a recursively defined type. Therefore,
it is natural to attempt proving properties of parameterized systems by inducting over
this type. In this dissertation, we aim to automate the construction of such induction
proofs by restricting the deductive machinery for constructing proofs. We construct
an automatic and programmable first order logic prover with limited deductive capa-
bility.

The work in this dissertation is part of recent efforts to exploit logic programming
technology for developing new tools and techniques to specify and verify concurrent
systems. For example, constraint logic programming has been used for the analy-
sis and verification of hybrid systems [UR95, Urb96] and more recently for model
checking infinite-state systems [DP99]. In [RRR*97], a memoized logic programming
engine is used to develop XMC, an efficient and flexible model checker whose perfor-
mance is comparable to that of highly optimized model checkers such as Spin [Hol97]
and Murg [Dil96]. Recently, [Del00] used constraint logic programming to construct
uniform proofs of safety properties of parameterized cache coherence protocols. Essen-
tially, these techniques aim to use (constraint) logic program evaluation to efficiently
construct verification proofs involving state space search (accomplished via resolu-
tion) and (possibly) constraint solving. These techniques are in general not suitable
for constructing induction proofs arising in the verification of parameterized systems.

This dissertation provides a methodology for constructing such proofs by suitably
extending the resolution based evaluation mechanism of logic programs [RKR00]. In
this approach, the parameterized system and the property to be verified is expressed
as a logic program. The verification problem is reduced to the problem of determining
the equivalence of predicates in this program . The predicate equivalences are then
established by transforming them s.t. their semantic equivalence can be inferred from
the syntax of their transformed definitions. The proof of semantic equivalence of two
transformed predicates p,p’ then proceeds automatically by a routine induction on

the size of the proofs of ground instances of p(X) and p'(X).
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For transforming the predicates, we use the well-established unfold/fold transfor-
mations of logic programs which have been previously used for program optimization
[BCD90, LSW96, PPRI7| and automated deduction [HS87, KF86, PP99]|. The major
transformations in such a transformation framework are unfolding, folding and goal
replacement. One of these transformations (unfolding) represents an application of
resolution. In particular, an application of the unfold transformation represents a
single resolution step. Therefore, one can achieve on-the-fly explicit state algorith-
mic model checking by repeated unfolding of the verification proof obligation. In
constructing induction proofs, unfold transformations are used to evaluate away the
base case and the finite portions of the proof in the induction step of the induction
argument. Folding and goal replacement, on the other hand, represent a form of de-
ductive reasoning. They are used to simplify the given program so that applications
of the induction hypothesis in the induction proof can be recognized.

However, one needs to substantially generalize the existing unfold/fold transforma-
tion rules [TS84, KF87, GK94, PP99] for using them in proofs of temporal properties.
To ensure correctness, existing transformation systems restrict the applicability of the
rules representing deductive steps e.g. folding. These restrictions are based on pro-
gram syntax of the clauses participating in a deductive step, and are typically severe
e.g. only non recursive clauses may participate in a folding step. However temporal
properties contain fixed point operators. These properties are typically encoded as a
logic program predicate with multiple recursive clauses e.g. a least fixed point prop-
erty containing disjunctions is encoded using multiple recursive clauses. Therefore,
one cannot assume restrictions that are imposed by existing transformation systems
on the syntax of clauses encoding a temporal property. This dissertation develops a
unfold/fold transformation system [RKRR99a, RKRR99b| where the applicability of
the transformation rules is not restricted by program syntax. Instead, book-keeping
is performed at every transformation step, and this book-keeping is used to restrict
the applicability of the transformation rules, thereby ensuring the correctness of the
transformations. Note that each application of these transformation rules is mecha-

nizable.

Contributions of this dissertation: In a broad perspective, the contributions of

this dissertation can be summarized as follows.

e First, it shows how logic program evaluation based techniques for verifying finite
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state systems can be flexibly extended to yield a program transformation frame-
work for constructing inductive proofs of temporal properties of parameterized
systems. Since one of our transformations corresponds to a model checking step
and the others correspond to deductive reasoning, model checking emerges as a

special case when the deductive steps are applied lazily.

e The program transformation framework presented here allows for tight inte-
gration of algorithmic and deductive verification steps in a proof. Note that
application of unfolding and folding steps can be arbitrarily interleaved in the
verification proof of a parameterized system. This constitutes a tighter integra-
tion of model checking computation with deductive reasoning as compared to

the integration of model checking as a decision procedure in a theorem prover.

e This dissertation reports the development of a new, more powerful unfold/fold
transformation rules which are crucial for constructing such program transfor-
mation proofs of temporal properties. The development of these transformation
rules also solves the following problem : whether it is possible to ensure cor-
rectness of unfold /fold rules without imposing restrictions on program syntax.
This issue has been resolved for functional programs in [San96] but has not
been addressed for logic programs so far. The applicability of our transforma-
tion rules is not restricted by program syntax. The development of these more
general transformation rules is of independent interest to the logic programming

community as well.

e Finally, the dissertation presents terminating strategies for controlling the ap-
plication of the transformation rules, thereby leading to the implementation
of a programmable and fully automatic prover. These strategies are used to
construct liveness and safety proofs of parameterized systems of various “struc-
tures” including uni and bi-directional chains, rings and trees of processes. The
prover has been used to construct automated proofs of safety properties of cache
coherence protocols. As a demonstration of the practical utility of the prover,
its successful use in automatically verifying mutual exclusion in the Java Meta-
Locking Algorithm (a recently developed algorithm to ensure secure access of
Java objects by multiple Java threads) from Sun Microsystems [ADG199] is
also described.



CHAPTER 1. INTRODUCTION 6

‘ Chapter H Logic Programming ‘ Verification ‘ Theorem Proving

Vv
Vv

NS
<

AN

O | O U = W | N =

<
NN

Table 1: Chapters of the dissertation

Organization of the Chapters: The rest of this dissertation is organized as fol-
lows. The next chapter presents an overview of the general approach taken in this
dissertation. It also includes comparison of the work with existing literature, and
notational conventions used throughout the dissertation. In chapters 3 and 4, we first
develop the theory of unfold/fold transformations which we will require to construct
our verification proofs. In particular, chapter 3 presents a new transformation frame-
work for definite (i.e. positive) logic programs and chapter 4 then extends it to logic
programs with negation. Chapter 5 discusses how we can accomplish theorem proving
by proving predicate equivalences in a logic program. These predicate equivalences
are shown via logic program transformations. In particular, Chapter 5 presents a
proof system for solving predicate equivalences and then presents control strategies
for guiding the application of the proof rules. Chapter 6 presents an unfold/fold trans-
formation based prover for verifying parameterized protocols. Applications and case
studies performed using the prover appear in Chapter 7. Finally, chapter 8 presents

the concluding remarks along with extensions and directions for future research.

Reading the dissertation: This thesis spans two different research areas : logic
programming and verification. In addition, the technique proposed for automating
induction proofs of predicate equivalences might be of independent interest from the
perspective of theorem proving as well. Therefore depending on the interests of the
reader, some or all of the chapters may be read in an appropriate sequence. Table 1
summarizes the focus of the different chapters in the dissertation.

The dependencies between the chapters are summarized in Figure 1. A solid arrow
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Figure 1: Dependencies among chapters of the dissertation

from 7 to j indicates that chapter i should be read before chapter j. A dashed arrow
from 7 to j indicates the following. The main results of chapter j can be understood
irrespective of the content of chapter i ; however for understanding the technical

details (such as proofs) in chapter j, the results of chapter ¢ are helpful.



Chapter 2
Overview

In this chapter, we provide a general overview of the approach embodied in this the-
sis for verifying parameterized concurrent systems. First, we review some basics of
logic programming. Then we provide an informal description of the program trans-
formations and show their application in constructing induction proofs via a simple
example. We then discuss the existing literature in program transformations and pa-
rameterized system verification, with comparisons to our work. Finally, we conclude

with notational conventions followed in the dissertation.

2.1 Logic Programming Preliminaries

We review some basics of logic programming, and present a well understood result
on the semantics of logic programs. We assume that the reader is familiar with the
notions of terms, atoms, substitutions, unification, most general unifier, clauses and
resolution [Das92, L1093].

Definition 2.1 (Open Atom) An open atom is an atom of the form p(Xy, ..., X,)

where p is a predicate symbol and X, ..., X, are distinct variables.

Definition 2.2 (Ground Atom) Atoms containing no variables are called ground

atoms.
Similarly, terms containing no variables are called ground terms.

Definition 2.3 (Literal) A literal is an atom or the negation of an atom. A positive

literal is an atom.
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Definition 2.4 (Goal) A conjunction of literals is called a goal.
For convenience of notation, we recall the definition of clause below.

Definition 2.5 (Clause) A clause is a first order logic formula of the form Y X (A;V
...AV =B V...V~-B) where Ay,..., A, By, ..., By are atoms and X denotes the

variables occurring in Ay, ..., Ay, By, ..., Bg.

In logic programming notation, a clause VY(Al V...A4V-BV...V~-By) is often
written as Aq,...,A; :— By,..., By, where Ay, ..., A; is called the head of the clause
and By, ..., By is called the body. The notation :— stands for the logical implication
<. Note that the commas in the head denote disjunction and the commas in the

body denote conjunction.

Definition 2.6 (Horn Clause) A Horn clause or a definite clause is a clause with
only one positive literal, i.e. a formula of the form YX(AV =By V ...V =By) written
as A :— By, ..., By.

Definition 2.7 (Definite Logic Program) A (definite) logic program is a finite

set of Horn clauses.

Definition 2.8 (Normal Logic Program) A normal logic program is a finite set

of clauses of the form A :— Ly, ..., L, where Ly, ..., L, are literals.
Therefore, all definite logic programs are normal logic programs.

Definition 2.9 (Herbrand Universe) Herbrand universe of a logic program P, de-
noted HU(P), is the set of ground terms constructed by using the function symbols'
appearing in P.

Definition 2.10 (Herbrand Base) Herbrand base of a logic program P, denoted
HB(P), is the set of ground atoms constructed by using the predicate and function

symbols appearing in P.

Definition 2.11 (Herbrand Interpretation) Given a logic program P, a Her-

brand interpretation is an interpretation over the Herbrand Universe HU(P) s.t.

! Constants are function symbols with arity 0.
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e If f is an n-ary function symbol appearing in P then f is assigned to an n-
ary function HU(P)™ — HU(P) which maps (t1,...,t,) to f(t1,...,t,) where
ti,...,tn € HU(P).

Note that the definition of Herbrand interpretation fixes the assignment of function
symbols, but does not restrict the assignment of predicate symbols. Thus, we can
associate each Herbrand interpretation with a unique subset of the Herbrand base :

the set of all ground atoms which are true w.r.t. the interpretation.

Definition 2.12 (Herbrand Model) Given a logic program P, a Herbrand model
for P 1is a Herbrand interpretation which is a model for the first order formulae

represented by P.

A Herbrand model being a Herbrand interpretation is also simply a subset of the
Herbrand Base.

Definition 2.13 (Least Herbrand Model) Semantics of a definite logic program
P, denoted M(P), is the set of atoms in HB(P) which are logical consequences of
P. M(P) is called the least Herbrand model since it is the smallest subset of HB(P)

which is a Herbrand model.

For a definite logic program P, the truth of any ground atom A € HB(P) can be
“derived” by repeatedly resolving A with the clauses in program P. This is formally

captured via the notion of ground proofs.

Definition 2.14 (Ground Proof) Let T be a tree, each of whose nodes is labeled
with a ground atom. Then T is a ground proof in a definite program P, if every node

A in T satisfies the condition : A :— Ay, ..., A, is a ground instance of a clause in P,
where Ay, ..., A, (n > 0) are the children of A in T.

Using the above definition, we can define the semantics of a definite logic program
P as the set of ground atoms in HB(P) which appear in the root of some ground
proof in P. The equivalence of the model theoretic and proof theoretic semantics of
definite logic programs is summarized by the following theorem. This theorem will

be be used in the description of our approach in the next section.

Theorem 2.1 (Semantics of Definite Logic Programs) Let P be a definite
logic program. Then A € M(P) iff A appears in the root of a ground proof in P.

The proof of a stronger result, namely the equivalence of the least Herbrand model

semantics and SLD resolution based procedural semantics appears in [Das92].
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2.2 Overall Approach

In this section, we provide an overview of the proof technique presented in this disser-
tation. To describe this logic program transformation based technique for verifying
parameterized systems, we first describe how the verification problem can be encoded

as a logic program.

2.2.1 Encoding the Verification Problem

Recall that a parameterized concurrent system is an infinite family of finite state
concurrent systems. Intuitively, a parameterized system can be viewed as a network
of an unbounded number of finite state processes which communicate in a specific
pattern. These finite state processes constituting the network have a finite number of
process types, and their communication pattern is called the network topology. For
example, an n bit shift register (for any n) is a parameterized system. It represents
an unbounded number of finite state processes communicating along a chain. These
finite state processes are “similar”, each of them representing a single bit. To model a
parameterized system as a logic program, the local states of the constituent finite state
processes are represented by terms of finite size. The global state of the parameterized
system is then represented by a term of unbounded size consisting of these finite terms
as sub-terms. The initial states and the transition relation of the parameterized
system are then encoded as logic program predicates with such unbounded terms as
arguments.

For example, in an n bit shift register (for any n), the local states of the bit
process are represented by the terms 0 and 1 (corresponding to the situations where
the value stored in the bit is 0 and 1 respectively). A global state of the register
is then represented by an unbounded list where each element of the list is 0 or 1.
Now, let us consider an n bit shift register where initially the rightmost bit of the
chain contains 1 and all other bits contain 0. The system evolves by passing the 1
leftward. A logic program describing the system is given in Figure 2. The predicate
gen generates the initial states of an n-process chain for all n. As mentioned above,
a global state of the register is represented as an ordered list ( a list in Prolog-like
notation is of the form [Head|Tail] ) of zeros and ones. The set of bindings of
variable S upon evaluation of the query gen(S) is { [1], [0,11, [0,0,1], ... }. The
predicate trans in the program encodes a single transition of the global automaton.

The first clause in the definition of trans captures the transfer of the 1 from right
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gen([1]).

gen([0]X]) :- gen(X).

trans([0,1|T], [1,01T]).
trans([H|T], [HIT1]) :- trans(T, T1).

System description

thm(X) :- gen(X), live(X).
live(X) :- X = [1]].
live(X) :- trans(X, Y), live(Y).

Property description

Figure 2: Example: Liveness in an unbounded length shift register

to left; the second clause recursively searches the state representation until the first
clause can be applied. (i.e., when the 1 is not already in the left-most bit).

So far, we have illustrated how the parameterized system to be verified can be
encoded using logic program predicates. The temporal property to be verified can
also be encoded as a logic program predicate over global states of the system.? For
our shift register example, let us consider the following liveness property : eventually
the 1 reaches the left most bit. This is encoded by the predicate live in Figure 2.
The first clause of 1ive succeeds for global states where the 1 is already in the left-
most bit (a good state). The second (recursive) clause of 1ive checks if a good state
is reachable after a (finite) sequence of transitions.

Thus, every member of the family satisfies the liveness property if and only if V X
gen(X) = live(X). Moreover, this is the case if V X thm(X) < gen(X), i.e. if thm and
gen are semantically equivalent. Thus, we have encoded the verification problem
as a logic program and reduced the proof obligation to establishing equivalence of

program predicates.

2[RRR197] describes how the least fixed point semantics and well founded semantics of logic
programs can be utilized to obtain logic program encoding of modal p-calculus properties. We skip
such details here since it is not central to our presentation.
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2.2.2 Proofs by Program Transformations

We now illustrate how we can construct induction based proofs arising in param-
eterized system verification via logic program transformations. FEssentially, this is

accomplished using the following steps:

1. Encode the temporal property to be verified as well as the parameterized system

as a logic program Fj.

2. Convert the verification proof obligation to predicate equivalence proof obliga-

tions of the form Py p = q (p, q are predicates)

3. Construct a transformation sequence Py, P, ..., Py s.t.
(a) Semantics of Py = Semantics of Py

(b) from the syntax of P, we infer P, - p = q

In the shift register example, we have encoded the problem of verifying liveness
in an n bit shift register as the logic program F; in Figure 2. We have reduced the
verification proof obligation to establishing the equivalence of thm and gen predicates
in program Fy. We then apply program transformations to program F, to obtain a

program Pj, where thm and gen are defined as follows:

gen([1]). thm([1]).
gen([0|X]) :- gen(X). thm([0[X]) :- thm(X).

Figure 3: Fragment of Transformed Program for Shift Register Example

Thus, since the transformed definitions of thm and gen are “isomorphic”, their
semantic equivalence can be inferred from syntax. In general, we have a sufficient
condition called syntactic equivalence s.t. if two predicates p and q are syntactically
equivalent in program P, then p and q are semantically equivalent in P,. Furthermore,
we ensure that checking syntactic equivalence of two predicates in a given program
is decidable. In the shift register example, the transformed definitions of gen and
thm given in Figure 3 are syntactically equivalent. The formal definition of syntactic
equivalence is presented in Chapter 5.

The definitions of gen and thm given above both represent the infinite set

{l[o™,1] | n € N}. For each element X in this set, we can therefore construct a
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ground proof (refer Definition 2.14) of thm(X) and gen(X). For example, a ground
proof tree® of gen([0,0,1]) and thm([0,0,1]) (using the above clauses of thm and

gen) are shown below.

gen([0,0,1]) thm([0,0,1])
gen([0,1]) thm([0,1])
gen([1]) thm ([1])
[] []

Inferring the equivalence of thm and gen from the transformed definitions in Fig-
ure 3 involves an induction on the size of the proof trees of gen(X) and thm(X) for
any ground term X. In general, to prove the equivalence of two predicates p, p’ of same
arity we first transform their definitions to syntactically equivalent forms. Then, the
proof of semantic equivalence of two syntactically equivalent predicates p, p’ proceeds

(by definition of syntactic equivalence) as follows:

e show that for every ground proof of p(X)6 (where X are variables and 6 is any
ground substitution of X) there exists a ground proof of p/(X)#. This follows

by induction on the size of ground proofs of p(X)6.

e show that for every ground proof of p'(X)# (where X are variables and 6 is any
ground substitution of X) there exists a ground proof of p(X)f. This follows

by induction on the size of ground proofs of p'(X)8.

Thus, transforming gen and thm to obtain the definitions of Figure 3 and then inferring
the equivalence from these transformed definitions amounts to an induction proof
of the liveness property. Note that even though we are actually inducting on the
size of ground proofs, here this is same as inducting on the process structure of the
parameterized system : the length of the shift register. We now discuss how we can
transform the definitions of gen and thm given in Figure 2 to obtain the program in
Figure 3. We also show how the application of these transformations aid different

steps of the induction proof.

3In this particular example, these are the only ground proofs of gen([0,0,1]) and thm([0,0,1]).
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pits  pe[68l pia
q _’S q:- t, s. q:—- t, s.
r :—- t. r - t. r :— t.

Program Fp Program P; Program P,

Figure 4: Example of a correct unfold/fold transformation sequence.

p :—t, s. P t, s P :-q. P:-q
q :-|r], s. q:—t, s q :-|t, s q:-p
r:i-t r - t. r:i-t. r:-t
Program Fp Program P; Program P, Program Pj

Figure 5: Example of an incorrect unfold /fold transformation sequence.

2.2.3 Unfold/Fold Program Transformations

We transform a logic program F; to another program P, ,; by applying program trans-
formations that include unfolding, folding, goal replacement. For a simple illustration
of program transformations, consider Figure 4. There, program P; is derived from
Py by unfolding the occurrence of r in the definition of q. P, is derived from P, by
folding t,s in the definition of p using the definition of q.

While unfolding is semantics preserving, indiscriminate folding may introduce
circularity, thereby removing finite proof paths. As shown in Figure 5, folding t,s in

the definition of q in P, using the definition of p in P, results in a program

P:-9q. 9 :-p. r :—t.

This removes p and q from the least Herbrand model. Thus the least Herbrand model
of Pj is different from the least Herbrand model of Py and the transformation sequence
Py, Py, P5, P; is not semantics preserving.

We now present the program transformations informally. A formal description
appears in the next two chapters. We call a sequence of program Py, P;,..., P, as a
program transformation sequence if for all 0 < ¢ < n, program P, is obtained from
program P; by applying a program transformation. With each clause C' in program

P; of the transformation sequence, we associate a pair of integer counters that bound



CHAPTER 2. OVERVIEW 16

BO’1 : *(g, fl, gl)(fl.

B : _g,, gl- BO’Q : *(g, fg, g,)(fg.
Ay - 5
A2 *fg — Bgn : _(ga -7:na g,)an
Al . —fl.
A, —F,.
A, —F,.

Figure 6: Schema for Unfolding Transformation
Al . —f{

A, —F.

n

B . —g, .71, (]’.
B:— "
P ' g, | Fa | G . B: _g,’ g

B:—-G, | F., | G.

Figure 7: Schema for Folding Transformation

the size of a shortest proof of any ground atom A derived using C' in program P,
relative to the size of a shortest proof of A in Fy. Thus the counters keep track of
potential reductions in proof lengths. Conditions on counters are then used to ensure
that every step of a program transformation sequence is semantics preserving.

Unfolding of an atom A in the body of a clause in P; is shown in Figure 6.
The conditions for applying the transformation are : (i) Ai,..., A, are the only
clause heads in P, which unify with A, and (ii) o; is the mgu of A and A; for all
1 < 5 < n. Note that these conditions are taken directly from resolution, which
means that unfolding is essentially a resolution step.

Folding replaces an occurrence of the body of a clause with its head. The clause
where the replacement takes place is called the folded clause and the clauses used
to perform the replacement are called the folder clauses. The folding schema is
illustrated in in Figure 7, where the clauses of B are the folded clauses, and the

clauses of A are the folder clauses. The folder clauses may come from some earlier
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program P;(j < ¢) in the transformation sequence. The conditions for applying the
transformation are*: (i) J; is an instance of F, with substitution o; forall 1 <1 <n
(ii) there is an atom A such that V1 <[ <n A;o0; = A and the folder clauses are the
only clauses in P; whose heads unify with A.

Goal replacement replaces an atom B in a clause A :— F, B, G in program P;
with a semantically equivalent atom B’ to obtain the clause A :— F,B’,G. Note
that such a replacement can change lengths of proofs of A arbitrarily. To obtain the
counters associated with the new clause we conservatively estimate the changes in

proof lengths.

Example: Liveness Property in Shift Register Recall the logic program of
Figure 2 which formulates a liveness property about shift registers, namely, that the
signal 1 eventually reaches the left-most bit in any arbitrary length register. To
establish the liveness property, we have to prove thm(X) = gen(X).

First we unfold gen(X) in the definition clause of thm to obtain:

thm([1]) :- live([1]).
thm([0[X]) :- gen(X), 1live([O[XI).

Note that this unfolding step corresponds to uncovering of the induction schema. By
the process of unification associated with unfolding, we discover the schema to induct
on in the induction proof of thm = gen.

We then repeatedly unfold 1ive ([1]) in the first clause to obtain:

thm([1]).
thm([0[X]) :- gen(X), live([O|X]).

These steps correspond to establishing the base case of the induction proof. Note
that 1ive([1]) denotes the proof obligation that the liveness property holds for a
one-bit register. The unfolding steps required to establish the truth of 1ive([1])
exactly correspond to top-down algorithmic model checking.

We now repeatedly unfold 1ive ([0|X]) in the second clause of thm to obtain:

thm([1]).
thm([0]1X]) :- gen(X), X = [1]].
thm([0|X]) :- gen(X), trans(X,Y), live([O|Y]).

4In addition, certain other conditions need to be imposed including conditions on the counters
of the folder and folded clauses; we do not mention them here.
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These unfolding steps correspond to the finite part of the induction step. Note that
gen(X), 1live([0]|X]) denotes the liveness property being true in the n+ 1 bit regis-
ter. By unfolding 1ive ([0|X]) we perform the finite part of the induction step after
which the induction hypothesis (of the liveness property being true in n bit register)
can be applied.
We now apply goal replacement, replacing 1ive ([0|Y]) by live(Y) in the third

clause of thm.

thm([1]1).

thm([0[X]) :- gen(X), X = [1]].

thm([0[X]) :- gen(X), trans(X,Y), live(Y).

Note that one of the pre-conditions for applying this goal replacement step is showing
the equivalence of 1ive ([0]Y]) and 1ive(Y). We can again show this by transforming
them to syntactically equivalent definitions. In other words, the equivalence proof
1live([0|Y]) = live(Y) appears as a subproof of thm(X) = gen(X).
We now fold the last two clauses of thm using the definition of 1ive as folder. We

obtain:

thm([1]).

thm([0[X]) :- gen(X), live(X).

Finally, folding the second clause of thm using the original definition of thm as

folder we obtain the following program:

thm([1]).

thm([01X]) :- thm(X).

gen([1]).

gen([0|X]) :- gen(X).

trans([0,1]T], [1,0T]).

trans([H|T], [HIT1]) :- trans(T, T1).
live(X) :- X = [1].].

live(X) :- trans(X, Y), live(Y).

The definitions of gen and thm in the above program are syntactically equivalent.
Recall that inferring the equivalence of thm and gen from the above definitions pro-
ceeds by induction on the size of proof trees of ground instances of thm(X) and gen (X).
Application of the goal replacement and the folding steps enables us to recognize the
induction hypothesis in this induction proof.

Note that the transformation sequence constructed in the above example involves

a folding step using the clauses of live as the folder. The predicate live is a least
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fixed point temporal property encoded using multiple clauses one of which is recursive.
Since, most interesting temporal properties contain fixed point operators, their logic
program encoding will contain multiple recursive clauses. Therefore, existing logic
program transformation systems [TS84, GK94, PP99] are not suitable for constructing
proofs of temporal properties via program transformations. This is because they
impose restrictions on the syntax of the clauses participating in a folding step to
ensure correctness. Such restrictions are relaxed in the transformation rules developed

in the next two chapters.

2.3 Related Work

This thesis is related to two different areas of research : logic program transformations
and parameterized system verification. Hence it is appropriate to compare the work
developed in this thesis to the relevant literature of both of these areas. We do so in

this section.

2.3.1 Related Work on Logic Program Transformations

Transformations for definite programs: An unfold/fold transformation system
for definite logic programs was first described in a seminal paper by Tamaki and
Sato [TS84]. Subsequently, a number of unfold/fold transformation systems were
developed. Kanamori and Fujita [KF87] proposed a transformation system that was
based on maintaining counters to guide folding. Maher described a system that
permits only reversible folding [Mah87], i.e. folding whose effect can be reversed by an
unfolding step. The basic Tamaki-Sato system itself was extended in several directions
(e.g., to handle folding with multiple clauses [GK94], negation [AD95, Sek91, Sek93])
and applied to practical problems (e.g., [BCD90, BB93, PPR97]). An excellent survey
of research on this topic over the past decade appears in [PP98].

If the folding transformation is reversible, then since its effect can be undone by
an unfolding, any partially correct unfold/fold transformation sequence is also totally
correct. However, for reversibility, folding at step i of the transformation can only use
the clauses in P;. Therefore reversibility is a restrictive condition that seriously limits
the power of unfold /fold systems by disallowing many correct folding transformations.
Hence almost all research on unfold/fold transformations have focused on constructing

systems that permit irreversible folding. In such systems folding at step ¢ can use
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clauses that are not in P;. For example, in the original and extended Tamaki-Sato
systems [TS84, TS86a| folding always uses clauses in Py whereas in the Kanamori-
Fujita system [KF87] the clauses can come from any P; (j < i). But ensuring total
correctness of irreversible transformation sequences is difficult. In order to ensure
that folding is still totally correct, these systems permit folding using only clauses
with certain (syntactic) properties. For instance, the original Tamaki-Sato system
permits folding using a single clause only (conjunctive folding) and this clause is
required to be non-recursive. In [GKO94] the above system was extended to allow
folding with multiple clauses (disjunctive folding) but all the clauses are required to
be be non-recursive. Kanamori and Fujita [KF87] as well Tamaki and Sato in a later
paper [TS86a] gave two different approaches for conjunctive folding using recursive

clauses.

Transformations for normal programs: For normal logic programs, existing
unfold /fold transformation systems can be broadly classified based on the semantics
preserved by the transformations. Gardner and Shepherdson [GS91] presented un-
fold /fold transformations which preserve SLDNF derivations and Clark’s completion
semantics. On the other hand, a host of other authors have investigated the correct-
ness of unfold/fold transformations w.r.t. model theoretic semantics which are con-
structively defined e.g. perfect model and well-founded model semantics. These works
include [Mah93, PP00, Sek91] which study transformations for stratified programs
preserving perfect model semantics, and [AD95, Sek93] which present transformations
for general logic programs preserving well-founded model and other semantics. How-
ever, these works are either extensions of Maher’s reversible transformation system or
the original Tamaki-Sato system. In particular, [Mah93] extends Maher’s reversible
transformation system to stratified logic programs, and [AD95, PP00, Sek91, Sek93|
present extensions of the Tamaki-Sato style irreversible transformation system to

normal logic programs.

Logic program transformations for constructing proofs: Note that un-
fold /fold logic program transformations have been primarily used for program syn-
thesis, specialization and optimization (see for example [BCD90, BB93, LSWOG6,
PPR97]). However, relatively little work has been done on using these transfor-
mations for constructing proofs. As discussed earlier in this section, unfold/fold

transformations can be used to construct induction proofs of program properties.
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In such induction proofs, unfolding accomplishes the base case and the finite part
of the induction step, and folding roughly corresponds to application of induction
hypothesis. This observation has been exploited in [HS87, KF86, PP99, PP00] to
perform inductive theorem proving of program properties. All of these works employ
more restricted Tamaki-Sato style unfold /fold transformations, which are not suitable
in general for constructing induction proofs of temporal properties. This is because
temporal properties are typically encoded using multiple recursive clauses. Our work
relaxes restrictions on the applicability of the transformation rules thereby enabling
their use in proving temporal properties. Furthermore, since our work is more specifi-
cally focused towards concurrent system verification, we investigate strategies to guide

the transformations for verifying parameterized concurrent systems.

Salient features of our work: In [RKRR99b] we proposed a transformation
framework for definite logic programs which generalized the above systems by per-
mitting folding using multiple recursive clauses. This work is described in Chapter 3.
In [RKRR99a], we have extended our transformation framework to normal logic pro-
grams. This extension is described in Chapter 4 of this thesis. Our transformation
rules are more general than the existing unfold/fold transformation systems both for
definite and normal logic programs. These rules preserve program semantics without
imposing unnecessary restrictions on program syntax.

The key difference between our transformations and the ones proposed in existing
literature lies in the book-keeping we perform while constructing a transformation
sequence. Our transformation rules annotate every clause of the program P; and
update these annotations while transforming P; to P;,;. The applicability of a trans-
formation to program P; is decided based solely on the annotations of the clauses in
Py, ..., P;, and not on program syntax. For efficiency purposes, we can easily restrict
our transformations s.t. the applicability of a transformation in P; is decided based
on the annotations of the clauses in P; and Fy. In the next chapter, we present a
parameterized framework for unfold/fold transformations of definite logic programs.
The framework is in fact parameterized by the “domain” of the annotations or book-

keeping of the program clauses, e.g. the annotations may be integers.

2.3.2 Related Work on Parameterized System Verification

Regarding related work in the verification area, a plethora of techniques have been

proposed during the past decade for verifying parameterized systems. We review
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them below, with comparisons to our work.

Developing Decision Procedures for Subclasses: Techniques in this class
[GS92, EN95, EN96, ID99] reduce the problem of verifying a parameterized system
to the verification of an “equivalent” finite-state system. These techniques consider
specific classes of parameterized systems and temporal properties, and present fully
automated verification techniques for these classes. Typically, this is achieved by
establishing a “cutoff number”, i.e. the property holds for every member of the pa-
rameterized system, if it holds for members up to the cutoff number. The only human
reasoning involved is in establishing this cutoff number. Once this is established for
a specific class of systems and formula, the verification problem reduces to model
checking. The classes of parameterized systems for which the verification problem
has been thus reduced include: (a) systems with a single control process and arbi-
trary number of user processes [GS92, EN96| (b) unidirectional rings with arbitrary
number of processes which communicate by passing a token [EN95], and (c) systems
formed by composing an arbitrary number of identical finite state processes in parallel
[ID99]. Systems covered by classes (a) and (c) commonly occur in bus-based parame-
terized protocols. Some of these techniques [EN95] establish a stuttering bisimulation
equivalence (refer [BCG89]) between a parameterized family with arbitrary number
of processes and the member of the family with the cutoff number. Others [ID99]
establish only a simulation between the parameterized family and its member with

the cutoff number.

Network Invariants: The network invariant approach [WL89, KM95, CGJ97,
LHRO97| is applicable to parameterized systems consisting of an arbitrary number
of copies of identical finite state processes (or finite state processes drawn from some
finite set) that are composed in parallel. This approach relies on the existence of a
pre-order relation < over processes, s.t. if P, P’ are processes and ¢ is a temporal
property then P < P A P' = ¢ = P = ¢. Furthermore, the parallel composition
operator of processes is assumed to be monotonic w.r.t. <. Under these assumptions,
the network invariant approach constructs a finite state process I s.t. P, < I for any
member P; of the parameterized family being verified. Verifying a temporal property

¢ for a parameterized family then involves:

1. synthesizing a network invariant

2. checking P; < I for any member P; of the family
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3. checking I = ¢

Step 1 involves substantial human ingenuity, and efforts have been made to partially
automate this step. Step 2 proceeds by a routine induction on the “structure” of the
parameterized family. Such induction proofs are amenable to automated inductive
theorem proving techniques including the one developed in this thesis. Finally, step 3
is accomplished by model checking. Clearly, the main difficulty in using this approach
is the synthesis of the network invariant, and the need to refine the invariant if I & ¢.
[LHRI7] tackles the second problem by viewing network invariant synthesis as least
fixed point construction (which may not terminate) and using human assisted fixed
point approximation heuristics such as widening (refer [CC92]) to compute the fixed
point. Refining of the widening operator then yields a refined invariant. [CGJ97]
tackles the problem of automating invariant construction by considering only those
invariants which can be gleaned from the “base case” of the inductive definition of the
parameterized family. Our proof technique is geared to automate proofs of temporal
properties of parameterized systems where: (i) the proof proceeds by (nested) induc-
tion (1) each of the induction arguments proceed without strengthening of induction
hypothesis. There is no restriction on the existence of a network invariant which can

be gleaned from the syntax of the parameterized family definition.

Rich Language Model Checking: This approach [KMM'97, EN98, EFM99,
Del00] aims to finitely represent the state space and transition relation of the en-
tire infinite family of finite-state systems comprising a given parameterized system.
Clearly, finite representation of the global states of a parameterized system requires
a richer language (than the direct term representation). For this purpose, [KMM™97]
uses regular and tree-regular languages to represent global states of linear and tree
networks of processes respectively. [EN98| constructs a covering graph which (if the
construction terminates) can be used to decide safety and liveness properties of pa-
rameterized systems. The nodes of the covering graph represent a set of reachable
states but the exact choice of the representation is not specified. [EFM99, Del00] use
equality and inequality constraints on the counts of the local states (i.e. states of the
constituent finite state processes in a network) to represent sets of global states of
the network. In short, this approach requires a finite representation of infinite sets of
states, and employs state space traversal techniques (just like model checking) over
this finite representation to construct a proof for the parameterized network. Since,

the proof is constructed by state space traversal and/or methods similar to constraint
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solving, these proofs are uniform proofs, rather than induction proofs. However, an
induction proof over the direct term representation can (in certain cases) be achieved
by a uniform proof over this finite representation. In the technique proposed in
this dissertation, a global state of a parameterized network is represented by an un-
bounded term. The state space, transition relation as well as the property to be
verified are still represented finitely by means of (recursively defined) logic program
predicates. These predicates are then transformed to yield an induction proof over
the term representation of global states. In comparison to the rich language model
checking approach, our technique is not restricted to specific classes of networks based
on the choice of the rich language. For example, using our technique we constructed
proofs of temporal properties of cache coherence and broadcast protocols (which can
be handled by the count based constraint representation of [EFM99, Del00]) as well
proofs of properties of tree networks (which cannot be handled by the count based

constraint representation).

Verification via Theorem Proving: The work closest to ours involves the use of
inductive theorem provers for verifying parameterized systems. Some of the theorem
provers which have been used for verification are: Nqthm and ACL2 [BM90, KMMO00],
Oyster-CLAM [B*90], PVS [OSR92] and RRL [KZ95]. Nqthm and ACL2 are provers
based on first-order logic, RRL and Oyster-CLAM are based on term rewriting, and
PVS is based on a higher order logic. These provers have been successfully employed
to construct verification proofs (including verification of complete microprocessors)
by using substantial human assistance. Combining decision procedures like model
checking with theorem provers is thus important for reducing the human assistance
required. Rajan et al. [RSS95] have incorporated a finite-state model checker for the
modal mu-calculus as a decision procedure within the PVS theorem prover [OSR92].
Inductive proofs can be established by the prover via calls to the model checker to
verify finite subparts. Graf and Saidi [GS96] show how a custom-built specification-
deduction system can be combined with PVS to formalize and carry out model check-
ing of invariant properties using deduction. The key difference between our approach
and these is that we enhance model checking with deductive capabilities, rather than
implementing model checking as a decision procedure in a deductive system. More-
over, deductive steps are deployed only on demand and hence do not affect the efficacy
of the algorithmic model checking. In particular, the underlying evaluation mecha-

nism for model checking in XMC is essentially unfolding, and we have enhanced this
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mechanism with fold, and goal-replacement transformations. These transformations

complement the power of model checking with the ability to do lightweight deduction.

Comparison with Theorem Provers: Our program transformation based proof
technique can be viewed as a lightweight inductive theorem proving technique for
automating nested induction proofs (where each induction argument proceeds without
strengthening of hypothesis). We now compare our proof technique with inductive
techniques employed in theorem provers. Since our logic program transformations
essentially correspond to first order reasoning, we compare with a first order theorem
prover (ACL2) to concretely highlight the differences.

Note that in our approach, the induction schema as well as the lemmas to be used
in the inductive proof are implicit in the logic program itself. The program trans-
formations make them explicit. Therefore, the proof constructed by our approach
has lesser case splits (and hence is more succinct) than the proof constructed by a
theorem prover. To concretely understand this point, let us consider the following
example. The predicate gen ® generates strings of the form 0* while predicate bad
captures strings containing at least one occurrence of 1. The predicate badgen cap-
tures all strings for which both bad and gen hold. We want to prove VX —badgen(X)

i.e. the predicate equivalence badgen = false.

gen([1).

gen([O[X]) :- gen(X).
bad([11X1).

bad([HIX]) :- bad(X).
badgen(X) :- bad(X), gen(X).

Our unfold/fold transformation based proof technique will first unfold bad(X)

using the clauses of bad to yield

badgen([1]X]) :- gen([1]X]).
badgen([H|X]) :- bad(X), gen([H|X]).

By unfolding bad (X), the induction schema has been uncovered (which is implicit in
the definition of bad). The two clauses of badgen given above correspond to the two
cases of this induction schema. Now by unfolding the occurrences of gen in these
clauses we obtain the following program. These steps correspond to showing the base

case and evaluating the finite part of the induction step.

5The empty list [1 denotes the empty string e.
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badgen([0|X]) :- bad(X), gen(X).

Finally, we fold using the original definition of badgen. The least fixed point semantics

of logic programs allows us to conclude that badgen = false.
badgen([0[X]) :- badgen(X).

In contrast if we input this problem to the ACL2 theorem prover [KMMO0O0] it
attempts to prove by an induction schema obtained from bad, and generates the
following four cases for showing VX —badgen(X). Note that our proof technique also

derived the induction schema from bad but considered only two cases.
1.Xx=1]
2.X=[HITIANH=1
3. X=[HIT] AH# 1 A — bad(T)
4. X =[HITI AH# 1A - gen(T)

The first case above is never considered by our proof technique since we discover the
induction schema by the process of unification inbuilt into unfolding. The absence
of types in logic programs enables us to encode bad for only non-null lists, and since
we obtain the induction schema from this encoding we never consider the first case.
The second case above corresponds to the case obtained from the first clause of bad
in our proof. Finally, the third and fourth cases are combined into a single case in
our proof. In fact in our proof, the folding transformation prevents this unnecessary
case split and recognizes the induction hypothesis, all in one step.

In summary, our program transformation based proof technique is useful for con-
structing induction proofs where the induction schema as well as the requisite lemmas
are implicitly encoded in the logic program itself. Our syntax based transformations
(i) make the schema explicit (i) reason about the different cases of the schema by
uncovering the requisite lemmas. Furthermore, our transformations do so by (a) not
considering spurious cases in the schema, and (b) combining some of the cases of the
schema into a single case. Both of these advantages of our proof technique have been
illustrated through the example given above.

As a side remark note that we have encoded badgen as badgen(X) :- bad(X),
gen(X) instead of badgen(X) :- gen(X), bad(X). This is because ACL2 chooses

to induct on a scheme obtained from bad in this problem. By encoding badgen as
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badgen(X) :- bad(X), gen(X) we can give a point by point comparison with ACL2
since then both proof techniques are inducting on the same schema. In the alternative
encoding also our unfold/fold based proof technique generates only two cases in the

induction schema (which are obtained from the definition of gen).

2.4 Notational Conventions

As discussed before, we assume that the reader is familiar with the notions of terms,
atoms, substitutions, unification, most general unifier ( mgu ), clauses and resolution
[Das92, L1093]. Following logic programming conventions, we use names beginning
with an uppercase letter for variables. Names beginning with a lowercase letter are
used for predicates and function symbols. Recall that a term having no variables is
called a ground term. Atoms are terms with a predicate symbol at the root. A literal
is an atom or the negation of an atom. A goal is a conjunctions of literals. Therefore,
in definite programs, a goal is a conjunction of atoms. Atoms whose subterms are
distinct variables (i.e., atoms of the form p(X7, ..., X,,), where p is a predicate symbol
of arity n) are called open atoms. We call a sequence of programs Py, Py,..., P, as a
program transformation sequence if P,y q is obtained from P; by applying a program
transformation rule.

We use the following conventions (possibly with primes, subscripts and super-
scripts): p, q for predicate symbols; X,Y for variables; t,s for terms; X,Y for se-
quences of variables; t,5 for sequences of terms; A, B for atoms; L, K for literals;
F, G for goals; o, 0 for substitutions; C, D for clauses; P for a logic program which is
a set of clauses. A program transformation sequence is often denoted by I' for brevity.
The notation £ is used to denote a predicate equivalence proof obligation of the form
I' F p = q. It represents the obligation that predicates p and ¢ are semantically
equivalent in each of the programs in the sequence T'.

A Horn clause C' is written as A :— By, Bs, ..., B,. A, the consequent, is called
the head of C' and the antecedent By, Bs,..., B, the body of C'. Note that we can
write Horn clauses as A :— G. Semantics of a definite (i.e. positive) logic program
P is given by its least Herbrand model, denoted as M(P). Semantics of a normal
logic program (i.e. a logic program with negative literals in the bodies of its clauses)
is given by its well-founded model [GRS91], stable model [GL88] etc. Throughout
the dissertation we use CTL, a branching time temporal logic to represent temporal
properties. For a detailed discussion on CTL refer [CGP99, Eme90].



Chapter 3

Transformations for Definite Logic

Programs

3.1 Background

Some of the most extensively studied transformation systems for definite logic pro-
grams are the so called unfold/fold transformation systems. At a high level unfold
and fold transformations can be viewed as follows. Definite logic programs consist of
definitions of the form A :— ¢ where A is an atom and ¢ is a positive boolean formula
over atoms. Unfolding replaces an occurrence of A in a program with ¢ while folding
replaces an occurrence of ¢ with A. Folding is called reversible if its effects can be
undone by an unfolding, and irreversible otherwise.

Correctness proofs for unfold/fold transformations consider transformation se-
quences of the form Py, Py, ..., where Fj is an initial program and P, is obtained
from P; by applying an unfolding or folding transformation. The proofs usually show
that all programs in the transformation sequence have the same least Herbrand model.
It is easy to verify that transforming P; to P;,; using unfolding or folding is partially
correct, i.e., the least model of P, is a subset of that of P;. It is also easy to show,
by induction on the structure of the proof trees, that unfolding transformation is
totally correct, i.e., it preserves the least model. However, indiscriminate folding may
introduce circularity in definitions, thereby replacing finite proof paths with infinite
ones. Indiscriminate folding may not preserve program semantics (see Figure 5 in
Chapter 2.2.3 for illustration).

28
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The crucial problem in proving correctness of any sequence of unfold/fold trans-
formations lies in the potential circularities introduced by indiscriminate folding.
These circularities remove existing finite proof paths, thereby altering the least
model of the logic program. To avoid this problem, existing transformation systems
([TS84, TS86a, KF87, GK94| to name a few) impose syntactic restrictions on the
clauses participating in a folding step. In this chapter, we present a transformation
system which relaxes these restrictions, and prove its total correctness.

To generalize in this direction one needs to first understand the strengths and lim-
itations of the above systems. The key observation is that, although the restrictions
needed to determine permissible foldings appear radically different in the different
systems, there is a striking similarity in how the transformations are proved correct.
Essentially, these systems associate some measure with different program elements,
namely, atoms and clauses to determine whether folding is permissible in that step
(e.g., “foldable” flag in [T'S84], descent levels/strata numbers in [TS86a], and counters
in [KF87]). Moreover, they ensure that each transformation step maintains an invari-
ant relating proofs in the derived program to the various measures (e.g., the notions of
rank-consistency in [KF87, TS84], weight-consistency in [GK94] and p-completeness
in [TS86a]). This raises another interesting question: can we exploit the similarities
in the correctness proofs of irreversible unfold/fold systems to develop an abstract
framework. Such a framework will specify the obligations that must be satisfied to
ensure total correctness and hence can simplify construction of unfold/fold systems to
the extent that one is relieved of the burden of giving correctness proofs. We propose

such a framework in this chapter.

Summary of Results In this chapter, we develop a general transformation frame-
work for definite logic programs parameterized by certain abstract measures by suit-
ably abstracting and extending the measures used in [GK94, KF87, TS84, TS86a)]
(see Section 3.2). We relax the invariants needed in the proofs to permit approxima-
tion of measure values. This is the key idea that enables us to fold using multiple
recursive clauses, i.e. relax the restrictions on clause syntax. We prove the correct-
ness of transformations in the framework based only on the properties of the abstract
measures. We show that various existing unfold/fold transformation systems can be
derived from the framework by instantiating these abstract measures (see Section 3.3).
We also show how the framework can be extended to include the Goal Replacement

transformation (see Section 3.4).
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The parameterized framework presented in this chapter is useful for understanding
the strengths and limitations of existing transformation systems. It also enables the
construction of new unfold/fold systems. As evidence we describe SCOUT (Strata
and COunter based Unfold/fold Transformations), a new transformation system that
permits disjunctive folding using recursive clauses. The development of SCOUT was
based on two crucial observations made possible by the framework. First, when in-
stantiating the framework to obtain the Kanamori-Fujita system, it is easy to see
that the counters (the measure used in their system) may come from any linearly
ordered set; this permits us to incorporate stratification into the counters to obtain
a system that generalizes the extended Tamaki-Sato system [TS86a| as well as the
Kanamori-Fujita system. Secondly, the framework enables us to maintain approxi-
mate counters; we can hence generalize the combination of the Kanamori-Fujita and

the extended Tamaki-Sato systems to fold using multiple recursive clauses.

3.2 A Parameterized Transformation Framework

We now describe our parameterized unfold/fold transformation framework and illus-
trate the abstractions by drawing analogies to the Kanamori-Fujita system [KF87].
We will use the following symbols (possibly with primes and subscripts): P to denote
a definite logic program; M (P) its least Herbrand model; C and D for clauses; A, B

to denote atoms and literals and o for mgu.

3.2.1 Unfolding and Folding

The unfolding and folding rules are defined as follows:

Transformation 3.1 (Unfolding) Let C be a clause in P, and A an atom in the
body of C. Let C4,...,C,, be the clauses in P; whose heads are unifiable with A with

most general unifier oy,...,0,,. Let C} be the clause that is obtained by replacing
Ac; by the body of Cjo; in Co; (1 < j <m). Assign (P, — {C})U{Cy,...,C),} to
Pii1. O

Transformation 3.2 (Folding) Let {C,...,C,,} C P, where C; denotes the clause
A=Ay, A AL AL and { Dy, ..., Dy} € Py (5 < @) where D, is the clause
B, -— By, ..., By, Further, let:

1.VI<I<mdoy V1 <k <n A= B o
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2. Bjoy = Byog =---=B,,0,, = B

3. Di,...,D,, are the only clauses in P; whose heads are unifiable with B.

4. V1 <1 < m, oy substitutes the internal variables' of D; to distinct variables which
do not appear in {A, B, A|,... Al }.

Then Py := (P, — {C4,...,Cy}) U{C'} where C"= A :— B, A},...  Al. O

Dy, ..., D, are the folder clauses, C,...,C,, are the folded clauses, and B is the
folder atom. A folding step is conjunctive whenever both the folder and folded clauses
are singleton sets and is disjunctive otherwise. Note that in the latter step a set
of folded clauses is simultaneously replaced by a single clause using a set of folder
clauses. ~ We say that Py, Py,..., P, is an unfold/fold transformation sequence if
the program P;,; is obtained from P; (i > 0) by application of an unfold or a fold
rule. Partial correctness of an unfold/fold transformation sequence (Theorem 3.1)
now follows straightforwardly by induction on the structure of ground proofs (refer
Definition 2.14, page 10).

Theorem 3.1 (Partial Correctness) Let Py, Py, ..., P; be a program transforma-
tion sequence where M(P;) = M(Py) for all 0 < j <i. If P,iy is obtained from P; by
applying either unfolding or folding, then M (P;.1) C M(P;). O

Proof: This is established by showing that a proof 7" of any ground atom A €
M (P;y1), has a corresponding proof 7" of A in P;. This can be proved by induction
on the structure of T. Let C = (A :— Ay,..., A,) be the clause applied at the root

of T'. There are three cases:
1. Ce P
2. C is obtained by unfolding
3. C is obtained by folding

For case 1, the result follows by induction hypothesis. For case 2, let C' € P4 be
obtained by unfolding clause C' € P; using clause D € P;. Without loss of general-
ity, there exist ground instances of C' and D of the form A :— B, Ax,4,..., A, and
B :— Ay, ..., A;. The proof T' of A can be then constructed by applying clause C’
at the root, and then clause D. The existence of ground proofs of A,..., A, in P,

follows by induction hypothesis. For case 3, let C € P;,;; be obtained by folding

!Variables appearing in the body of a clause, but not its head
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C'" € P, using D € Pj(j < i) as folder. Let A; be the folder atom in clause C,
i.e. the atom introduced by folding. Since M(P;) = M(P;) and A; € M(P,) (by
induction hypothesis) therefore A; € M(P;). Thus, A; has a ground proof T; in
P;. By condition 3 of the folding transformation, the clause applied at the root of
T, must be one of the folder clauses. Let this folder clause be D and let the corre-
sponding folded clause be C' € P;. Then, without loss of generality, C' and D have
ground instances of the form A :— Ay ;,..., A1, Ag,..., Ay and Ay -— Ayq, ..., Ay
respectively. Since A 4,...,A1; € M(P;) therefore Ay 4,...,A;; € M(P;). Thus,
Aqq, ..., Ay, have ground proofs in P;. Also, A,, ..., A, have ground proofs in P; by
induction hypothesis. Thus, we can construct a ground proof of A in P; by applying
clause C' at the root. This completes the proof. O

3.2.2 Measure-Consistent Proofs and Total Correctness

Total correctness of an unfold/fold transformation sequence is established by induct-
ing on some well-founded order to construct a proof in P, for any atom A in M (F;).
To see the subtleties in showing total correctness, consider transforming P; to P,
using a conjunctive folding step. To construct a proof of A (the head of the folded
clause) in P;,1, we need a proof of B (the folder atom) in P;,;. But the existence
of such a proof can be established (by induction hypothesis) only if B is less than A
in the well-founded order on which we are inducting. Note that if the folder clause
is picked from P}, j < i, we cannot use simple well-founded orders like size of proof
trees in P;, since proof of B in P, can be larger in size than the proof of A in P,
Here we develop an abstract formulation of certain well-founded orders (which we call
measures) on which we can induct to establish total correctness.

It is worth noting that we do not attempt to translate every proof of A in P; to
a proof of A in P, . Instead, following [KF87, TS84, TS86a] we consider a “special
proof” called strongly measure-consistent proof (see Definition 3.5) of A in P; and
construct a proof of A in P;, . The induction proof for establishing total correctness
is completed by showing that the proof of A in P, thus constructed is itself strongly
measure consistent.

Recall that irreversible folding steps need to be constrained in order to preserve
the semantics. In order to enforce these constraints, we maintain some book-keeping
information as we perform the transformations, formalized using the following notions

of Measure structure, Atom measure, and Clause measure.



CHAPTER 3. TRANSFORMING DEFINITE LOGIC PROGRAMS 33

Definition 3.1 (Measure Structure) A Measure Structure is defined as a 4-tuple
p= (M,®, <, W) where (M, ®) is a commutative group with 0 € M as its identity
element, < is a linear order on M, @ is monotone w.r.t. <, and W is a subset of
{xr € M | 0=z}, over which < is well-founded.

We will refer to M, the first component of the measure structure, as the measure
space. We let < denote < or =. Moreover, we use © to denote the inverse operation
of the group (M, ®). We also use © as a binary operator, a © b meaning a @ (&b)
(where (&0) is the inverse of b). The Kanamori-Fujita system [KF87] keeps track of
integer counters. Thus the measure structure is (Z, +, <,N), where Z and N are the
set of integers and natural numbers respectively, + denotes integer addition, and <

is the arithmetic comparison operator.

Definition 3.2 (Atom Measure) An atom measure o of a program P w.r.t. a
measure structure | is a partial function from the Herbrand base of P to W such that
it is total on the least Herbrand model of P. For our purposes, it suffices to use the

same atom measure for each program in a transformation sequence.

In the Kanamori-Fujita system, the atom measure of any P; in the transformation
sequence is the number of nodes in the shortest proof tree of A in the initial program
Py. The proof of total correctness for folding will induct on the atom measure, relating
the atom measure of A (the head of the folded clauses) with the atom measure of B
(the folder atom).

Definition 3.3 (Clause Measure) A clause measure (Yi0,7mi) of a program P
w.r.t. a measure structure p is a pair of total functions from clauses of P to M

such that VC' € P 7,,(C) = y4i(C).

In the Kanamori-Fujita system, 7, and 7, are the same and map each clause to
its corresponding counter value. However, as we will see later, to allow disjunctive
folding we will need the two distinct functions v, and 7,;. Henceforth, we denote the
clause measure of a program P; by (v ~i.). We will now develop the idea of “special
proofs” mentioned earlier. Recall that the notion of a (ground) proof is formally
stated in Definition 2.14. Consider transforming P; to P,y by a folding step (see
figure below). C' and D are the folded and folder clauses respectively and j < 1.

D:qgq—=qu,-yaq | C: Pi= Qe Qo ettsdn | C'1 P = Qs

Program P; Program P, Program P,
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In order to show that p € M(P;) = p € M(P;;1) by induction on <, we would like
to show that a(q) < a(p). The atoms p and q are related by what is shared between
the bodies of the clauses C' and D. Hence we attempt to relate their measures via
the measures of bodies of C' and D. Suppose D satisfies : (i) a(q) < > ;e (i),
then we can relate a(q) to the sum of the measures of the body atoms of the folded
clause C' (since k < n). Further if C satisfies : (ii) a(p) = > ,<;<, @(qi), then we
can establish that a(q) < a(p). If either (i) or (ii) is a strict relati?niship then we can
establish that a(q) < a(p). Relations (i) and (ii) form the basis for the notions of

weak and strong measure consistency.

Definition 3.4 (Weakly Measure Consistent Proof) A ground proof T in pro-
gram P; is weakly measure consistent w.r.t. atom measure o and clause measure

(75, 75:) if every ground instance A :— Ay, ..., A, of a clause C € P; used in T satis-
fies a(A) = 7;,(C) @ Zlgzgno‘(Al)-

Definition 3.5 (Strongly Measure Consistent Proof) A ground proof T in
program P; is strongly measure consistent w.r.t. atom measure o and clause mea-
sure (i, i) if every ground instance A :— Ay, ..., A, of a clause C € P; used in T
satisfies V1 <1 <n a(A;) < a(A) and a(A) = 1},(C) &1, a(A)

Definition 3.6 (Measure Consistent Proof) A ground proof T in program P; is
said to be measure consistent w.r.t. atom measure o and clause measure (V,,,7::), if

it is strongly and weakly measure consistent w.r.t. o and (v, 7Vi;)-

We point out that our abstract notion of measure consistency relaxes the concrete
notion of rank consistency of [KF87]. While rank consistency of [KF87] imposes a
strict equality constraint on a(A), measure consistency only bounds it from above and
below. As we will show later, this facilitates maintenance of approximate information.
This is the central idea that permits us to do disjunctive folding using recursive

clauses. For proving total correctness, we need :

Definition 3.7 (Measure consistent Program) A program P is measure consis-
tent w.r.t. atom measure o and clause measure (Yio, Yni), if for all A € M(P), we
have : (1) All ground proofs of A in P are weakly measure consistent w.r.t. o and

(Mo, Yri) (2) A has a ground proof in P which is strongly measure consistent w.r.t. «

and (Vie, Yhi)
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We are now ready to define the abstract conditions on folding and constraints on
how the clause measures are to be updated after an unfold/fold step. For each clause
C obtained by applying an unfold/fold transformation on program P;, we derive a
lower bound on v:(C) and an upper bound on vi(C), denoted by GLB"*'(C)
and LUB"'(C) respectively. We will see later that the conditions on when the rules
become applicable, as well as these bounds will be based on the requirements of the
proof of total correctness.

We assume that for any atom A (not necessarily ground), c,»(A) denotes a lower
bound on the measure of any provable ground instantiation of A i.e. V8 anin(A4) =

a(Af). We use ayp;y, in the folding condition of rule 3.4 below.

Transformation 3.3 (Measure Preserving Unfolding) Let P,,; be obtained
from P; by an unfolding transformation as described in Rule 3.1. Then, V1 < j < m

Mg (C)) = GLB™H(C}) = ,(C) @ 7,(C}) (1)
Tt (C}) = LUB™HC)) = 74(C) @ ;,:(Cy) (2)
The clause measure of all other clauses in P, are inherited from P;. O

Transformation 3.4 (Measure Preserving Folding) Let P,,; be obtained from

P; by a folding transformation as described in Rule 3.2, s.t. V1 <[ < m we have
Mi(D1) < 7,(Cr) @ > 1<k<n @min(Ay). Then,

W) = GLBTNC) = min (44,(C) & 93(Dy) ) 3)
Y H(C") = LUB™(C') = max (7,,(C) ©4,(D1) (4)
and the clause measure of all other clauses in P, are inherited from P;. 0O

Intuitively, if the clause measure of C; “exceeds” the clause measure of D; then we can
fold C} using D;. It should be noted that the above rules do not prescribe unique values
for upper and lower clause measures for the clauses generated by the transformations.
Instead, they only specify bounds of these values; the values themselves are chosen
only when instantiating the framework to a concrete system.

Observe from the definition of atom measures that we can always assign 0 to a,,ip.
However, by setting a more accurate estimate of ,,,;,, we can allow more folding steps.
As an example, consider any conjunctive folding step where the folded clause C' € P,
has more body atoms than the folder clause D € P;, and 7}, (C) = ~..(D). Such a
folding step will not be allowed if VA apnin(A) = 0.
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The Need for Approximate Clause Measures : In the Kanamori-Fujita sys-
tem, a counter (corresponding to our clause measure) is associated with every
clause. Roughly speaking, the counter associated with a clause C' € P, where
C = A :— A,,..., A, indicates the number of interior nodes in the smallest proof
tree in Py that derives Aq,..., A, from A. Thus, it is the amount saved (in terms of
proof tree size, compared to the smallest proof in Py) whenever C' is used in a proof
in P;. The folding rule is applicable provided the savings accrued in the folded clause
is more than that in the folder clause.

To see why a single counter is inadequate for disjunctive folding, consider the

following example:

Ci: p -1, t. (xq)

Cy: p = s, t. (22) C" p:-q, t. (7

Cs: q :-r. (z3) Cs: q :- r. (x3)

Cy q = s. (z4) Cy: q := s. (x4)
Program P, Program P,

P, is obtained from P; by folding {C3,C4} into {Cy,C3}. Now, the savings due
to C" in a proof of P, depends on whether C3 or Cy is used to resolve q in that
proof. Since this information is unknown at transformation time, we can only keep
approximate information about savings. In our framework we choose to approximate
the savings by the closed interval [y;,, Y.

We now have the necessary machinery for establishing total correctness of a se-

quence of unfold/fold transformations.

Lemma 3.2 (Preserving Weak Measure Consistency) Let

By, ..., P; be a transformation sequence of measure consistent programs such that
M(Py) = M(P;) for all0 < j <1i. Let P, be obtained from P; by applying measure-
preserving unfolding or measure-preserving folding. Then, all ground proofs of P;iq

are weakly measure consistent.

Proof : We will use M(P,11) € M(F;), a result which was independently proved in
theorem 3.1. The proof proceeds by induction on size of ground proofs in P;, . Let
T be a ground proof of some ground atom A in P, and let A :— Ay, ..., A, (where
n > 0) be the ground instance of a clause C' € P, ;; that is used at the root of the proof
T. Then the proofs of Ay,..., A, in T are weakly measure consistent by induction
hypothesis. Hence, it suffices to show that, a(4) < v (C) @ Y, ;.. a(A).
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Case 1: C was inherited from P;
Since M (P;y1) € M(P;), hence Ay, ..., A, are provable in P;. Therefore, the ground
clause A :— Ay, ..., A, is used at the root of a ground proof in P;. Since P; is measure

consistent, the result follows.

Case 2: (C was obtained by unfolding

Let Ay,..., A be the instances of the body atoms of C' which were introduced
through unfolding. By the definition of the unfolding transformation, then there
must be clauses C' and C” in P; with ground instances A :— B, Ay 1,..., A,
and B :— Ay, ..., Ay respectively with v ' (C) = ~i.(C') @ 75,(C").  Again,
Ay, ..o  Ag Ak, .., A, are provable in Py (as M(P;,1) C M(P;)). Hence, the above
mentioned ground instances of C' and C” are ground clauses used at the root of some

proof in P;. As P, is a measure consistent program, we have :

a(A) 2 () eaB) e Y ald)

k+1<i<n

a(B) X 7,(C") @ Y a(A)

1<I<k
The result now follows by combining these two inequations.

Case 3: (C was obtained by folding

Let A; be the instance of the folder atom (i.e. the atom corresponding to the head of
the folder clauses) in C, and let P;(j < i) be the program from which folder clauses
were picked. We have M (P;) = M(P;) = M(F,), and hence M (P;11) C M(P;). Thus,
Ay € M(P;). Since P; is a measure consistent program, A; must have a strongly
measure consistent proof 7% in P;. Let the clause used at the root of this proof be
D' and let the ground instance of D’ used at the root of 7% be Ay :— Ay y1,..., Ay

Then, by the strong measure consistency of 77,

a(Ay) = 1D @ Z a(Ay)

1<i<k

But, D’ must be a folder clause by definition of folding. Hence, there must be a clause
C'in P, with a ground instance A :— Ay 1,..., A1k, Ao, ..., A, (this is the folded clause
corresponding to D). Now, A,, ..., A, are provable in P; (since M (P;,1) C M(F;)),
and also Ay i,...,A;, are provable in P; (since M(P;) = M(P;)). Therefore, the

above mentioned ground instance of C” is used at the root of a weakly measure
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consistent proof of A in P; (since program P; is measure consistent). Hence

a(A) Z(C) @ Y alAy) @ Y a(d)

1<i<k 2<i<n

< (C (D)@ a(A)® D alA)

2<i<n
<1 (COAL(D) @ ) ald)
1<i<n
Since D" and C' are folder and folded clauses and C' is the clause obtained by folding
therefore v+ (C) = ~i.(C") © 47 (D), and hence

a(4) < 7;;1(0) © Z1gl§n a(4)

Thus, we have established that any arbitrary ground proof 7" in P, is weakly measure

consistent. O

We now prove our main correctness result : any interleaved application of measure

preserving unfolding or folding transformations does not alter program semantics.

Theorem 3.3 (Total Correctness) Let Py, Py, ..., P; be a transformation sequence
of measure consistent programs such that M (Py) = M(P;) for all 0 < j <. Let P; 44
be obtained from P; by applying measure-preserving unfolding or measure-preserving

folding. Then, (i) M (Py1) = M(P;) and (ii) P,y is a measure-consistent program.

Proof: By theorem 3.1, we have M(P;;;) C M(P;), and by lemma 3.2 we know
that all ground proofs of P, are weakly measure consistent. Hence it is sufficient to
prove that (1) M(P;) C M(P,;1) and (2) YA € M(P,41), A has a strongly measure
consistent proof in P .

Consider any ground atom A € M(P;). Since P; is measure consistent, A has
a strongly measure consistent proof 7" in P;. We now construct a strongly measure
consistent proof 7" of A in P,,;. Construction of 7" proceeds by induction on atom
measures. Let C' be a clause used at the root of T. Let A :— Ay,..., A, (where
n > 0) be the ground instantiation of C' at the root of T'. Since T is strongly measure
consistent «(A4;) < «(A), for all 1 < i < n. Hence, we have strongly measure
consistent proofs 17, ..., T of Ay,..., A, in P;y;. We construct 7" by considering the

following cases:
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Case 1: C is inherited from P; into P; 4

T" is constructed with A :— Ay, ..., A, at its root and 77, ..., T} as its children. This
proof T" is strongly measure consistent.

Case 2: C is unfolded.

Let A; be the atom in the body of C' which is unfolded. Let the clause used to resolve
Ay in T be C; and the ground instance of C; used be A; :— Ay 1, ..., A1, . By definition
of unfolding, A :— Ay 1, ..., A1y, Ao, ..., A, is a ground instance of a clause C] in P4
with vt (C) = 41 (C) @ i, (C1). Also, a(A; ;) < a(A;) < a(A), for all 1 < j <.
Thus, we have strongly measure consistent proofs Ty ;, ..., Ty, of Ay, ..., A1y, in Piyy.
The proof T" is now constructed by applying A :— Ay, ..., A1y, As, ..., A, at the
root, and putting 77 ;,..., T}, , T3, ..., T, as the children. Since T is strongly measure

consistent,

a(A) = 1, (C) @ Zl<]<n a(A;) and a(A;) = 7,(C1) @ Z1§jgll a(A ;)
= (a(A)® Q(Al)) > 71,(C) @ 7,,(C1) ® Z1<J<n a(A;) ® Z1§j§ll a(A;)
= «a(A) = ’712:1(01) ©® Z2§j§n a(4;) @ Z1§j§11 (A1)

Hence, T" is a strongly measure consistent proof in P, 1.

Case 3: C is folded.

Let C (potentially with other clauses) be folded, using folder clauses from P;, j < i, to
clause C’" in P, . Assume that Ay, ..., Ay are the instances of the folded atoms in C.
Then, C' has a ground instance of the form A :— B, Ay,1,..., A, where B :— Ay, ..., Ay
is a ground instance of a folder clause D € P;.% Since M (P;) = M(P;) and Ay, ..., Ay,
are provable in P; they must also be provable in P;. Moreover, since D € P;, B €
M(P;) = M(P;). Since P; is measure consistent, a(B) < 71 (D) @ 3, (4)).

Now, by the strong measure consistency of T,

Vo(C) @ Z1<l<k a(A) & Zk+1<l<n a(A)

%io(c) ® (a(B) © 7hi( ) ® Zk+1§l§na(Al) SRR C)
(1,(C) © ’Yhi(D)) ®a(B)® Zk+1§l§n Qmin (A1)

a(B) (by condition of measure preserving folding)

a(A)

Y OIY Yooy

Now, by induction hypothesis, B has a strongly measure consistent proof 7 in P, ;.
We construct 7", the proof of A in P, with A :— B, Ay, ..., A, at its root, and

Ty, T} 1, .., T, as its children. To show that 7" is strongly measure consistent, note

2Recall that in the folding transformation, all clauses in P; whose head is unifiable with B are
folder clauses.



CHAPTER 3. TRANSFORMING DEFINITE LOGIC PROGRAMS 40

that v 1(C") < (vi,(C) © ~1,(D)) according to the definition of measure preserving
folding, as C' and D are folded and folder clauses. Combining this with (*) we get,

a(A) = ’Vlijl(cl) ®a(B) & Zk+1§l§n a(A)

This completes the proof. O

Assigning tighter clause measures The measure preserving unfolding and fold-
ing transformations of Rules 3.3, 3.4 provide constraints on the clause measures in
P;;1. Note that by applying measure preserving unfolding/folding to program P;
we can generate a clause C' which is already in P;, but with new clause measures.
Instead of assigning the clause measures as prescribed by Rules 3.3 and 3.4 (com-
puted via addition/subtraction), we can assign tighter measures as follows. Formally,
let unfold(C") be the set of clauses generated by measure preserving unfolding of

C' € P; and let there exist a clause C' s.t. C € unfold(C') NC € P, — {C'}.
Clearly, then C' € P,,;. However, the question is how do we assign (751 (C), v (C)),
the clause measures of C' in P;,y. Similarly, by measure preserving folding of
{C1,...,Cn} C P;, we can generate a clause C' € P, — {Cy,...,C,,}. Again, we
need to assign (v;1(C), 71 (C)). Let the clause measures of C' computed by the
unfold/fold transformation be (7,,,7;;). We can then set 7' (C") = min(v,,,7},(C))
and ;71 (C) = min(v;,,7;,(C)) without affecting the measure consistency of P, ;.
For the purposes of measure consistency, note that we could have chosen 'y,i;l(C) =
max(7,,,7:;(C)). Taking the minimum, which also preserves measure consistency,
gives us a tighter bound. This also ensures that when we restrict ourselves to con-
junctive folding, the lower and higher measures of any clause in program P; (appearing
in some transformation sequence of measure consistent programs Py, P;, ...) are iden-

tical.

3.3 Constructing Concrete Unfold /Fold Systems

To construct a concrete unfold/fold transformation system from our abstract frame-

work, the following parameters need to be instantiated :
1. a measure structure p;

2. atom measure o and Qun;n;
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3. clause measure (7),7y;) for clauses in the initial program P, such that P, is

measure consistent; and

4. functions to compute the clause measure of new clauses obtained by the trans-
formations such that they satisfy the constraints imposed by equations (1)
through (4) (refer Rules 3.3 and 3.4).

Note that there are no further proof obligations. Once the above four elements are
defined, total correctness of the transformation system is guaranteed by the frame-

work.

3.3.1 Existing Unfold/fold Systems

We first show how our framework can be instantiated to obtain the Kanamori-Fujita
and the extended Tamaki-Sato systems. To the best of our knowledge, these are the
only two existing systems that allow folding using recursive clauses. However in both

of these systems folding is conjunctive.

The Kanamori-Fujita System [KF87]: This system can be obtained as an in-

stance of our framework as follows:

1. p = (Z,+,<,N). This measure structure corresponds to the use of integer
counters in [KF87].

2. a(A) = number of nodes in the smallest proof of A in P,, and for any atom A,
Qmin(A) = 1. Thus, a(A) denotes the rank of A described in [KF87].

3. VC € Py Y (C) = 42.(C) = 1. Since all clause measures are 1, it follows
immediately from the definition of atom measures that the smallest proofs of
any ground goal G are strongly measure consistent, and all proofs in P, are

weakly measure consistent. Hence P, is measure consistent.

4. VO € Piy1— P (ie., new clauses in P;4), v,/ (C) = GLB"(C) and v (C) =
LUB"!(C). Under the given measure structure, it is immediate that the above

definition is identical to the computation on counters in [KF87].

Furthermore, the measure preserving folding rule (Rule 3.4) is applied only when
both folder and folded clauses are singleton sets. It is easy to see a one-to-one cor-
respondence between the conditions on unfold/fold transformations of the above in-

stantiation and the Kanamori-Fujita system.
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The Extended Tamaki-Sato System [TS86a]: In this system all the predicate
symbols are partitioned into n strata. In the initial program a predicate from stratum
j is defined using only predicates from strata < j. We can obtain this system as an

instance of our framework as follows:

1. p={(Z",®,=<,N") where @ denotes coordinate-wise integer addition of n-tuples
of integers, and < denotes the lexicographic < order over n-tuples of integers.
The n-tuples in the measure structure will correspond to the n strata of the

original program.

2. a(A) = min({w(T) | T is a proof of A in Py}), where w(T) is the weight of
the proof T' defined as an n-tuple (wy, ..., w,) such that V1 < j < n, w; is the
number of nodes of predicates from stratum j in 7. «(A) corresponds to the

notion of weight-tuple measure of A defined in [TS86a).
For any atom A, ain(A4) =0=(0,...,0).

3. VC € Py, v2(C) = 42.(C) = (wy,...,w,), where C = A :— Ay,..., A, and
for 1 < j < n, w; = 1 if the predicate symbol of A is from stratum j, and 0

otherwise.

For any A € M(F,), the proof T that defines a(A) (item 2 above) is strongly
measure consistent. Weak measure consistency of ground proofs in F, is estab-

lished by induction on their size.

4. VO € Py, — By, 7,71(C) = LUB"™(C) and 4;11(C) = approz(GLB(0)).
The function approz reduces a measure as follows. Let u = (uq,...,u,) and
min be the smallest index & such that uy > 0. Then approz(u) = (u}, ..., ul)

n

where uj, =1 and is 0 elsewhere.

As in the Kanamori-Fujita system, here also the measure preserving folding rule
is applied only when both folder and folded clauses are singleton sets.

To establish the correspondence between the above instantiation and the extended
Tamaki-Sato system, recall that the latter associates a descent level with each clause
of every program in a transformation sequence. If a clause C' in P; has the descent
level k, then with the above instantiation, ~; (C) = (ly,...,l,) where [;, = 1 and 0
elsewhere; i.e. the only non-zero entry in its lower clause measure appears in the k*?
position. Thus our lower clause measure precisely captures the information that is

kept track of by the extended Tamaki-Sato system.
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Assigning Measure Structures and Clause Measures Observe that our frame-
work does not prescribe exact values to the clause measures. Instead it bounds the
clause measures from above and below. So an important aspect of our instantiation
involves assigning values to the clause measures that satisfy these constraints. From
an abstract point of view, the Kanamori-Fujita system uses a relatively coarse mea-
sure space (Z) but within this space it maintains accurate clause measures (integer
counters). Our instantiation reflects this by not relaxing the bounds while updating
the clause measures (see step 4 of the instantiation). On the other hand, the extended
Tamaki-Sato system uses a more fine-grained measure space (Z"). But this measure
space is not completely utilized since clause measures are the descent level of clauses,
which can be simply represented by an integer. Therefore in step 4 of our instantiation
we accordingly loosened the bound. As far as the Gergatsoulis-Katzouraki [GK94]
and original Tamaki-Sato systems [T'S84] are concerned, first note that they do not
permit folding using recursive clauses. These systems use coarse measure spaces.
Moreover they do not even fully utilize these measure spaces as is evident from the
lesser amount of book keeping performed by them. By choosing a coarse measure
structure and relaxing the bounds along lines similar to the extended Tamaki-Sato
system we have been able to instantiate these two systems as well. The measure struc-
ture chosen is (Z?,®, <,N?) where < is the lexicographic ordering among 2-tuples,
and @ is co-ordinatewise addition operation among 2-tuples. Since these systems par-
tition the predicate symbols into “old” and “new” predicates, the choice of a measure

structure with two strata is obvious.

3.3.2 SCOUT— A New Unfold/Fold System

We now construct SCOUT (Strata and COunter based Unfold/fold Transformations),
an unfold /fold transformation system for definite logic programs that allows disjunc-
tive folding using recursive clauses. It incorporates the notion of strata from the ex-
tended Tamaki-Sato system into the counters of the Kanamori-Fujita system. Thus
with every clause it maintains a pair of stratified counters as the clause measure.
The instantiation is as follows. We assume that the predicate symbols appearing in
the initial program P, are partitioned into n strata, as in the extended Tamaki-Sato

system.

1. p={(Z",®,=<,N") where @ denotes coordinate-wise integer addition of n-tuples

of integers, and < denotes the lexicographic < order over n-tuples of integers.



CHAPTER 3. TRANSFORMING DEFINITE LOGIC PROGRAMS 44

2. a(A) is defined exactly as in the instantiation of the extended Tamaki-Sato
system above. For any atom A we set qmin(A) = (w1, ..., w,) where w; = 1 if

A is from stratum j and 0 elsewhere.

3. Clause measure of clauses in F; is defined exactly as in the instantiation of the
extended Tamaki-Sato system above. Therefore the proofs of measure consis-

tency are also identical.
4. YC € Py — P, v,7'(C) = GLB"™'(C) and ~:7'(C) = LUB™'(C).

SCOUT provides a solution to two important (and orthogonal) problems that
have thus far remained open: folding using clauses that have disjunctions as well
as recursion, and combining the stratification-based (extended) Tamaki-Sato system
with the counter-based Kanamori-Fujita system thereby obtaining a single system
that strictly subsumes either of them even when restricted to conjunctive folding. A
formal proof of this claim follows. The reader unfamiliar with logic programming may

proceed to the next section of the chapter.

Kanamori-Fujita system [KF87] The system reported in [KF87] is special case
of SCOUT where folding is conjunctive and all the predicate symbols of the initial

program are placed in a single stratum.

Extended Tamaki-Sato system [TS86a] For proving that SCOUT covers any
transformation sequence Py, P, P,, ... which is allowed by the fold/unfold system of
[TS86a/, we define the invariants given below. Recall that in [TS86a] each clause in
any P; is associated with a strata number, also called the descent level. Also, since
[TS86a] handles only conjunctive folding, any fold/unfold transformation sequence of
[TS86al, if executable in SCOUT, will always produce clauses with counters of the
form (7, 7); in other words, the two counters of any clause will always be equal.

We now consider the following invariants :

e J1(P;) = Any fold /unfold transformation in P; which is allowed by the extended
Tamaki-Sato system [TS86a] is allowed by SCOUT (with n strata).

e J2(P;) = Let C be any clause in program P; with strata number (i.e. de-
scent level in the terminology of [TS86a]) j. Then, in SCOUT (with n strata),
Y6(C) = 74i(C) = (M, -, V) Where ;> 0A (V1 <k < j 7 = 0)
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To prove that any unfold/fold transformation sequence covered by [TS86a] is also
covered by SCOUT, it is sufficient to prove that J1(P;) is an invariant.

Theorem 3.4 Let Py, P, Py, ... be an unfold/fold transformation sequence of the
extended Tamaki-Sato system [TS86a]. Then, ¥i > 0. J1(P;) A J2(F;)

Proof : By induction on i. For the base case, J1(Py) is trivially true by the
definition of the fold /unfold transformations in [TS86a] and SCOUT. Also, if a clause
C in P, has descent level j, then 77 (C) = v7,(C) = (m1,...,7,) where v; = 1 and
v = 0 when [ # j. Clearly then J2(F) is also true. The induction hypothesis is
Vi <m J1(P;) A J2(P;). We now show that J1(P,41) A J2(Pp,+1) holds.

First we prove J2(P,,11). Let C be any clause in P,, 1. We show that the property

mentioned in J2 is true for C.

Case 1: C is inherited from P,

The result holds since J2(P,,) is true by induction hypothesis.
Case 2: C' is obtained by unfolding C’ using C"

Since, Vi < m. J1(P;), the sequence Py, Py, ..., Py, P,,y1 can be constructed using
SCOUT. Then, 73 (C) = i (C) = 472 (C") @ 5 (C") = 753 (C") @ 453(C"). Also
let the descent level of C, C’ and C” be k,k" and k" respectively. Then, by [TS86a],
k = min(k',k"). By the induction hypothesis, the property in J2 is true for both
C" and C". Hence if 42(C") = y(C") = (71,...,7,) and y2(C") = y(C") =
ooy, then 4y = -+~ =, =0,9 =--- =19/ ; = 0. Also since k is the
minimum of k&' and k", we have either v, = 0 A~y > 0, or 4, > 0 Ay, = 0 Now,
No THC) = i THC) =R (C @ (C") = (1, -, 1) where VI < 1< my = 9+
Hence 71 = --- = v,_1 = 0 and ~; > 0. Thus the property in J2 holds for C.

Case 3: C' is obtained by folding C' using D'

Since Vi < m. J1(F;), the transformation sequence Py, Py, ..., P,,, P,,11 can be con-
structed using SCOUT. Let C" and D’ have descent levels k and [ respectively. Then
the descent level of C' is also k and k < I. But D' € Py, so 42 (D') = ,(D') =
(61,---,0;,) where §; = 1 and 65 = 0 when j # I. Let 43 (C") = %(C") = (71, -, )
As the property in J2 is true for C’, we have 7} = --- =, ; = 0 and ~;, > 0. Now,
TEH(C) = A(C) = A (C)EAD") = (s, ) Where Y1 < j < vy = 71— 3.
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Since k < [, therefore 0] = --- = 4§, = 0. Thus, 73 = --- = -1 = 0 and 7, = v, > 0.
Hence the property in J2 holds for C.

We now show that J2(P,,; 1) = J1(Py,41). Since the unfolding transformation is
independent of any condition on the stratified counter (or descent level) in SCOUT
or [TS86a|, therefore any unfolding allowed by [TS86a] in P, is also allowed by
SCOUT. For folding, let C' € P,,,1 be folded using the folder D € F, in the system
of [TS86a]. Let the descent levels of C' and D be be k and [ respectively. Then,
k < (by [TS86a]) and the property of J2 is true for both C and D (since J2(Py,11)
holds). So, if 75 ™1(C) = %" (C) = (m, -+, ) and (D) = (D) = (b1, .-, 6n)
we have v = ... = 31 =0, 7% > 0, 0y = ... = §_1 = 0. As k < [, this means
61 = ... = 0 = 0. Clearly then 7"*'(C) is lexicographically greater than ~y;(D).
Hence C' can be folded using D as folder in SCOUT. This completes the proof. O

Thus, we have proved that SCOUT allows all unfold/fold transformation sequences
allowed by [TS86a]. To prove that it is strictly more powerful, we need to give an
example transformation sequence which is allowed by SCOUT, but not by [TS86a].
Again, any example requiring disjunctive folding serves this purpose. Hence we con-
clude that SCOUT is strictly more powerful than [TS86a).

It is interesting to note that by simple inspection of the instantiations, one can
see that when the number of strata is 1 and only conjunctive folding is permitted,
SCOUT collapses to the Kanamori-Fujita system. Collapsing SCOUT to other exist-
ing unfold /fold systems by varying the number of strata and extending the parameters

(e.g. measure structure) remains an interesting open problem.

3.4 Goal Replacement

Augmenting an unfold/fold transformation system with the goal replacement rule
makes it more powerful. In this section we incorporate goal replacement to our param-
eterized framework. Goal replacement allows semantically equivalent conjunctions of
atoms to be freely interchanged. We formally define it below. For a conjunction of
atoms Ay, ..., A,, we use the notation vars(Ay, ..., A,) to denote the set of variables
in Ay, ..., A,.

Transformation 3.5 (Goal Replacement) Let C be a clause A :— Ay, ..., A, G
in P;, and G' be an atom such that vars(G) = vars(G') C vars(A, Ay, ..., Ay). Sup-
pose for all ground instantiation 6 of G,G’ we have G0 € M(P;) & G'0 € M(P;).
Then Py := (P, — {C})U{C'} where C' = A :— Ay,..., A, G O
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Note that although we replace a single atom G by another atom G’ (where G and
G’ do not contain any internal variables), we can replace conjunctions of atoms using
a sequence of folding, goal replacement and unfolding transformations. The above

transformation is partially correct, a claim that we formally prove below.

Theorem 3.5 Let program P;y, be obtained from program P; by applying goal re-
placement as described in rule 3.5. Then, M(P;11) C M(F;).

Proof : We take any ground proof T" of some B € M(P;,1) and construct a ground
proof T" of B in P;, thereby proving M(P;;;) € M(FP;). This proof proceeds by
induction on size of ground proofs in P;,;. The base case is obvious because unit
clauses are not manipulated by goal replacement. For the induction step, if the
clause used at the root of T' is not the replacing clause C’, then the proof follows from
induction hypothesis. Let the clause used at the root of T' be a ground instance of C'
and let the ground instance used be Af :— A0,... A0,G'0. Then, A0,...,A0,G'0
have ground proofs 17, ..., T}, T¢., in P; by induction hypothesis. Then, by rule 3.5,
there exists a ground proof Tf, of GO in P,. Now 7", the ground proof of A6 in
P;, is constructed with the ground clause A6 :— A:0,..., Ay, GO at the root and
Ti,...,T},T,, as its children. O

We can ensure that an application of goal replacement to a measure consistent
program is totally correct. But then we also need to ensure that the resulting program
P, is measure consistent. If this is guaranteed, then even if goal replacement is

interleaved with irreversible folding total correctness will be preserved. Formally,

Transformation 3.6 (Measure Preserving Goal Replacement) Suppose pro-
gram P;, is obtained from program P; by applying the goal replacement transfor-
mation as described in Rule 3.5. Let there exist 4,0’ € M (where measure structure
is u = (M, ®,<,W)) such that for all ground instantiation 6 of G, G', we have: (i)
0 = a(Gh) S a(G'0) =0 (ii) 7},(C) @ 6 ® 3 1< pek Amin(Ap) = 0. Then

M (C) = GLB™(C") =4,(C) @ § (5)
i (C) = LUB™(C') = 7,(C) @ (6)
The clause measures of the other clauses of P;;; are inherited from P;. O

We now present a formal proof of total correctness and preservation of measure con-

sistency of the above rule.



CHAPTER 3. TRANSFORMING DEFINITE LOGIC PROGRAMS 48

Theorem 3.6 Let P,y be derived from P; by applying measure preserving goal re-
placement as described in rule 3.6. If P; is measure consistent, then M(P;) = M (P;41)

and Py is also measure consistent.

Proof: Since measure preserving goal replacement is a special case of the goal re-
placement transformation in rule 3.5, we have M(P,;1) C M(P;) by partial correct-
ness of rule 3.5. Therefore it is sufficient to prove that : (1) all ground proofs of
P, are weakly measure consistent (2) M(P;) C M(P;y1) (3) VB € M(P;;1) there
exists a strongly measure consistent proof of B in P, ;. We prove proof obligation (1)
separately. Proof obligations (2) and (3) are proved by showing that : VB € M(P)
there exists a strongly measure consistent proof of B in P;, ;. This is sufficient since
we know M (P;1) C M(P;).

First, we prove that all ground proofs of P, ,; are weakly measure consistent. The
proof proceeds by induction on the size of ground proofs in P, ;. Let T be a ground
proof of a ground atom B in P;,;. If the clause used at the root of T is not the new
clause C’, then the proof follows by induction hypothesis and the measure consistency
of P;. If the clause used at the root of T"is C', then let the ground instance of C" used
at the root of T' be Af :— A6, ..., Aif, G'A. By induction hypothesis, the proofs of
A6, ..., Ak, G'0 in T are weakly measure consistent. It suffices to show that a(A) <
YIHC) @ Y cen a(AF) ® a(G'0) Now, G'0 € M(P,11) = G'§ € M(P;). Hence by
rule 3.5 we have GO € M(P,). Also, V1 <1<k A8 € M(P,) (as M(P.1 C M(P)).
Then, Af :— A0, ... Ai0,G0O is a ground instantiation of C' which appears at the root

of some ground proof in P;. Since P; is measure consistent we have

a(4) <7,(C)® Z1glgk a(Aif) & a(GH)
= %iu'(c) ©® Z1§lgk a(Af) & (a(G'0) & d")
= 7;;1(01) ©® Z1§l§k a(Aif) ® a(G'0)

Now, we prove that VB € M(P;) there is a strongly measure consistent proof of
B in P,;. Since P; is measure consistent, it suffices to translate a strongly measure
consistent proof T of B in P; to a strongly measure consistent proof 7" of B in P,
for all B € M(P;). We do this translation by induction on the atom measures.
If the clause used at the root of T is not C' (where C' is the clause in P, that is
replaced) then the proof follows from the definition of strong measure consistency
and induction hypothesis. Let C be the clause used at the root of T (a strongly
measure consistent proof of A in P;) and let A :— A0, ..., A8, GO be the ground
instance of C' used. Then, by strong measure consistency of 7', a(A4,0) < a(Af) for
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all 1 <1 < k. By induction hypothesis, we then have strongly measure consistent

ground proofs 77, ..., T} of A10, ..., Axf in P, ;4. Also, by strong measure consistency
of T
a(Ad) =v,(C) e Z1§l§k a(Aif) ® a(GO)

> 71,(C) & 3 a(Af) @ ((G'O) ®6 ) ----- (%)

= (%,(C) @ Z1gl§k amin(Ai10) &6 ) & a(G'0)

= a(G'0) (By condition (ii) of rule 3.6)
Then, by induction hypothesis, G'# has a proof T;,, in P;;;. The ground proof 7" is
constructed with Af :— A6, ..., A0, G'0 at the root (this is a ground instance of C’,
the new clause in P,;;) and T7,..., T}, T}, as its children. To show that this proof
T’ is measure consistent, note that ;"' (C") < 4} (C) @ §. Combining this with (*),
we get

o(4) = 4 e Y a(48) @ a(@H)
1<i<k

This completes the proof. O

Observe that, similar to the goal replacement transformation in [KF87, TS84,
TS86a] the conditions under which rule 3.6 may be applied are not testable at trans-
formation time. For testability we need to (1) determine whether G and G’ are
semantically equivalent, and (2) estimate § and ¢’ such that the clause measures of
P, can be computed. Semantic equivalence is undecidable in general and can be
conservatively approximated using program analysis. Our notion of syntactic equiv-
alence (refer Definition 5.3, Page 75) addresses this issue. Estimates for § and ¢’ can
be obtained by Integer Linear Programming techniques (refer Theorem 5.5, Page 78).
These two steps define a testable goal replacement rule.

Note that the goal replacement rule presented here can be added to any arbitrary
unfold /fold system instantiated in our framework. More importantly, this is done by
simply manipulating the measures; the proof of correctness of the augmented trans-

formation system follow immediately from the correctness proof of our framework.

3.5 Discussions

The development of a parameterized framework for unfold/fold transformations has
several important implications. It enables us to compare existing transformation
systems and modify them without redoing the correctness proofs (e.g., extending

measures for goal replacement in Section 3.4). It also facilitates the development of
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new transformation systems. For instance, we derived SCOUT which permits fold-
ing using multiple recursive clauses. Such a transformation system is particularly
important for verifying parameterized concurrent systems (such as a n-process token
ring for arbitrary n) using logic program evaluation and deduction. The utility of
the transformation system presented in this chapter is outlined by its use in con-
structing induction proofs of safety properties of nontrivial distributed protocols (see
Chapter 6).

In the next chapter, we extend the work reported here to obtain generalized
unfold/fold transformation systems for normal logic programs. Aravindan and
Dung [AD95] developed an approach to parameterize the correctness proofs of the
original Tamaki-Sato system with respect to various semantics based on the notion
of semantic kernels. Incorporating the idea of semantic kernel into our framework
yields a framework that is parameterized with respect to the measure structures as
well as semantics.

In future, it would be interesting to study whether we can develop similar parame-
terized unfold/fold transformation frameworks for other programming paradigms such
as functional and concurrent constraint programming languages [EGMO98, San96] as

well as process algebraic specification languages (e.g. CCS) [FS98].



Chapter 4

Transformations for Normal Logic

Programs

4.1 Background

Normal logic programs consist of definitions of the form A :— ¢ where A is an atom
and ¢ is a boolean formula over atoms. Unfolding replaces an occurrence of A in a
program with ¢ while folding replaces an occurrence of ¢ with A. Recall that folding
is called reversible if its effects can be undone by an unfolding, and #rreversible oth-
erwise. As in definite logic programs, unfold/fold transformation systems are proved
correct by showing that all programs in any transformation sequence Py, Py, ..., P,
are equivalent under a suitable semantics, such as the well-founded model semantics
for normal logic programs.

As an illustration of unfolding/folding, consider the sequence of normal logic pro-
grams in figure 8. In the figure, P; is derived from P, by unfolding the occurrence of
q(X) in the first clause of Fy. Program P, is derived from P; by folding the literal
q(Y) in the body of the second clause of p/1 into p(Y) by using clause p(X) :- q(X)
in P, as folder.

Existing unfold/fold transformation systems for normal logic programs [AD95,
Mah93, PP00, Sek91, Sek93] are either extensions of Maher’s reversible transforma-
tion system [Mah87] or the original Tamaki-Sato system [T'S84]. Even for definite logic
programs, irreversible transformations of programs were, until recently, restricted to
either folding using non-recursive clauses (see [GK94]) or a single recursive clause

(see [KF87, TS86al). In the last chapter, we proposed a transformation framework

ol
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for definite logic programs which generalized the above systems by permitting folding
using multiple recursive clauses. Here, we extend these transformations to normal

logic programs.

Overview of the results: The main result of this chapter (which was also reported
in [RKRR99a]) is an unfold/fold transformation system that performs folding in the
presence of recursion, disjunction as well as negation. The transformations of the
last chapter associate measures with program clauses to determine the applicability
of fold and unfold transformations. In this chapter, we extend this scheme to ac-
commodate negative literals. We show that this extension is sufficient to guarantee
that the resulting transformation system preserves a variety of semantics for normal
logic programs, such as the well-founded model, stable model, partial stable model,
and stable theory semantics. Central to this proof is the result due to Dung and
Kanchanasut [DK89] that preserving the semantic kernel of a program is sufficient
to guarantee the preservation of the different semantics for negation listed above.
However, in contrast to [AD95] where this idea was used to prove the correctness of
Tamaki-Sato style transformations, we present a two-step proof which explicitly uses
the operational counterpart of semantic kernels (see Section 4.3).

In the first step of our proof, we show that the transformations preserve positive
ground derivations, which are derivations of the form A ~» —B;, =By, ..., —B, such
that there is a proof tree rooted at A with leaves labeled = B; through —B, (apart
from true). We then show that preserving positive ground derivations is equivalent to

preserving the semantic kernel of the program. Thus positive ground derivations are

. pCLD.
PE)S) w0 p([XIYD):- —r(X),q(Y).
T q(I.

ABYD = 2w 00,000 g (v - —r,q.

Program P, Program P,
p(L1.
p([X|Y]):- —r(X),p(Y).
q([1).

q(IXIY]):= —r(X),q(Y).

Program P

Figure 8: An unfold/fold transformation sequence of normal logic programs
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the operational analogues of semantic kernels. This proof suggests that we can treat
the negative literals in a program as atoms of new predicates defined in a different
(external) module. The correctness of the transformation system is assured as long
as the transformations respect module boundaries (see Section 4.4). This indicates
how a transformation system originally designed for definite logic programs can be

adapted for normal logic programs.

4.2 The Transformations

Below we present our unfold and fold transformations for normal logic programs. The
unfold transformation, following the transformations in [AD95, Mah93, Sek91, Sek93],
does not unfold a negative literal. As a result, the negative literals may participate
in a transformation, but are by themselves unchanged. The folding transformation is
also almost identical to the folding rule for definite logic programs.

For simplicity of exposition, instead of presenting an abstract transformation
framework (such as the one given in the last chapter) we now present a concrete
transformation system. A general transformation framework for normal logic pro-
grams can be easily constructed from this system by using the results of the last
chapter.

Thus, in any transformation sequence Py, P, ..., P, we annotate each clause C' in
program P; with a pair (7} (C),~::(C)) where 7} (C),~:,(C) € Z and ~j (C) < ~i.(C).
Thus, v}, and 7}, are functions from the set of clauses in program P; to the set of
integers Z. The transformation rules dictate the construction of Vlijl and 7;';'1 from
v and 7;.. We assume that for any clause C in the initial program Py, 72 (C) =
7P (C) = 1. Recall that intuitively, ;. (C) and ~;,(C) for a clause C are analogous to
the Kanamori-Fujita-style counters [KF87]; the separation of hi and lo permits us to

store estimates of the counter values which is crucial for allowing disjunctive folding.

Transformation 4.1 (Unfolding) Let C be a clause in P; and A a positive literal
in the body of C. Let Cy,...,C,, be the clauses in P; whose heads are unifiable with
A with most general unifiers oy,...,0,,. Let C} be the clause that is obtained by
replacing Ao; by the body of Cjo; in Co; (1 < j < m).

Then, assign P,y = (P, — {C})U{C],...,CL}. Set

NTHCE) = 41,(C) 4+ 71,(C;)

Y (Ch) = 73 (C) +74:(C)
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The measures of all other clauses in P, are inherited from PF;. O

Transformation 4.2 (Folding) Let {C4,...,C,,} € P, and {D,...,D,,} C P; (j <
i) where C; denotes the clause A :— Ly, ..., L, L}, ..., L], and D, denotes the clause
B :— K1, ...,Kp,,. Also, let

1. V1<l <mdoy V1 <k <n; L, = Ko, where o0, is a substitution.

2. Bioy = Byos = ... = B,,0,, = B

3. Dy, ..., D,, are the only clauses in P; whose heads are unifiable with B.

4. V1 <[ < m o, substitutes the internal variables of D; to distinct variables which
do not appear in {A, B, L, ..., L. }.

5. V1 <1 < m ~L(D) < ~,(C))+ Number of positive literals in the sequence
Ly,..., L.

Then, assign P,y := (P, — {C4,...,Cy,}) U{C'} where C' = A :— B, L), ..., L] Set

N HC) = minici<m (74, (Cr) — VZ@(DI))

Tt (C') = mazi<icm(14:(Cr) = 7,(D1))
The annotations of all other clauses in P, are inherited from P;. O

Note that the first four conditions of the folding rule are essential for any correct
application of folding, including reversible folding. Finally, the fifth condition of the
rule governs sound applications of folding following a series of unfoldings. Our folding
rule can use multiple recursive clauses as folder unlike existing irreversible unfold /fold
transformation systems for normal logic programs. These systems restrict the folding

rule to use a single non-recursive clause from P, as the folder.

An Example: The following example (derived from [GK94]) illustrates the use of

our unfold/fold transformation system for normal logic programs.

Cy: inpos(X,L) :- in odd(X,L), — even(X). (1,1)
Cy: in_pos(X,L) :- in_even(X,L), — odd(X). (1,1)

Cs: in_odd(X, [X|L]). (1,1
C,: inodd(X,[Y,ZIL]) :- in_odd(X,L). (1,1
Cs: in_even(X,[Y,X|L]). 1,1
Cs: in_even(X,[Y,Z|L]) :- in_even(X,L). (1,1)

In the above program, in odd(X,L) (in even(X,L)) is true if X appears in an odd

(even) position in list L. Thus, in pos(X,L) is true if X is in an odd (even) position
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in list L, and X is not an even (odd) number. The odd/1 and even/1 predicates are
encoded in the usual way and are not shown.

Unfolding in_odd(X,L) in C} we get: clauses:

C7: inpos(X,[XIL]) :- — even(X). (2,2)
Cg: inpos(X,[Y,ZIL]) :- in odd(X,L), — even(X). (2,2)
Cy: in pos(X,L) :- in even(X,L), — odd(X). (1,1)

Now, unfolding in even(X,L) in (), yields the following:

Cy: inpos(X,[X|L]) :- — even(X). (2,2)
Cg: 1inpos(X,[Y,ZIL]) :- in odd(X,L), — even(X). (2,2)
Co: inpos(X,[Y,XIL]) :- — odd(X). (2,2)

Cip: inpos(X,[Y,ZIL]) :- ineven(X,L), — odd(X). (2,2)

Finally, we fold clauses {Cs, C1o} using the clauses {Cy, C2} from the initial pro-

gram as the folder to obtain the following definition of in pos/1.

Cr: inpos(X,[X|L]) :- = even(X). (2,2)
Cy: 1in pos(X,[Y,X|L]) :- — odd(X). (2,2)
C11 @ inpos(X,[Y,ZIL]) :- inpos(X,L). (1,1)

Note that the final step is an irreversible folding in presence of negation that uses
multiple clauses as the folder. Such a folding step is neither allowed in Tamaki-Sato
style transformation systems for normal logic programs [AD95, PP00, Sek91, Sek93]

nor in reversible transformation systems [Mah93].

Remark: We can maintain more elaborate book-keeping information than inte-
ger counters, thereby deriving more expressive unfold/fold systems for normal logic
programs. For instance, as in the SCOUT system (presented in the last chap-
ter), we can make the counters range over use a tuple of integers, and obtain
a system that is strictly more powerful than the existing Tamaki-Sato-style sys-
tems [TS84, TS86a, KF87, Sek91, Sek93, GK94, AD95]. The construction parallels
that of the SCOUT system.

4.3 Proof of Correctness

In this section, we show that our unfold/fold transformation system is correct with

respect to various semantics of normal logic programs. This proof proceeds in three
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steps. First, we introduce the notion of positive ground derivations and show that
it is preserved by the transformations. Secondly, we show that preserving positive
ground derivations is equivalent to preserving semantic kernel [DK89]. Finally, fol-
lowing [AD95], preserving semantic kernel implies that the transformation system is
correct with respect to various semantics for normal logic programs including well-
founded model, stable model, partial stable model, and stable theory semantics. We

begin with a review of semantic kernels.

4.3.1 Semantic Kernel of a Program

Definition 4.1 (Quasi Interpretation) [DK89, AD95| A quasi interpretation of a

normal logic program P is a set of ground clauses of the form
A~ ﬁBl,...,_'Bn (?’LZ 0)
where A, By, ..., B, are ground atoms in the Herbrand Base of P.

Quasi interpretations form the universe over which semantic kernels are defined. For
a given normal logic program P, the set of all quasi interpretations of P (denoted
QI(P)) forms a complete partial order with a least element (the empty set ¢) with

respect to the set inclusion relation C.

Definition 4.2 Given a normal logic program P, let Gnd(P) denote the set of all
possible ground instantiations of all clauses of P. The function Sp on quasi interpre-
tations of P is defined as

Sp : QI(P) = QI(P)
Sp(I) = {R(C,Dy,...,Dy) | C € Gnd(P)AD; €1, 1 <i<m}

where, if D;(1 < i < m) are ground clauses
Ai — _|Bi71, ceey _'Bi,ni (?’Lz Z 0)

and Ay, ..., An(m > 0) are the only positive literals appearing in the body of ground
clause C, then R(C, Dy, ..., Dy,) is the clause obtained by resolving the positive body

literals A1, ..., A,, in C using clauses Dy, ..., D,, respectively. O

If P is a definite program, then the function Sp is identical to the immediate logical
consequence operator Tp [L1093]. The semantic kernel of the program P is defined in

terms of Sp as:
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Definition 4.3 (Semantic Kernel) [DK89, AD95| The semantic kernel of a nor-
mal logic program P, denoted by SK(P), is the least fized point of the function Sp,

1.€.,

SK(P)=U,., SK"(P) where SK°(P) = ¢ and SK"™(P) = Sp(SK"(P))

new

Example : Consider the following normal logic program P:

p:-—q, r.

r - 7 r.

The semantic kernel of P will be computed as follows.

{(:
— {1 (a1}
S

r:--r)(:-~gq 7r)}
The following theorem from [AD95] formally states the equivalence of P and SK(P)

with respect to various semantics of normal logic programs.

Theorem 4.1 [Aravindan and Dung]| Let P be a normal logic program and SK(P)
be its semantic kernel. Then :

(1) If P is a definite logic program, then P and SK(P) have the same least Herbrand
Model.

(2) If P is a stratified program, then P and SK(P) have the same perfect model
semantics.

(8) P and SK(P) have the same well-founded model.

(4) P and SK(P) have the same stable model(s).

(5) P and SK(P) have the same set of partial stable models.

(6) P and SK(P) have the same stable theory semantics.

4.3.2 Preserving the Semantic Kernel

We now show that in any transformation sequence Py, Py, ..., P, where P, is ob-
tained from P; by applying unfolding (rule 4.1) or folding (rule 4.2), the semantic
kernel is preserved, i.e., SK(FPy) = SK(P,) =...= SK(P,). To do so, we introduce

the following notion of a positive ground derivation:
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Definition 4.4 (Positive ground derivation) A positive ground derivation of a
literal in a normal logic program P is a tree T such that: (1) each internal node of
T is labeled with a ground atom (2) each leaf node of T is labeled with a negative
ground literal or the special symbol true, and (8) for any internal node A of T,

A:— Ly, ..., L, must be a ground instance of a clause in program P where Ly, ..., L,
are the children of A inT.

Thus, consider any positive ground derivation 7' in program P. Let the root of T
be labeled with the ground literal L and let N be the sequence of negative literals*
derived in T', i.e., N is formed by appending the negative literals appearing in the leaf
nodes of T' from left to right. Then we say that L derives N in P, and denote such
derivations by L ~»p N (and L ~» N if P is obvious from the context). We overload
this notation, often denoting existence of such derivations also by L ~»p N. Note
that if L is a ground negative literal, there is only one positive ground derivation for

L in any program, namely the empty derivation L ~» L. We now define:

Definition 4.5 (Weight of a derivation) Let L ~»p N be a positive ground
derivation. The number of internal nodes in this derivation (i.e. the number of nodes

labeled with a ground positive literal) is called the weight of the derivation.

Definition 4.6 (Weight of a pair) Let Py, P, ..., P, be a transformation sequence
of normal logic programs. Let L be a ground literal, N be a (possibly empty) sequence
of ground negative literals s.t. L ~»p, N'. Then, the weight of (L,N'), denoted by
w(L,N), is the minimum of the weights of positive ground derivations of the form
L~sp N.

Note that for any program P; in the transformation sequence, the weight w(L, )
is defined as the weight of the smallest derivation L ~»p, N.

Definition 4.7 Let Py, Py, ..., P, be a transformation sequence of normal logic pro-
grams. A positive ground derivation L ~~p, N is said to be weakly weight-consistent
if for every ground instance A :— Ly, ..., Ly of a clause C used in this derivation, we
have w(A,Na) < 7;,,(C) + >0 oy w(Li, Ni) where Na, N1, ..., N are the sequence of

negative literals derived from the literals A, Ly, ..., Ly respectively in this derivation.

'For simplicity of exposition we have considered A as a sequence. Note that our correctness
proof holds even if A/ is regarded as a multi-set. This means that our unfold/fold transformations
can be interleaved with useful transformations like literal re-ordering.
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Definition 4.8 Let Py, Py, ..., P, be a transformation sequence of normal logic pro-
grams. A positive ground derivation L ~p, N is said to be strongly weight-consistent

if for every ground instance A :— Ly, ..., Ly of a clause C' used in this derivation:
o w(A,Na) >, (C)+ 21§l§kw(L17M)
o V1 <<k w(A Ny >w(L,N)

where Na,Ni,..., N}, are the negative literal sequences derived from the literals

A, Ly, ..., Ly respectively in this derivation.

Definition 4.9 Let Py, Py, ..., P, be a transformation sequence of normal logic pro-

grams. Then, program P; is said to be weight consistent if

e for any pair (L,N), whenever L derives N in P;, there is a strongly weight

consistent positive ground derivation L ~~p, N

e cvery positive ground derivation in P; is weakly weight consistent.

Using the above definitions, we now state certain invariants which always hold

after the application of any unfold/fold transformation.
o [1(P) =VILYN (L ~p, N & L~p N).
e [2(P;)) = P, is a weight consistent program

We now show that these invariants are maintained after every unfolding and fold-
ing step. This allows us to claim that the set of positive ground derivations of P is

identical to the set of positive ground derivations of program F;.

Lemma 4.2 If (Vj <i I1(P;)) holds, then VINN (L ~>p,, N = L~>p N )

Proof: We consider a positive ground derivation Dr = L ~ N in P;,, and con-
struct a derivation L ~» A in P; by induction on the weight (i.e the number of internal
nodes) of Dr. If L is a negative literal, then the result is obvious since then N' = L,
i.e. Dr is empty. Otherwise, let L :— Ly, ..., L, be the ground instance of a clause
C € P, used at the root of Dr. For all 1 <[ < n let A be the sequence of negative
ground literals derived from L; in the derivation Dr. Then, by induction hypothesis,

we have derivations L; ~~p, N, for all 1 <1 < n. We consider three possible cases.

Case 1 : C' was inherited from P,
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L ~~p N is constructed by applying L :— Ly, ..., L, at the root and then resolving
Ly, ..., L, by using the derivations L; ~p. N;.

Case 2 : C' was obtained by unfolding

Then, without loss of generality, P; contains clauses with ground instantiations
L :— B,Ly1,...,L, and B :— Ly, ..., L;,. We construct derivation L ~>p N by first
applying the clause L :— B, Ly, ..., L, then the clause B :— Ly, ...L; and then re-
solving Ly, ..., L, by using L; ~p, N; for all 1 <1 < n.

Case 3: C was obtained by folding

Let L; be the atom introduced by folding, and let P;(j < i) be the program from which
folder clauses were picked. By induction hypothesis, we have derivations L; ~>p. N
for all 1 <[ < n. Then, L; ~p, N; and hence Ly ~»p, N7 (by I1(P;)) and hence
Ly ~p; Ny (by I1(P;)). Let a derivation L; ~» Nj in P; be called Dr; and let
Ly :— Ly,..., L1 be the ground clause used at the root of Dr;. Then, by conditions
(3) and (4) of the folding transformation, there must be a ground instantiation of a
clause in P; (one of the folded clauses) of the form L :— Ly, ..., L1 4, Lo, ..., L,,. Also,
by I1(P;), we must have derivations Li; ~»p, Ni; for all 1 < | < k, where Nj,
is the sequence of negative literals derived from L,; in Dr;. Then, by I1(P;), we
must have derivations Ly; ~»p, Nj, for all 1 < [ < k. We can therefore construct
L ~»p N by applying the clause L :— Ly, ..., L1k, Lo, ..., L, at the root and then
resolving L1, ..., L1, Lo, ..., L, by using Li; ~p, Nl,l (V1<I<k)and L; ~p N
(V2<l<n). O

Lemma 4.3 Let Py, ..., P;, P,yy be an unfold/fold transformation sequence s.t. Y0 <
g < i I1(Pj) N12(Pj). Then, all positive ground derivations of P,y are weakly weight

consistent.

Proof: The proof proceeds by induction on the weight (i.e number of internal nodes)
of positive ground derivations in P, ;. Let Dr = L ~ N be a derivation in P;; and
let L :— Ly,...L, be the ground instance of a clause C' € P, that is used at the
root of Dr. Then, the sub-derivations L; ~>p,, N, (for all 1 <1 < n) of Dr are
weakly weight consistent by induction hypothesis, where NV, ..., N, are the sequence
of negative literals derived from L, ..., L, in derivation Dr. Hence it suffices to show
that w(L,N) < v (C) + Y, o<, w(L;, Ni). We consider three cases.
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Case 1 : C was inherited from P;.

N, therefore by lemma 4.2, we have L; ~p, Nj. Thus L :— Ly,..., L,

is used at the root of a positive ground derivation in P;. Since P, is a weight consistent

Since L; ~p,,,

program and i (C) = ~i.(C), the result follows.
Case 2: C was obtained by unfolding.

Let Lq,...,L; be the body literals of C' which were introduced through unfolding.
Then, without loss of generality, P; contains clauses C' and C” which have ground
instantiations L :— B, Ly, ..., L, and B :— L, ..., L. Also, by lemma 4.2, we have
Ly ~p N; (for all 1 <[ < n). Then, the above mentioned two ground instances
of C" and C” are used in some positive ground derivation of P;. Since P; is weight

consistent, we have :

w(L,N) < 7;,(C") +w(B,Np) + Z w(L;, N})

k+1<I<n
W(BNB) < A(C)+ Y wlki A
1<I<k
where N is the sequence of negative literals derived by B, i.e. Ny is obtained by
appending Ny, ..., N,. Then combining the above inequalities we have w(L,N) <
Y H(CO) + > 1<1<n W(L1, Ni) since we know that Y (CO) = 45,(C") 4+ 4i.(C") by defi-

nition of unfolding.
Case 3: C was obtained by folding.

Let L; be the atom introduced by folding, and let P;(j < i) be the program from
which folder clauses were picked. By lemma 4.2 we have L; ~»p N;. Again since
I1(P;) NI1(P;), therefore Ly ~»p, Ny. As P; is a weight consistent program, therefore
there exists a strongly weight consistent derivation L; ~» N in P;. Let this derivation
be called Dr;. Let the clause used at the root of Dr; be D" and let the ground instance
of D" used at the root of Dr; be Ly :— Ly,..., L. Then, by definition of strong

weight consistency

w(Li,N7) > 71 (D') + Z w(L1y, N1y)

1<i<k

where ./\/’1,1, . ,N1,k is the sequence of negative literals derived by Li1,..., L1 in
Dr;

;. But D' must be a folder clause by definition of folding. Hence there must be
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a clause C' in P; with a ground instance L :— Ly4,..., Ly, Lo, ..., L, (this is the
folded clause corresponding to D'). Now, by lemma 4.2 we have L; ~»p N for all
2 <1 < n. Also since I1(P;) A I1(P;) therefore Li; ~»p, Nj, for all 1 <[ < k.
Therefore the ground clause L :— Ly3,..., Ly, Lo, ..., L, appears at the root of a
positive ground derivation in P;. As P; is a weight consistent program, this derivation

must be weakly weight consistent. Hence

w(L,N) <3 (C)+ Y w(Lig, N + Y w(ly, M)

1<I<k 2<i<n

< fﬁzz(cl) - ’yl]o(Dl) + w(LlaNI) + Z w(LlaM)

2<i<n
<a(C) =D + ) w(Li, M)
1<i<n
<Y (C) + w(Li, N1)
1<i<n
This completes the proof. O

We now establish the main theorem concerning the preservation of positive ground

derivations in a transformation sequence.

Theorem 4.4 Let Py, P, ... be a sequence of normal logic programs where P;. is
obtained from P; by applying unfolding (rule 4.1) or folding (rule 4.2). Then we have
Vi >0 I1(P) A I2(P).

Proof : The proof proceeds by induction on i. For the base case, I1(F,) holds
trivially, and I2(F;) holds because every positive ground derivation of Py is weakly
weight consistent, and for any pair (L, ') the smallest positive ground derivation
L ~~p, N is strongly weight consistent.

For the induction step, we need to show I1(P;1) A I2(P;y1). By Lemma 4.2 we
have L ~»p,, N = L ~»p N, and by Lemma 4.3 we know that all positive ground

derivations of P;,; are weakly weight consistent. We need to show that:
1. LWPiN:>L’V‘->pH1 N, and

2. for any pair (L,N) s.t. L ~»p_, N, there exists a strongly weight consistent

derivation L ~ N in P ;.

Thus, it suffices to prove that for any pair (L, N) s.t L ~>p. N, there exists a strongly

weight consistent derivation L ~p,,, N.
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Consider a pair (L, N') such that L ~»p, /. Since P; is weight consistent, therefore
there exists a strongly weight consistent derivation L ~» N in P;. Let this be called
Dr. We now need to construct a strongly weight consistent derivation D1’ = L ~»p,
N. Construction of Dr’ proceeds by induction on the weight of (L,N') pairs.?

The base case occurs when L is a negative literal, N' = L and w(L,N) = 0. We
then trivially have the same derivation L ~» N in P, as well. Otherwise if L is a
positive literal, let C' be the clause used at the root of Dr. Let L :— Ly,..., L, be
the ground instantiation of C' used at the root of Dr. Since Dr is strongly weight
consistent w(L,N) > w(L;, N;) where N is the sequence of negative literals derived
by L; for all 1 < [ < n. Hence, we have strongly weight consistent derivations

Ly ~p,,, N;. We construct Dr' by considering the following cases :
Case 1: (' is inherited from P; to P,

Dr' is constructed with the clause L :— Ly, ..., L, at the root and then appending
the derivations L; ~p, N, for all 1 <[ < n. This derivation D7’ is strongly weight

consistent.
Case 2: (' is unfolded.

Let the L; be the positive body literal of C' that is unfolded. Let the clause used
to resolve Ly in the derivation Dr be () and the ground instance of ' used be
Ly — Lys,...,L1. By definition of unfolding L :— Ly1,...,Liy, La,..., L, is a

ground instance of a clause C| in Pi,; with 7,1 (C}) = ~i (C) + ~5,(Cy). Also, let
Mi1,...,Nix be the sequence of negative literals derived by Ly i,..., L1y in Dr.
Then, by strong weight consistency w(L1;,N1;) < w(Li,N1) < w(L,N) for all
1 <[ < k. Thus we have strongly weight consistent derivations L;; ~»p,,, M,
We construct Dr' by applying L :— L1, ..., L1y, Lo, ..., L, at the root and then ap-
pending the strongly weight consistent derivations Ly ~»p,,, N, (for all 1 <1 < k)

and L; ~p,,, N (for all 2 <1 < n). Since Dr is strongly weight consistent, therefore

w(L,N) > ,(C) + Z1§lgnw(LlaM)
and  w(Ly, N1) > 7, (C1) + 30 e w( L, Niy)
= w(L, N) > 37N C) + 301 g w( Ly Nig) + Yooy, w(Liy M2)

o

This shows that D7’ is strongly weight consistent.

2This construction is similar to the construction of the strongly measure consistent proof 7" in
the proof of theorem 3.3 in chapter 3.



CHAPTER 4. TRANSFORMING NORMAL LOGIC PROGRAMS 64

Case 3: C is folded

Let C (potentially with other clauses) be folded, using folder clause(s) from P;(j < 1),
to clause C' in P;;. Assume that Li,..., Ly are the instances of the body literals
of C' which are folded. Then, C’ must have a ground instance of the form L :
—B,Lgyq,..., Ly, where B :— Ly, ..., L is a ground instance of a folder clause D in
P;. Since, we have derivations L; ~»p, N; for all 1 <[ < k, therefore by I1(P;,)AI1(P;)
there exist derivations L; ~p, N;. Then, there exists a derivation B ~ P, Np where
N3 is obtained by appending the sequences Ny, ..., Nj. Since P; is a weight consistent
program, this derivation must be weakly weight consistent, and therefore w (B, Ng) <

y1.(D) + > 1<i<p w(Li, M), By strong weight consistency of Dr, we have

w(LN) 2 3(0) + 3wl )+ Y w(l M)

1<i<k k+1<i<n
> 7,(C) + w(B,Ng) = 7h(D) + > w(Liy,Ny) e (%)
k+1<i<n

> w(B,Ng) (by condition (5) of folding)

Thus there exists a strongly weight consistent derivation B ~~p,,, Ng. We construct
Dr' with L :— B, Ly,1,...,L, at the root and then appending the strongly weight
consistent derivations B ~p, NB, L1 Py Nist, ..o, Ly, P N,.. To show

that Dr' is strongly weight consistent, note that 7. (C") < ~i (C) — ~].(D) since C
and D are folded and folder clauses. Combining this with (*),

w(L,N) > 7N (C) +w(BN) + Y w(L, N))

k+1<I<n

This completes the proof. O

Thus we have shown that all positive ground derivations are preserved at every step
of our transformation. Now we show how our notion of positive ground derivations
directly corresponds to the notion of semantic kernel. Intuitively, this connection is
clear, since a clause in the semantic kernel of program P is derived by repeatedly
resolving the positive body literals of a ground instance of a clause in P until the

body contains only negative literals. Formally, we prove that :

Theorem 4.5 Let P be a normal logic program and A, By, ..., B,(n > 0) be ground
atoms in the Herbrand base of P. Let N denote the sequence of negative literals

—=By,...,—B,. Then, A derives N in P iff (A :— N) € SK(P).
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Proof : We prove A ~»p N = (A :— N) € SK(P) by induction on the weight of the
derivation A ~»p N. The base case occurs when the derivation has a weight of 1 i.e.
it has only 1 internal node. Then A :— N must be a ground instance of a clause in P.
Then, by definition of Sp, we know (A4 :— N') € Sp(¢). Hence (A :— N) € SK(P).
For the induction step, let the property be true for all positive ground derivations of
weight < m, and consider a derivation Dr of the form A = Gy, Gy, ...,G, = N with
weight m. Then, A :— G; must be a ground instance of a clause in program P and G
must be of the form —By,...,=Bj, Ay, ..., Ay (j > 0,k > 1). Let Ny,..., N} be the
(possibly empty) sequence of negative literals derived from Ay, ..., A; in derivation
Dr. Then, for all 1 < i < k, we have A; ~p N; and the positive ground derivation
A; ~ N; has weight < m. By induction hypothesis (A; :— N;) € SK(P). Hence,
for all 1 < i < k, (4; :— N;) € SK"(P) for some n. Note that, by definition of
sequences N;, we have N' = =By, ..., =B, = =By,...,=B;,N1,..., Ni. Then, clearly
by definition of function Sp we have (A :— N) € Sp(SK"(P)), i.e. (A :—N) €
SK"tY(P). Hence (A :— N) € SK(P).

Now we prove that (A :— N) € SK(P) = A ~»p N by fixed-point induction.
Recall that SK(P) is the least fixed point of the function Sp : QI(P) — QI(P) where
QI(P) denotes the set of all quasi-interpretations of P. Also note that (QI(P),C) is
a complete partial order with a least element (the empty set ¢), where C is the set
inclusion relation. Hence to prove the above result by fixed-point induction we need
to prove :

.L(A:—=N)ep=A~pN
2. For any quasi-interpretation I, if for any (A, N') wehave (A:— N) €T = A ~p N,
then for any (A, N') we must have (A :— N) € Sp(I) = A ~p N

The first proof obligation trivially holds. To prove the second proof obligation,
consider any ground clause C' = A :— N in Sp(I). By definition of function Sp
(definition 4.2), we have C' = R(C,Dy,...,D,,). Thus, clause C is of the form
A :—-By,...,mBj, Ay, ..., A, and clause D; (1 < i < m) is of the form A; :— N;
where N; is a finite (possibly empty) sequence of ground negative literals. Also
C € Gnd(P) and D; € I. Then, by induction hypothesis we have A; ~p N for all
1 < i < m. Thus we can construct the derivation A ~p N by applying the clause
C=(A:—-By,...,mBj, A, ..., A,) at the root, and then resolving Ay, ..., A,, by
using A; ~p N (for all 1 <i < m). O

We can now prove that the semantic kernel is preserved across any unfold/fold

transformation sequence.
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Corollary 4.6 (Preservation of Semantic Kernel) Suppose Py, ..., P, is a se-

quence of normal logic programs where P;yq is obtained from P; by unfolding (Rule

4.1) or folding (Rule 4.2). ThenV0 < i <n SK(P,)) = SK(FR).

Proof: We prove that SK(FP)) = SK(FP;) for any arbitrary i. By Theorem 4.4

we know that A ~p N & A ~p N for any ground atom A and sequence of

ground negative literals A/. Then, using Theorem 4.5 we get (4 :— N) € SK(P,) &

(A:= N) e SK(P;). Thus, SK(Py) = SK(F;). O
Following Theorem 4.1 and Corollary 4.6 we have:

Theorem 4.7 (Correctness of Unfolding/Folding) Let P,, ..., P, be a sequence
of normal logic programs where P;y1 is obtained from P; by an application of unfolding
(Rule 4.1) or folding (Rule 4.2). Then, for all 0 < i < n we have

(1) If Py is a definite logic program, then Py and P; have the same least Herbrand
Model.

(2) If Py is a stratified program, then Py and P; have the same perfect model semantics.
(3) Py and P; have the same well-founded model.

(4) Py and P; have the same stable model(s).

(5) Py and P; have the same set of partial stable models.

(6) Py and P; have the same stable theory semantics.

4.4 Discussions

Goal Replacement The transformation system presented in this chapter can be
extended to incorporate a goal replacement rule which allows the replacement of a
conjunction of atoms in the body of a clause with another semantically equivalent
conjunction of atoms provided certain conditions are satisfied (which ensure preser-
vation of weight consistency). In future, it would be interesting to study how we can
perform multiple replacements simultaneously without compromising correctness (as

discussed in [BCE96]).

Motivation The motivation of the general unfold/fold transformation system re-
ported here is verification of parameterized concurrent systems. Proving temporal
properties of parameterized systems requires reasoning about each of the members of
the infinite family, which can be accomplished by induction. We have used generalized

unfold/fold transformations of definite logic programs (presented in the last chapter)
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to verify liveness and safety properties of parameterized systems. However, temporal
properties containing both greatest and least fixed point operators cannot be encoded
as a definite logic program. A trivial example of such a property is the CTL formula
AG(in = EFout) which could be described in English as follows: “always if an in-
put event occurs then an output event eventually occurs”. This property contains
the always operator (defined as a greatest fixed point) and the eventuality operator
(defined as a least fixed point), and is commonly verified for hardware circuits. To
use unfold/fold transformations to construct induction proofs of such temporal prop-
erties we need to extend our generalized unfold /fold transformation system to normal
logic programs. This indeed has been a motivation for developing the transformation

system presented here.

Implications of the Correctness Proof Apart from the transformation sys-
tem, the details of the underlying correctness proof reveal certain interesting aspects
generic to such transformation systems. First of all, our proof exploits a degree of
modularity that is inherent in the unfold/fold transformations for logic programs.
Consider a modular decomposition of a definite logic program where each predicate is
fully defined in a single module. Each module has a set of “local” predicates defined
in the current module and a set of “external” predicates used (and not defined) in
the current module. It is easy to see that Lemma 4.2, 4.3 and Theorem 4.4 can be
modified to show that unfold/fold transformations preserve the set of “local ground
derivations” of a program. We say that A ~» By, By, ..., B, is a local ground deriva-
tion (analogous to a positive ground derivation), if each B; contains an external pred-
icate, and there is a proof tree rooted at A whose leaves are labeled with By, ..., B,
(apart from true). Consequently, transformations of a normal logic program P, can
be simulated by an equivalent positive program module ) obtained by replacing neg-
ative literals in P with new positive external literals. The newly introduced literals
can be appropriately defined in a separate module. Thus any transformation system
for definite logic programs that preserves local ground derivations also preserves the
semantic kernels of normal logic programs.

Secondly, we showed that positive ground derivations form the operational coun-
terpart to semantic kernels. This result, which makes explicit an idea in the proof of
Aravindan and Dung [AD95], enables the correctness proof to be completed by con-
necting the other two steps: an operational first step, where the measure consistency

technique is used to show the preservation of positive ground derivations and the
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final model-theoretic step that applies the results of Dung and Kanchanasut [DK89)]
relating semantic kernels to various semantics for normal logic programs.
Interestingly, by its very nature, the notion of semantic kernel cannot be used in
proving operational equivalences such as finite failure and computed answer sets. The
important task then is to formulate a suitable operational notion that plays the role

of semantic kernel in the correctness proofs with respect to these equivalences.



Chapter 5

Proofs by Program

Transformations

In our approach for parameterized system verification, the parameterized system and
the temporal property to be verified are encoded as a logic program. The verification
proof obligation is reduced to establishing predicate equivalences'. In this chapter,
we design strategies to guide the application of program transformations for proving
predicate equivalences.

Section 5.1 presents a formal description of a tableau based proof system for
solving predicate equivalences. Application of the rules in this proof system constructs
a proof via program transformations as outlined in Chapter 2. Section 5.2 presents
automated instances of each of the proof rules. Section 5.3 contains an algorithmic
framework to create strategies for guiding the application of the proof rules. In the
next chapter, we will discuss development of concrete strategies by instantiating this

algorithmic framework.

Assumptions: The abstract transformation rules presented in the previous chap-
ters can be directly used for constructing proofs. For purposes of clear and concrete

presentation, we assume the following for the rest of the dissertation.

e the logic program encoding F, of the verification problem for parameterized
systems (and the subsequent logic programs P;, P, ... obtained by transforming

it) is a definite logic program.

Note that the proof technique outlined here can be easily adapted to prove implications instead
of equivalences.

69
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e The Measure Structure (refer Definition 3.1) for the unfolding, folding, goal
replacement transformations is (Z, 4+, < N). Thus, the clause measures for any
clause in a program P; of a program transformation sequence Py, Py, ..., P, is

a pair of integers.

e In any transformation sequence Py, Py, ..., P,, the clauses of P, are annotated
with (1,1).

e VC € P,y — P, (i.e. new clauses in P, 1) 7} (C) = GLB™!(C) and ~;,(C) =
LUB™Y(C). In other words, the measures of a clause obtained by unfolding

(folding) are calculated via integer addition (subtraction).

e The atom measure a(A) of a ground atom A € M(F,) in a transformation
sequence Py, Py,. .. P, is the number of nodes in the smallest ground proof of A
in P(].

The preservation of least Herbrand Model Semantics of any interleaved application

of such transformations directly follows from Theorems 3.3 and 3.6.

5.1 A Proof System for Predicate Equivalences

Formally, the predicate equivalence problem is: given a logic program P and a pair
of predicates p and p’ of the same arity, determine if P = p = p’ i.e. whether p and
p' are semantically equivalent in P. In other words, we need to determine whether
for all ground substitutions 6, p(X)0 € M(P) < p'(X)§ € M(P). Recall that M(P)
denotes the least Herbrand model of program P.

We develop a tableau-based proof system for establishing predicate equivalence.
The proof system presented here can be straightforwardly extended to prove goal
equivalences? instead of predicate equivalences. Our process is analogous to SLD
resolution. Recall that given a goal G and a definite logic program P, SLD resolution
is used to prove whether instances of G are in M(P). This proof is constructed
recursively by deriving new goals via resolution. The truth of G is then shown by
establishing the truth of these new goals. In contrast, each node in our proof tree
denotes a pair of predicates (p,p’). To establish their equivalence we must establish

that the predicates in the pair represented by each child node are equivalent. Note

2Recall that in a definite logic program, a goal is a conjunction of atoms.
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| Name | Top-down Inference (one step) | Side Condition |
& Trp=yp, & 5
(Ax) £ & pEp
E Trp=yp, &
(Tx) e M(Pix) = M(P)

E T,Pukp=p, &
E, Tkp=yp, €& o

£ T.Purp=p, Brq=q, & HFEa=a
= M(P;11) = M(P)

(Gen)

Table 2: Proof System for showing Predicate equivalences

that the predicates in the child node are to be obtained from the syntax of the current

definitions of p,p’. We now define:

Definition 5.1 (e-atom) Let I' = Py, Py, ..., P; be a sequence of programs. An e-
atom is of the form T' = p = p’ where p and p' are predicates of same arity appearing
in each of the programs in T'. It represents the proof obligation V0 < j <i P; =p=yp'

i.e. p,p' are semantically equivalent in each of the programs in T.

We generalize the problem of establishing a single e-atom to that of establishing a
sequence of e-atoms. We define an e-goal as a (possibly empty) sequence of e-atoms.
We will often denote an e-goal by £, possibly with primes and subscripts. Recall that
SLD resolution proves a goal by unfolding an atom in the goal. Similarly, we proceed
to prove an e-goal by transforming the relevant clauses of an e-atom (i.e. the clauses
of the predicates appearing in the e-atom) in the e-goal.

The three rules used to construct an equivalence tableau are shown in Table 2. In
the description of the proof rules I' denotes a sequence of programs P, ..., P;. Given
a definite logic program Py, and a pair of predicates of same arity p, p’, we construct
a tableau for the proof obligation Py - p = p’ by repeatedly applying the inference
rules in Table 2.

The aziom elimination rule (Ax) is applicable whenever the equivalence of the
predicates p and p’ can be established by some automatic mechanism, denoted in the
P

>~

Py
rule by p = p'. Thus, = is a decision procedure which infers the equivalence of p, p’
in program P;. Axiom elimination will typically be an application of what we call
“syntactic equivalence”, a decidable equivalence of predicates based on the syntactic

form of the clauses defining them (see Definition 5.3).



CHAPTER 5. PROOFS BY PROGRAM TRANSFORMATIONS 72

The program transformation rule (Tx) attempts to simplify the program in order
to expose the equivalence of predicates (which can then be inferred via an application
of Ax). The program P, is constructed from I" using a semantics preserving program
transformation. We use this rule whenever we apply an unfolding, folding, or any
other (semantics-preserving) transformation that does not add any equivalence proof
obligations.

The equivalence generation rule (Gen) proves an e-atom I' = p = p’ by performing
replacements in the clauses of p,p’. In particular, occurrence of some predicate ¢ in
the clauses of p, p' is replaced by occurrence of another predicate ¢’. The guarantee is
that if the predicates ¢, ¢’ are semantically equivalent then the program thus obtained
is semantics preserving. This appears as the side condition of the Gen rule. The
notation Py = ¢ = ¢’ is a shorthand for the following: for all ground substitution 6,
¢(X)0) € M(PRy) < ¢ (X)8) € M(P,) where M(P,) is the least Herbrand model of
Py. Note the proof of semantic equivalence of p and p' is being constructed by using
the semantic equivalence of ¢ and ¢. This allows us to simulate nested induction
proofs. Typically, an application of the Gen rule corresponds to applying the goal
replacement transformation.?

The notion of a tableau for a predicate equivalence proof obligation in a definite

logic program F, is then defined in the usual way.

Definition 5.2 (Equivalence Tableau) An equivalence tableau of an e-goal Eyis
a finite sequence of e-goals &y, &1, ..., E, where 1 is obtained from &; by applying
one of the rules described in Table 2 and &, is empty.

Now, let Py be a definite logic programs and p, p’ be predicates of same arity

appearing in Py. Then we use our proof system to construct an equivalence tableau
Ofgo = (Pol_pEp’) .

Theorem 5.1 (Soundness of Proof System) Let &),&;,...,E, be a successful
tableau with & = (Py & p = p') for some (definite) logic program Py. Then
Py E p =y ie predicates p and p' are semantically equivalent in the least Her-
brand model of P,.

Proof: We prove a stronger result. For any successful tableau of an e-goal & if

I'kp=pisaneatomin & where ' = Fy,..., P, then P, =p=1p'.

3The Gen rule does not require {p,p'} N {q,¢'} = ¢. When we synthesize an algorithmic
framework for applying the proof rules we will keep track of the past history of equivalence proof
obligations.



CHAPTER 5. PROOFS BY PROGRAM TRANSFORMATIONS 73

The proof for this result is established by induction on the length of the tableau.
For the base case, we have a tableau of length 1, which is formed by an application
of the Ax rule. For such a tableau the result holds trivially since Ax is applied only
when the semantic equivalence of p,p’ can be automatically inferred in P;. For the
induction step, we consider a tableau &, &y, ..., &1 of length £+ 1. For all e-atoms
of & which are not modified in the step & — &, the result follows by induction
hypothesis. Let Py, ..., P, p = p' be the e-atom in &, that is modified.

e Ax: If the rule applied to & is Ax, then from the side condition of Ax we have
PiEp=p.

e Tx : If the rule applied to & is Tx, then P,..., P, P, b p = p' is an
e-atom in &;. Since &i,...,&1 is a successful tableau of &, therefore by
induction hypothesis P,y = p = p'. By the side condition of Tx, we have
M(P;) = M(P;;1) and therefore P, =p =p'.

e Gen : If the rule applied to & is Gen, then Py, ..., P, P,,; F p = p’ and
Pyt q = ¢ are e-atoms in &;. Again &;,...,&,1 is a successful tableau of &;.
By induction hypothesis, we have P,.; = p = p' and Py = ¢ = ¢'. From the
side condition of Gen we have M (P;) = M(P;;) and therefore P, = p = p'.

Now, if &, ..., &, is a successful tableau of & = Py = p=p' then Ph=p=p. O

From the soundness of the proof system, we can also infer the following property
for equivalence tableaus. It shows that for any e-atom I' - ... appearing in an

equivalence tableau, all programs in I' are semantically equivalent.

Lemma 5.2 Let &, &q,...,E, be an equivalence tableau of & = Py = p = p'. For
every e-atom (I' b ...) in the tableau, if ' = Py, ..., P; then we have M(Py) = ... =
M(P).

Proof: We show that the above invariant is maintained in every step of the top-
down tableau construction. Initially, the invariant is trivially true for the e-atom &,
= (Py - ...). For any application of Ax, since no e-atoms are added, the invariant
holds. For any application of Tx, we get the e-atom I', P;;1 - p = p’ from the e-atom
I'tp=p wherel' = PFy,..., P, We have M(P,;1) = M(P;) from the side condition
of Tx. Therefore the invariant must hold for I', P,,; - p = p’ if it holds for T' - p = p'.
For any application of Gen, we obtain the e-atoms I', P,,; - p=p' and P F ¢ = ¢
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from the e-atom I' = p = p’ where I' = Py, ..., P,. The invariant trivially holds for
the e-atom Py - ¢ = ¢/. Since Py  q¢ = ¢' is a proof obligation appearing in an
equivalence tableau therefore Py - ¢ = ¢’ itself has an equivalence tableau. By the
soundness of the proof system shown by Theorem 5.1 we have Py = ¢ = ¢’. Then,
from the side condition of Gen we have M (P;,;) = M(FP;). Again the invariant must
hold for I', P,yy F p=p’ if it holds for ' F p = p'. O

Note that the proof system given in Table 2 is not complete. There can be no

such complete proof system as attested to by the following theorem.

Theorem 5.3 Determining equivalence of predicates described by logic programs is

not recursively enumerable.

The theorem is easily proved using a reduction described in [AK86|. For a Turing
machine M, we construct a program having two predicates, one that describes the
natural numbers and the other that identifies an n such that M does not halt within
n moves. These predicates are equivalent if and only if M does not halt. The
non-halting problem is not recursively enumerable and so the predicate equivalence

problem cannot be recursively enumerable.

5.2 Automated Instances of Proof Rules

In this section, we discuss the automation of each application of an Ax, Tx or
Gen rule. In the next section we present an algorithmic framework for guiding the
application of these rules. The application of the Tx and Gen rules is achieved by

unfolding, folding and goal replacement transformations presented in Chapter 3.

Ax rule: The aziom elimination rule (Ax) infers the equivalence of two predicates
p,p’ in a semantics preserving program transformation sequence I' = P, ..., P;. In
the light of Theorem 5.3, any such rule will be incomplete. Therefore, we will con-
struct an effectively checkable sufficient condition for predicate equivalence. We call
this sufficient condition as syntactic equivalence. Given a program transformation se-
quence I' = Py, ..., P; and two predicates p, p’, we apply Ax if p,p’ are syntactically
equivalent in program FP;.

As an illustration, consider the program P (with clauses annotated with integer

clause measures) in Figure 9. We can infer that P = r = s since r and s have
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p(X) :- r(X). (v:7)  a@® - s(X). (k15 17)
p(X) :- e(X,Y), p(Y). (72,7) a(X) :- e(X,Y), q(¥). (p2,uh)
r(X) - b(X). (v3,73) s(X) :- b(X). (s, 1)

Figure 9: Program with syntactically equivalent predicates.

identical definitions. Using the equivalence of r and s we can infer that P = p = q,
since the definitions of p and q are, in a sense, isomorphic.

We formalize this notion of equivalence in the following definition. The follow-
ing definition partitions the predicate symbols of a program into equivalence classes.
Each predicate is assumed to be assigned a label, the partition number of the equiv-
alence class to which it belongs. The labels of all predicates belonging to the same

equivalence class is thus the same, and each equivalence class has a unique label.

Definition 5.3 (Syntactic Equivalence) A syntactic equivalence relation 5, s an
equivalence relation on the set of predicates of a program P such that for all predicates

p,q in P, ifp L q then the following conditions hold:
1. p and q have same arity, and

2. Let the clauses defining p and q be {C1,...,Cp} and {D, ..., D,} respectively.
Let {Cy,...,C! } and {D1,...,D.} be such that C] (D)) is obtained by replacing
every predicate symbol r in C; (D;) by s, where s is the label of the equivalence
class of r (w.r.t. 5). Then there exist two functions f : {1,...,m} — {1,... n}
and g :{1,...,n} = {1,...,m} such that

(i) V1 <i <m Cj is an instance of D,
(it) V1 < j <n Dj is an instance of Cy .

Note that there is a largest syntactic equivalence relation. It can be computed by
starting with all predicates in the same class, and repeatedly splitting the classes that
violate properties (1) and (2) until a fixed point is reached. Also note that to show
P L g we need not establish a bijection between the clauses of p,q in P. As shown
by the following lemma, the existence of the mapping f ensures that for any ground

substitution 6 we have p(X)f € M(P) = q(X)# € M(P) whereas the mapping ¢
ensures ¢(X)0 € M(P) = p(X)0 € M(P).
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Lemma 5.4 (Syntactic Equivalence = Semantic Equivalence) Let X be the

syntactic equivalence relation of the predicates of a program P. For all predicates

. P
p,q, ifp~gq, then Pl=p=q

Proof : Let p K qg. Then we show that for any ground proof T of a ground atom
p(X)f in program P there is a ground proof T" of ¢(X)# in program P and vice-versa.

For any ground proof T' of p(X)f# we can show the existence of a ground proof
T’ of ¢(X)6 by induction on the size (number of nodes) of T. Let the clause used
at the root of T'be C' = (p(...) :— By,..., Bg). Since p Z q therefore ¢ has a clause
C'"=(q(...) — B,...,B}) and p, R p, where p; (p)) is the predicate symbol in B,

(B]) for all 1 <1 < k. Let p;(Y)o be the ground instantiation of B; appearing in 7.

Now, the size of the subproof of p;(Y)o in T is clearly less than the size of T. By
induction hypothesis there exists a ground proof of p)(Y)o. Also p)(Y)o is an instance
of B,0 since clause C is an instance of clause C’ when all predicates are replaced by
their labels. By applying clause C’ at the root we can construct a ground proof 7" of
q(X)8.

For any ground proof 7" of ¢(X)f we can show the existence of a ground proof T

of p(X)# in a similar fashion. O

Note that given a definite logic program P, and two predicates p,p’ in P, the
corresponding syntactic equivalence check p L p' has worst case time complexity
O(Pred(P)? x NumPredClause(P)* x MazClause(P)) where

e Pred(P) = Number of predicate symbols in program P
e NumPredClauses(P) = Maximum number of clauses of any predicate in P
o MazxClause(P) = Maximum size of any clause in P

Given a logic program P, there are at most Pred(P)?* distinct syntactic equivalence
checks. Each of these checks can be performed in polynomial time. Since the largest
syntactic equivalence relation can be computed as a greatest fixed point, we can define
a dual relation ¢ which can be computed as a least fixed point. Given two predicates
p,p’ in program P we then check p L p’ by checking —(p 712 p'). In checking p 71[/: p' we
need to show the non-existence of a suitable mapping as required by Definition 5.3 as
follows: we find a clause of either predicate which cannot be mapped to any clause of
the other predicate under condition 2 of Definition 5.3. Given two clauses C' and D

of p,p’ checking whether one is an instance of the other (as mentioned in condition 2
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of Definition 5.3) takes O(MaxClause(P)) time. Checking p % p involves O(] C(p) |
* | C(p') |) instantiation checks i.e. O(NumPredClauses(P)?) instantiation checks,
and leads to recursive invocations of % checks. Since at most O(Pred(P)?) such i
checks may be recursively invoked, the total time complexity of checking p 712 p’ (and
hence p < p') is O(Pred(P)? x NumPredClause(P)? * MazClause(P)).

As a side remark, note that the semantics of definite logic programs is given by
its least Herbrand model which can be computed as a least fixed point by memoized
logic program evaluation [CW96, TS86b]. This yields a declarative encoding for a

logic programming based implementation of the syntactic equivalence check.

Tx rule: The transformation rule Tx corresponds to applying a program trans-
formation which does not add any new equivalence proof obligations. Typically an
application of this step is either unfolding (Transformation 3.3) or folding (Trans-
formation 3.4), or other standard transformations like generalization and equality
introduction, deletion of subsumed clauses and deletion of failed clauses [PP98]. A

single application of all these transformations is fully automatable.

Gen rule: The Gen rule attempts to prove the e-atom I' = p = p’ by proving
the e-atoms ', P,y  p = p and Py - ¢ = ¢’ where I' = P,,..., P, is a program
transformation sequence. It generates a new lemma Py, - ¢ = ¢’ whose proof is
used to ensure that M(P;) = M(P;;1). An application of Gen corresponds to an
application of the Goal Replacement transformation (Transformation 3.6). Recall
that the Goal Replacement transformation obtains program P;.; from program P,
by replacing an atom in a clause C' € P; with another semantically equivalent atom.

Here, we replace an occurrence of ¢ with ¢’ in a clause of p or p' as shown below.

C:p(t):—G,q(3),d" (v)  C':pE)—G dG), G (v+A(eq),
7'+ A'(g,q))

Program P; Program P;4;

This requires us to show Py |= ¢ = ¢’ and therefore we obtain a new proof obligation

Py g =q. Weprove Py F ¢ = ¢ by constructing a different transformation
Pl

sequence Py, P{,..., P} s.t. ¢ ~ ¢ i.e. q,q are syntactically equivalent in P}. Note

that since we are replacing ¢ with ¢’ in program P;, the goal replacement rule requires
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P, = q = ¢'. However for any e-atom I' | ... appearing in a successful tableau,
M(FPy) = ... = M(FP,) where ' = Py, ..., P, (refer Lemma 5.2). Thus, Py = ¢ = ¢
implies P, =q=¢'.

In addition, we must compute the measures of the clause C’ obtained by Goal
Replacement. For this purpose, the Goal Replacement transformation (refer Trans-
formation 3.6) requires us to compute an estimate of a(q(X)8 — a(q'(X)8) for any
ground substitution #. Thus we compute A(q, ¢') and A’(q,q’), the lower and upper

bounds of the difference in atom measures, that is
V ground substitutions § A(q,q') < a(q(X)8) — a(q (X)0) < A'(q,q')

Al(q,q"), A'(g,q') can be computed from the measures of the clauses of ¢, ¢ in P}.

Recall that an application of the Gen rule proves I' - p = p’ by proving I', P, 1 F
p=p and Py F ¢ = ¢'. The proof of Py F ¢ = ¢’ returns the values A(q,q') and
A'(q,q') which are then used in the proof of I', P;,1 b p = p'. Therefore, even though
our proof system in Table 2 does not impose any order in which the obligations
I'P 1 Fp=p and PyF q = ¢ are proved, in an automated application of the Gen
rule we will always prove Py g = ¢' before I', P,,1 Fp = p'.

The computation of A and A’ is done by using the following theorem relating the
values of A, A’ for syntactically equivalent predicates in a measure consistent program
(refer Definition 3.7). Measure consistency of the program is not a restriction since
our transformations are guaranteed to preserve measure consistency (as shown in
Theorems 3.3 and 3.6).

Theorem 5.5 (Values of A and A') Let p and q be two distinct predicates in a
measure consistent program P (Definition 3.7) such that p L q. Let the clauses of
p in P be C,...,C,, with clause measures (y1,7]),-- -, (Ym, Vo). Let the clauses of
q in P be Dy,...,D, with clause measures (p1, 1), ..., (tn, 1,). Moreover, let each
clause C; be p(t) :— pi1(tin), - Pig(tig,), and D; be q(5) = q;1(551), - - - @iy, (S51,)-
Finally, let f and g be the mappings (from Definition 5.3) used to show p K q- Then,

A(p,p) = Alg,q) = A'(p,p) = A(g.q) =0
Alp,q) < min [(yi — ) + Z A(pis qraiya)]

1<i<m
1<I<k;

N(p,q) > max[(v,; — )+ > Apyn )]

1<j<n
1<I<;
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Proof: Consider any ground substitution 6 s.t. p(X)f# € M(P). Then, since p Lq
therefore ¢(X)0 € M(P) and a(p(X)f), a(q(X)f) are defined. Since P is measure
consistent, therefore p(X)f has a strongly measure consistent proof in P. Let C; be

the clause used at the root of this proof. Thus:

a(p(X)0) > v+ Y alpiu(V)oi) (7)

1<I<k;
where 0;; is the corresponding ground substitution of p;;(Y;). Then, by the def-
inition of syntactic equivalence (refer Lemma 5.4), q(X)6 has a ground proof in P
with the clause Dy(;) at the root where f : {1,...,m} — {1,...,n} is the mapping
used to show p L q (refer Definition 5.3). This proof is weakly measure consistent

(by the measure consistency of P) and we have:

a(q(X)8) 0+ Y alare (Mo (8)

1<I<k;

By subtracting inequation 8 from inequation 7 we obtain:

a(p(X)8) — a@(X)0) = 7 — e+ Y (@wiu(M)oin) — algraa (Vo) (9)

1<I<k;

Note that for any two syntactically equivalent predicates A is a lower bound on

the difference in atom measures i.e. A(pi, qpiyy) < a(pi (V))oiy) — a(qf(i)’l(Yl)ai,l).
Therefore,

a(p(X)0) — a(q(X)0) > v — ppy + Y, Alpir. ) (10)

1<i<k;
The above inequations were obtained by assuming clause C; is used at the root
of the strongly measure consistent proof of p(X)#. Since C; can be any clause of p

therefore we have for any ground substitution 6

a(p(X)0) — a(a(X)) = mini<icm|(vi — 1p) + Y, Alpisasia)] (1)

Since A(p,q) < a(p(X0)) — a(q(X8)) for any ground substitution 6, we can set:

A(p,q) < min [(vi — ) + Z A(pig; qry)] (12)

1<i<m
1<I<k;
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By following similar reasoning, we can obtain the corresponding inequality for
Alp,q)- 0.

Theorem 5.5 immediately suggests a method to compute A and A’. Observe that
the constraints on A and A’ for different pairs of equivalent predicates form a set of
linear inequalities. We can therefore use integer linear programming to maximize A
values and minimize A’ values to arrive at the tightest bounds on atom measures. If
the system of inequalities for A (or A’) is unsolvable, we can set the corresponding
A (A) to —oo (400).

For example, consider again the program in Figure 9. We have: A(p,q) < (v —
) + A(rys); A(pog) < (72 — pz) + Alp,g); and A(r,s) < 73 — p3. Note that
when (v — ph) < 0 the inequalities on A(p,q) are unsolvable. Otherwise, the non-

recursive inequation gives the optimal value. Thus, applying minimization, we get

A(p,q) = (1 — py) + (y3 — pf) if (72 — ph) > 0, and —oo otherwise.

5.3 An Algorithmic Framework for Strategies

We describe an algorithmic framework for creating strategies to automate the con-
struction of the equivalence tableau of an e-atom. The objective is to: (a) find
equivalence proofs that arise in verification with little or no user intervention, and
(b) apply deduction rules lazily, i.e. for finite state systems a proof using the strategy
is equivalent to algorithmic verification. In the next chapter, we will discuss how this
algorithmic framework can be instantiated to derive concrete strategies for guiding
the transformations.

Our framework specifies the order in which the different program transformations
(corresponding to each tableau rule) will be applied. If multiple transformations of
the same kind (e.g., two folding steps) are possible at any point in the proof, the
framework itself does not specify which transformations to apply. That is done by a
separate selection function (analogous to literal selection in SLD resolution).

The tableau rules and associated transformations are applied in the following
order. As would be expected, the axiom elimination rule (Ax) is used whenever
it is applicable. When the choice is between the Tx and Gen rules, we choose the
former since the default transformation employed by Tx is unfolding, ¢.e. resolution.
This will ensure that our strategies will perform on-the-fly model checking, a’ la XMC
[RRR97] for finite-state systems. For infinite-state systems, however, uncontrolled

unfolding may diverge. To create finite unfolding sequences we impose a finiteness
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pi(a). pi(a).
pl(E(X)):- p1(X),s1(X). pl(£(X)):- pl(x),@
PLEM) = pLOD,T10, 1M | (s 0):- p1a0), 6100, q200 |
r1(0) - s1(X). r1(0:- st.
r1(X):- t1(X),q2(X). r1(X):- t1(X),q2(X).
PO Pl
pi(a).

pl(£(X)):- p1(X),r1(X).

ri(X):- s1(X).

ri(X):- t1(X),q2(X).
P,

Figure 10: Goal replacements to facilitate other transformations.

condition FIN on transformation sequences. We do not give an exact implementation
of FIN but only a sufficient condition s.t. the resultant unfolding sequences terminate.

In the next section, we will discuss the issue of controlling unfolding in more detail.

Definition 5.4 (Finiteness condition) Given an a-priori fized constant k € N, an
unfolding program transformation sequence I' = Py, ..., P;, ... satisfies the finiteness
condition FIN (I, k) if for the clause C' and atom A selected for unfolding at every
P;: (1) A is distinct modulo variable renaming from any atom B which was selected
in unfolding some clause D € P;(j < i) where C is obtained by repeated unfolding of
D (2) the term depth of each argument of A is < k.

Typically, we will assume a suitable choice of £ and write the finiteness condition
simply as FIN(I'). Condition 1 prohibits infinite unfolding sequences of the form:
unfolding p(X) using the clause p(X) :- p(X) i.e. unfolding sequences where the
same atom is infinitely unfolded. Condition 2 prohibits infinite unfolding sequences
of the form: unfolding p (X) using the clause p(X) :- p(s(X)) ¢.e. where a different
atom is unfolded every time, but there are infinitely many atoms to unfold.

If FIN prohibits any further unfolding we either apply the folding transformation
associated with Tx or use the Gen rule. Care must be taken, however, when Gen
is chosen. Recall from the definition of Gen (refer Table 2) that T', P,y - p = p/
implies I' - p = p’ only if we can prove a new equivalence Py F ¢ = ¢’. In other
words, Py = p = p' implies P, = p = p' only if Py = ¢ = ¢'. Since Gen itself

does not specify the goals ¢ and ¢’ in the new equivalence, its application is highly
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algorithm Prove(p,p’: predicates, I':prog. seq.)
begin
let F:P(),...,Pi
mark proof_attempt(p,p’)
(* Ax rule ¥)
if (p 5 p' V proved(p,p')) then
return (A(p,p’),A'(p,p')) (* Theorem 5.5, page 78 *)
else if proof attempt(p,p') is not marked
nondeterministic choice
(* Tx rule *)
case FIN ((T', unfold(FP;))): (* Unfolding *)
return Prove(p,p’, (T, unfold(P;)))
case Folding is possible in P;:
return Prove(p,p’, (T, fold(P;)))
(* Gen rule *)
case Conditional folding is possible in F;:
let (G,G") = new_goal_equiv_for fold(P;)
return replace_and_prove(p,p',G,G',T)
case Conditional equivalence is possible in P;:
let (G,G") = new_goal_equiv_for_equiv(p,p’, P;)
return replace_and_prove(p,p',G,G',T)
end choices
mark proved(p,p')
record (A(p,p'), A'(p,p'))
unmark proof_attempt(p,p’)
end

Figure 11: Algorithmic framework for equivalence tableau construction.
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nondeterministic. We limit the nondeterminism by using Gen only to enable Ax or
Tx rules. For instance, consider the transformation sequence in Figure 10. Applying
goal replacement in Py under the assumption that that Py = q1 = g2 enables the
subsequent folding which transforms P; into P;.

Hence, when no further unfoldings are possible, we apply any possible folding. If
no foldings are enabled, we check if there are new goal equivalences that will enable
a folding step. We call this a conditional folding step. For instance, in program P, of
Figure 10, equivalence of q1 (X) and q2(X) enables folding. Note that the test for syn-
tactic equivalence is only done on predicates, whereas a goal is a conjunction of atoms.
However, we can reduce a goal equivalence check to a predicate equivalence check by
introducing new predicate names for the goals. A keen point needs to be noted here.
When we introduce new predicate names to a program, clearly the least Herbrand
model can never be preserved. As is common in program transformation literature
[TS84, GK94], we rectify this apparent anomaly by assuming that all new predicate
names introduced are present in the initial program P, of a program transformation
sequence.

Finally, we look for new goal equivalences, which, if valid, can lead to syntactic
equivalence. This is called a conditional equivalence step. For instance, suppose in
program P, (in Figure 10), there are two additional predicates p2 and r2 and further

assume that p2 is defined using clauses

p2(a).
p2(£(Y)):- p2(Y), r2(Y).

Now if r2 and r1 are semantically equivalent, we can perform this goal replacement
to obtain the program P; where p1 and p2 are defined as follows. Thus, in P; we can

conclude that p1 s p2.

pi(a). p2(a).
pl(f(X)):- p1(X), r1(X). p2(£(Y)) :- p2(Y), ri1(Y).

The above intuitions are formalized in Algorithm Prove (see Figure 11). Given a
program transformation sequence I', and a pair of predicates p,p’, algorithm Prove
attempts to prove that I' - p = p/. If I' = p = p’ is a subproof that needs to
be dispensed because of a goal replacement step (i.e. an application of Gen) the
corresponding bounds on atom measures are needed. If Prove succeeds in finding a

proof, it returns the bounds on the corresponding atom measures.
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Algorithm Prove searches nondeterministically for a proof: if multiple cases of
the nondeterministic choice are enabled, then they will be tried in the order specified
in Prove. If none of the cases apply, then evaluation fails, and backtracks to the
most recent unexplored case. There may also be nondeterminism within a case;
for instance, many fold transformations may be applicable at the same time. We
again select nondeterministically from this set of applicable transformations. By
providing selection functions to pick from these applicable transformations, one can
implement a variety of concrete strategies (discussed in the next chapter). Note that
Algorithm Prove uses two different markings in the process of constructing a proof
for I' F p = p'. The marking proved remembers predicate equivalences which have
been already proved. This marking allows us to cache subproofs in a proof. The
marking proof attempt keeps track of predicate pairs whose equivalence has not yet
been established, but is being attempted by Algorithm Prove via transformations.
This marking is essential for ensuring termination of the algorithm. The proof of
Py F p = p' may (via a conditional equivalence step) generate the (sub)-equivalence
Py p=p'. Algorithm Prove deems this proof path as failed and explores the other
proof paths.

Algorithm Prove uses the following functions. Functions unfold(P) and fold(P)
apply unfolding and folding transformations respectively to program P and re-
turn a new program. Whenever conditional folding is possible, the function
new_goal_equiv_for fold(P) finds a pair of goals whose replacement is necessary
to do a fold transformation. Similarly, when conditional equivalence is possible,
new_goal_equiv_for_equiv(p, p’, P) finds a pair of goals G, G’ s.t. syntactic equivalence
of p and p' can be established after replacing G with G’ in P.

Finally, function replace_and_prove constructs nested proofs for sub-equivalences
created by applying the Gen rule. Thus, replace and prove(p,p',G,G’,T') performs
the following sequence of steps (where I' = Py, ..., P):

1. first introduces new predicate definitions ¢ and ¢’ for goals G and G’ respectively

(if such definitions do not already exist),
2. proves the equivalence Py F ¢ = ¢' by invoking Prove,

3. replaces goal G by goal G’ in clauses of p or p’ in program P; to obtain program

Pi+17 and

4. finally invokes Prove to dispense the obligation I', P,,; F p = p’. This completes
the proof of ' p = p'.



CHAPTER 5. PROOFS BY PROGRAM TRANSFORMATIONS 85

Note that when we replace goal G with goal G’ in step (3), the goal replacement
operation returns the bounds in the difference in atom measures of G, G'. In fact, if
the predicates defined by G, G’ in step (1) of replace_and_prove are q,q' respectively,
then the goal replacement operation returns A(q, ¢') and A'(q, q’) as defined in The-
orem 5.5. We then use these bounds to compute the clause measures of the clause

introduced by replacement, and complete the proof of the obligation I' - p = p'.

Termination of Prove It can be easily verified that only finite unfolding sequences
satisfy FIN. This is because in any unfolding sequence of clauses (i, ..., C, where
(i, is obtained from C; via unfolding, condition 1 ensures that the selected atom
each C; is distinct, and condition 2 ensures that there are only finitely many atoms
which can ever be selected for unfolding.

Therefore, the length of each predicate equivalence proof itself is finite (assuming
folding always reduces program size which can be ensured). However, a proof for
p = p' may require ¢ = ¢’ as a lemma, whose proof in turn may require r = 7’ as
a lemma, and so on. Since the number of distinct equivalences are quadratic in the
number of predicate symbols in the program, the number of subproofs is finite if the

number of new predicates names introduced is finite. Thus, we have :

Lemma 5.6 Algorithm Prove (refer Figure 11) terminates provided the number of

definitions introduced (i.e. new predicate symbols added) is finite.

Proving Predicate Implications Note that the proof system given in Table 2,
the algorithmic framework Prove and the strategies to guide the transformations in
Prove are aimed at proving equivalence of program predicates. Our proof technique
can be readily extended to prove predicate implications .e. proof obligations of the
form

V ground substitutions 6§ p(X)0 € M(Py) = p'(X)8 € M(F)

This extension involves (1) relaxing the definition of syntactic equivalence (Def-
inition 5.3) to test for implications only, and (2) generating conditions of the form

q = ¢ by applying conditional folding and conditional equivalence.



Chapter 6

A Prover for Verifying

Parameterized Protocols

In the last chapter, we presented a tableau based proof system for proving equivalence
of predicates in a logic program. Furthermore, we presented an algorithmic frame-
work Prove for guiding the application of the rules in the proof system. However,
this algorithmic framework Prove is nondeterministic since at each step several trans-
formations may be applicable. Hence it is necessary to develop appropriate selection
functions to distill concrete strategies from the algorithmic framework.

In this chapter, we discuss some of the strategies which have been effectively used
to verify parameterized protocols of different network topologies. Our objective here
is to develop an automated prover for verifying parameterized systems. However, to
add to the flexibility of the prover, we make it programmable. Thus, based on the
system and the property to be verified, the user provides some guidance (typically by
setting some flags) to the prover at the beginning of the proof. The proof attempt
then proceeds completely automatically without any user interaction. A prototype
implementation of this automated and programmable prover has been completed
using the XSB tabled logic programming system [XSB00]. XSB closely approximates
the ISO standard of Prolog, and has been installed in more than thousand sites over
different platforms.

In Section 6.1, we present how the parameterized system and the temporal prop-
erty are specified in the prover. Section 6.2 discusses the major design decisions taken
to instantiate the algorithmic framework Prove, thereby obtaining concrete strategies
to guide the transformation rules. Section 6.3 applies the strategies to construct ex-

ample liveness and safety proofs of parameterized networks.
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6.1 System and Property Specification

First, we present how the parameterized system to be verified and the temporal prop-
erty are specified in our prover. Since our prover employs program transformations of
definite logic programs, it cannot verify temporal properties containing both greatest
and least fixed point operators. This is because the logic program clauses encoding
a temporal property with both greatest and least fixed point operators must contain
negated atoms. In the following, we outline the use of our prover in verifying safety

and liveness properties, temporal properties with a single fixed point operator.

System Specification To use our prover, first the initial states and the transition
relation of the parameterized system are specified as two logic program predicates
gen and trans. The global states of the parameterized system are represented by
infinite sized terms, and gen, trans are predicates over these terms. The recursive
structure of gen and trans depends on the topology of the parameterized network
being verified. For example, consider a network of similar processes where any process
may perform an autonomous action or communicate with any other process. This
situation may occur in a bus-based protocol, where each unit attached to the bus may
communicate with any other unit connected to the bus. We can model the global
state of this parameterized network as an unbounded list of the local states of the
individual processes. The transition relation trans can then be defined over these

global states as follows:

trans([H|T], [H1|T1]) :- 1ltrans(H, in(Act), H1),
trans_rest (T, out(Act), T1).

trans([H|T], [H1|T1]) :- 1ltrans(H, out(Act), H1),
trans rest(T, in(Act), T1).

trans([HIT], [H1IT]) :- 1ltrans(H, self(Act), H1).

trans([H|T], [HIT1]) :- trans(T, T1).

trans rest([S|T], A, [S1|T]) :- 1trans(S, A, S1).

trans rest([H|T], A, [H|T1]) :- trans rest(T, A, T1).

Thus, each process can perform an autonomous action (denoted in the above
as self (A)) or an input/output action (denoted as in(A) and out (A) respectively)
where matching input and output actions synchronize. The predicate 1trans encodes
the local transition relation of each process. For the global transition relation trans,

the last rule recursively searches the global state representation until one of the first
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three rules can be applied. The third rule allows any process to make an autonomous
action. The first and second rules correspond to the scenario where any two processes
communicate with each other (possibly via a bus, which is not modeled). In particular,

if the processes are Py,...,P, for some n > 1, then the possible transitions are:

1. a process P; (1 < i < n) makes an autonomous action. This is simulated by

1 — 1 applications of the fourth rule followed by an application of the third rule.

2. a process P; (1 < i < n) performs an in(A) action and another process P;
(1 < j < n) performs an out (A) action. This is simulated by 7 — 1 applications
of the fourth rule followed by an application of the first rule. In the body of
the first rule, 1trans simulates the in(A) transition of P;, and trans rest

simulates the out (A) transition of a process in P;iq,...,P,.

3. a process P; (1 < i < n) performs an in(A) action and another process P;
(1 < j < n) performs an out (A) action. This is simulated by ¢ — 1 applications
of the fourth rule followed by an application of the second rule. Again, in the
body of the second rule, 1trans simulates the out (A) transition of P;, and

trans rest simulates the in(A) transition of a process in P 1,..., Pp.

Property Specification and Proof Obligations A liveness property, denoted in
CTL as EF good is encoded as a program predicate 1live defined by the clauses:

live(S) :- good(S).
live(S) :- trans(S, T), live(T).

The liveness property is proved by showing the predicate implication gen = thm
where thm is defined as thm(X) :- gen(X),live(X).

A safety property, denoted in CTL as AG —bad can be verified in two different
ways. We can define predicates unsafe and thm as:

unsafe(S) :- bad(S).
unsafe(S) :- trans(S, T), unsafe(T).

thm(S) :- gen(S), unsafe(S).

and prove the implication thm = false. This constitutes a proof of the safety prop-
erty since it shows that none of the initial states are unsafe i.e. a bad state is not
reachable from any initial state satisfying gen.

Alternatively, one can prove a safety property AG —bad by proving transition
invariance. We prove that (1) a bad state is reachable only from a bad state, and (2)
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none of the initial states satisfying gen are bad. This constitutes a proof of the safety
property, and is shown by establishing the predicate implications (1) bad dest =
bad_src, and (2) bad_start = false where the predicates bad_dest, bad_src and
bad_start are defined as:

bad_dest(S, T) :- trans(S, T), bad(T).
bad_src(S, T) :- trans(S, T), bad(S).
bad start(S) :- gen(X), bad(X).

Note that a proof of the safety property by showing thm = false typically in-
volves two nested inductions. The outer one (uncovered by unfolding gen) inducts
on the process structure of the parameterized network. The inner one (uncovered
by unfolding unsafe) is a computational induction which shows that a bad state is
never reachable. The alternative formulation of proving transition invariance simpli-
fies the proof of the safety property. It breaks the proof into two different obligations
bad dest = bad src and bad start = false which are proved by induction on the
structure of the global states of the parameterized network. Since none of the initial
states are bad and a bad state is only reachable from a bad state, this means that a

bad state is never reachable from an initial state.

6.2 Constructing Concrete Strategies

Once the parameterized system and the temporal property are specified, the prover
attempts to produce a completely automated proof of the corresponding predicate
equivalences / implications. We now present concrete strategies (which are employed
by the prover) to guide the application of the transformation rules in a proof. As men-
tioned before, these strategies serve to instantiate our abstract algorithmic framework

Prove presented in Figure 11 (refer Chapter 5.3).

6.2.1 Pruning the Transformation Search Space

The evaluation of Algorithm Prove presented in Figure 11 permits backtracking as
in logic program evaluation. When multiple transformations are applicable, the al-
gorithm explores a proof path (based on the selection functions). If this path fails,
the algorithm backtracks to the last choice point and explores the next proof path.
This can lead to substantial overheads, since we need to store each program in the

program transformation sequence for every proof path. Moreover, for any realistic
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verification problem, the number of proof paths easily becomes prohibitively large,
e.g. at each step numerous unfold transformations are enabled each of which leads to
a different proof path. For this reason, we enforce the following design decisions to

prune the search space (of applicable transformations) explored by Algorithm Prove.

1. To prove a proof obligation I' - p = p/, at every step, we only transform C(p)
and C(p'), the clauses of p,p'.

2. If p (p') is a predicate appearing in the system or property specification, then p

(p') is not transformed.

3. No backtracking is allowed in the execution of Prove(p, p/, T') for any two

predicates p, p’ and program transformation sequence I

4. Delete failed and/or subsumed clauses of p, p’ before every deductive step in the

proof of ' p=1p.

The motivation and consequences for choosing these design decisions is now given.
To prove the equivalence I' - p = p’, we need to transform only the clauses relevant
to p and p’. The set of clauses relevant to a predicate p, denoted by R(p), is the

smallest set such that C € R(p) if the head of C unifies either with p(X), or with
some atom ¢(X) such that predicate ¢ is in the body of a clause D € R(p). It can be
shown any proof of T' - p = p’ transforms only clauses in R(p) and R(p’). Note that
we choose to transform only clauses in C(p) and C(p’) at every transformation step.
Clearly, C(p) € R(p) for any predicate p. However, note that the transformation
of predicates defined using R(p) — C(p) can be simulated by spawning conditional
equivalences on these predicates. Thus, we still preserve all equivalences that can be
established by any strategy implemented using Prove. Moreover, this design decision
makes our proof search more goal directed. It ensures that we transform clauses in
R(p) — C(p) and R(p') — C(p') only when it is required for proving the equivalence of
p and p'.

Note that the purpose of applying our unfold/fold transformations to the clauses
of a predicate is to expose its underlying recursive structure. For this purpose we
transform predicates which are defined using the system and property description.
However, the system or property description itself is not transformed in our prover.
This is because the system description is assumed to succintly encode the recursive
structure of the parameterized family (the network topology and the pattern of in-

teractions in a global transition). Similarly, the property description is assumed to
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encode the recursive structure underlying the temporal property being verified. For
example suppose the predicate gen denotes a system specification (it generates the
global states of the parameterized system) and the predicate prop denotes a property

specification. Then, if we have a new predicate new defined as:
new(X) :— gen(X), prop(X).

Then, we transform new by using the definitions of gen and prop. However the
predicates gen and prop are not transformed.

The third design decision is prompted by the prohibitive blow-up in the number
of proof paths, due to numerous transformations being applicable at every step of any
realistic proof. Thus we enforce the following : once a transformation is performed, it
is committed and we proceed along that proof path trying to perform other applicable
transformations. Since we cannot backtrack to another proof path if our chosen proof
path fails, we need to engineer sophisticated selection strategies for choosing a trans-
formation from several applicable transformations. These strategies are discussed in
the later sections.

The decision to cleanup failed and subsumed clauses is obviously prompted by
the need to prevent proliferation of conditional equivalence steps in the proof of
I'Fp =p'. Since most steps in a predicate equivalence proof are algorithmic (unfold
steps), the decision to cleanup only before deductive steps prevents unreasonable
time overheads. The cleanup of subsumed and failed clauses is accomplished via the

application of the following transformations to the clauses of p, p'.

Transformation 6.1 (Deletion of Subsumed Clauses) Let C' € P; be a clause
A :— By,...,B; and D € P; be another clause A0 :— B6,... , B0, By,..., B! i.e.
clause D is subsumed by clause C'.

Then, P, := P; — {D}. Set the integer counters of C in P,;; as follows.! /11(C) =
min(7j,(C), 7i,(D)) and 7,/ (C) = maz(7},(C), 71:(D)). 0

Transformation 6.2 (Deletion of failed clauses) Let ¢ be a n-ary predicate
symbol in P; and let Cl;(q) be the clauses of ¢ in P;. Suppose for all C' € Cl;(q), the
body of C' contains either the symbol false or a recursive occurrence of q.

Then, P,y := P, — Cl;(q) — Occ;(q) where Oce;(q) is the set of clauses in P; in
which predicate q appears in the body. O

'Recall that v/, (C) and 7;,(C) denote the two integer counters of clause C in program P;.
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Note that deleting subsumed clauses from the clause set of p has time complexity
O(| C(p) |?), since the clauses need to be compared with each other for subsumption
check. However, deleting failed clauses from the clause set of p has time complexity
O(] R(p) |). In the proofs of parameterized protocols that we have constructed, the
number of clauses of a predicate p increases rapidly due to unfolding e.g. | C(p) |= 100
is a modest estimate. In using the prover, the user has the flexibility of selecting the
kind of clauses to be deleted, e.g. to avoid time overheads the user may disable
subsumed clause deletion and allow only deletion of failed clauses. However, all such
user guidance is programmed before a proof attempt to avoid any user interaction

during the proof construction.

6.2.2 Controlling Algorithmic Steps

In a predicate equivalence proof of Py - p = p/, where P, is the initial program, most
of the transformation steps are algorithmic ¢.e. unfolding steps. Moreover, even when
we restrict ourselves to transform only clauses in C(p) and C(p'), several unfolding
steps are enabled in every step of the proof. The criteria considered for choosing

unfolding steps are:

e Termination : Unfolding sequences must terminate.
e Selection Order : In a clause, body atoms are expanded left to right.

e (Convergence : Unfolding steps should not disable deductive steps which lead to

a proof.

Our unfolding strategy guarantees termination and left-to-right selection order. It
also includes heuristics for fast convergence. We now discuss the motivations and the
heuristics for following each of the above three criteria. For this purpose, we introduce
the following notion of unfolding tree. This notion formalizes the repeated unfolding

of a clause.

Definition 6.1 (Unfolding Tree) Let P be a program and C € P. An unfolding
tree of C is a tree T s.t.

1. each node of T is labeled by a clause; the root is labeled by C.

2. let N be an internal node in T which is labeled by a clause C. Then the children
of node N in T are labeled by the clauses obtained by unfolding A in clause C,
where A is any body atom of C. The atom A is called the selected atom of N .
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Termination: The finiteness condition FIN of unfolding transformation sequences

(presented in Definition 5.4) can be used to ensure finiteness of unfolding trees.

Lemma 6.1 For any clause C in program P, any unfolding tree of C' s finite if every
unfolding step satisfies FIN (refer Definition 5.4).

The finiteness condition FIN ensures termination of any unfolding transformation
sequence. As discussed before, condition (1) of FIN ensures that in any path of an
unfolding tree no two selected atoms are same (modulo variable renaming). Condition
(2) of FIN ensures that there are finitely many atoms which may appear as selected
atom of a node of the unfolding tree. Thus, FIN ensures that every path in an
unfolding tree is finite. Furthermore, every node of the unfolding tree is finitely
branching, thereby establishing Lemma 6.1.

Now, let us examine the amount of book-keeping needed to ensure termination of
a sequence of unfolds. Let Fy,..., P, be a sequence of unfold steps. Then, for every
clause C' € P, (the current program in the transformation sequence) we need to
store the selected atoms of the clauses in F, ..., P,_1 from which C was obtained via
repeated unfolding. We store this information efficiently in O(n) space, by augmenting
the unfold transformation as in Transformation rule 6.3. Thus, for any clause C' € P,
we need to remember the clauses in F, ..., P, 1 from which it was obtained, as well
as the selected atoms of the clauses. Note that this does not require us to store all the
programs in the program transformation sequence F, ..., P, ;. Rather we maintain
a forest of trees where each node in a tree contains the clause identification number

and the selected atom of a clause in P; (0 <1i < n).

Transformation 6.3 (Unfolding with Marking) Let C, ..., C,, be obtained by
unfolding body atom A of clause C' € P; as in Transformation 3.3. Then, mark clause

C as the parent of clauses C1,...,C,, and mark A as the selected atom of C. O

Clearly, the number of selected atom marks is exactly equal to n, the number
of unfold steps performed. Also, assuming each unfold step generates O(1) clauses,
there are O(n) parent marks stored for the clauses in program P,. Note that we only
unfold occurrences of predicates appearing in the system/property description, and
the number of clauses of these predicates is typically a small constant. Therefore,
the additional book-keeping needed to ensure termination of an unfolding sequence

is O(n) where n is the length of the sequence.
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Selection Order: Note that the logic program encoding of a verification problem
for parameterized systems inherently has a “producer-consumer” nature. For example,
consider the problem of verifying liveness in an infinite family. The verification proof

obligation is reduced to showing equivalence of predicates gen and thm where:
thm(X) :- gen(X), live(X).

In this case, we intend to produce instantiation for variable X by unfolding the system
description ( in this case gen(X) ) and then this instantiation is to be consumed by
unfolding the property description ( in this case 1ive(X) ). Similarly, the encoding of
the predicates whose equivalence needs to be proved for establishing safety properties,
also has a producer-consumer nature. In general, in the proof of a parameterized
protocol if p is a predicate being transformed, then any clause of p contains system
description predicates followed by property description predicates in the body. There
is an intended left to right ordering for unfolding the body atoms of the predicates in
these predicate equivalence proofs. Therefore, we always unfold the body atoms of a

clause from left to right.

Convergence Ensuring termination of unfold sequences is only one of the consid-
erations in guiding unfolding. In the proof of Py - p = p/, algorithm Prove applies
deductive steps like folding and conditional folding subsequent to unfolding. Suppose
by guiding unfolding solely based on termination, we produce a transformation se-
quence Py,..., P, ..., P,. However, this might disable certain deductive steps i.e. a
folding step applicable in P; which leads to a proof of Py = p = p’ might be disabled
in P,. In general, to prevent disabling of deductive steps we need to check for ap-
plying deductive steps ahead of algorithmic steps. However, this would add theorem
proving overheads to model checking. Our goal is to perform zero-overhead theorem
proving, where deductive steps are never applied if model checking can complete the
verification task. Therefore, we apply the deductive steps on demand (as shown in
Prove) and identify “redundant” unfolding steps which are likely to diverge.

As mentioned earlier, the logic program encoding of a parameterized system ver-
ification problem possesses a “producer-consumer” nature. Therefore occurrences of
predicates appearing in the property description are intended to consume variable
instantiations rather than produce it. For this purpose, our prover prohibits the

unfolding of any open atom? of a predicate appearing in the property description.

2Atoms of the form p(Xj,..., X,) where p is a predicate and X1,..., X,, are variables.
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Note that atoms of predicates appearing in the system description when unfolded
instantiate variables to terms representing global states of the parameterized family.
For example in verification of liveness properties to prove thm = gen, we first unfold

gen appearing in the definition clause of thm given below.
thm(X) :- gen(X), live(X).

Suppose by repeatedly unfolding gen the variable X gets instantiated to a term t.
Now, by unfolding 1ive(t) we intend to test whether the liveness property holds in
global states represented by t. Therefore, the unfolding of 1ive(t) should consume
the instantiation t rather than instantiating t further. However, since each unfolding
step involves unification, it is possible to instantiate t by unfolding 1ive(t). Therefore
we prohibit the unfolding of any open atom of a predicate appearing in the property
description. Since all arguments of such an atom are variables, any unfolding is likely
to instantiate them. As system and property description predicates share variables,
such an instantiation will enable further unfolding of the system description predicates
(e.g. gen) without violating the finiteness condition FIN. This can disable deductive

steps converging to a proof e.g. folding of conjunction of gen and live to thm.

An Unfolding Strategy The three criteria of termination, convergence and selec-
tion order can now be distilled into the following unfolding strategy. In unfolding a

clause C, we select a body atom A of C s.t.
1. A does not violate the finiteness condition FIN.
2. A is not an open atom of a predicate appearing in the property description.

3. A is the leftmost body atom of C' satisfying (1) and (2).

6.2.3 Controlling Deductive Steps

We now discuss control strategies for guiding the different deductive steps: folding,
conditional folding and conditional equivalence. In the proof of Py - p = p’ suppose
we have constructed a transformation sequence Py, Py, ..., P; by unfolding the clauses
of p and p'. In the following we present strategies for choosing a step from the different
applicable deductive steps in P; (and the subsequent programs formed by repeatedly

transforming P;).
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Folding Choosing from applicable fold transformations involves:

(1) selecting folder clauses {Dy,...,D,,} C P; (0 < j <1),

(ii) selecting folded clauses {C1,...,Cp} C P;, and then

(#ii) checking whether {C, ..., C,,} is foldable using { D1, ..., D,,} as folder.

By suitably restricting the choice of folder and folded clauses we can avoid expensive
foldability checks which fail. Moreover, the number of unfold steps in the proofs of
predicate equivalence in our parameterized protocols are typically > 100. Thus, we
do not store the intermediate programs Pj,..., P, ; ; only the initial program P,
and the current program P; are remembered by the prover. The folder clauses are
accordingly restricted to be drawn from F,. Moreover, since we add new predicate
definitions (via conditional folding and conditional equivalence) and all these predi-
cate definitions are in P, therefore we choose the folder clauses by simply picking a
predicate ¢ from F,. This choice is further restricted by preferentially picking pred-
icates from F, which appear in some equivalence proof obligation. This is because
our proof technique is geared towards exposing the underlying recursive structure of
the predicates appearing in proof obligations. Thus the clauses of these predicates
are likely candidates for folder. Once a predicate ¢ is selected, the clause set of ¢ in
P, then constitutes our choice of folder.

Once the folder clause is selected, due the blow-up in the number of clauses gen-
erated by unfolding, the search for folded clauses is extremely expensive. Therefore,
we consider only those clause sets which match with our choice of folder at the propo-
sitional level. Note that any clause-set which does not match with the folder at the
propositional level does not constitute a valid choice of folded clauses. This can be

formally stated as follows.

Definition 6.2 (Propositional Approximation of a Clause) Let P be a defi-
nite logic program and C € P s.t. C = (p(...) :—p1(...)s...,pr(...)). Then the
propositional approzimation of C' denoted prop(C) is the clause p :— p1, ..., Dg-

Now, suppose we are attempting to prove Py - p = p’ and we have chosen folder
clauses {Dy,...,D,,} C Py. Then, we choose a set of clauses {Cy,...,C,} C P; as

folded clauses s.t. (i) {C1,...,Cn} are drawn from the clause set of p or p/, and (ii)
{prop(C1),...,prop(C,,)} is foldable using {prop(D),...,prop(D,)}.

Conditional Folding As far as conditional folding is concerned, note that it is a

more expensive deductive step. It involves goal replacement of a goal G with another
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goal G', proving G = G’, followed by folding. To restrict its applicability, we need to
restrict the goals G, G', e.g. restricting them to be conjunctive and restricting the
size of conjunctions. In addition, we need to impose another important restriction on
G,G'. Note that we prove G = G’ by defining predicates ¢(...) :— G and ¢/(...) :— G
and then proving ¢ = ¢’. Thus, we do not select goals G, G’ s.t. for the corresponding
predicates q, ¢', proof-attempt(q, q') is marked. Recall that line 2 of algorithm Prove
marks all unsolved predicate equivalence proof obligations with proof_attempt.

For example, suppose we want to show Py F p = p' and let the tree of predicate
equivalences constructed by Prove via transformation is as follows. In other words,
proof of Py F p = p' invokes Py F s = ' (via conditional folding or conditional
equivalence). This proof is completed without invoking any further obligations. P, -
p = p' then invokes Py = ¢ = ¢’ as a subproof. This proof may again invoke Py - ¢ = ¢
as a subproof as shown in the figure. However, at this stage proof attempt(q.q') is
already marked. This is because all proof obligations appearing in an ancestor node of
this predicate equivalence proof tree are marked by Prove as proof_attempt. These are
the proof obligations whose proofs have been attempted but not completed. Invoking

such subproofs again result in potential non-termination of the proof search.

A/pz\p’\
s = ¢ q=2a
r =r
o
g=49q
|
FAILURE

Thus, if proof attempt(q, q’) is true, and we choose ¢ = ¢’ as a condition to enable
a folding step, the nested sub proof of ¢ = ¢’ will immediately fail (line 5 of Algorithm
Prove fails such proof paths to ensure termination). Since our strategies do not permit

backtracking from a failed proof path, we must avoid choosing such conditions.

Conditional Equivalence Conditional equivalence is the final step in proving a

predicate equivalence proof obligation p = p'.

It involves invoking new predicate
equivalence proof obligations, which if proved, establish the equivalence of p and
p'. First we show an example to illustrate its use. Let us suppose that the clauses
of predicates q, q’ after unfolding, folding and conditional folding are as shown in

Figure 12. We then define new predicates newl, new2, new3, newl’, new2’, new3’
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Ci q(lalX]) :- a1(X), a2(x). C) q’([alX]) :- a1’ (X), a2’ (X).

Cy q(lalX]) :- a3(X). C) q’([blX]) :- b1’ (X), b2’ (X).

Cs3 q([blX]) :- b1(X), b2(X). C; q’([blX]) :- b3’ (X), b4’ (X).

Cy q(lclX]) := c1(X), c2(X). Cy q’([clX]) :- c1(X), c2(X).

Cs q(ldIX]) :- q(X). Ci q’([dIX]) :- > (X).

Ce q(lelX]) :- e1(X), e2(X). Ci{ q’ ([£f1X1) :- £1°(X), £2°(X).
newl(X) :- a1(X), a2(X). newl’(X) :- a1’ (X), a2’ (X).

newl(X) :- a3(X). new2’ (X) :- b1’ (X), b2’ (X).
new2(X) :- b1(X), b2(X). new2’(X) :- b3’ (X), b4’ (X).
new3d(X) :— el1(X), e2(X). new3’(X) :- f1°(X), f2°(X).

Figure 12: Choosing conditions for Conditional equivalence

and spawn off the predicate equivalence obligations newl = newl’, new2 = new2’,
new3 = false and new3’ = false. Note that this is sufficient to prove q = q’. By
folding using the definitions of the new predicates the clauses of q and q’ become
syntactically equivalent provided these equivalences hold.

Formally, suppose we are proving an obligation Py - p = p’ and let Py, Py, ..., P,
be the transformation sequence constructed by applying unfolding, folding and con-
ditional folding to the clauses of p,p’. Then, we compare the clause sets of p,p’ in P,
and spawn off a set of equivalence proof obligations which are sufficient to show the
syntactic equivalence of p, p’. To explain how these equivalence proof obligations are

selected we define:

Definition 6.3 (Matching Partition) Let p,p’ be two predicates of same arity in
a program P and let {C1,...,C,} and {C],...,C"} be the clauses of p,p' in P. Then
((CSy,...,C8k), (CSY,...,CS})) is a matching partition of predicates p,p’ provided

¢ Uicici CSi ={Ch,...,Cp} and J,,., CS{ = {Cy,...,C}}
o V1 < i <k, the heads of all clauses in CS; (CS!) are variants® of each other.

o V1 <i,j <k, ifi+#j then the head of any clause in C'S; (CS!) is not a variant
of the head of any clause in CS; (CS).

o V1 <i <k, if any clause in C'S; has a head p(ti,...,t,) then all clauses in C'S.
have head p'(t),...,t)) where (t},...,t.) is a variant of (t1,...,t,).

3Identical modulo variable renaming
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For example, in Figure 12 the matching partition of clause-set of q is {Cy,Cs},
{Cs}, {C4},{C5}, {Cs}, {}. The corresponding matching partition for the clause-set
of g’ is {C1}, {C},C5}, {CLHACLY, {}, {C§}. Note that some of the partitions in
the matching partition may be empty leading to nested proof obligations of the form
new; = false. Using the notion of matching partition of predicates p,p’, we can

compute the conditions required for showing the equivalence p = p’ as follows.

Definition 6.4 (Conditions for showing equivalence) Let P, - p = p’ be an
equivalence proof obligation and let P, ..., P, be the transformation sequence con-
structed after unfolding, folding and conditional folding. Let (CSi,...,CS) and
(CS1y,...,C8S}) be the matching partitions of clause-sets of p,p’ in P,. Then, the set
of conditions selected for proving p = p' are ¢; = ¢} (for all 1 < i < k) where:

1. ¢;,q. are defined by the clauses in C'S; and C'S] respectively.

2. proof attempt(q;,q.) has not been marked by Algorithm Prove.

The above three restrictions ensure that we select conditional equivalences, which if
true, are guaranteed to make p, p’ syntactically equivalent. In particular, (2) avoids
selecting conditions whose equivalence proof attempt is guaranteed to fail. Recall
that if proof attempt(q,q’) is true then ¢ = ¢’ represents a proof obligation whose
proof has been attempted but not completed. As discussed earlier, algorithm Prove
avoids re-invoking such proof obligations to prevent non-termination. Finally, (1)
states that if

CS;=A{p(...):—G1,...,p(...) :— G, }

then ¢; and ¢. are defined by the clauses:

{ql( . ) — (]1, - ,ql( . ) — gh}
{¢(..) =G, ..., q(...) — Q'l;}

6.3 Example Liveness and Safety Proofs

The use of our strategies for establishing predicate equivalences is now illustrated over

two examples of parameterized networks of linear topology : chain, token ring. The
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logic program predicates encoding these networks have a linear recursive structure
in their clauses. Application of our proof technique to more substantial case studies

appear in the next chapter.

6.3.1 Liveness in Unidirectional Chains

Recall the logic program of Figure 2 (page 12) which formulates a liveness property
about token-passing chains, namely, that the token eventually reaches the left-most
process in any arbitrary length chain. We obtain P, the starting point of our transfor-
mation sequence, by annotating each clause of the program in Figure 2 with counter
values of (1,1). To establish the liveness property, we prove that thm(X) = gen(X),
by invoking Prove(thm, gen, (Fy)). The proof is illustrated in Figure 13a.

Proof of thm = gen: Since thm 1;3 gen, we must transform the predicates. Since
gen is a predicate appearing in the system description, we do not transform it. As
thm is a predicate defined using the system and property description, we transform
it to make it syntactically equivalent to gen. By repeatedly unfolding the definition

of thm in Py, we obtain program P5; where thm is defined as:

thm([1]). (3,3)
thm([0[X]) :- gen(X), X = [1].]. (5,5)
thm([0|X]) :- gen(X), trans(X,Y), live([0]|Y]). (4,4)

Further unfolding in Pj is not possible since it involves unfolding an atom which
is already unfolded in the sequence F,...,Ps, thereby risking non-termination.
In addition no folding transformation is applicable at this stage. However, if
VY live([0]|Y]) < live(Y) we can fold the last two clauses of thm. Thus, conditional
folding is true at Ps, and hence replace_and_prove is invoked with G = 1ive([0]Y])

and G’ = 1ive(Y). Since 1ive([0]Y]) is not an open atom, a new name:
live’ (Y) :- live([0]Y]). (1,1

is added to Ps to yield Ps. This simply converts the goal equivalence problem of
showing VY 1ive([0]Y]) < live(Y) to a predicate equivalence problem. We fold

third clause of thm above using the newly introduced clause as folder, obtaining P;:

thm([1]). (3,3)
thm([0[X]) :- gen(X), X = [1].]. (5,5)
thm([01X]) :- gen(X), trans(X,Y), live’(Y). (3,3)
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Figure 13: Fragments of Liveness and Safety Proofs of Chains and Rings
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We then proceed to prove live’ = live. This subproof is shown in the left branch
of the tree in Figure 13a). Then using the bounds on atom measures returned by this
call, we replace 1live’ (X) with 1ive(X) in the definition of thm in P; (right branch
in Figure 13a).

Proof of live’ = live: Prove(live’,live, (Py)) performs a series of unfoldings,
yielding programs Pg, Py and Pjy. Any further unfolding involves unfolding an atom
already unfolded in the sequence Py, Py, Py, P and risks non-termination. In Pjq,

live’ is defined by the following clauses:

live’ ([11Z]). (4,4)
live’ (X) :- trans(X,Z), live([O|Z]). (3,3)

Folding is applicable is Pjq, in the second clause of 1ive’, yielding P;; with

live’ ([11Z]). (4,4)
live’ (X) :- trans(X,Z), live’(Z). (2,2)

Now, live’ " live and hence Prove(live’,live, (F,)) terminates. To compute

the bounds in the atom measures we use theorem 5.5 to obtain the constraints:

A(live’,live) <4 —1

A(live’,live) <2 —1+ A(live’,live)
A'(live’,live) >4 — 1

A'(live’,live) > 2 — 14 A'(live’,live)

The tightest bounds satisfying these constraints are given by:
A(live’,live) =3, A'(live’,live) = oo

These bounds are returned by Prove.

Resuming proof of thm = gen: Now replace_and_prove replaces live’ (X) with
live(X) in the definition of thm in P;, yielding P, with:

thm([1]). (3,3)
thm([0[X]) :- gen(X), X = [1].]. (5,5)
thm([01X]) :- gen(X), trans(X,Y), live(Y). (6,00)
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We can now fold the last two clauses of thm using the definition of 1ive in F,. Note
that the folding uses a recursive definition of a predicate with multiple clauses. The
program-transformation system developed in Chapter 3 was the first to permit such

folding. Thus we obtain P;3:

thm([1]) . (3,3)
thm([0]X]) :- gen(X), live(X). (4,00)

This completes the conditional folding step (which had invoked replace_and_prove
and thereby constructed 1live’ = live as a subproof). We can fold again using the

definition of thm in Py, giving P4 where thm is defined as:

thm([1]) . (3,3)
thm([0X]) :- thm(X). (3,00)

We now have thm - gen, thereby completing the equivalence proof.
It is interesting to observe in Figure 13a that the unfolding steps that transform
Py to P5 and P; to Pyq are interleaved with folding steps. In other words, algorithmic

and deductive steps are interleaved in the proof of the equivalence thm = gen.

6.3.2 Mutual Exclusion in Token Rings

We present a proof for mutual exclusion in a n process token ring for any n. The
program P, encoding the verification problem is given in Figure 14. The n-process
token ring is described by the predicates gen, trans, transi, trans2. As in the case
of chains, we represent the global state of a ring as a list of local states, by arbitrarily
choosing a process in the ring as the first in the list. Processes with tokens are in local
state 1 while processes without tokens are in state (. trans is now divided into two
parts: trans1 which transfers the token to the left neighbor in the list, and trans?2
which transfers the token form the front of the list to the back, thereby completing
the ring.

We want to verify that for any n, for any state in a n-process token ring, always
there is at most one token in the ring. The complement of this property is encoded
by the predicate bad. We then show transition invariance i.e. a bad state can be
reached only from a bad state. This is proved by showing bad dest = bad src;
in this example we show a stronger result, namely the equivalence of bad dest and
bad src. In addition, if we show that none of the initial states are bad, which is

established by showing bad_start = false, then the proof of mutual exclusion is
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C1: bad start(X) :- gen(X), bad(X). (1
Cy:  bad_src(X,Y) :- trans(X,Y),bad(X). (1
C3:  bad. dest(X,Y) :- trans(X,Y),bad(Y). (1
Cy:  gen([0,1]). (1
Cs:  gen([0]|X]) :- gen(X). (1
Cs: trans(X, Y) :- transi(X, Y). (1
C7:  trans([1]X], [0]Y]) :- trans2(X, Y). (1
Cg:  tramnsi1([0,1]T], [1,0]T]). (1,
Co: transi1([HIT], [HIT1]) :- transi(T, T1). (1
Cho: trams2([0], [11). (1
Ci1: trans2([HIX], [HIY]) :- trans2(X, Y). (1
Cio: bad([1|X]) :- one more token(X). (1
Ci3: bad([_1X]) :- bad(X). (1
Ci4: one more token([1] ]). (1
Ci5: onemore_token([_|X]) :- onemore_token(X). (1

= e e e e el e e el e e el e
e N N e e N N N e e N N N N N

Figure 14: Mutual exclusion in a n-process token ring

complete. We now show the proof constructed by algorithm Prove to demonstrate

these predicate equivalences.

Proof of bad start = false (] is the only clause defining bad start in Fy. Prove
first unfolds this clause to obtain the following clauses for bad start. No further

unfolding is possible without violating FIN.
C}: bad start([0]X]) :- gen(X),bad(X). (3,3)
An unconditional folding step is now applicable. Folding C] using C; we obtain:
Cy: bad_start([0]X]) :- bad start(X). (2,2)

The predicate bad start is now defined by only a self-recursive clause. Therefore,
by applying deletion of failed clauses, predicate bad start has no defining clauses,

and hence bad_start = false.

Proof of bad src = bad dest We now present the proof of bad_src(X,Y) =
bad dest(X,Y) (it has been sketched in Figure 13b). Both bad dest and bad src
are defined using system and property description predicates and do not themselves
appear in the system/property description. Therefore, we transform both of them.

First Prove performs unfolding of clauses Cy,C3 (the defining clauses of bad_src,
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bad_dest) to obtain a program Pjy where bad_src, bad_dest are defined as follows.

The clause measures are not shown since they are not required in the rest of the proof.

Cy:
Cy:
CL:
Cg:
Cy:
Cy:
C:

Clo:
Ciq:
Clo:
Cis:
Cly:

bad_src([0,1,1(X], [1,0,11X]).

bad_src([0,1,H|T], [1,0,HIT]) :- one_more_token(T).
bad_src([1]X],[1]Y]) :- trans1(X,Y), one_more_token(X).
bad_src([H|X],[H|Y]) :- trans1(X,Y), bad(X).
bad_src([1,11X],[0,1]Y]) :- trans2(X,Y).
bad_src([1,HI|X]1,[0,H|Y]) :- trans2(X,Y), one_more_token(X).
bad dest([0,1,11X], [1,0,1]X]).

bad_dest([0,1,H|T], [1,0,H|T]) :- one more token(T).
bad_dest ([1[X],[11Y]) :- trans1(X,Y), one_more_token(Y).
bad_dest ([H|X],[HIY]) :- transi1(X,Y), bad(Y).
bad_dest([1,11X],[0,1]Y]) :- trans2(X,Y), one more_token(Y).
bad_dest([1,H|X],[0,H|Y]) :- trans2(X,Y), bad(Y).

No more unfolding is applicable without violating the finiteness condition FIN

i.e. without risking non-termination of unfolding. Also, no unconditional folding

or conditional folding step is applicable. At this stage Prove performs conditional

equivalence steps. By using the notion of matching partition, the following new goal

equivalences will be generated (refer Definition 6.4).

trans1(X,Y),
trans1(X,Y),
trans2(X,Y),
trans2(X,Y),

one_more_token(X) = trans1(X,Y), one_more_token(Y)
bad(X) = trans1(X,Y), bad(Y)
one_more_token(Y) = trans2(X,Y)

one_more_token(X) = trans2(X,Y), bad(Y)

For each of these goal equivalences, replace_and_prove is invoked. Since these goals

are not open atoms, this will introduce the following definitions

DQI

s1(X,Y)

s2(X,Y)

f1°(X,Y)
£2° (X,Y)
g2 (X,Y)
g1’ (X,Y)
£2°°(X,Y)

:- trans1(X,Y), one more_token(X).

:- trans1(X,Y), onemore_token(Y).

(1,1)

(1,1)
:- trans1(X,Y), bad(X). (1,1)
:— transi1(X,Y), bad(Y). (1,1)
:— trans2(X,Y), one more token(Y). (1,1)
:— trans2(X,Y), onemore token(X). (1,1)
:— trans2(X,Y), bad(Y). (1,1)

Prove now performs folding using the above definition clauses as folder. To com-

plete the mutual exclusion proof, we then have to execute the following subproofs:
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o Prove(s1(X,Y), s2(X,Y), (B))

e Prove(£1’ (X,Y), £2° (X,Y), (P))

e Prove(trans2(X,Y), g2’ (X,Y),(R,))
o Prove(gl’’ (X,Y), £2°° (X,Y), (Ry)).

Once these subproofs are established we can infer bad src = bad dest. We now show

the construction of the first subproof. The others follow similarly.

Proof of s1 = s2 Algorithm Prove employs unfolding to get the following clauses
for s1,s2. No further unfolding is possible without violating FIN.

Di: s1([0,11X], [1,01X1). (4,4)
Dj: s1([1]X], [11Y]) :- transi(X, Y). (3,3)
D s1([H|X], [HIY]) :- transi(X, Y), one more token(X). (3,3)
Di: s2([0,11X], [1,01X]). (3,3)
Dg: s2([11X1, [11Y]) :- transi(X, Y). (3,3)
D%: s2([H|X], [HIY]) :- transi(X, Y), one more token(Y). (3,3)

Unconditional folding steps are now applicable. Folding clause Dj using clause D, as
folder we get the following definition of s1

Di: s1([0,11X], [1,01X]). (4,4
Dy s1([11X], [1IY]) :- transi(X, ). (3,3)
D): si([HIX], [HIY]D) :- s1(X, Y). (2,2)

Only one more unconditional folding step is applicable. We fold D! using clause Dy
as folder. We get:

Di: s2([0,11X], [1,01X]). (3,3
Dg: s2([11X1, [11Y]) :- transi(X, Y). (3,3)
D{: s2([HIX], [HIY]) :- s2(X, Y). (2,2)

We now have s1 ~ s2, thereby completing the proof of s1 = s2.



Chapter 7

Applications and Case Studies

In this chapter, we discuss application of the program transformation based proof
technique in automatically proving safety properties of parameterized protocols.
First, we present the verification of mutual exclusion in the Java Meta-Locking Al-
gorithm [ADG"99]. The Java Meta-Locking Algorithm is a distributed algorithm
recently proposed by Sun Microsystems to ensure mutually exclusive access of shared
Java objects by Java threads. A proof of correctness of the algorithm involves proving
mutual exclusion in the access of a Java object by arbitrary number of Java threads.
Previously, model checking has been used to verify mutual exclusion for different
instances of the protocol, obtained by fixing the number of threads [BSWO00]. In
Section 7.1 we outline the use of the transformation based prover in automatically
constructing a proof of mutual exclusion for the entire infinite family.

In Section 7.2 we discuss the use of the transformation based prover in proving
data consistency properties of cache coherence protocols. These protocols are used in
shared memory multiprocessor systems with local caches. They ensure that multiple
cached copies of a shared block of memory posses a consistent data value. A formal
correctness proof of such protocols involves proving certain consistency properties as
invariants for any run of the protocol with any number of processes. We discuss the
use of our prover for proving invariants of cache coherence protocols with any number
of processors attached to a single bus. We then present the applicability of the proof
technique in verifying cache coherence protocols with tree networks of buses.

Finally, in Section 7.3 we present the experimental results obtained from the

verification of these protocols in our transformation based prover.

107
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7.1 Mutual Exclusion of Java Meta-Lock

In recent years, Java has gained popularity as a concurrent object oriented language,
and hence substantial research efforts have been directed to efficiently implementing
the different language features. One of the features which is commonly used in the
execution of most Java programs are the synchronization operations. In Java lan-
guage, any object can be synchronized upon by different threads via synchronized
methods and synchronized statements. Mutual exclusion in the access of an object is
ensured since a synchronized method first acquires a lock on the object, executes the
method and then releases the lock. To ensure fairness and efficiency in accessing any
object, each object maintains some synchronization data. Typically this synchroniza-
tion data is a FIFO queue of the threads requesting the object. Note that to ensure
mutually exclusive access of an object, it is necessary to observe a protocol while
different threads access this synchronization data. The Java meta-locking algorithm
[ADG™99] solves this problem. It is a distributed algorithm which is observed by
each thread and any object for accessing the synchronization data of that object. It
is a time and space efficient scheme to ensure mutually exclusive access of the syn-
chronization data, thereby ensuring mutually exclusive access of any object. Below,

we outline the modeling of the algorithm and its verification in our prover.

7.1.1 Modeling the Protocol

First we informally describe the meta-locking algorithm and then present the formal
model used by us for verification. As mentioned above, the meta-locking algorithm

is a protocol observed by threads in accessing an object’s synchronization data.

Informal description We consider the protocol for a single object and an arbitrary
number of threads. The pattern of a synchronization operation executed by a thread

is as follows:

1. Get the object’s meta-lock if no thread is accessing the synchronization data;

otherwise wait for a hand-off.
2. Manipulate the synchronization data.

3. Release the meta-lock if no other thread is waiting; otherwise hand-off the

meta-lock to a waiting thread.
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Thus, both the acquisition as well as the release of the meta-lock by a thread may
involve contention from other threads. A thread that faces no contention from other
threads while acquiring/releasing the meta-lock is said to execute a fast path. Other-
wise, it executes a slow path involving a hand-off from another thread.

For the purposes of describing the meta-locking scheme, an object can be assumed
to be either busy (when a thread is modifying its synchronization data) or not busy
(otherwise). The synchronization data maintained by the object is a FIFO queue
of lock records. Each lock record denotes a thread waiting to access the object. A
thread is allowed to access the object once it reached the head of the queue. Since we
are only interested in modeling and verifying the meta-locking scheme for accessing
this FIFO queue, we do not model the queue itself.

A thread attempts to acquire the meta-lock by performing an atomic swap oper-
ation of its thread id with the object’s internal data-structures, called the multi-use
word by the designers of the protocol. If the contents of the multi-use word indi-
cate that the object is not busy then the thread has acquired the meta-lock via a fast
path. It now proceeds to manipulate the synchronization data. Otherwise, the thread
must wait for a hand-off by the thread currently owning the meta-lock. In this case,
threads contending for the meta-lock acquire it in the order in which they executed
their swap instructions. Note that at any point of time the object’s multi-use word
records which thread last tried to acquire the meta-lock. When several threads are
contending to acquire the meta-lock, each of them knows its predecessor via the swap
operation i.e. each thread knows the thread which tried to acquire the meta-lock
just before it. The first one to execute the swap operation has no predecessor and
acquires the meta-lock.

To release the meta-lock, thread ¢ executes an atomic compare-and-swap operation
to compare the current value recorded in the multi-use word with its own identifier.
If the two values are the same, then the thread infers that no other thread is waiting
to access the meta-lock. It then releases the meta-lock via the fast path, and the
object is restored to non-busy state. Otherwise, if other threads are trying to acquire
the meta-lock, thread 7 obtains the id of the thread which last tried to acquire the
meta-lock. This however, need not be the thread which tried to acquire the meta-lock
immediately after thread i, i.e. the successor of thread i. In other words, thread 2
is ready to hand-off the meta-lock but does not know which thread to wake up. For

this reason, the algorithm requires the threads acquiring and releasing the meta-lock
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to enter a race. The purpose of this race is to eliminate busy-waiting from the meta-
locking algorithm. The race proceeds as follows. Every thread attempting to acquire
the meta-lock executes its portion of the hand-off thereby informing its predecessor of
its identity. Simultaneously, the thread releasing the meta-lock executes its portion of
the hand-off thereby informing its desire to relinquish the meta-lock. Note that this
is effectively a race between the releasing thread i and the successor of i (say thread
j) where both i and j compete to execute its portion of the hand-off first. Through
the race, thread i releases the meta-lock. Also thread j is identified as the successor

of thread 7, and thread j acquires the meta-lock.

Formal model The formal model of the protocol consists of the parallel compo-
sition of an object process, a hand-off process and an arbitrary number of thread
processes. Each process either performs an autonomous action or communicates with
another process via synchronization. Two processes synchronize as follows : one of
them makes an in(a) action and the other makes an out(a) action where a is an
action label. Any process makes an autonomous action by performing a self (a)
action where a is an action label.

We model the object process without the synchronization data (the FIFO queue of
lock records) since we are only interested in verifying mutually exclusive access of this
data. Thus we do not model the synchronization data and its manipulation by the
threads. Apart from the synchronization data, note that the meta-locking algorithm
implicitly maintains another queue : the queue of threads currently contending for
the meta-lock. Modeling this queue of contending threads is essential for a faithful
modeling of the acquisition and the release of the meta-lock. However, for verifying
mutual exclusion we do not need to model the actual contents of the queue i.e. the
identifiers of the threads currently contending for the meta-lock. Instead we only
model the length of the queue, a natural number. This abstraction of modeling
the queue of contending threads via the queue length does not allow us to prove
properties like : if thread i requested the meta-lock, it will eventually get the meta-
lock. However, we can verify global consistency properties which can be inferred
from the global state of the protocol without referring to individual threads. In this
example we seek to verify one such property, namely mutual exclusion: no two threads
ever own the meta-lock together.

The object can therefore modeled as a process with a boolean control variable

and a data variable which is a natural number. The control variable records whether
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the object is busy, i.e. whether any thread currently possesses the meta-lock. The
data variable records the number of processes currently waiting for the meta-lock.
The states of the object are represented by the infinite set of terms { not_busy }
U { busy(N) | N € N }. The state of the object is not_busy if no thread owns the
meta-lock, and none is waiting for the meta-lock. Otherwise, if a thread owns the
meta-lock and n others are waiting for it, the state of the object is busy(s®(0)). The
transition relation of the object is described by the following set of logic program
clauses ; obj trans(S, A, T) is true if the object makes a transition from state S to
state T on action A. Note that the object is an infinite state system since it has a data
variable which is a natural number. We assume that natural numbers are represented

by the terms {0, s(0),s(s(0)),...} as captured by the predicate nat shown below.

obj_trans(not_busy, in(get_fast), busy(0)).
obj_trans(busy(0), in(put_fast), not_busy).
obj trans(busy(X), in(get slow), busy(s(X))) :- nat(X).
obj_trans(busy(s(X)), in(put_slow), busy(X)) :- nat(X).

nat (0) .
nat(s(X)) :- nat(X).

On the other hand, the thread and the hand-off process are finite state systems.
Figure 15 shows the labeled transition systems of a thread and the hand-off process.
The logic program encoding of these relations is simply a set of facts!.

All the transitions of a thread involve synchronizing with either the object process
or the hand-off process. When the object is in not busy state, it synchronizes with
a thread in idle state using a get_fast signal and moves to state busy(0). The
thread moves to owner state and this corresponds to the acquisition of the meta-lock
by the thread via fast path. Note that no other thread is waiting for the meta-lock
at this time. Similarly, a thread releases a meta-lock via the fast path by synchro-
nizing with the object using a put_fast signal. The object state is then restored to
not_busy. While the object is meta-locked in a state busy(s®(0)) if another thread
tries to acquire the meta-lock via the slow path it synchronizes with the object using
a get_slow signal. The number of threads waiting for the meta-lock is then incre-
mented and the object moves to state busy(s™*(0)). Similarly, if the object is state

busy(s®(0)), and a thread releases the meta-lock via the slow path using a put_slow

'Logic program clauses with empty body
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out (put_fast)
idle > < owner
out (get_fast)

out (get_slow)
in(go)

) -

handin

out (request)
(a) (b)
Figure 15: Labeled Transition System of (a) any thread (b) hand-off process

signal, then the number of threads waiting for the meta-lock is decremented and the
object moves to state busy(s® *(0)).

The race between the acquiring and the releasing threads is modeled by the hand-
off process. The acquiring (releasing) thread synchronizes with the hand-off process
using the request (release) signal. Through this synchronization, the releasing
thread moves back to idle state since it no longer possesses the meta-lock. The
acquiring thread on the other hand waits for a go-ahead from the hand-off process.
The hand-off process waits for both the request and the release signals (which may
arrive in any order) after which it synchronizes with the acquiring thread using the
go signal. Having obtained the go-ahead, the acquiring thread gets the meta-lock and
moves to owner state.

Having modeled the thread, object and hand-off processes, the parameterized
system that we need to verify is a parallel composition (in the sense of Milner’s CCS
[Mil89]) of one object process, one hand-off process and > 2 thread processes. Initially,
the object is not _busy, the hand-off process is in state hO and all threads are idle.
This composed system has infiniteness in both data and control. The infiniteness in
control is due to infinite number of thread processes whereas the infiniteness in data

is due to an infinite domain variable in the object process.
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7.1.2 Verifying Mutual Exclusion

We straightforwardly encoded the state representations and the transitions in the
formal model of the protocol as a logic program. A global state of the protocol in our
logic program encoding is a 3-tuple (Th, 0Obj, H) where Th is a list of thread states
(of length > 2) , Obj is a state of the object process and H is a state of the hand-off
process. The global transition relation is straightforwardly programmed as a predicate
trans which allows synchronization between a thread and the hand-off process, or
between a thread and the object. We automatically verified mutual exclusion using
our prover. Note that this was achieved without performing any manual abstractions
of the formal model. However, it requires us to provide a strengthening of the mutual
exclusion invariant property.

From the labeled transition system of a thread process in Figure 15 we observe
that a thread possesses the meta-lock when it is in state owner or handout. Thus, we
need to prove the invariant AG —bad where bad is a logic program predicate which
is true in all global states where > 2 threads are in owner or handout states. This
corresponds to the indexed CTL (refer [BCG89]) formula AG @;owner; V handout,;.
The program predicate bad encodes the proposition —(@;owner; V handout;).

We prove this invariant by showing transition invariance, i.e. by showing that none
of the initial states are bad, and each transition preserves the invariant. Recall from
the last chapter that this is proved by showing bad start = false and bad dest =

bad src where the predicates bad dest, bad src and bad start are defined as:

bad_start(S) :- gen(S), bad(S).
bad_dest(S, T) :- trans(S, T), bad(T).
bad_src(S, T) :- trans(S, T), bad(S).

The predicate trans encodes the global transition relation of the protocol. The
encoding of the predicate bad is obtained by strengthening the invariant we need to
prove. Note that the mutual exclusion property is expressed only in terms of the
local states of the threads. However, the global state of the protocol is not simply the
collection of the local states of the threads but also that of the object and the hand-off
process. In the protocol description, the local states of the object and the hand-off
process also bear an intended meaning in terms of contention for the meta-lock. For
example, if the object is in state not_busy then no thread possesses the meta-lock.
This is an assertion stronger than —bad which only requires < 1 thread to posses

the meta-lock. Similarly, once the hand-off process obtains the release signal from
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the releasing thread (states h2 and h3 in Figure 15(b)), no thread must posses the
meta-lock, since the next thread has not yet been given a go-ahead. By making these
two assertions explicit, we obtain the definition of predicate bad given below. The
predicates zero_more, one more and two_more are defined as follows: zero more (Th),
one more (Th) and two more(Th) are true if Th is a list of thread states and contains
> 0, > 1 and > 2 threads possesing the meta-lock respectively. Thus we prove the
safety property AG —bad where predicate bad is defined below.

bad((Th, not busy, h0)) :- one more(Th).
bad((Th, not busy, h1)) :- one more(Th).
bad((Th, not busy, h2)) :- zero more(Th).
bad ((Th, not_busy, h3)) :- zeromore(Th).
bad ((Th, busy(N), h0))
bad ((Th, busy(N), h1))
bad ((Th, busy(N), h2))
bad ((Th, busy(N), h3))

nat(N), two_more(Th).
nat (N), two_more(Th).

nat (N), onemore(Th).

nat(N), one_more(Th).

The property AG —bad is a strengthening of the mutual exclusion invariant which
only forbids > 2 threads to posses the meta-lock irrespective of the object and hand-
off states. Note however that the strengthening of the invariant was performed by
reasoning only about the local states of the object and hand-off processes. We did
not need to consider interleavings of interactions between the constituent processes
to strengthen the invariant. The strengthening was needed since our proof technique
does not support strengthening of induction hypothesis in an induction proof. The
mutual exclusion property is not preserved by every transition (even though a state
violating mutual exclusion is never reached from the initial state of the protocol).
This is because the mutual exclusion property only restricts the local states of the
threads without taking into account the intended semantics of the local states of the
other processes: object and hand-off. Therefore, we formulated a stronger invariant
on the local states of all the constituent processes and proved that it is preserved by

every transition step in the protocol by using our prover.

Experimental numbers The proof of the property AG —bad in the formal model
of the meta-locking algorithm proceeds completely automatically in our program
transformation based prover. The timing and other relevant statistics are furnished
in Table 3. The proof was conducted on a Sun Ultra-Enterprise workstation with
two 336 MHz CPUs and 2 GB of RAM. The memory consumption is lean since in
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Total Time Taken: 129.8 secs
Memory consumed: 1.26 MB
# of Unfolding steps: 1981

# of Deductive steps: 311
Nesting depth of proof: 3

# of Predicate Implications proved: 39

Table 3: Statistics of mutual exclusion proof of Java Meta-Lock

the construction of a transformation sequence P, Py, ..., P, we remember only the
initial program P, and the current program F;. The relatively large running time
is because the unfolding or algorithmic steps have been implemented through meta-
programming instead of the underlying abstract machine. Experimental evidence
suggests that an implementation of the unfolding search at the abstract machine
level should reduce the running time by at least an order of magnitude. Out of the
2292 transformation steps, 1981 are unfolding steps, showing that deductive steps are
sparingly employed in the proof. This is because our proof strategy applies deductive
steps lazily in a predicate implication proof i.e. only when no unfolding steps are
applicable. Also, note that our proof technique supports nested induction proofs by
spawning new predicate implications from a predicate implication proof. In other
words, we construct a “proof tree” where each node of the tree is a predicate impli-
cation proof obligation. The depth of this tree for the proof of bad dest = bad src
in Java meta-lock is 3. The total number of nodes in the proof trees of bad_dest =
bad_src and bad_start = false is 39. Note that in the proof of mutual exclusion
even though only two predicate implications need to be proved (bad_start = false
and bad dest = bad src), the prover proves 39 predicate implications (including

these two) due to the nesting of proof obligations.

7.2 Verifying Cache Coherence Protocols

We now discuss the application of our proof technique to verify parameterized cache
coherence protocols. Cache coherence protocols are used in shared memory multipro-
cessor systems where each processor posseses its own private cache. At any point of
time, there may be multiple copies of the same memory block in the cache of different

processors. Thus, we need to ensure that an updation to a shared memory block
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is visible to all the processors. A cache coherence protocol solves this problem. It
ensures that multiple cached copies of the same memory block are consistent in their
data content. [AB86] examines the basic concepts in the design, implementation and
evaluation of various cache coherence protocols.

Cache coherence protocols are parameterized by the number of processors which
are often connected to a single bus. Initial efforts to verify cache coherence proto-
cols were based on explicit-state and symbolic model checking. In the recent past,
automated verification of parameterized cache coherence protocols has been inves-
tigated. Pong and Dubois [PD95] exploit the symmetry of these protocols and the
independence of the data consistency properties on the exact number of cached copies
to obtain a symbolic state space representation. In particular, they represent a set
of global states by keeping track of whether 0, 1 or > 1 caches are in a particular
local state. Verification of data consistency properties (safety properties) is achieved
by reachability analysis in this symbolic state space. Ip and Dill [ID99] incorporate
a similar state representation into the Murp verification system to automate this
abstraction. More recently, count based abstraction of global states i.e. keeping
track of the exact number of caches in the different local states, has been studied
[Del00, EFM99, EN98|. The work closest to ours is [Del00] which represents sets of
states by constraints on the number of caches in various local states. A proof of a
safety property then proceeds by backward reachablity analysis over sets of states
represented by such constraints. The reachablity analysis is achieved by evaluation
of a constraint logic program encoding of the symbolic state space of the protocol.

In our approach, we encode the states and the transitions of the protocol directly
as a logic program. We encode a global state of the protocol directly as an unbounded
list of local cache states; we then define logic program predicates over these lists to
represent the initial states and the transition relation of the protocol. The underlying
induction machinery of our prover is used to induct on the state representation and
automatically produce safety proofs of the parameterized protocol. This is in contrast
to [Del00] which represents global states as constraints over counts of local states and
then encodes the transitions to show how these constraints are changed with each
transition. This is because [Del00] is based on state space traversal (and hence needs
to exploit the symmetry of cache coherence protocols to obtain a symbolic state space
representation), whereas our proof technique is based on induction on the global state
representation.

Since we represent the global states of a cache coherence protocol directly as
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unbounded terms, we can readily extend our approach to hiererchical cache coherence
protocols as well. These protocols consist of a network of buses which are arranged in
the form of a tree. Each node of the tree is a bus to which multiple caches and a cache
agent is connected. These protocols are parameterized by the number of buses and the
number of caches in each bus. Verification of these protocols via symbolic state space
traversal requires a finite representation of the infinite state space. Note that keeping
track of the number of caches in different local states (as is done in [EFM99, Del00]
for protocols with a single bus) no longer suffices as a finite representation. This is
because the tree structure among the different buses is crucial for proving temporal
properties and cannot be abstracted away. Our proof technique will represent a global
state as an tree of unbounded size and induct on this tree structure to prove safety

properties.

7.2.1 A Simple Example

First, we use our proof technique to prove invariants of a simple synchronization based
cache coherence protocol adapted from [KM95]. We assume a single shared cache line
and do not model the data in the cache line. Each processor is invalid, valid or owner.
The processors either perform an autonomous read or write action, or synchronize
with another processor using a invalidate, copy or ownership-transfer action. The
protocol does not allow broadcasts and restricts the number of valid copies of the
data to two, i.e. at most two processors posses a valid copy of the data. Thus,
invalidation of all existing valid copies of data can be achieved by synchronization.
The protocol keeps track whether a processor is a sole owner, or a shared owner.
The labeled transition system of any processor is shown in Figure 16. The following
shorthands are used for action labels: rd denotes read, wr denotes write, cp denotes
copy, inv denotes invalidate and ot denotes ownership-transfer. For any action label
a, in(a) and out(a) synchronize and self(a) denotes an autonomous action.

The global state of the protocol can be represented as a list of local states of each
processors. The global transition relation of the protocol for any number of processors
is defined over these unbounded lists. It can be encoded as the logic program predicate
trans shown in Section 6.1, page 87. Note that the global transition relation trans is
defined using 1trans, the local transition relation of each individual processor. The
local transition relation can be encoded as a set of facts, where each fact corresponds
to an arc in the labeled transition system of Figure 16.

To prove data consistency we need to ensure that each processor reads the value
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in(cp)
invalid
in (inv)
self (rd)
self (rd)
out (inv)
shared sole
owner owner
out (cp)

self (rd) self (wr)

Figure 16: Labeled Transition system of any processor in a simple synchronization
based cache coherence protocol

last written. For this purpose we prove the following invariants: (i) if one processor
is a sole_owner all other processors are invalid, and (i) there is exactly one owner

of the cache line. In particular, for this protocol we prove the CTL properties

AG —(#sole owner + #valid > 2)
AG —(#shared owner + #sole owner > 2)
AG —(#shared_owner + #sole_owner = 0)

where #shared owner, #sole owner, #valid denote the number of processors in
shared owner, sole owner and valid states respectively. Each of these are safety
properties is of the form AG —bad. They are proved by encoding bad as a program
predicate and reducing the proof obligation to predicate implications as descibed in
Section 6.1. The proof of these predicate implications proceed automatically in our
prover. The timings and the number of transformation steps taken to construct these
proofs appear in Table 4. The annotations needed to guide the proof search are
provided as described in Section 6.2. This involves marking bad and all predicates
used in its definition (predicates describing the temporal property) as consumer i.e.

predicates which only consume bindings via unfolding.

7.2.2 Modeling Broadcasts

Cache coherence protocols often involve broadcast of signals over a bus, say an inval-

idation signal may be broadcast before a write. We now show how broadcasts can be
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modeled as a logic program and apply our proof technique to verify a cache coherence
broadcast protcol.

Broadcast protocols [EN98, EFM99] are parameterized systems which are com-
posed of an unbounded number of indistinguishable processes which can perform the
following actions: (i) an autonomous action, (77) synchronization of two processes on
an action label (7i) broadcast of an action label by a process to all other processes.
The global state of a broadcast protocol can therefore be modeled as a list of local
states of the indistinguishable processes. The autonomous and synchronization ac-
tions can be modeled as in Section 6.1. Recall that for any action label a we denote
self(a) as an autonomous action and assume that the actions in(a) and out(a)
synchronize.

To model broadcast actions, we define a predicate trans bcast such that
trans bcast (S, Act, T) is true if a transition from global state S to global state
T is possible by making a broadcast of action label Act. A broadcast transition
on action label Act is performed by one process making an output action (denoted
b_out (Act)) and all other processes making the corresponding input action (denoted
b in(Act)). This is captured in the predicate trans bcast, where 1trans denotes

the local transition relation of each process.

trans_bcast ([H|T], Act, [H1|T1]) :-

ltrans(H, b_out(Act), H1), trans_all(T, Act, T1).
trans_bcast([HIT], Act, [H1|T1]) :-

ltrans(H, b_in(Act), H1), trans bcast(T, Act, T1).
trans_all([], _, [1).
trans_all([H|T], Act, [H1[|T1]) :-

ltrans(H, b_in(Act), H1), trans_all(T, Act, T1).

As an application of our proof technique for the verification of broadcast protocols,
we consider the single bus MESI protocol for cache coherence. Verification of safety
properties of this protocol has been previously reported in [Del00, EFM99, EN9S,
ID99]. The local transition relation for any process is shown in Figure 17. This is
encoded as the predicate 1trans. Each process is in one of four states:

m = modified. The content of the local cache has been modified and the modification
has not been updated to main memory.

e = exclusive owner. No other process has a valid copy.

s = shared owner. The process has read but not write permission on the cache.

i = invalid. The content of the local cache is invalid.
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self (rd)
b_in(inv) (/i:>
b_in(inv)

b_out (rd)

self (wr)

self (rd) self (rd)

self (wr)

Figure 17: Transition relation of any process in MESI protocol

Initially all processes are in invalid state. Each process can make a local read
(denoted self(rd)), a local write (denoted self(wr)), a broadcast on invalidate
(denoted b in(inv) and b out(inv)) or a broadcast on read (denoted b in(rd)
and b_out(rd)). An invalidate broadcast allows a process to exclusively own and
modify the data in the cache; a broadcast on read allows processes in invalid state to
acquire valid copies of the data. We used our program transformation based prover

to automatically prove the following invariants:

AG —( #n + #e >2)
AG —(#m + #e >0A #s >0)

The first property ensures the number of exclusive owners and dirty caches is at most
one. The second ensures mutual exclusion among the readers and writers of the data
in the caches.

In [EFM99], verification of safety properties of broadcast protocols has been shown
to be decidable. It is accomplished by abstracting global states as a vector of counts
of the local states and then computing backward reachablity of the unsafe states.
The program transformation sequence constructed by our proof technique does not
necssarily simulate this backward reachability computation. Hence we cannot give
completeness guarantees of our proof technique for verifying invariants of broadcast
protocols. On the other hand note that our technique is based on automating induc-

tion proofs, and not tied to any particular abstract representation of states. Thus it
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is applicable to parameterized systems where abstracting a global state as counts of

local states does not suffice, e.g. parameterized tree networks.

7.2.3 Extending to Tree Based Protocols

A motivating application domain for verifying parameterized networks of tree topolo-
gies is the verification of cache coherence protocols over hierarchically arranged buses.
The buses are arranged in the form of a tree. In each bus, an arbitrary number of
processors, and a single cache agent is attached. Processor a; attached to bus a com-
municates with another processor b; attached to a bus b by the following sequence of
actions. First, a; communicates its request to the cache agent of bus a. This agent
then percolates this request in the tree network. Once it reaches the cache agent of
bus b, unit b; communicates with its agent. The cache coherence protocol described
in the IEEE Futurebus+ standard [CGH'95] belongs to this category.

To study the interactions between the different nodes of the tree network in such
protocols, we modeled the family of binary trees, where each node in the tree is in
one of three local states: ¢ (critical), i (idle) and t (trying). Thus every node in the
tree represents a bus. Only one of the buses initially contain a data (which is not
modeled). We need to prove mutually exclusive access to the data. The local states

of each bus are:

c : contains data
i : does not contain data and none of the units have issued a request

t : does not contain data, trying to acquire it

Thus we need to prove that no two nodes in the tree are in the state c. The transition

relation allows the following actions:

1. autonomous actions i1 — t. Any bus can try to acquire data at any point of

time (due to request from some attached unit).

2. percolation of t (try) states up and down the tree via synchronization of child

and parent. This models the percolation of the request for the data.

3. exchange of ¢ (critical) states up and down the tree via synchronization of child

and parent. This models the transfer of the data from one bus to another.
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Transfer of data from child to parent and parent to child

Figure 18: Synchronization actions in a tree network of processes

The synchronization actions in categories (2) and (3) are shown pictorially in Fig-
ure 18. For proving data consistency, we need to verify mutual exclusion among buses
containing data, i.e. no two nodes in the tree are in state c.

In our program transformation based prover, we represent a global state of the
tree network as a term f (Root, Left, Right) where Root € { c, t, i } is the local
state of the root node, and Left (Right) is the term representing the left (right)
subtree. The mutual exclusion property is defined using double recursive predicates?
over these terms. Our prover constructs a completely automated proof of mutual
exclusion in the above mentioned model of tree network. The proof is accomplished by
showing transition invariance. Note that our strategies for guiding the algorithmic and
deductive steps are not derived by using arguments specific to the recursive structure
of the program being transformed. Therefore, they are applicable for constructing
proofs of tree networks as well.

Interestingly, the prover can exploit the network topology of the problem under

2 A logic program predicate p is double recursive if at least one of the clauses defining p contains
two recursive occurrences of p in its body.
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verification to apply heuristics for faster convergence of proof attempts. In particular,
note that bad is encoded as a double recursive program predicate and trans encodes
the global transition relation of the family. We need to show bad_dest = bad_src

where bad dest and bad _src are defined as follows.

bad_dest(S, T) :— trans(S, T), bad(T).
bad_src(S, T) :— trans(S, T), bad(S).

Now, by unfolding and folding bad dest and bad src will be defined by multiple

clauses, each of the form:

bad dest (f(t, L, R), £(§, L1, R1)) :—p(L,L1), q(R,R1).
bad_src(f(t, L, R) £(§, L1, R1)) :—p’(L,L1), q’(R,R1).

The local state of the root node before and after a transition are t and § respec-
tively. The left (right) child before and after a transition are denoted by L and L1 ( R
and R1 ) respectively. The meaning of the predicates p and p’ can be understood as
follows. A clause of bad_dest shown above captures a condition under which the state
f(t, L, R) makes a transition to the state f(§, L1, R1), and the destination state
f(s, L1, R1) is bad. This condition may be decomposed into sub-conditions on the
left and right subtrees L, L1 and R, R1. Note that this is because : (i) in a tree net-
work, the left and right subtree do not communicate directly (ii) bad(f (s, L1, R1))
can be decomposed into independent sub-conditions on L1 and R1. In such a situa-
tion, predicate p captures the sub-condition on the left subtree and p’ captures the
sub-condition on the right subtree. Similar meanings can be assigned to predicates
q and q’. Our general technique to compute conditions (refer Definition 6.4) in a

conditional equivalence step attempts to prove the condition:
VL, L1, R, R1 p(L,L1) A q(R,R1) = p’(L,L1) A q’(R,R1)

Instead, the prover can exploit the knowledge of the network topology and prove the
conditions: VL, L1 p(L, L1) = p’(L, L1) and VR, R1 q(R, R1) = q’ (R, R1) thereby
converging to a proof of bad dest = bad src.

7.3 Experimental Results

This chapter presents the use of our transformation based prover in automatically
establishing safety properties of small to medium sized real-life protocols. Table 4

presents a summary of the properties proved along with the time taken, the number
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| Protocol | Invariant | Time(secs) | # Unfolding | #Deductive |
Meta-Lock #owner +
#handout < 2 129.8 1981 311
Simple-cache #sole_owner +
#valid < 2 13.97 418 146
#shared owner +
#sole owner < 2 13.53 402 128
#shared owner +
#sole_owner # 0 0.81 101 21
Mesi #m + #e < 2 3.2 325 69
#m + #H#e =0V #s =0 2.9 308 63
Tree-cache #c <2 9.9 178 18

Table 4: Summary of protocol verification timings

of unfolding steps performed and the number of deductive steps performed in con-
structing the proof. All experiments reported here were conducted on a Sun Ultra-
Enterprise workstation with two 336 MHz CPUs and 2 GB of RAM. Note that the
prototype implementation of the transformation based prover implements both the
algorithmic and deductive steps via meta-programming. Even though the deductive
steps must be implemented by meta-programming, the proof search accomplished by
the algorithmic or unfolding steps can be implemented at the level of the underlying
abstract machine. Experimental evidence suggests that this will lead to reduction of
the running times by at least an order of magnitude.

In the table, we have used the following notational shorthand: #s denotes the
number of processes in local state s. Meta-lock denotes the Java meta-locking al-
gorithm from Sun Microsystems [ADG99] and Simple-cache is the simple synchro-
nization based cache coherence protocol described in [KM95]. Mesi is a single bus
broadcast protocol [EN98, EFM99]|, while Tree-cache is a binary tree network which
simulates the interactions between the cache agents in a cache coherence protocol
with multiple buses arranged hierarchically.

Note that the number of deductive steps in a proof is consistensly small compared
to the number of unfolding steps. This is owing to our proof search strategy which
applies algorithmic steps until none are applicable. Furthermore, note that the tree
network example consumes larger running time with fewer unfolding and deductive

steps as compared to other cache coherence protocols like the Mesi protocol. Due to
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its network topology, the state representation in the tree network has a different term
structure than the other protocols (where the global states are typically represented
as lists). This partially accounts for the increase in the running time. In addition, cer-
tain deductive steps (such as conditional equivalence) employ more expensive search
heursitics for the tree topology. Finally, the Java meta-locking algorithm represents
global states as lists, but involves nested induction over both control and the data of
the protocol thereby increasing the number of predicate implication proof obligations.
Thus extra proof obligations are incurred due to nested induction on the infinite data

domain thereby increasing the time to construct the proof.



Chapter 8
Discussions

This chapter concludes the dissertation. Section 8.1 presents a summary of the tech-
nical contributions of the work while Section 8.1 discusses some directions for future

research. Concluding remarks appear in Section 8.3.

8.1 Summary of the Dissertation

This thesis investigates the problem of formally verifying parameterized concurrent
systems, i.e. concurrent systems which are parameterized by the number of con-
stituent processes. Parameterized systems occur widely in computing since most
distributed algorithms typically describe a parameterized concurrent system. Dis-
tributed algorithms are algorithms designed to work on arbitrary number of intercon-
nected sites and appear widely in telecommunication, process control and information
processing applications. [Lyn96| discusses the pervasiveness of distributed algorithms
in safety critical applications and the difficulties in formally reasoning about them.

In this dissertation we have presented a logic program transformation framework
which unifies algorithmic and deductive verification techniques for formally analyz-
ing parameterized systems. The program transformations are designed to simulate
both state space exploration which is accomplished by algorithmic techniques as well
as (limited) inductive reasoning. In particular, our framework is geared to auto-
mate nested induction proofs where each of the inductive subproofs proceed without
strengthening of hypothesis. This gives us a lightweight automated theorem proving
framework for proving temporal properties of parameterized systems.

Development of the logic program transformation based proof technique involves

126
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development of transformation rules and strategies. The dissertation investigates
both of these topics at length. First, we develop new unfold/fold transformation
rules which can simulate induction proofs of temporal properties. We show how the
unfolding transformation simulates a step of state space exploration, whereas folding
and goal replacement transformations simulate recognition of induction hypothesis
and nesting of induction proofs.

We prove the correctness of any interleaved application of the transformation rules
w.r.t. the least Herbrand model semantics of definite logic programs. The transfor-
mation rules are formulated in terms of certain abstract measures which in general
form an algebraic structure. These measures are updated after every transformation
step, and decidable checks are imposed on these measures to ensure preservation of
program semantics after a sequence of transformation steps. We show that by instan-
tiating the algebraic structure associated with the abstract measures we can obtain
transformation rules which subsume ( in terms of transformation sequences allowed )
existing program transformation systems for definite logic programs. The additional
power of our transformation rules is crucial for constructing proofs of temporal prop-
erties. Furthermore, we extend our results to obtain similar transformation rules for
normal logic programs. A uniform proof of correctness of our transformation rules
is given w.r.t. the different semantics of normal logic programs such as well-founded
model and stable model semantics.

In terms of transformation strategies, the dissertation presents a framework which
tightly integrates algorithmic and deductive steps in a verification proof. Concrete
proof search strategies can be obtained by instantiating this framework. The frame-
work applies the deductive transformations (folding and goal replacement) only on
demand. Thus, finite state model checking (accomplished via unfolding) emerges
as a special case of the proof technique. Moreover, some of the deductive transfor-
mations (such as goal replacement) spawn nested subproofs. Thus, our strategies
allows arbitrary interleaving of algorithmic and deductive steps in a proof. Note
that the logic program transformation based proof technique is applicable to param-
eterized networks of various interconnection patterns e.g. chain, ring, star and tree
networks. Moreover, it can even be used to verify infinite families of infinite state
systems provided the state space of each instance of the family is countably infinite.
The transformation rules and strategies developed in this dissertation have been im-
plemented to yield a prover for parameterized systems. The prover has been used

to automatically verify critical properties of real-life distributed algorithms including
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the recently developed Java meta-locking algorithm from Sun Microsystems.

8.2 Future Work

In recent years, memoized logic program evaluation has been used to efficiently achieve
local model checking of finite state systems [RRR*97, NLO0]. This dissertation shows
how logic program evaluation can be flexibly extended to unfold/fold transformations
thereby yielding a machinery for verifying parameterized systems. Some of the av-

enues for future work in this direction are now outlined.

8.2.1 Verifying Nested Fixed Point Properties

This thesis presents a transformation based proof technique for proving equivalence
of predicates in definite logic programs. However, temporal properties with nested
fixed point operators of different kind (such as the CTL property AGEF ¢) cannot
be encoded as a definite logic program. Thus our program transformation rules
and strategies need to be extended to normal logic programs. For this purpose, we
have developed unfolding and folding transformation rules for normal logic programs
(refer Chapter 4). However, note that our proof technique relies on constructing
nested induction proofs via goal replacement. Thus we also need to develop a non-
trivial goal replacement rule which is correct w.r.t. the model theoretic semantics
of normal logic programs. For verifying nested non-alternating fixed point temporal
properties, the corresponding logic program encoding is guaranteed to be dynamically
stratified [Prz89]. Then it suffices to develop a goal replacement transformation rule
for stratified logic programs which preserves the perfect model semantics [Prz88].

To develop such a goal replacement rule, we need to extend the technique for
proving total correctness given in Chapter 4. In particular, the proofs of temporal
properties may require replacement of an atom A with an atom A’ where the set of
positive ground derivations of A and A’ are not equivalent. The notion of positive
ground derivation for an atom A in program P is dependent on the stratification
of P, and does not directly indicate the truth or falsechood of A in the model of
P. Note that this is unlike the notion of ground proofs in definite programs; the
existence of a ground proof of an atom A ensures its truth in the least Herbrand
model. Since unfolding and folding are syntactic program manipulation steps, we can

show that they preserve the set of all positive ground derivations. In the presence of
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goal replacement, we can relax the notion of positive ground derivations to consider
other proof theoretic notions (such as SLS proof trees [Prz89]) which if preserved

ensure the preservation of the perfect model.

8.2.2 Verifying Parameterized Real-time Systems

Our logic program transformation based technique can be used to verify concurrent
systems whose state space is countably infinite. The infiniteness of the state space
may arise either from control i.e. the number of constituent processes is infinite, or
from data i.e. the concurrent system has a variable with a countably infinite data
domain such as integers, or from both.

Real-time systems constitute an interesting class of infinite state concurrent sys-
tems where the state space is uncountably infinite. Recently in [DRS00], memoized
logic program evaluation has been extended with an external constraint solver to ver-
ify real-time systems. In general, one can model a real-time system as a constraint
logic program and verify the system by query evaluation of the program [MPO0O].
Extending unfold/fold transformations to constraint logic programs [EG96] yields a
machinery to verify parameterized networks of timed processes. Several issues need
to be investigated for evaluating the efficacy of such an approach. Folding of con-
straint logic programs involves a constraint subsumption check which may increase
the nondeterminism in the transformation search space and slow down the proof
search. Unfolding of constraint logic programs involve constraint accumulation and
hence may result in infinite call sequences. Widening based heuristics are needed to

ensure (and accelerate) termination of the unfolding search.

8.2.3 Explaining Transformation Proof Runs

Finite state model checking provides a counterexample to the user whenever a proof
attempt fails. Since proof systems for parameterized systems are incomplete, this
problem is more involved. This is because a proof attempt may fail due to either
the temporal property being false or the inability of the proof system to construct
a proof. The problem of navigating and explaining proof attempts has been studied
for interactive theorem provers [Coq99]. For our transformation based automated
prover, we can a-posteriori provide explanation of success/failure of a proof attempt.
In particular, we can provide to the user the tree of predicate equivalence proof obli-

gations constructed. Once a node in this tree is selected (by the user), we can provide



CHAPTER 8. DISCUSSIONS 130

snapshots of the transformation sequence constructed which led to the success/failure
of the proof attempt of that predicate equivalence.

Recently, we have built a justifier to explain the results of memoized evaluation
of queries in logic programs [RRR00]. Subsequent to the query evaluation, we post-
process the memo tables thus created to extract evidence of truth/falsehood of the
query. The justifier has been hooked to the XMC model checker to explain both
success and failure of model checking runs. Note that memoized query evaluation
essentially amounts to repeated unfolding with a memo based control strategy. Thus
the development of the justifier is a first step in the direction of explaining transfor-

mation proof runs.

8.3 Concluding Remarks

Formal verification of parameterized systems in real life is often performed via hand
proofs or via theorem proving with substantial user interaction. In the recent past,
there has been a lot of research activity towards automating parameterized system
verification. These include development of meaningful classes for which parameter-
ized verification is decidable, and application of (symbolic) model checking over rich
assertional languages. In this dissertation, we have taken an automated theorem
proving approach. We have extended the underlying enumeration based evaluation
mechanism of a model checker with limited deductive capabilities. FEssentially this
amounts to integrating lightweight deductive techniques with algorithmic verification.

Several interesting aspects of this integration stand out. First the proof technique
thus obtained allows arbitrary interleaving of algorithmic and deductive steps in a
proof. Secondly, the integration is not only tight but also extensible for verification of
different flavors of concurrent systems. Our transformation based proof technique is a
flexible extension of model checking via logic program evaluation as one of our trans-
formations correspond to logic program evaluation. Furthermore, by extending the
underlying programming language to constraint logic programs we can verify (fam-
ilies of) timed systems with the same proof technique. Finally, note that the proof
technique supports zero overhead theorem proving, often considered as a desirable
feature for integrating model checking and deduction [Seg00]. Concurrent systems
which can be verified without deductive reasoning (such as finite state and data inde-
pendent systems) are verified via model checking since the deductive transformations

are applied lazily.
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In conclusion, we remark that the work in this dissertation gives rise to many
questions worth investigating. The relatively immediate or short-term extensions
have been sketched in the last section. Longer term research directions include: (a)
integration of automated assertion strengthening techniques into our transformation
based proof technique and (b) identification of classes of concurrent systems for which
the transformation based proof method serves as a decision procedure. To extend our
proof technique with assertion strengthening, we need to integrate automated pro-
gram analysis techniques with our transformation based proof method. To investigate
the possibility of synthesizing decision procedures from our unfold/fold based proof
technique we need to consider classes of infinite state concurrent systems for which
model checking is decidable.

The class of context free processes stands out in this perspective. Context free
processes are infinite state sequential processes which allow nonatomic prefixing i.e.
prefixing of process constants is allowed. To perform local model checking of a context
free process p ot (where p is a process constant and o denotes the prefix operator of
CCS) we need to guess the continuation of p [HS93]. Since the number of continuations
of a context free process p is potentially infinite, we need (i) a finite representation
of this infinite set, and (ii) techniques to reason (in finite time) about all elements of
such a finitely represented infinite set. It seems that a logic program can serve as such
a finite representation and unfold/fold transformations can serve as the technique to
finitely reason about this representation. Based on this intuition, one can investigate
whether an unfold/fold program transformation framework can be used to build a

sound and complete, local model checker for context free processes.
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