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ABSTRACT
Traditionally, debugging refers to the process of locating the pro-
gram portions which are responsible for a program failure. How-
ever, a program also fails when the execution environment does
not meet the requirement/assumption of the program. Unfortu-
nately, few existing debugging techniques addresses the problem of
changing operating system environment. In this paper, we propose
an effective record-replay technique called Semi-replay to solve
this problem. Semi-replay records all the essential interactions be-
tween an application and its underlying operating system environ-
ment where it successfully executed. Semi-replay then allows the
recorded interactions to be partially replayed and partially executed
in another operating system to identify those interactions which
contribute to the root cause of the application failure induced by
the environment changes. We have conducted three case studies
on real-life programs which show the significance and efficiency of
the Semi-replay technique in locating failure-inducing environment
changes. We have also implemented a tool for the Linux kernel to
demonstrate the feasibility of the proposed approach.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Debug-
ging aids

General Terms
Experimentation, Reliability

Keywords
Configuration Error, Environment Change, Semi-replay

1. INTRODUCTION
In application software, many bugs are related to the execution

environment. According to a study by Chandra et al. [3], around
56% of faults in Apache depend on execution environment. Brows-
ing through the Ubuntu bug list [23] reveals that many bugs are also
environmental-related. More specifically, these bugs occur due to
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some changes in the Operating System (OS) environments. It is
quite common that an application works perfectly in one OS envi-
ronment but fails in another OS environment. As operating systems
become increasingly complicated, debugging those operating sys-
tem induced errors is a challenging task.

Figure 1 shows the relationship between applications and the op-
erating system. An application has access to services provided by
the OS kernel through system calls. System calls are defined in the
Application Binary Interface (ABI) of an OS. The system calls al-
low the application to invoke kernel services to perform privileged
tasks on behalf of the application, such as read or write a file, is-
sue a control command to a device, create a new process, allocate
memory and so on. Generally, systems also provide libraries that sit
between the OS kernel and a normal application to increase porta-
bility, for example the glibc library. In this way, the application
is less dependent on the OS kernel. The application communicates
with the library functions through library calls. Figure 1 also shows
that the OS kernel acts as an interface between an application and
the outside environment to enable an application to interact with
the user (or the network or the file system) to perform its intended
function. As such, the operating system plays an important part in
defining an application’s behavior. Even when the input and the
program is fixed, the behavior of a program P with an input t can
still be affected by a lot of factors in the operating system. For
example, dynamic libraries can be implemented differently which
leads to implicit semantic difference. A more common case is that
the content of some configuration file might be different from one
environment to another.

In this paper, we assume that the application is statically linked.
The problem we tackle can be formalized as follows.



Problem Statement: Suppose we have an application program P ,
an input t, and two OS environments E and E′. The execution of
P with input t succeeds in E but fails in E′. In this paper, we are
trying to explain the failure of P in E′ by discovering a subset δ of
the changes in ∆E = E′\E. Of course, we try to minimize δ to
make our result precise and meaningful.

Building on the assumptions that P does not change, only the OS
environment changes, the different behaviors of P in E and E′ are
completely determined by communications between the program
and the underlying OS environment through system call interface.
One intuitive solution to the above problem would be to compare
the interface communication through the system calls. For each
executed system call, we can record the return value and the side
effect of the system calls. For each system call syscall, we record
it as syscall = 〈num, paras, ret, side_effect〉. The num is the
system call number. Parameters and the return values are recorded
in paras and ret respectively. The side-effect of the system call (if
any) is recorded in side_effect . In this paper, side-effect of a sys-
tem call refers to the side-effect in the user space unless otherwise
specified. The communications through system calls can be repre-
sented using a sequence seq 〈syscall1, syscall2, . . ., syscalln〉.
Two sequences of system calls can be compared. There are sev-
eral difficulties in employing this approach. First, there can be a
large number of differences between the two sequences(of system
calls) if the two environments are very much different. However,
only a very small subset of the differences could be the root cause
of the failure. In this case, finding the root cause is a tedious task.
Secondly, aligning the two sequences is another error-prone task.
Moreover, as the execution environments are different, there might
be some system calls in one sequence with no matching system
calls in the other. This makes comparing the two sequences more
complicated.

We propose a record-replay technique to solve the aforemen-
tioned problem. There have been a lot of existing record-replay
research in the literature. However, none of the existing techniques
is suitable for our task. Most of the existing record-replay tech-
niques replay the execution using the entire recorded data in the
same OS environment. On the other hand, we are trying to identify
a small subset of the data that constitutes the reason of the failure.
Hence, we want to selectively change part of a failing environment
and test whether the program succeed. More specifically, we need
a technique which enables us to partially replay (for successful en-
vironment) and partially execute (for the failing environment) the
application. When a system call is replayed, the effect of the system
call on the running application is as if the system call is executed in
the environment where the system call is recorded. Unfortunately,
none of the existing techniques handles such partial replay with
recorded data from a different environment. Moreover, there are a
few challenges in such a partial replay. One of these arises from the
dependency between system calls. Figure 2 gives a concrete exam-
ple: the read system call is dependent on the file descriptor re-
turned by the open system call. Consequently, in selective replay
they have to be replayed or executed together. If only the open is
replayed and the read is executed, the reading from undefined file
descriptor will result in errors. Another problem is caused by the
complex trace of system calls which makes it difficult to locate the
root cause. Therefore, we need an efficient selective replay strat-
egy to enable fast localization of a system call which contributes to
the root of the failure. Our selective replay approach is designed
to overcome these challenges. The proposed record-replay tech-
nique tracks system call dependencies to avoid inconsistent system
state. Our technique uses binary-search to fast localize the failure-
inducing environment change in a complex system call sequence.

1 #include <unistd.h>
2 int main(int argc, char *argv[]){
3 int fd;
4 char[128] data;
5 char* config_file =

"/path/to/config_file";
6 fd = open(config_file,O_RDONLY);
7 read(fd,data,128);
8 if(check_format(data)){
9 close(fd);
10 exit(1); //error
11 }else{
12 close(fd);
13 exit(0);
14 }
15 }

Figure 2: One example

The contribution of this paper are as follows:

• We propose a Semi-replay technique which allows partial re-
playing and partial executing an application. The proposed
technique enables efficient fault localization in the context of
changing OS environment.

• We implemented our technique for Linux based on Valgrind.

• We conducted case studies on three real life bugs to evalu-
ate the effectiveness of the proposed technique. In all three
cases, our technique is able to locate the change in OS envi-
ronment that causes the bug.

2. OVERVIEW
In this section, we give an overview of our approach through

a motivating example. Let consider the program P in Figure 2.
This program opens a configuration file (line 6), reads data from
the file (line 7) and checks the format of the data (line 8). The
check_format() function in P checks whether the data read
from the file satisfies some pre-defined format. Suppose the pro-
gram in Figure 2 succeeds in environment E but fails in envi-
ronment E′. We assume that the failed execution of P in E′ is
caused by the configuration file in E′ which does not follow the
pre-defined format. Our debugging method works as follows.

We first record the system call sequences of P in E and use it
to identify the problematic system call of P in E′. Suppose the se-
quence seq = 〈openE , readE〉 has been recorded when executing
P in E, where openE and readE denote the system calls open
and read in execution environment E respectively.

To identify the root cause of the failed execution of P in E we
“selectively” execute seq in E′. First we replay the first half of seq
in E′ and execute the remaining half in E′, which means the sys-
tem call openE will be replayed in E′ and the system call read
will be executed in E′. To replay a system call, we instrument the
program executable file to intercept all the system calls and their
return values and resulting side effects. Therefore, when execut-
ing P in E′, whenever the system call open is invoked, we will
replace its return values and side effects with the one recorded for
openE . However, when the system call openE is replayed and the
system call read is executed in E′, the program execution would
become inconsistent because of the dependency between openE

and readE . More specifically, the open in line 6 is not executed
since it is only replayed inE′. As a result, the read in line 7 would
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Figure 3: Dependencies among system calls. Each circle represents one system call. Arrows denote dependencies among system calls.

fail when being executed in E′ because the file descriptor fd is not
initialized. This program failure is caused by the dependency be-
tween the read in line 7 and the open in line 6.

To avoid inconsistent program state caused by system call de-
pendencies, we track the effects of system calls on the kernel state,
such as initializing file descriptor in an open system call. By do-
ing this, we are able to detect that when we replay the open in E′,
we also need to execute it in E′ so as to generate the desired kernel
state and more importantly, to enable the execution of read in E′.
However, when executing P in E′, the recorded value for openE

is still used as the return value for open in line 6.
Replaying openE , and executing read for the execution of P

in E′, the execution fails. Consequently, we are able to deduce that
the root cause of the failed execution lies in the second half of seq
which is being executed in E′. As the second half contains only
readE , we are able to locate readE as the system call which causes
the failed execution of P in E′. We then further analyze from here.
A simple comparison of the return values and side-effects recorded
between the two executions reveals that when the system call read
is executed, the contents of the file are different in two executions.
This comparison enables us to conclude that the root cause of the
failed execution of P in E′ is caused by the wrong file format of
the file provided in E′.

3. OUR APPROACH
Given a single-threaded deterministic program, the expected be-

havior of the program execution can be determined by three fac-
tors: (i) the program input (ii) the executed code and (iii) the en-
vironment. In this paper, we assume that the program is compiled
statically, which means all the libraries must be included during
compile-time. This guarantees that the entire executable is fixed.
Therefore, the behavior of the program is only determined by (i)
the program input and (ii) the interface communications through
system calls. We also assume that same program input is used in
the two executions. If for the two executions, one fails and one
passes, then the problem lies in the interface communication with
the underlying OS. Based on this, we devise a selective replay tech-
nique called Semi-replay to locate the changes in the underlying OS
which causes the failed execution.

We are able to monitor almost all the interactions between a
program and the execution environment by monitoring the system
calls made by a program. For example, all file access, network
access and even access to system time are done though system
calls. Building our technique on system call, not only can we detect

semantic changes in system call implementations, but also detect
other environment changes reflected by system calls.

Given a program P and an input t, let E′ be an environment
where P fails to execute with t . Let the executed system call se-
quence of P in E′ be

〈syscall′1, syscall′2, . . . , syscall′n−1, syscall
′
n〉

Algorithm 1 returns a number r such that syscall′r causes the fail-
ure of P in E′. The following properties are satisfied by syscall′r:

1. ProgramP fails when 〈syscall′1, syscall′2, . . . , syscall′r−1〉
is replayed in Semi-replay.

2. Program P passes when 〈syscall′1, syscall′2, . . . , syscall′r〉
is replayed in Semi-replay.

In Semi-replay, system call dependencies cause unexpected pro-
gram failure if they are not handled properly. In particular, suppose
an executed system call syscallj is dependent on a replayed sys-
tem call syscalli. System call syscallj definitely fails if syscalli
is only replayed but not executed. In this case, we need to handle
the replay of syscalli differently. The following sub-sections de-
fines and illustrates system call dependencies and then presents the
Semi-replay technique through the Locate_cause algorithm in
Algorithm 1.

3.1 System call dependencies
We say that a system call syscallj is dynamically dependent

on syscalli when information flow from syscalli to syscallj and
denote as syscallj → syscalli. More formally, syscallj →
syscalli iff. syscallj is transitively dependent on syscalli via a
chain of dynamic data dependencies. For example read→ open,
which means the read system call is dependent on the open sys-
tem call as the file descriptor returned by the read system call is
used by the open system call.

System call dependencies lead to unexpected program behavior
during Semi-replay if dependent system calls are not being replayed
or executed together. Figure 3 illustrates dependencies among sys-
tem calls. Suppose we want to replay the first k system calls and ex-
ecute the rest in E′. Obviously, dependent system calls that all be-
long to the “replay” or “execute” half do not cause any unexpected
program behavior. However, if there is a system call syscallj in
the “execute” half which is dependent on a system call syscalli in
the “replay” half, then syscallj will fail because syscalli is only
replayed but not executed. The problem is caused by the incon-
sistent assumption on system state by syscallj . The system call



syscallj assumes the existence of some kernel state modified by
syscalli. However, the modification of kernel state by syscalli is
not regenerated when syscalli is replayed.

Algorithm 1 Locate_cause
1: INPUT:
2: R // recorded syscall sequence in a successful run
3: P //program being debugged
4: E′ // an environment that P fails in
5:
6: start = 0
7: end = n
8: while end− start > 1 do
9: ret = Semi-replay(P,E′, R, (end+ start)/2)

10: if ret then
11: end = (end+ start)/2
12: else
13: start = (end+ start)/2
14: end if
15: end while
16: return end
17:
18: procedure Semi-replay(P,E′, R, k)
19: let R be 〈syscall1, syscall2, ...syscalln〉
20: i = 0
21: execute P in E′

22: while a syscall is encountered in the execution do
23: i = i+ 1
24: if i ≤ k then
25: if check_dep(i, k, R) then
26: execute the syscall
27: overwrite syscall results using syscalli
28: else
29: replay the syscall using syscalli
30: end if
31: else
32: execute the syscall in E′

33: end if
34: end while
35: if execution passes then
36: return true
37: else
38: return false
39: end if
40: end procedure
41:
42: procedure check_dep(i, k, R)
43: let R be 〈syscall1, syscall2, ...syscalln〉
44: for all j from k + 1 to n do
45: if syscallj is dependent on syscalli then
46: return true
47: end if
48: end for
49: return false
50: end procedure

3.2 Algorithms
In this section, we explain in details the Locate_cause algo-

rithm. Given a recorded system call sequence generated by the
successful execution of P in E, the algorithm returns the index of
a system call in the sequence which is the root cause of the failed
execution of P in E′. The Locate_cause algorithm resembles

a binary search algorithm. The main part of the algorithm is the
Semi-replay procedure. The basic idea of the algorithm is as fol-
lows. The algorithm first takes the mid-point of the sequence and
tries to replay the first half of the system call sequence (line 25-30)
and execute the remaining half (line 32). We refer to the first half as
the R-half and the second half as the E-half and the index defining
these two halves as k. There are two possibilities:

1. The execution passes (line 36): The Semi-replay proce-
dure returns true, which means that the root cause of the
failure of P in E′ must be located in the R-half. This is
because executing the E-half does not cause the failure. In
this case, the Locate_cause algorithm minimizes the the
search for the problematic system call in the R-half by di-
viding this half further into two halves, moving the index k
upwards to the mid-point of the R-half and iteratively calling
the Semi-replay procedure. As k is now moved to the mid-
point of the R-half, the Semi-replay procedure will replay
only the first half of R-half and execute the second half of
R-half plus E-half.

2. The execution fails (line 38): The Semi-replay procedure
returns false which means that the root cause of the fail-
ure of P in E′ must be located in the E-half. This is be-
cause when we execute the E-half of system calls in E′, the
execution fails. In this case, the Locate_cause algorithm
minimizes the search for the problematic system call in the
E-half by dividing the E-half further into two halves, moving
the index k downwards to the mid-point of the E-half and
then iteratively calling the Semi-replay procedure. As k is
now moved to the mid-point of the E-half, the Semi-replay
procedure will replay the R-half plus the first half of E-half
and execute the second half of E-half.

This process continues until a single system call is located which
causes a failed execution. One key procedure in this algorithm
is check_dep(i, k, R). This is very important as executing a se-
quence of system calls involves handling dependency between sys-
tem calls. For each system call syscalli being replayed, which
means in the R-half, this procedure searches in the E-half for all
the system calls that are dependent on the syscalli. If there are
some system calls that are dependent on syscalli, then syscalli
need to be executed as well to regenerate the side-effects and re-
turned values to be used later by the dependent system calls.

Another important feature of the Semi-replay algorithm is that a
prefix of system call sequence is always replayed and the suffix is
executed. This feature is based on the fact that it is almost impos-
sible to execute a prefix of a system call sequence and replay the
suffix. This is because executing a prefix of a system call sequence
could possibly drive the program execution to a totally different
path from the recorded execution. Consequently, the recorded suf-
fix does not match the executed prefix; thus making replaying of
the suffix impossible.

4. APPLICATION OF OUR APPROACH
We design our technique in such a way that we only need to

record one successful execution for one program input. This design
choice is critical for some application scenarios of our technique.
As we noted that, when a program fails to run in one OS environ-
ment, sometimes we do not have a reference environment where
the program runs successfully. Our technique can be used in any of
the following scenarios:

• A system administrator deployed a software on large number
of machines, the software fails to execute on some machines.



System
 

C
all

Record 
Mode Replay Mode

Execute

Not being 
depended on

Replay SysCall

Execute SysCall

Execute Syscall
Record return value and 

side effect
Replay

Being
depended on

Execute SysCall
Overwrite return value and side 

effect using recorded data 

Figure 4: Flow of handling system calls in our implementation

• A software works in an old legacy system, but fails to work
after system upgrade.

• An end-user fails to execute a software obtained from a soft-
ware distribution (possibly from the Internet).

In the last case, software manufacturers could also distribute the
recorded system call data from successful executions together with
the distribution of the software. This allows the end-user to quickly
locate and solve the problem when the software fails to execute.
Note that our technique compares the system call sequences for
two execution environments and these system call sequences are
collected for the same program input. Hence if the software man-
ufacturer distributes some sample inputs as well as the recorded
system call sequences for these sample inputs, the end-user can
compare the system call sequences obtained at his end for the same
inputs.

5. IMPLEMENTATION
The proposed approach is implemented as a plug-in of Valgrind

[24]. Valgrind [24] is a widely used dynamic binary analysis tool.
To capture the communication between an application and the un-
derlying execution environment, we leverage the Valgrind API to
instrument the application’s binaries. The instrumentation is de-
signed to capture all system calls between an application and the
OS. For each system call, the return values and the side-effects are
recorded.

The process of handling systems call is shown in Figure 4. Our
plug-in provides two modes namely record mode and replay mode.
In record mode, whenever a system call is encountered, the sys-
tem call is executed directly by the OS kernel. When the execution
of the system is completed, we record 〈num, retval, side_effect〉
into our record file. The num and retval are the system call
number and the return value of this system call respectively. The
side_effect contains other changes to the memory space of the ex-
ecuted program. For example, a read stores the read data into the
buffer pointed to by the parameter of the system call. In this case,
the content in the buffer is recorded after the system call’s execu-
tion completes.

In the the replay mode, the plug-in takes as input a sequence
of recorded system calls and only replays a prefix of the system
call sequence as mentioned in Algorithm 1. When a system call
syscalli is replayed, we first check whether syscalli is being de-
pendent on by any other system calls that are to be executed. If yes,

then the system call syscalli is both executed and replayed; that
is we first execute the system to make the kernel state consistent
and then use the recorded data to overwrite the return values and
side-effects of the system call. If the system call syscalli is not be-
ing dependent on by any system calls that are to be executed, then
the system call syscalli is only replayed with the recorded data
without getting executed in the kernel.

There are some system calls that we did not fully implement.
For these un-handled system calls, we simply execute them in both
record mode and replay mode. Our techniques cannot deal with
failures caused by these un-handled system calls.

6. EXPERIMENTS
In this section, we report our experience in using the proposed

technique to locate failure-inducing environment changes in real-
life case studies. We present the results of our experiments in eval-
uating the effectiveness of our method.

Given a recorded system call sequence with length N , our tech-
nique only takes log(N) executions to finish. In each following
case study, our technique takes less than one minute to find the
problematic system call. The record files are less than 10MB in all
three cases.

6.1 Experience with MPD

Music Player Daemon (MPD) [13] is a server-side application
which allows remote access for playing music. MPD comes with
a client program, which is a console based jukebox commander.
Clients may communicate with the server remotely over an intranet
or over the Internet. To start MPD, a folder named “mpd” must be
created under it /var/run/. In this folder, files including the pid file
will be stored.

We run MPD in two different OS environments: (E) Ubuntu 9.04
with X service and (E′) Ubuntu 8.04 in shell mode without X ser-
vice. When running MPD in E, we were able to start and use the
application. However, when running in E′, we were unable to start
the application and encountered the following error message:

Starting Music Player Daemon:
could not open pid_file "/var/run/mpd/pid"
for writing:
No such file or directory failed.

This program failure can be manually fixed by creating the folder
and setting proper permission so that the pid_file can be created
and MPD can be started. However, this does not fix the problem per-
manently because the bug occurs everytime the system is rebooted
and it is unclear what is the root cause of this bug. Without using
any debugging tool, it is difficult for the user to diagnose the root
cause of this problem.

We applied the Locate_cause algorithm in Section 3.2 to locate
the root cause of this problem. We collected the system call se-
quence when executing MPD in E. The sequence consists of 1038
system calls. We then run Locate_cause on the sequence of sys-
tem calls, it returns the 7th system call as the root cause of this
problem, which is: open. This system call suggests that MPD as-
sumes the existence of the path /var/run/ so the application straight
away creates a pid file under the directory /var/run/mpd/ everytime
the system is rebooted. However, under the execution environment
E′, the path /var/run/ is not automatically mounted which caused
the failed execution of MPD.

6.2 Experience with VSFTPD

VSFTPD is an FTP server daemon that runs on most current
Unix-based operating systems. To allow anonymous user access in



VSFTPD, one needs to create an anonymous FTP user and set ap-
propriate permissions. According to the VSFTPD document, there
are two ways to enable anonymous user access in the VSFTPD con-
figuration file vsftp.conf:

1. set anonymous_enable=YES in vsftp.conf

2. create an user list file named vsftpd.user_list con-
taining the “anonymous”, set user_list_enable=YES
in vsftp.conf

However, to use the second way, the local_enable has to be
set to YES in vsftp.conf.

In both environments E and E′, Ubuntu version 8.04 is used.
In the reference environment E, anonymous_enable=YES is
set in vsftp.conf to allow anonymous users. In the environment
E′ where VSFTPD fails, anonymous_enable is set to NO and
user_list_enable is set to YES in vsftp.conf. However, since
local_enable is not set to YES in vsftp.conf, anonymous users
are not allowed in environment E′. An anonymous access attempt
in E′ gets the following error message:

530 Permission denied. Login failed

This error message is too general and does not help much in figur-
ing out the real cause of this problem.

We use our technique to locate the cause of this denied anony-
mous user access in E′. In this case study, the OS versions are
the same in the two environments. The environment changes lie
in the configuration used to enable anonymous user. We run the
application in the successful environment E and used our tool to
record the executed sequence of system calls. There were 26 sys-
tem calls altogether that have been recorded. We then applied the
Locate_cause algorithm in Section 3.2 and located the 2nd sys-
tem call read, which caused the failed login of anonymous users.
We further investigated from this system call. We found that it was
the content of the file read by the system call read that caused
the failed execution of the program. We checked the file read by
the system call and found out that it was the configuration file
vsftpd .conf which was read. By comparing the content of the two
configuration files, one in E and one in E′, we were able to figure
out the difference in the configuration file that caused of the failed
login with the anonymous user.

6.3 Experience with Miniweb

Miniweb [12] is an efficient light-weight web sever. Miniweb
listens to a certain port of the OS for incoming HTTP requests.
Either the port is specified by a command line option to Miniweb
or the default port 80 is used. When the port used by Miniweb is
already occupied, Miniweb fails to start with the following error
message, which does not provide sufficient clue to locate the root
cause of this problem:

Error starting instance #0
Failed to launch miniweb
Shutting down instance 0

In our experiment, we run Miniweb in two different environ-
ments: (E) Ubuntu 8.04 with the port used by Miniweb not occu-
pied. (E′) Ubuntu 8.04 with the port used by Miniweb occupied.

Using our technique, we record the system call sequences when
Miniweb is executed inE. The successful execution of Miniweb
in E returns a sequence of 16 system calls. Note that as Miniweb
is a web-server, it will keep on running and generating a lot more
system calls. Therefore, to successfully conduct this case study, we
have to manually kill the process after it has started successfully.

We then used this recorded sequence to locate the cause of failing
to start Miniweb in E′. To tell whether Miniweb runs success-
fully, we check whether Miniweb is still running after it is started
for a certain time (say 5 seconds). If Miniweb is still running
after 5 seconds, we terminate Miniweb and deem the execution
to be successful. Otherwise, Miniweb must have failed to start.
Applying the Algorithm 1 in Section 3.2, we located a system call
socketcall as the cause of the failure of Miniweb in E′. This
socketcall system call is at the 7th place in the recorded se-
quence. The format of the socketcall system call is as follows:

int socketcall(int call, unsigned long *args);

where call determines which socket function to invoke, args
is a pointer pointing to a block containing the actual arguments
which are passed through to the appropriate call. For the sock-
etcall we located, parameter call indicated that it is a bind oper-
ation. The args contained information about which port to bind
and some other information. In the recorded (successful) execution,
the socketcall system call returns 0 indicating that the opera-
tion is successful. However, in the failed execution, socketcall
returned the error code 98, which corresponds to EADDRINUSE in
error.h. EADDRINUSE means that the “address is already in
used”, which is root cause of the failed execution of Miniweb in
environment E′.

7. LIMITATIONS
In this paper, we assume that the program only use static li-

braries. The applicability of our technique is greatly reduced by
this restriction. Allowing dynamic libraries give rise to a lot of
challenges especially when different implementations of a dynamic
libraries are used in different environments. We plan to look into
these challenges in future.

We only focused on single-thread deterministic program in this
paper. Therefore, if a bug is caused by non-deterministic signal and
interrupt, our technique is not able to handle it.

The result of our technique is dependent on the closeness be-
tween the faulty environment and the reference environment. If the
faulty environment is intended to be configured differently from
the reference environment, the result from our technique may not
be very useful.

Our debugging technique works at the system call interface layer.
Therefore, we can only provide some suspicious system calls as the
result of our technique. In some situations, the located system call
does not provide enough detailed information to help debugging.
For example, if a program uses one read system call to read a large
faulty configuration file, our technique can only pinpoint this read
system call. In this case, the user needs to look into the large con-
figuration file to figure out the root cause of the program failure.

8. RELATED WORK
There have been a large collection of research on record-replay

techniques. However, most of the existing record-replay techniques
are not suitable for our debugging task. Most of the techniques re-
play the complete trace or part of the trace in the same environ-
ment [4, 6, 7, 10, 14, 16, 18–20].

Orso et al. [16] proposed a selective record-replay technique,
which specifically target components’ interactions. A subsystem
of interest must be manually selected. The interactions between the
selected subsystems and the rest of the application will be captured
and replayed in isolation. This approach only captures essential
information which is relevant to the execution thus makes it more
efficient.



Burger and Zeller [2] have developed the Jinsi tool which is ca-
pable of capturing and replaying the inter/intra-components inter-
actions in a system. More importantly, Jinsi is able to isolate a
failure-inducing sequence of calls. This work is an extension of an
earlier work [15] by Orso et al. The work from Orso et al. [15]
isolates relevant interactions between the observed component and
other layers of a complex application. The work combines record
and replay technique with delta debugging [26] to isolate relevant
events.

Kwon and Su [9] realize the problem of unsafe component load-
ings and propose a dynamic analysis technique to solve this prob-
lem. This approach consists of two phases: (i) dynamic binary
instrumentation to capture a program sequence of events related to
component loading and (ii) offline profile analysis to extract each
component loading from the captured information and detect de-
fects in the resolution of a target component and its dependency.
We capture a sequence of system calls which specifically describe
the interactions of a program and the underlying environment.

Recently, Clause and Orso [5] propose a record and replay tech-
nique which enables recording in one execution environment and
replaying in another execution environment. When replaying a pro-
gram, the proposed technique ensures that the program fails in the
same way as in the recording environment. The technique inter-
cepts all the software interactions with the environment through the
OS and produces an execution recording that consists of an event
log and a set of environment data. As such, the execution can be re-
played without the need for the original execution environment. So
far, no technique handles the replay and partially execute in differ-
ent environments which takes into consideration the combination
of two different environments.

From a high level view point, a system can be viewed as a coher-
ent set of components interacting with one another. In this sense,
our work is related to existing works which are based on compo-
nent interaction analysis. Component-based development has be-
come an important approach to building more flexible and reusable
application. At the same time, Component-based development also
presents new challenges such as component’s compatibility. Be-
havior capture and test (BCT) has been proposed by Mariani et
al [11] to automatically detect COTS component incompatibility
through dynamic analysis. BCT builds for each component (i) an
I/O model describing the relations between the values the compo-
nents exchange and (ii) an interaction models representing the se-
quences of interaction triggered by invoking the component’s ser-
vices. The models describe the component’s behaviors in different
contexts. Subsequently, when a component is reused in new con-
texts, their behaviors will be compared with the behavioral models
built from former executions to identify new behaviors. If we look
at applications as components and execution environments as con-
texts, our work is quite close to the BCT approach. However, our
work does not “compare” but selectively execute some interactions
in the new environment to identify failure-inducing interactions.
Moreover, our work aims to locate failure-inducing changes in the
environment while BCT tries to identify new behaviors.

Debugging is a tedious and time-consuming task. Most of the ex-
isting debugging techniques target bugs in the program itself. More
specifically, given a program and an observable error for a given
failing program input, these techniques try to locate the root cause
of the observable error in the program source code [17, 25, 26].
However, Holmes et al. [8] have pointed out that a developer can
evolve an program’s behaviors not only by changing the program’s
source code but also by altering the execution environment. The
authors have also introduced a program partitioning approach for
categorizing program changes with regards to the program’s be-

haviors. As such, the approach is able to tell the developers which
groups of changes deserve deeper developer attention. The ap-
proach, however, does not focus on locating changes in the envi-
ronment that are related to an observable error. Attariyan et al [1]
proposed a technique based on information flow analysis to locate
the root cause of configuration errors, which is only one type of
OS induced errors. In term of environment induced errors, this
work is quite close to ours. The approach instruments application
binaries to monitor the information flow at runtime and uses this
information to detect the relationship between erroneous behavior
and configuration files. The work from Su et al. [21, 22] also tar-
gets at misconfiguration problem. They use speculative execution
to examine the effect of configurations and roll-back to earlier con-
figurations when necessary. Different from their work, we leverage
a reference execution environment to located the cause of program
failure.

Our paper considers the problem of debugging OS induced er-
ror in which the program source code does not change but the OS
execution environment does. Locating root cause in the context of
environment changes is challenging due to the complexity of the
execution environment. We have presented a debugging technique
that works at the system call interface between an application and
the underlying execution environment. By using the record and re-
play technique, we record the execution of the program under the
successful environment and semi-replay it under the failing envi-
ronment. By semi-replaying, which means partially executing, our
technique can efficiently locating the system call which causes the
failed execution.

9. CONCLUSION
In this paper, we have presented the Semi-replay method for lo-

cating the failure-inducing environment changes. Our approach
takes in a program and two different OS environments where the
execution of the program fails in one environment and passes in
another. The proposed approach then locates a system call which is
able to explain the failed execution of the program. Our approach
captures the system call interface between an application and the
underlying OS environment generated during the successful execu-
tion. The recorded system call sequence is then used to debug the
failed execution of the application under another faulty OS environ-
ment. We have applied the proposed approach in three real-life case
studies which give evidences to show the utility of our technique in
debugging real bugs. The system call located by our approach can
be used to easily identify the root cause of an error.
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