
Impact of Java Memory Model on Out-of-Order Multiprocessors

Tulika Mitra Abhik Roychoudhury Qinghua Shen
School of Computing

National University of Singapore
{tulika,abhik,shenqing}@comp.nus.edu.sg

Abstract

The semantics of Java multithreading dictates all pos-
sible behaviors that a multithreaded Java program can ex-
hibit on any platform. This is called the Java Memory Model
(JMM) and describes the allowed reorderings among the
memory operations in a thread. However, multiprocessor
platforms traditionally have memory consistency models of
their own. In this paper, we study the interaction between
the JMM and the multiprocessor memory consistency mod-
els. In particular, memory barriers may have to be inserted
to ensure that the multiprocessor execution of a multi-
threaded Java program respects the JMM. We study the im-
pact of these additional memory barriers on program per-
formance. Our experimental results indicate that the perfor-
mance gain achieved by relaxed hardware memory consis-
tency models far exceeds the performance degradation due
to the introduction of JMM.

1. Introduction

The Java programming language supports shared mem-
ory multithreading where threads can manipulate shared
objects. The threads can execute on a single processor or
a multiprocessor. However, multiprocessors have different
memory consistency models. A memory consistency model
defines the values that can be returned on the read of a
shared variable, and thereby provides a model of execu-
tion to the programmer. The most restrictive memory con-
sistency model is sequential consistency [9] which does not
allow any reordering of the memory operations within a
thread. Other memory consistency models allow certain re-
ordering of memory operations within a thread to improve
performance as long as uniprocessor control/data dependen-
cies are not violated (e.g., a memory read can be re-ordered
w.r.t. a memory write as long as they access two different
locations). If the reordering within a thread becomes visi-
ble to other threads, it may produce “undesirable” results
from the programmer’s viewpoint. Therefore, for each plat-

form, the programmer needs to explicitly disable certain re-
orderings to produce the desired result. However, this kind
of platform-dependent programming violates Java’swrite
once, run everywherepolicy. To solve this problem, the Java
Language Specification provides its own software memory
consistency model. This model should be supported by any
implementation of multithreaded Java irrespective of the
underlying hardware memory consistency model. This is
called the Java Memory Model (henceforth called JMM).

Conceptually, the JMM defines the set of all possible be-
haviors that a multithreaded Java program can demonstrate
on any implementation platform. These possible behaviors
are generated by: (a) arbitrary interleaving of the operations
from different threads, and (b) certain reordering of mem-
ory operations within each thread. Note that only the re-
ordering ofsharedmemory operations can change a multi-
threaded program’s output.

The introduction of a memory model at the programming
language level raises new challenges. In particular, if the
threads are run on multiple processors, then we need to en-
sure that all the executions respect the JMM. Clearly, if the
hardware memory model allows more reorderings than the
JMM, then we have to disable them in order to enforce the
JMM. The reorderings are disabled by inserting memory
barrier instructions (processors execute operations across
the barriers in program order) at the cost of degrading per-
formance. As a result, the performance of a multithreaded
Java program depends on the subtle interaction of the soft-
ware and hardware memory models. Even though the rela-
tive performance of different hardware memory models is
well understood [4, 14], there has been no effort to quantify
the performance impact of the interaction between the soft-
ware and hardware memory models. We seek to fill this gap.
We study the effect of enforcing JMM on five different hard-
ware memory models: Sequential Consistency (SC), Total
Store Order (TSO), Partial Store Order (PSO), Weak Order-
ing (WO), and Release Consistency (RC) [2].

We note that the specification of the JMM is currently
a topic of intense discussion [8]. An initial JMM was pro-
posed in the Java Language Specification [6]. Subsequently,

this was found to be restrictive in allowing various common
compiler optimizations, and too hard to understand [16].
Thus, an expert group has been formed to completely revise
the JMM, and a concrete proposal has emerged (but not yet
been finalized) [15]. In this paper, we study the old and new
proposals for JMM and their impact on multi-processor ex-
ecution of multi-threaded Java programs.

Related WorkSome work have been done at the proces-
sor level to evaluate the performance of different hardware
consistency models. The work of Gharachorloo et al. [4]
showed that in a platform with blocking reads and delayed
commit of writes, performance is substantially improved by
allowing reads to bypass writes. It also showed that SC per-
forms poorly relative to all other models. Pai et al. [14] stud-
ied the implementation of SC and RC models on current
generation processors with aggressive exploitation of in-
struction level parallelism (ILP). They found that hardware
prefetching and speculative loads dramatically improve the
performance of SC. However, the gap between SC and RC
depends on the cache write policy and the complexity of
the cache-coherence protocol, and in most cases, RC signif-
icantly outperforms SC.

Recently there have been many efforts to study software
memory models for the Java programming language. These
works primarily focus on understanding the allowed behav-
iors of the JMM. Some work has been done to formalize
the old JMM [5, 17]. We have previously developed an op-
erational executable specification of the old JMM in [17].
Also, [22] has used an executable framework called uni-
form memory model to specify a new JMM developed by
Manson and Pugh [12].

To the best of our knowledge, there has been little sys-
tematic study to measure the performance impact of JMM
on multiprocessor platforms. From this perspective, the re-
cent work by Doug Lea [10] is closest to ours. This work
serves as a comprehensive guide for implementing the new
JMM (as currently specified by JSR-133). It provides brief
background about why various rules in JMM exist and
concentrates on the consequences of these rules for com-
pilers and Java virtual machines with respect to instruc-
tion reorderings, choice of memory barrier instructions, and
atomic operations. It includes a set of recommended recipes
for complying to JSR-133. However, no quantitative perfor-
mance evaluation results are presented.

Contributions Concretely, the contributions/findings of this
paper can be summarized as follows.

• We study the interaction of hardware and software
memory models and their impact on the performance
of multithreaded Java programs running on out-of-
order multi-processors. This involves (a) a theoretical
study of how a software memory model adds barriers
at the hardware level, and (b) experimental evaluation

of how much performance degradation occurs due to
these added memory barriers.

• Our experimental results indicate that the performance
gain achieved by relaxed hardware memory consis-
tency models far exceeds the performance degradation
due to the introduction of JMM. That is, given a re-
laxed hardware model, the performance reduction due
to the introduction of a software memory model is typ-
ically not substantial. Overall, the differences between
the old and new JMMs also do not produce substan-
tial difference in performance in our benchmarks.

• The main feature of JMM that leads to appreciable per-
formance difference in our benchmarks is the treat-
ment of volatile variables1; both the old and new JMM
provide special semantics for volatile variables. The
introduction of volatile variable semantics leads to up
to 5% performance degradation in some of the bench-
marks. We also note that the semantics of volatile vari-
ables is different in the old and new JMM. However
this difference in semantics does not translate to sub-
stantial difference in performance for our benchmarks.

Section OrganizationThe rest of this paper is organized
as follows. In the next section, we review the technical
background on hardware memory consistency models and
JMMs. Section 3 describes the theoretical methodology to
identify the performance effects of JMM; this is done by
identifying the memory barriers to be inserted in order to
enforce JMM. Section 4 describes the experimental setup
for measuring the effects of a software memory model on
multiprocessor platforms. Section 5 describes the experi-
mental results obtained from evaluating the performance of
multithreaded Java Grande benchmarks under various hard-
ware and software memory models. Discussions and future
work appear in Section 6.

2. Background

In this section, we describe the multiprocessor memory
consistency models (hardware memory models) as well as
the JMMs (software memory models).

2.1. Hardware Memory Models

Memory consistency models have been used in shared-
memory multiprocessors for many years. The simplest
model of memory consistency was proposed by Lam-
port and is called Sequential Consistency (SC) [9]. This
model allows operations across threads to be interleaved in
any order. Operations within each thread are however con-
strained to proceed in program order. SC serves as a very

1 A variable whose access always leads to access of its master copy.

2nd operation
1st operation Read Write Lock Unlock

Read WO,RC WO,RC RC
Write TSO,PSO,WO,RC PSO,WO,RC PSO,RC PSO
Lock

Unlock TSO,PSO,RC PSO,RC PSO PSO

Table 1: Reorderings between memory operations for hardware memory models

simple and intuitive model of execution to the program-
mer. However, it disallows most compiler and hardware
optimizations. For this reason, shared memory multiproces-
sors have employed relaxed memory models, which allow
certain reordering of operations within a thread. In this pa-
per, we study the performance impact of enforcing the
JMM on four relaxed hardware memory models: To-
tal Store Order (TSO), Partial Store Order (PSO), Weak Or-
dering (WO) and Release Consistency (RC). Details of
these memory models appear in [2, 3]. Note that all the
memory models only allow reorderings which do not vio-
late the uniprocessor data/control flow dependencies within
a thread.

The TSO and PSO models (supported by SUN SPARC
architecture [21]) differ from SC in that they allow mem-
ory write operations to be bypassed. By bypassing we mean
that even if a write operation is stalled, a succeeding mem-
ory operation can execute. Memory read operations, how-
ever, are blocking in TSO and PSO. The TSO model only
allows reads to bypass previous writes. PSO is a more re-
laxed model than TSO as it allows both reads and writes to
bypass previous writes. Unlike TSO and PSO, the WO and
RC models allow non-blocking reads (i.e., reads may be by-
passed). However they classify memory operations as data
operations (normal reads/writes) and synchronization oper-
ations (lock/unlock). Both WO and RC allow the data op-
erations between two synchronization operations to be arbi-
trarily re-ordered. However, they differ in handling the re-
orderings between a data operation and a synchronization
operation. Both WO and RC maintain the order between a
lock and its succeeding data operations as well as unlock
and its preceding data operations for proper implementa-
tion of synchronization semantics. WO, in addition, main-
tains the order between a lock and its preceding data oper-
ations as well as unlock and its succeeding data operations.
RC relaxes these two restrictions.

Table 1 shows the reordering of operations allowed by
different hardware memory models. A blank entry indi-
cates that this reordering is not allowed by any memory
model. The entries associated with lock and unlock in Ta-
ble 1 require some explanation. Note that lock involves an
atomic read-modify-write operation. Therefore, operations
after lock cannot bypass it under TSO and PSO. For WO
and RC, on the other hand, lock is identified as a special
memory operation and memory reads/writes after a lock are

not allowed to bypass it. However, it is possible for lock to
bypass previous reads/writes under certain memory mod-
els such as PSO and RC. The situation with unlock is dif-
ferent. Unlock is just an atomic write to shared memory
location (synchronization variable). Therefore, an unlock
can be re-ordered w.r.t. both the preceding and succeed-
ing reads/writes under certain hardware memory models. In
particular, note that as PSO does not distinguish unlock as a
special operation, it is possible for an unlock to bypass pre-
vious writes, which violates the semantics of unlock. This
bypassing is prevented by including a memory barrier in-
struction in the software implementation of unlock routine
on a multiprocessor with PSO model (such as SUN SPARC
architecture [21]).

2.2. Java Memory Models

We consider two candidate Java Memory mod-
els: (a)JMMold, the old JMM (since outdated) given in the
Java Language Specification [6] and (b) a revised JMM de-
veloped by Manson and Pugh [12], henceforth called
JMMnew. Note that there have been other candidate pro-
posals for a new JMM (such as Maessen, Arvind and Shen’s
work [11] and Adve’s work [1]). Our study can be (and in-
deed should be) extended to these models as well. How-
ever, the purpose of our study isnot to compareJMMold

and JMMnew point-by-point. Instead we seek to evalu-
ate the performance impact of software memory models on
multithreaded Java program performance.

JMMold This model is specified in Chapter 17 of The Java
Language Specification [6]. It is a set of abstract rules dic-
tating the allowed reorderings of read/write operations of
shared variables. The Java threads interact among them-
selves via shared variables. The JMM essentially imposes
ordering constraints on the interaction of the threads with
the master copy of the variables and thus with each other.
A major difficulty in reasoning aboutJMMold seems to be
these ordering constraints. They are given in an informal,
rule-based, declarative style. It is difficult to reason how
multiple rules determine the applicability/non-applicability
of a reordering. As a result, this framework is hard to un-
derstand. In this paper, we use the easy-to-read operational
style formal specification developed by us [17] to decide
the enabling/disabling of different reorderings.

Reorder? 2nd operation
1st operation Read Write Lock Unlock

Read Yes Yes No No
Write Yes Yes Yes No
Lock No No No No

Unlock Yes No No No

Table 2: Reorderings between memory operations for
JMMold

Reorder? 2nd operation
1st operation Read Write Lock Unlock

Read Yes Yes Yes No
Write Yes Yes Yes No
Lock No No No No

Unlock Yes Yes No No

Table 3: Reorderings between memory operations for
JMMnew

Table 2 shows the allowed reorderings for read,
write, lock, and unlock operations inJMMold. In addi-
tion JMMold provides special treatment to volatile vari-
ables that we will describe later.

JMMnew The lack of rigor in the specification ofJMMold

has led to some problems. For example, some important
compiler optimizations, such as fetch elimination (elimi-
nation of a memory read operation if it is preceded by
a read/write operation to the same variable), are prohib-
ited in JMMold [16]. Therefore, the JMM is currently go-
ing through an official revision by an expert group JSR-
133 [8]. There have been multiple proposals for revised
JMM: JMMnew by Manson and Pugh (appeared in [12]
and subsequently revised further), Maessen et al. [11], and
Adve [1]. The JSR-133 expert group is now converging to-
wards a revised JMM by drawing on the concrete propos-
als. A full fledged discussion on the planned features of
the revised JMM appears in [15]. In this paper, we choose
JMMnew as the candidate revised JMM and use its formal
executable description given in [23, 22]. Table 3 shows the
allowed reorderings for read, write, lock, and unlock oper-
ations inJMMnew. Similar sets of allowed reorderings also
appear in the reordering table of Doug Lea’s cookbook [10].
JMMnew also provides special treatment for both volatile
variables and final fields.

Major DifferencesBoth the JMMs allow arbitrary reorder-
ing of shared variable read/write operations. However, some
other characteristics distinguishJMMold from JMMnew in
terms of performance as follows.

• Synchronization Operations: JMMold does not al-
low locks to be re-ordered w.r.t preceding reads and
unlocks w.r.t. following writes.JMMnew relaxes this
constraint (compare Tables 2 and 3).

• Volatile Variables: A volatile variable is one for
which the Java Virtual Machine (JVM) always ac-
cesses the shared copy.JMMold does not allow
reads/writes of volatile variables to be re-ordered
among themselves. Thus read/write of volatile vari-
able u cannot bypass a preceding read/write of
another volatile variablev. In contrast,JMMnew sim-
ply treats a volatile variable read as the acquire of a
lock and volatile variable write as the release of a lock.

• Final Fields: JMMnew has separate semantics for fi-
nal fields (fields which are written only once, i.e., in
the constructor). In particular, it proposes that values
written to a final fieldf of an object within the con-
structor be visible to reads by other threads that usef .

3. Interaction of Memory Models

In this section, we identify how the JMM is enforced in
a multiprocessor platform and how it can affect the perfor-
mance of multithreaded Java programs.

3.1. Overview

Figure 1 shows the relationship between the JMM and
the underlying hardware memory model in a multiproces-
sor implementation of Java multithreading. Both the com-
piler reorderings as well as the reorderings introduced by
the hardware memory model need to respect the JMM.
Pugh has studied how an inappropriate choice of JMM can
disable common compiler reorderings [16]. In this paper,
we systematically study how the choice of JMM can en-
able/disable reorderings allowed by the hardware memory
models. Note that if the hardware memory model is more
relaxed (allows more reorderings and thereby allows more
behaviors) than the JMM, then the Java Virtual Machine
(JVM) needs to disable these reorderings. This disabling is
done via inserting memory barrier instructions at appropri-
ate places. A memory barrier instruction forces the proces-
sor to execute memory operations across the barrier in pro-
gram order. If the JMM is more restrictive than the hard-
ware memory model, a multithreaded Java program will
execute with too many memory barriers on multiproces-
sor platforms. On the other hand, if the hardware memory
model is too restrictive compared to the JMM, the perfor-
mance enhancing features of the JMM cannot be exploited
in that framework. This explains how the choice of JMM
can affect the multithreaded program performance on mul-
tiprocessors.

We want to study the effect of the JMM in enabling
or disabling reorderings allowed by the hardware memory
models. To evaluate the impact of a JMM on multiproces-
sor performance, we need to check whether the JMM per-
mits the relaxations allowed by the multiprocessor memory

Machine Instructions

(Abstraction of multiprocessor platform)

Hardware Memory Model

(may introduce barriers)

JVM

Bytecode

Compiler

Multithreaded Java Program

respect JMM
Should

Figure 1: Multiprocessor Implementation of Java Multi-
threading

model concerned. If they are disallowed, then memory bar-
riers need to be explicitly inserted degrading performance.
We do so in this paper for two JMMs on five different hard-
ware memory models.

3.2. Memory Barrier Insertion

We now discuss which reorderings of operations by
hardware need to be prevented (by inserting memory bar-
rier instructions) to maintain the JMM semantics on specific
hardware memory models. First, we partition the operations
in question into two classes: shared variable reads/writes,
volatile variable reads/writes and synchronization opera-
tions (lock/unlock). Furthermore, asJMMnew gives special
semantics for final fields, we consider final field writes sep-
arately.

Notations We will employ the following notations to clas-
sify the reorderings that need to be prevented. If we asso-
ciate a requirementRd↑ (Wr↑) with operationx, it means
that all read (write) operations occurring beforex must be
completed beforex starts. On the other hand, if a require-
ment ofRd↓ (Wr↓) is associated with operationx, then
all read (write) operations occurring afterx must start af-
terx completes. Finally,RW ↑ ≡ Rd↑ ∧Wr↑ andRW↓ ≡
Rd↓ ∧Wr↓.

Barriers for Reads/WritesIn the absence of locks, unlocks,
and volatile variables, reads/writes to shared variables can
be arbitrarily re-ordered within a thread forJMMold. These
reorderings are subject to satisfying the uniprocessor con-
trol/data dependencies. Even thoughJMMnew advocates
that the actions are “usually done in their original order”
within a thread, the semantics of the read/write actions al-
lows for other reorderings to be deduced. This fact is ex-
plicitly mentioned in [12, 13] and summarized in [10] in the

form of a reordering table. According to the reordering ta-
ble, shared variable accesses can be arbitrarily re-ordered
within a thread. Since both the JMMs freely allow reorder-
ing of shared variable reads/writes among themselves, no
memory barrier needs to be inserted before read/write in-
structions (in the absence of lock, unlock, and volatile vari-
ables) to satisfy the JMM semantics under any of the hard-
ware memory models.

Barriers for Lock/UnlockIn both the JMMs, the order be-
tween a lock and the succeeding reads/writes as well as un-
lock and previous reads/writes are maintained for proper
implementation of synchronization semantics. In addition,
JMMold does not allow locks to be re-ordered w.r.t preced-
ing reads and unlocks w.r.t. following writes.JMMnew has
a more relaxed model for synchronization operations which
is similar to RC hardware memory model. It relaxes the or-
der between a lock and the preceding reads/writes as well
as unlock and the following reads/writes. Finally, both the
JMMs do not allow synchronization operations to bypass
each other.

The memory barrier insertion requirements for lock and
unlock to satisfyJMMold andJMMnew are summarized in
Table 4. These results are derived by comparing Table 1
with Table 2 and Table 3, respectively. For example, con-
sider a particular hardware memory model, say PSO, and a
software memory model, sayJMMnew. By comparing Ta-
ble 1 with Table 3, we can see that PSO allows the follow-
ing reorderings that are not allowed byJMMnew

• write followed by unlock

• unlock followed by unlock

• unlock followed by lock

The first two reorderings are disabled by associatingWr↑

with unlock and the last reordering is disabled by associat-
ingWr↑ with lock.

Table 4 is not a conclusive guide on the expected perfor-
mance of multithreaded Java benchmarks on various hard-
ware memory models. For example, the WO memory model
does not introduce any barriers before/after unlock as shown
in Table 4. However, the effect of barriers is achieved by the
hardware itself. Therefore, to measure actual performance
of multithreaded Java programs on various multiprocessor
platforms, a simulation study is essential.

Barriers for Volatile Reads/WritesRecall that a volatile
variable is one for which the JVM always accesses the
shared copy.JMMold does not allow reads/writes of volatile
variables to be re-ordered among themselves though they
may be re-ordered w.r.t. reads/writes of normal variables.
Thus the compiler has to introduce memory barriers with
volatile reads/writes. Note that a memory barrier before an
instruction I simply forces all reads and/or writes before I
to commit before I starts. It is not possible to introduce a

Operation SC TSO PSO WO RC

Lock Rd↑

Unlock Wr↑ ∧Wr↓ Wr↓

Operation SC TSO PSO WO RC

Lock Wr↑

Unlock Wr↑

(a)JMMold (b) JMMnew

Table 4: Satisfying the reordering requirements for lock and unlock in the JMMs

barrier that selectively forces only the incomplete volatile
reads/writes to commit. The memory barrier insertion re-
quirement for volatile reads/writes underJMMold are:

Operation SC TSO PSO WO RC

VRd Wr↑ Wr↑ RW ↑ RW ↑

VWr Wr↑ RW ↑ RW ↑

Allowing arbitrary reordering of normal and volatile
reads/writes creates some problems forJMMold. Consider
the following pseudo-code.

Thread 1 Thread 2
write a,1 read volatile v
write a,2 read a
write volatile v,1

Assumingv anda are initialized to 0, it is possible to read
v = 1 anda = 1 in the second thread. Indeed it is this
weakness of the volatile variable semantics which prevents
an easy fix of the “Double Checked Locking” idiom [18] us-
ing volatile variables.

In JMMnew, this problem is rectified by assign-
ing “acquire-release” semantics to volatile variable opera-
tions. Thus a volatile write behaves like a “release” opera-
tion and cannot bypass the previous normal reads/writes;
similarly a volatile read behaves like an “acquire” op-
eration and cannot be bypassed by the following nor-
mal reads/writes. Volatile variable reads/writes are still
not allowed to bypass each other, just likeJMMold. Re-
ordering requirements for volatile reads/writes w.r.t. nor-
mal reads/writes in order to satisfyJMMnew are shown in
the following.

Op SC TSO PSO WO RC

VRd Wr↑ Wr↑ RW ↑∧ RW ↑∧
RW ↓ RW ↓

VWr Wr↑ RW ↑ RW ↑

As we can see, for WO and RC we have the additional
RW↓ requirement for volatile reads owing to its treatment
as a lock acquisition operation.

Barriers for Final Fields Final fields are the fields of an
object which are written only once (i.e., in the construc-
tor). JMMold does not prescribe any special semantics for
final fields, and treats them as normal variables. However,
JMMnew provides specialized semantics for final fields.
Here we only consider final fields which are not visible
to other threads before the constructor terminates (called

“properly constructed” final fields inJMMnew). This se-
mantics requires thatall the writes (writes to final as well
as non-final fields) in a constructor to be visible when a fi-
nal field is frozen (i.e., initialized). Since we can assume
that all final fields are frozen before the termination of the
constructor, the effect of this semantics can be achieved by
inserting a barrier at the end of a constructor. Thus, the re-
turn statement of the constructor comes with the require-
mentWr↑.

To measure the performance impact of this semantics of
JMMnew, it is just not enough to measure the time taken by
these additional barriers. Due to the additional safety pro-
vided by the semantics, certain synchronizations can now be
eliminated. However, identifying these neo-redundant syn-
chronizations is rather difficult, and we have not done so in
this paper. Nevertheless, we found the overhead due to ad-
ditional barriers for final field writes is not substantial.

4. Performance Evaluation

In this section, we compare the impact ofJMMold

and JMMnew on multithreaded Java program perfor-
mance through simulation study. First, we consider the
performance of various Java Grande benchmarks on dif-
ferent hardware memory models. We then study the
performance of the same benchmarks when these hard-
ware memory models are required to comply toJMMold

andJMMnew.

4.1. Benchmarks

We choose five different benchmarks from multithreaded
Java Grande suite,SOR, LU, Series , Sync , and Ray,
which are suitable for parallel execution on shared mem-
ory multiprocessors [7].Sync is a low-level benchmark
that measures the performance of synchronized methods
and blocks.SOR, LU, andSeries are moderate-sized ker-
nels.LU solves a40× 40 linear system using LU factoriza-
tion followed by a triangular solve. It is a Java version of
the well known Linpack benchmark.SORperforms100 it-
erations of successive over-relaxation on a50 × 50 grid.
Series computes the first30 Fourier coefficients of the
function f(x) = (x + 1)x on the interval0 . . . 2. Ray is
a large scale application that renders a 3D scene contain-
ing 64 spheres. Each benchmark is run with four parallel
threads. Table 5 shows the number of volatile reads/writes,

Benchmark Volatile Volatile Constructors with Lock Unlock
Read Write Final Field Writes

SOR 51604 480 20 4 4
LU 8300 936 52 4 4

Series 0 0 24 4 4
Sync 0 0 4 4 4
Ray 48 20 768 8 8

Table 5: Characteristics of Benchmarks used
synchronization operations and final field writes for our
benchmarks. TheLU and SORbenchmarks have substan-
tial number of volatile variable reads/writes, accounting for
up to 15% of the total memory operations.

4.2. Methodology

We use Simics [20], a full-system simulator for multipro-
cessor platforms in our performance evaluation. Simics is a
system-level architectural simulator developed by Virtutech
and supports various processors like SPARC, Alpha, x86
etc. It can run completely unmodified operating systems.
We take advantage of the set of application programming
interfaces (API) provided by Simics to write new compo-
nents, add new commands, and write control/analysis rou-
tines.

Multiprocessor platformWe simulate a shared memory
multiprocessor (SMP) consisting of four SUN UltraSPARC
II. The processors are configured as 4-way superscalar out-
of-order execution engines with 64-entry reorder buffers.
We use separate 256KB instruction and data caches: each is
2-way set associative with 32-byte line size. The caches use
write-back, write-allocate policy with cache miss penalty of
100 clock cycles. We use MESI cache coherence protocol.

Simics provides two basic execution modes: an in-order
execution mode and an out-of-order mode. In in-order exe-
cution mode, instructions are scheduled sequentially in pro-
gram order. Thus there are no reorderings among memory
operations in this mode. The out-of-order execution mode
has the feature of a modern pipelined out-of-order proces-
sor. That is, the instructions need not be issued to the func-
tional units and completed in program order. In Simics, this
is achieved by breaking instructions into several phases that
can be scheduled independently. This mode can produce
multiple outstanding memory requests that do not neces-
sarily occur in program order. Clearly, we must use out-of-
order execution mode in our experiments so that we can
simulate multiprocessor platform with different hardware
memory models.

Multithreading SupportWe use Linux SMP kernel as the
operating system and Kaffe as the JVM. Since our simu-
lated platform is a four-processor SMP machine, some mea-
sures are taken for the multithreaded programs to make

best use of the multiprocessors. Linux supports multithread-
ing through POSIX Threads (Pthreads), message passing li-
braries and multiple processes. Since both message passing
libraries and multiple processes typically communicate ei-
ther by means of Inter-Process Communications (IPC) or
a messaging API, they do not map naturally to SMP ma-
chines. Only Pthreads enforce a shared memory paradigm
and so we decide to use Pthreads.

Moreover, Kaffe provides several methods for the imple-
mentation of Java multithreading including kernel-level and
application-level threads. However, threads at application-
level do not take advantage of the kernel threading and all
the threads are mapped to a single process. As a result, ap-
plication level threads cannot take advantage of SMP. Con-
sequently, we decide to use kernel Pthreads library so that
the Java threads are scheduled to different processors.

Hardware Memory ModelsWe configure Simics consis-
tency controller [19] to simulate various hardware memory
models. The consistency controller ensures that the archi-
tecturally defined consistency model is not violated. The
consistency controller can be constrained through the fol-
lowing attributes (setting an attribute to zero will imply no
constraint):

• load-load, if set to non-zero loads are issued in pro-
gram order

• load-store, if set to non-zero program order is main-
tained for stores following loads

• store-load, if set to non-zero program order is main-
tained for loads following stores

• store-store, if set to non-zero stores are issued in pro-
gram order

Obviously, if all the four attributes are set to non-zero, pro-
gram order is maintained for all the memory operations.
In this case, the hardware memory model is SC. For TSO
where writes can be reordered w.r.t. the following reads, we
only need to set store-load to zero and other attributes to
non-zero. For PSO, store-load and store-store are set to zero
and the other two to non-zero. In addition, for implementing
PSO, we had to modify the Simics consistency controller.
The default consistency controller stalls a store operation if
there is an earlier instruction that can cause an exception and

all instructions are considered to be able to raise an excep-
tion. Therefore, in effect, a store instruction cannot bypass
any previous instruction in the original implementation. We
allowed the store to go ahead even if there are uncommit-
ted earlier instructions. If the earlier instructions raise ex-
ception, we simply aborted the simulation. However, this
happened very infrequently.

For WO and RC, it is not sufficient to just set the four
attributes to zero. We need to distinguish between syn-
chronization and memory operations. However, the syn-
chronization operations cannot be identified in Simics as
there is no special instruction for synchronization operation
unlock. Instead, we identify synchronization operations at
JVM level as Java bytecode has two specific opcodes MON-
ITORENTER and MOINTOREXIT for lock and unlock, re-
spectively.

For WO, lock/unlock cannot be reordered w.r.t. normal
read/write operations. Thus we need to put memory barri-
ers before and after lock/unlock. Since a lock is essentially
an atomic read-modify-write operation and any operations
following the lock can execute only when the lock is com-
pleted successfully, operations following a lock are depen-
dent on the lock and thus they can’t bypass the lock. There-
fore no memory barrier is required after a lock operation. In
Kaffe, WO is achieved by inserting one memory barrier just
before the implementation of MONITORENTER, one just
before and one just after MONITOREXIT. For RC, we only
need to insert one memory barrier before the implementa-
tion of MONITOREXIT.

Software Memory ModelsThe software memory models
are implemented by inserting memory barriers for the dif-
ferent models in the Java programs. As Java is platform
independent, we need to make use of the Java Native In-
terface (JNI) to insert architecture-dependent assembly lan-
guage instructions (memory barriers). The JNI allows Java
code running in JVM to co-exist with applications and li-
braries written in other languages, such as C, C++, and as-
sembly. The following steps create a native method contain-
ing the memory barrier instructions which can be invoked
(inserted) into any Java program.

1. Write a Java program that declares the native method.

2. Compile the Java program into a class that contains the
declaration for the native method.

3. Generate a header file for the native method usingkaf-
fehprovided by the JVM.

4. Write the implementation of the native method in the
desired language. We use C with inline assembly.

5. Compile the header and implementation files into a
shared library file.

5. Experimental results

As discussed before, all the five multithreaded Java
Grande benchmarks are modified to observe theJMMold

andJMMnew specifications respectively. Then they are ex-
ecuted on the simulated system configured with SC, TSO,
PSO, WO or RC hardware memory models. The perfor-
mance is measured by the number of clock cycles re-
quired for a benchmark under certain combination of
software and hardware memory models. Simics intro-
duces non-determinism in scheduling threads. Therefore,
for each combination of hardware and software mem-
ory models, we run a benchmark three times and take the
average. We first present the number of memory barri-
ers required for bothJMMold and JMMnew for relaxed
hardware memory models.

5.1. Memory Barriers

The number of memory barriers greatly influences the
performance of the benchmarks and reflects the require-
ments of the software memory models. The memory bar-
riers are due to volatile variable accesses, synchronization
operations and final fields. Since the benchmarks we use
do not contain many synchronization operations, most of
the memory barriers are introduced because of volatile vari-
ables and final fields. The overhead due to memory barriers
arise not just from the clock cycles needed to execute them
but also from the clock cycles spent in waiting for the pend-
ing memory operations to complete.

Table 6 shows the number of memory barriers for
JMMold and JMMnew under relaxed hardware mem-
ory models. We also provide a breakup of why these barri-
ers are introduced. In some cases, the numbers of memory
barriers required are the same for two different mod-
els, but the barriers are introduced due to different rea-
sons.

Since SC is stricter than both of the JMMs, no mem-
ory barrier is required for it. From Table 6 we can see that
LU, SORand Ray need more memory barriers thanSe-
ries and Sync . This is becauseLU, SORand Ray all
have a large number of volatile reads/writes. AsJMMnew

imposes more restrictions on volatile variables, generally
JMMnew needs more barriers thanJMMold for these three
benchmarks under certain hardware memory models. More-
over, forJMMold we can observe that the hardware mem-
ory models PSO, WO and RC need more barriers than TSO.
The reason is that TSO needs memory barriers to be in-
serted before volatile read operations while PSO, WO and
RC need memory barriers to be inserted before both volatile
read and volatile write operations underJMMold. Similarly,
for JMMnew, PSO introduces more memory barriers than
TSO while WO and RC introduce more barriers than PSO.

SOR TSO PSO WO RC
volatile rd/wr 2004 2812 2808 2812
lock/unlock 0 4 0 8
final field wr 0 0 0 0

JMMold Total 2004 2816 2808 2820
volatile rd/wr 2004 2810 4813 4813
lock/unlock 0 4 0 0
final field wr 2 2 2 2

JMMnew Total 2006 2816 4815 4815

LU TSO PSO WO RC
volatile rd/wr 3979 4924 4920 4824
lock/unlock 0 4 0 8
final field wr 0 0 0 0

JMMold Total 3979 4928 4920 4832
volatile rd/wr 3979 4922 6124 6124
lock/unlock 0 4 0 0
final field wr 6 6 6 6

JMMnew Total 3985 4932 6130 6130

Series TSO PSO WO RC
volatile rd/wr 0 0 0 0
lock/unlock 0 6 0 12
final field wr 0 0 0 0

JMMold Total 0 6 0 12
volatile rd/wr 0 0 0 0
lock/unlock 0 6 0 0
final field wr 0 0 0 0

JMMnew Total 0 6 0 0

Sync TSO PSO WO RC
volatile rd/wr 0 0 0 0
lock/unlock 0 4 0 8
final field wr 0 0 0 0

JMMold Total 0 4 0 8
volatile rd/wr 0 0 0 0
lock/unlock 0 4 0 0
final field wr 1 1 1 1

JMMnew Total 1 5 1 1

Ray TSO PSO WO RC
volatile rd/wr 35 84 49 84
lock/unlock 0 8 0 16
final field wr 0 0 0 0

JMMold Total 35 92 49 100
volatile rd/wr 35 92 73 100
lock/unlock 0 8 0 0
final field wr 863 863 863 863

JMMnew Total 898 963 936 963

Table 6: Number of memory barriers inserted in benchmarks for different memory models

This is because TSO needs memory barriers before volatile
read operations, and PSO needs barriers before both volatile
read and write operations. WO and RC, on the other hand,
need barriers before volatile read/write operations as well
as after volatile read operations.

The other two benchmarksSeries and Sync have
no volatile variables. The memory barriers are due to syn-
chronization operations and final fields. For synchroniza-
tion operations,JMMold needs more memory barriers than
JMMnew. Thus for these two benchmarks, more memory
barriers are inserted forJMMold thanJMMnew.

Among the benchmarks, onlyRay has substantial num-
ber of constructors with final fields. Hence the number of
memory barriers due to final fields is only observable in
Ray. This causesJMMnew to have more memory barriers
thanJMMold. Also note that the final fields are treated in
the same way for all the hardware memory models.

5.2. Performance

In our simulation, the execution time of a benchmark
is affected by two factors: the inserted memory barriers
due to JMMs and the reorderings allowed by the hardware
memory models. We now present the speedup of a bench-
mark’s execution for a particular combination of hardware
memory model (TSO/PSO/WO/RC) and software memory
model (JMMold/JMMnew) with respect to SC. We use
SC as the base case as it is the strictest hardware memory
model and no reordering is allowed among the memory op-
erations. Thus the execution time under SC is not affected
by the software memory model.

Figure 2 illustrates the performance of the bench-
marks for different combinations of software and hard-
ware memory models. The “OLD” and “NEW” correspond
to JMMold and JMMnew software memory models, re-
spectively. “NO” represents a hypothetical case where
we do not follow any software memory model seman-

tics. In other words, we do not insert any memory barrier
to respect the JMM. Note that this may result in an ex-
ecution which violates the JMM semantics. However,
we introduce “NO” to evaluate the impact of the soft-
ware memory model on program performance. In par-
ticular, we are interested to see if the JMM offsets the
performance improvement offered by hardware mem-
ory models. The Y-axes in Figures 2 represent the speedup
with respect to SC. Note that for SC, the performance re-
mains the same irrespective of the software memory
model.

For all the five benchmarks the hardware memory mod-
els have crucial impact on the overall performance; the more
relaxed the hardware memory model, the better the perfor-
mance. These results are consistent with those results of [4].
It is possible to achieve 20–60% performance improvement
for RC compared to SC even in the presence of software
memory models.

The comparison betweenno JMM and JMMold,
JMMnew show that for most benchmarks (Ray, Sync , and
Series), the software memory model has minimal impact
on performance. However, for benchmarks with large num-
ber of volatile variables, there can be as much as 5% per-
formance difference due to the presence of JMM. As the
hardware cannot distinguish between volatile and nor-
mal variables, it is difficult to map the software memory
model semantics to hardware and we need to introduce un-
necessary barriers.

Finally, the performance difference betweenJMMold

andJMMnew is negligible. We note than in general the dif-
ference is larger under WO and RC than under TSO and
PSO. This is because under WO and RC more memory bar-
riers are introduced due to volatile variables forJMMnew.
That is why the benchmarks with significant number of
volatile variables have worse performance underJMMnew

thanJMMold.

6. Discussion

In this paper, we have studied the performance impact of
Java Memory Model (JMM) on hardware consistency mod-
els of multiprocessor platforms. A hardware consistency
model describes the behaviors allowed by the multiproces-
sor implementations while the JMM describes behaviors al-
lowed by Java multithreading semantics. The existing JMM
and a new JMM by Manson and Pugh (which is close to the
planned revision by the JSR-133 expert group) are used in
this study to show how different choices of JMM can af-
fect multithreading performance. To ensure that the execu-
tion of the multithreaded Java program on the multiproces-
sor with some hardware consistency model does not violate
the JMM, we add memory barriers to enforce ordering. We
use the Simics multi-processor simulator to quantitatively

evaluate the effect of these memory barriers on overall per-
formance of multi-threaded Java programs.

In terms of future work, our study needs to be extended
to other similar proposals such as [1]. Furthermore, note that
our study only captures the relationship of JMM and hard-
ware memory models. The effect of compiler optimizations
(i.e., whether a JMM enables/disables compiler optimiza-
tions) is not included in this study. For a more comprehen-
sive understanding of the effect of a JMM on overall sys-
tem performance, we need an integrated study of its effect
on compilers as well as multiprocessor architectures.

7. Acknowledgments

This was was partially supported by National University
of Singapore research project R-252-00-095-112.

References

[1] S. Adve. A memory model for Java and its rationale. InCom-
munication to Java Memory Model mailing list, 2003.

[2] S. Adve and K. Gharachorloo. Shared memory consistency
models: A tutorial. IEEE Computer, pages 66–76, Dec.
1996.

[3] D. Culler and J. P. Singh.Parallel Computer Architecture: A
Hardware/Software Approach. Morgan Kaufmann Publish-
ers, 1998.

[4] K. Gharachorloo, A. Gupta, and J. Hennessy. Perfor-
mance evaluation of memory consistency models for shared-
memory multiprocessor. InIntl. Conf. on Architectural Sup-
port for Programming Languages and Operating Systems
(ASPLOS), 1991.

[5] A. Gontmakher and A. Schuster. Java consistency: nonop-
erational characterizations for java memory behavior.ACM
Transactions on Computer Systems (TOCS), 18(4):333–386,
2000.

[6] J. Gosling, B. Joy, and G. Steele.The Java Language Speci-
fication. Chapter 17, Addison Wesley, 1996.

[7] Java Grande Forum. The Java Grande Forum Bench-
mark Suite, 2001. Multi-threaded benchmarks available
from http://www.epcc.ed.ac.uk/computing/
research_activities/java_grande/thre%
ads.html .

[8] Java Specification Request (JSR) 133.Java Memory model
and thread specification revision, 2001. http://jcp.
org/jsr/detail/133.jsp .

[9] L. Lamport. How to make a multiprocessor computer that
correctlt executes multiprocess programs.IEEE Transac-
tions on Computers, 28(9), 1979.

[10] D. Lea. The JSR-133 cookbook for compiler writ-
ers. http://gee.cs.oswego.edu/dl/jmm/
cookbook.html .

[11] J. Maessen, Arvind, and X. Shen. Improving the java mem-
ory model using CRF. InACM OOPSLA, 2000.

[12] J. Manson and W. Pugh. Core semantics of multithreaded
Java. InACM Java Grande Conference, 2001.

1.00

1.05

1.10

1.15

1.20

1.25

1.30

Sp
ee

du
p

TSO PSO WO RC

SOR

NO
OLD
NEW

1.00

1.05

1.10

1.15

1.20

1.25

1.30

Sp
ee

du
p

TSO PSO WO RC

LU

NO
OLD
NEW

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

Sp
ee

du
p

TSO PSO WO RC

Series

NO
OLD
NEW

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

Sp
ee

du
p

TSO PSO WO RC

Sync

NO
OLD
NEW

1.00

1.05

1.10

1.15

1.20

1.25

1.30

Sp
ee

du
p

TSO PSO WO RC

Ray

NO
OLD
NEW

Figure 2: Performance impact of JMM. OLD, NEW, and NO correspond toJMMold, JMMnew, and no software memory
models, respectively. The speedups are with respect to the hardware memory model SC.

[13] J. Manson and W. Pugh. Semantics of multithreaded Java.
Technical report, Department of Computer Science, Univer-
sity of Maryland, College Park, CS-TR-4215, 2002.http:
//www.cs.umd.edu/˜pugh/java/memoryModel .

[14] V. Pai, P. Ranganathan, S. Adve, and T. Harton. An eval-
uation of memory consistency models for shared-memory
systems with ILP processors. InIntl. Conf. on Architec-
tural Support for Programming Languages and Operating
Systems (ASPLOS), 1996.

[15] W. Pugh. Java Memory Model Mailing List.
http://www.cs.umd.edu/˜pugh/java/
memoryModel/archive .

[16] W. Pugh. Fixing the Java memory model. InACM Java
Grande Conference, 1999.

[17] A. Roychoudhury and T. Mitra. Specifying multithreaded
Java semantics for program verification. InACM/IEEE Inter-
national Conference on Software Engineering (ICSE), 2002.

[18] D. Schmidt and T. Harrison. Double-checked locking: An
optimization pattern for efficiently initializing and accessing
thread-safe objects. In3rd Annual Pattern Languages of Pro-
gram Design conference, 1996.

[19] Virtutech. Simics Out-of-order Processor Model, 2003.
[20] Virtutech. Simics User Guide for UNIX, 2003.
[21] D. L. Weaver and T. Germond.The SPARC Architecture

Manual : Version 9. Prentice Hall, 1994.
[22] Y. Yang, G. Gopalakrishnan, and G. Lindstrom. Specify-

ing Java thread semantics using a uniform memory model.
In Joint ACM Java Grande/ISCOPE conference, 2002.

[23] Y. Yang, G. Gopalakrishnan, and G. Lindstrom. UMM: An
operational memory model specification framework with in-
tegrated model checking capability.Concurrency and Com-
putation: Practice and Experience, 2003.

