Automated Re-factoring of Android Apps
to Enhance Energy-efficiency

Abhijeet Banerjee
National University of Singapore, Singapore
abhijeet@comp.nus.edu.sg

ABSTRACT

Mobile devices, such as smartphones and tablets, are energy con-
strained by nature. Therefore, apps targeted for such platforms
must be energy-efficient. However, due to the use of energy obliv-
ious design practices often this is not the case. In this paper, we
present a light-weight re-factoring technique that can assist in energy-
aware app development. Our technique relies on a set of energy-
efficiency guidelines that encodes the optimal usage of energy-
intensive (hardware) resources in an app. Given a prototype for an
app, our technique begins by generating a design-expression for it.
A design-expression can be described as a regular-expression repre-
senting the ordering of energy-intensive resource usages and invo-
cation of key functionalities (event-handlers) within the app. It also
generates a set of defect-expressions, that are design-expressions
representing the negation of energy-efficiency guidelines. A non-
empty intersection between an app’s design-expression and a defect-
expression indicates violation of a guideline (and therefore, poten-
tial for re-factoring). To evaluate the efficacy of our re-factoring
technique we analysed a suite of open-source Android apps using
our technique. The resultant re-factoring when applied, reduced the
energy-consumption of these apps between 3 % to 29 %. We also
present a case study for one of our subject apps, that captures its de-
sign evolution over a period of two-years and more than 200 com-
mits. Our framework found re-factoring opportunities in a number
of these commits, that could have been implemented earlier on in
the development stages had the developer used an energy-aware re-
factoring technique such as the one presented in this work.

Categories and Subject Descriptors: D.2.2 [Software Engineer-
ing]: Design Tools and Techniques

Keywords: Mobile Apps; Re-factoring; Energy-efficiency

1. INTRODUCTION

Easy access to app-development tools and a low barrier to en-
try! has led to an abundance of mobile apps in recent days. As
of year 2015, there were more than 1.8 million apps available on
Google Play Store [2] alone. A plethora of online tutorials and
publicly available testing tools, such as MonekyRunner [3], make

'Registration for a publisher account at Play store costs $25 [1]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MobileSoft’16, May 16-17, 2016, Austin, TX, USA

Copyright 2016 ACM 978-1-4503-4178-3/16/05 ...$15.00
http://dx.doi.org/10.1145/2897073.2897086 .

Abhik Roychoudhury

National University of Singapore, Singapore
abhik @comp.nus.edu.sg

it relatively easy even for new app-developers to develop and test
the functionality of their apps. However, the same cannot be said
for testing non-functional behaviour, specifically energy-efficiency.
Mobile devices are energy-constrained by nature. Therefore, it
is crucial that apps that are made for such devices be designed
and optimized for energy-efficiency. However, due to a combi-
nation of factors such as lack of proper understanding of energy-
efficient designs or lack of tools that can enforce such energy-
efficient designs, app development has mostly been done in an
energy-oblivious manner.

In recent years, research works have proposed a number of tech-
niques (such as profiling [4], testing [5]) that can be used post de-
velopment for quality assurance purposes. Such techniques how-
ever do not provide adequate support for energy-efficient design
and re-factoring of mobile apps. In this paper, we present an or-
thogonal approach to address this issue. We present a light-weight,
re-factoring technique that uses a set of energy-efficiency guide-
lines to generate energy-efficient re-factorings for a given app. These
energy-efficiency guideline were formulated under the assumption
that energy-efficiency can be increased by optimizing the usage
of energy-intensive (hardware) resources. Resources such as 1/0
Components and power management utilities have the biggest im-
pact on energy-consumption, hence their usage must be reduced
as much as possible without affecting the functionality of the app.
Additionally, certain resources (such as sensors) can be accessed
through multiple configurations, each of which provide specific
trade-offs between Quality-of-Service and energy-efficiency. Judi-
cious usage of less-expensive resources, based on the functionality
of the app, can further decrease energy consumption.

To detect re-factoring opportunities, our framework checks for
violations of (energy-efficiency) guidelines in a given app. How-
ever, doing so directly on the app source-code may be in-appropriate
for a number of reasons. For instance, mobile apps being event-
driven in nature, usually consists of segregated pieces of code (or
event-handlers), ordering between which may not be explicit in
the app-source code. This makes it difficult to detect guideline
violations across event-handlers boundaries. Additionally, real-
life apps may contain thousands of lines of code, not all of which
affect the energy-consumption behaviour of the app significantly.
Therefore, before our framework looks for re-factoring opportuni-
ties, it first generates an intermediate, succinct representation of
the app. This intermediate representation, henceforth referred to
as design-expression, contains only that information which is most
relevant to the energy consumption behaviour of the app. More
formally, a design-expression can be described as a regular expres-
sion that represents the ordering of energy-intensive resource us-
ages and invocation of key functionalities (event-handlers) within
the app. The use of design-expression allows us to re-factor energy-
intensive resources across event-handler boundaries. Additionally,
since design-expression are customized regular expression we can

DESIGN EXTRACTION

|
App EFG DFA Expression . .
Source I Generation EFG Construction DFA >| Generation | Design Expression
! 4
____________________ L '|
I Detect Guideline Re-factor I
| Violation Expression |
GUIDELINE-BASED | |
REFACTORING | User
Feedback |
l_ _ _ = _ _ _ 1
_______________ = l
' [
Identify Lines Identify Location R . .
] <«————Refactored Design Expression
Re-factored I (source code lines) (Class/Method) | 9 P
App Source | |
o b e e e e e - —
s CODE GENERATION

EFG: Event Flow Graph
DFA: Deterministic Finite Automata

Figure 1: An overview of our framework

use off-the-shelf tools and techniques to analyse/manipulate them.
It is also worthwhile to know that our framework generates the
design-expression for a given app automatically.

In order to detect guideline violations our framework also gen-
erates a set of defect-expressions. A defect-expression has same
syntax as that of design-expression but represent the negation of an
energy-efficiency guideline. So essentially, design-expression rep-
resents what an app is supposed to do (in order to achieve its func-
tionality) whereas the defect-expression represents what an app is
not supposed to do in order to be energy-efficient. A non-empty
intersection between design-expression and defect-expression in-
dicates violation of the energy-efficiency guideline that is asso-
ciated with the defect-expression. It is worthwhile to know that
such an analysis is possible because both the design-expression,
as well as the defect-expression are constructed from the same al-
phabet. On detecting a guideline violation, our framework gener-
ates a re-factored design-expression such that it has an empty inter-
section with the defect-expression. Finally, the re-factored design-
expression is presented to the app-developer for approval. If the de-
veloper approves the presented re-factoring, the changes are mapped
back to the source code.

Key Contributions:

e We present a set of energy-efficiency guidelines that are specif-
ically designed for Android apps. These guidelines can im-
prove the understanding of energy-efficient design patterns
amongst app-developers and also provides the groundwork
necessary for construction of energy-aware re-factoring tools.

e We present an automated framework, that can detect and
re-factor energy-efficiency guideline violations in Android
apps. The efficacy and scalability of our framework comes

from the use of a novel intermediate representation of a mobile-

app i.e. design-expression. These design-expression con-
tains only that information which is crucial for improving the
energy-consumption behaviour of the app, while maintaining
its original functionality.

e We evaluated our framework with a suite of open-source ap-
plications from the F-Droid [6] app repository. In this eval-
uation, we observed that the re-factorings generated by our
framework improved the energy-consumption of the evalu-
ated apps significantly (observed improvements 3% to 29%).

e We also present an in-depth case study for one of our subject
apps, that captures its design evolution over a period of two-

years and more than 200 commits. Our framework found re-
factoring opportunities in a number of commits, that could
have been implemented earlier on in the development stages,
had the developer used an energy-aware re-factoring tech-
nique such as the one presented in this work.

2. OVERVIEW

Our framework is composed of three key components (overview
shown in Figure 1): (i) design extraction component (ii) re-factoring
component and (iii) code generation component. The objective of
design extraction component is to generate the design-expression
for the app. The most crucial processing happens in the re-factoring
component, where the design-expression is evaluated for guide-
line violation and design expression re-factoring takes place (if
any guideline violations are detected). Finally, the code gener-
ation component maps the changes from the re-factored design-
expression to the app source code. These components are discussed
in detail in sections 2.2 - 2.4, with the help of an example-app that
is described in Section 2.1.

2.1 Example App

To keep the proceeding discussion concrete, we shall explain the
overview of our framework using an example-app. Let us con-
sider a simple app that allows its user to search for famous land-
marks based on provided keywords. If the user selects any of the
landmarks, the app shows the landmark on a map, along with the
distance of the device to the selected landmark. The app has lo-
cal copies of all the information (landmark names, co-ordinates,
map tiles, etc) that is required to do its computation, except for the
user/device location. The user/device location is obtained through
an on-board GPS receiver. The app initiates the location updates as
soon as it is started and the location updates are stopped only when
the app exits (the foreground). The screen-shots provided in Figure
3 can provide a rough idea about the graphical user interface (GUI)
layout of the app. It is worthwhile to know that location-updates are
one of the most energy-intensive operation on a mobile device and
hence it should be used for as small duration of time as possible.
However, in this example-app location-updates have been used sub-
optimally. More specifically, the location updates are active for the
entire duration of time the app is active (in the foreground), whereas
the location-updates are used only when the user selects a landmark
(i.e when Screen 2 is shown). Through our framework we wish to
detect and re-factor instances of energy-inefficient behaviour, such
as sub-optimal resource binding as present in this example-app.

App

EFG Starts -

Execution

GUI States: A,B, C, D ; Entry State: A; Exit State: D ; Events: a,b,c,d
Resource Acquire: x;; Resource Release: ¥, i Resource Usage : u,

ll‘ll' YI’
App
Execution

a—>| A_start |—x"—>| Acquired |L>| A_finish lLPI B_start |L>| B_finish

DFA

|| D finish ||<€_| Released |<—Yv—| D_start |<d—| C finish |<E—

DFA States: A_start,A_finish, B_start, B_finish C_start, C_finish, D_start, D_finsih, Acquired, Usage, Released
Entry State: A_start; Exit State: D_finish
Transitions: a, b, ¢, d, Xe My Y, ,E (empty string)

Figure 2: Event-flow graph (EFG) and deterministic finite automata (DFA) for the example-app of section 2.1

2.2 Design Extraction

Enter Search Keywork Below

Natural Wonder

B

Grand Canyon o
Great Barrier Reef s
Harbor

Mount Everest
Aurora

Paricutin volcano
Victoria Falls

491 Miles

Screen 1 Screen 2

Figure 3: An example app

Our framework begins analysis by generating an appropriate in-
termediate representation of the app that is to be evaluated. Per-
forming re-factorings directly on the app source code would be in-
appropriate for a number of reasons. For instance, mobile apps
being event-driven in nature, usually consists of segregated pieces
of code (or event-handlers), ordering between which may not be
explicit in the app-source code. This makes it difficult to detect
energy-inefficient patterns across event-handlers. Additionally, real-
life apps may contain thousands of lines of code, not all of which
affect the energy-consumption behaviour of the app significantly.
Therefore, we create a succinct intermediate representation of an
app which contains only the information that is most relevant to its
energy consumption behaviour.

Energy consumption in mobile apps has a direct co-relation to
the use of Android API calls that are related to acquire, usage and
release of energy-intensive resources [4]. Previous works such as
[7] have found that the Screen, Wifi, GPS, Sensors, Camera, CPU
and Keypad are some of the most energy-intensive resources on
a mobile device. Hence, acquire, usage and release API calls for
these energy-intensive resources are included in the intermediate
representation. Additionally, the intermediate representation also
captures the different user-interaction patterns by which an user can
interact with the app. Our objective, after all, is to re-factor an
app so as to remove (or at least minimize) the user interaction (UI)
patterns that may lead to energy-inefficient behaviour. Considering
all these requirements we create the notion of design-expression.

DEFINITION 2.1. A design-expression is a regular expression
which represents the ordering of Android API calls (acquires, re-

lease & usages) for energy-intensive hardware resources and invo-
cation of event-handlers within an app.

A design-expression is similar to a regular expression in terms
of syntax and expressibility. Like a regular expression, a design-
expression is constructed with symbols and operators. The symbols
of the expression are user-inputs (such touches, taps, etc) while
operators are the same as regular grammar (eg. * implies O or
more). A detailed discussion on regular expression grammar can
be found in [8]. The key advantages of using design-expression
can be summed up as follows:

e It is a succinct representation for an app and contains only
that information which is most relevant to its energy con-
sumption behaviour. It is worthwhile to know that design-
expression can be used to represent the set of all input strings
that can be used to interact with the app.

e Since design-expressions are based on regular expressions
we can use a wide-variety of existing tools and techniques
that are applicable to regular expressions, to manipulate de-
sign expression (such as minimizing an expression or com-
puting the intersection of two expressions, etc).

Generating of the design-expression from app sources takes place
in three steps: (i) EFG Generation, (i) DFA Construction and (iii)
Expression Generation.

(i) EFG Generation: An event-flow graph (EFG) [9] can be used
to represent the GUI model of an app and can be defined as in Def-
inition 2.2. Figure 2 shows a simplified EFG for the example-app
of section 2.1. The GUI states A and D correspond to app start and
exit states. While the states B and C' correspond to the app being in
Screen 1 and Screen 2, respectively (c¢f. Figure 3). The events a and
d represent the starting and closing of the app. Whereas the event b
represents the user pressing search button and the event c represents
the user selecting a landmark. Since an user can repeatedly press
the search button on the screen 1 therefore there is a self-loop at
EFG node B. It is worthwhile to know that EFGs for real-life apps
can be more complicated because of the omnipresent Uls such as
the Back button and the Menu button. However, for the purpose of
simplicity we shall not include these Uls (Back and Menu button)
in the EFG of Figure 2. Finally, the Android API calls z, u, and
y, represent the acquire, usage and release of resource r, (in the
example of section 2.1 it is location updates).

DEFINITION 2.2. An event-flow graph is a directed graph, that
captures all possible event-sequences that can be used to interact

with an app. The nodes of an EFG represent GUI states. A directed
edge between two nodes of an EFG X and Y represents that state Y
Sfollows state X. Additionally, nodes of the EFG are annotated with
event-handler information associated with their respective events.

In order to generate the EFG we use an automated, GUI explo-
ration tool Dynodroid [10]. Dynodroid uses a publicly-available,
Android tool Hierarchy Viewer [11], to obtain the UI layout of an
app. It then uses this layout information to progressively explore
all the UI states of an app. By extending Dynodroid we can obtain
the events as well the directed edges between the GUI states. We
also need to obtain the event to event-handler mapping information
for EFG generation. This information can either be obtained by
modifying the Android platform or instrumenting the apk files. We
choose the later because it is more straightforward and maintain-
able as it need not be re-implemented every time the Android plat-
form is updated. In particular, the instrumentation is done for event-
handlers that are defined in the android.app.activity, and
roid.app.service and android.content.Broadcast
Receiver packages of the Android framework. We also obtain
an event-handler to Android API call mapping for all the energy-
intensive resources by statically analysing the bytecode of an app.
For instance, invocation of API call com.google.android.m
aps.MyLocationOverlay.enableMyLocation would be
recorded as an acquire for the resource GPS in the event-handler
where the API call was used. It is also worthwhile to mention
that this event-handler to Android API call mapping is done in
an object-insensitive manner. For instance, in this location ex-
ample all invocation of the API call com.google.android.m
aps.MyLocationOverlay.enableMyLocation would be
allocated to the same GPS resource. Finally, the event-handler to
Android API call mapping is combined with the event to event-
handler mapping as shown in Figure 4, to generate the EFG.

Explore —> event to event-handler
Ul mapping
Android Combine |——> EFG
Apk
Analyse event-handler to Android API call
Bytecode [T mapping

Figure 4: Event-flow graph (EFG) generation

(ii) DFA Construction: Once the EFG is obtained, it is converted
into a deterministic finite automata (DFA). This conversion is done
so that we can use standard algorithms to do DFA-to-Expression
generation. The DFA is constructed such that each node in the DFA
either represents the starting of (execution of) an event-handler,
stopping of (execution of) an event-handler, acquiring of a resource,
release of a resource or usage of a resource. In the scenario where
an EFG node is not associated with a resource-related Android API
call, the conversion from EFG node to DFA node is straightfor-
ward. However, in the scenario where an EFG node does contain
resource-related Android API calls, the EFG node is divided into
multiple DFA nodes (depending on the number of Android API
calls contained in the EFG node). Finally, the entry states and the
exit states are copied from the EFG to the DFA. Figure 2 shows the
DFA for the example-app of section 2.1.

(iii) Expression Generation: Post DFA construction, we extract
the design expression (i.e. the regular expression) representing the
DFA. The conversion from DFA to expression is done using the
standard algorithm as proposed in [8]. Essentially, the algorithm

proceeds by removing the DFA states (and changing the transi-
tions accordingly), until only initial and final states are remaining.
The resultant expression is subsequently minimized using an off-
the-shelf Python library [12]. For instance, the resultant design-
expression for the example-app of section 2.1 is ax,b* cu,dy; .

2.3 Guideline-based Re-factoring

The re-factoring component of our framework operates in two
steps: detecting guideline violating patterns and re-factoring. To
detect guideline-violating patterns in an app’s design expression,
our framework first generates the defect-expression (for each guide-
line). A defect-expression can be described as a design-expression
representing the negation of a guideline. A non-empty intersection
between the (app’s) design-expression and defect-expression indi-
cates the presence of a guideline violating pattern. It is worthwhile
to know such an analysis is possible because the design expression
and defect expression are constructed using the same alphabet.

Consider the example-app from section 2.1 where early-resource
binding (for location updates) takes place. Assume that the guide-
line ¢ represents the fact that resource binding should happen as
late as possible, then —¢ (defect expression) represents its negation
i.e. the scenario where early resource binding takes place. The in-
formation that there is potentially long delay (on node B) between
the acquire and usage of resource r, can be easily obtained through
our framework. In particular, for the example-app of section 2.1
design expression and defect expression (—¢) are shown in expres-
sions 1 and 2, respectively. Here @ implies all feasible symbols and
— implies negation (of an symbol). Operators * and + represents
0 or more times and 1 or more times, respectively. A non-empty
intersection between expression 1 and expression 2 (shown in ex-
pression 3), provides an evidence for guideline violation.

Design Expression az-b" cu,dy, (1)

oz [mu) [~ Tu [5y) Ty, 012)
az b" cu,dy, 3)
ab” cx,rurdy, 4

Defect Expression
Intersection

Re-factored Expression

In a scenario such as in this example, where guideline-violation
is detected, the app’s design expression is re-factored such that the
resultant design-expression has an empty intersection with the de-
fect expression. The re-factoring method depends on the specific
guideline that has been violated (further described in section 3.2),
however, following observations can be stated for all re-factored
design-expressions.

e Guideline Conforming: The intersection between the re-factored

design expression and the defect expression is empty. (For
example, re-factored design expression shown in expression
4 has an empty intersection with the defect expression shown
in expression 2)

o Functionality Preserving: The re-factoring is such that the
original functionality is preserved. In particular, re-factoring
affects the position of resource acquire and/or release (sym-
bols) in the design expression. However, the resource us-
age (symbols) are left untouched. Additionally, the rela-
tive ordering between resource acquire, usage and release
(acquire = usage = release) is always ensured.

2.4 Code Generation

Once the design expression has been re-factored and the changes
approved by the app-developer, we can map the changes back to the
source-code. This is done in two steps: identifying the re-factored

) « onCreate part of Acitivity lificyle

public void onCreate(Bundle savedins
Called when user starts apps

super.onCreate(savedins
setContentView(R.layout. am)
btn1 = (Button) findViewByld(R. \d btn1);
surfaceView = (SurfaceView) findViewByld(R.id.surfaceView);

surfaceHolder = surfaceView.getHolder();
surfaceHolder.addCallback(this);
surfaceHolder.setType(SurfaceHolder.
SURFACE_TYPE_PUSH_BUFFERS);
camera = Camera.open(); <—————————— Camera acquired
btn1.setOnClickListener(new OnClickListener() {
@Override Invoked when user
public void onClick(View v) { <—— licks Button 1 \
camera.startPreview();
}
b3 Camera usage started

} captured video is shown on screen
@Override

public void surfaceCreated(SurfaceHolder holder) {
try {
camera.setPreviewDisplay(surfaceHolder);
} catch (final Exception e) {
}
}
@Override
public void surfaceDestroyed(SurfaceHolder holder) {
camera.stopPreview(); «<————— Preview stopped

camera.release(); -~
Camera released

camera = null;

(a)

location (source-code line numbers within event-handlers) and im-
plementing the changes to new location. As described in the previ-
ous section, re-factoring initially happens at the level of design ex-
pression, where each symbol in the design-expression corresponds
to some event or acquire/usage/release of a resource in the app. It
is worthwhile to know that re-factoring only affects the position
of resource acquire/release (relative to events) in the design expres-
sion. Therefore, by comparing the original design-expression to the
re-factored one we can identify the event-handlers that need to be
modified. More specifically, two sets of event-handlers are mod-
ified: event-handlers where the resource acquire/release Android
API call used to be (in the original expression) and event-handlers
where the resource acquire/release Android API call need to be
(obtained from the re-factored expression). For instance, observe
that the resource acquire symbol, x,, in expression 4 is moved af-
ter event c suggesting that Android API call for resource acquire
should be moved to the event-handler for invocation of GUI state
C (original location of Android API call represented by x, was in
GUI state A). It is worthwhile to know that we record the event-
handler to source-code mapping information during the EFG gen-
eration step. Therefore, we can easily identify the event-handlers
that need to be modified to implement the re-factoring. Additional
(syntax-level) information that may be needed to conduct the re-
factoring (such as parameters to the Android API call) are obtained
through flow-analysis on the original source code.

3. GUIDELINE-BASED RE-FACTORING

The basic premise on which these guidelines for energy-efficiency
have been formulated is the fact that minimizing usage of energy-
intensive resources increases energy-efficiency of an app. The re-
sources in question being energy-intensive hardware components
such as GPS, Camera, Wifi, Bluetooth, Sensors, efc or power man-
agement utilities such as Android Wakelocks. We shall first discuss
the guidelines in section 3.1 and the algorithm for guideline-based
re-factoring in section 3.2.

3.1 Energy-efficiency Guidelines

The guidelines can be stated as follow:

1. Sub-optimal Bindings: Resources must be acquired as late
as possible (during the execution of an app) and released as
early as possible.

2. Nested Usages: Nesting of resources (acquire-releases) should
be avoided.

P t

Entry Node
(onCreate called)

ere the wakelock
is needed

Where the wakelock
is acquired

B(n Pause

Exit Node
(onPause called)

(b)

Figure 5: (a) A code fragment showing sub-optimal camera binding, (b) Sub-optimal Wakelock acquisition in app ChessClock

3. Trade-offs, QoS Vs Energy-efficiency: Certain information
(such as location updates), can be obtained through multiple
resources, each varying in quality-of-service (QoS) and en-
ergy consumption. If the application functionality permits,
QoS can be traded-off to improve energy-efficiency.

4. Resource Leaks: All resources acquired during the execution
of app must be released before the app exits.

Sub-optimal Bindings: Roughly translated, this guideline implies
that resource acquire, usage and release should be as close to each
other as possible. However, due to the event-driven nature of mobile-
apps, source-code proximity may not necessarily imply closeness.
Consider the code fragment shown in Figure 5(a). This app has
the basic functionality to capture images through camera and dis-
play them on the screen when user clicks an on-screen button. In
this example, the camera is acquired (line 10) when the user starts
the app (i.e. in function onCreate). However, there might be a
substantial delay between the resource being acquired and resource
being used (camera.start Preview() on line 14). This is because
the preview is only started when the user clicks the button, thereby
triggering the event handler defined on line 11. The period of time
in between the app start and user event is the time when the camera
is consuming energy needlessly and can be avoided. It is worth-
while to know that for certain resources, such as Wakelocks, re-
source usages cannot be explicitly associated with any Android API
calls (i.e. such resources only have acquire and release API calls).
For such cases, developer help may be needed to identify the func-
tionalities (event-handlers) that utilize the resource. For instance,
as shown in the Figure 5(b), the app ChessClock [13] requires the
Wakelock to be acquired when either of the two players are inter-
acting with the app. However, in the app, Wakelock is acquired for
entire duration of app activity.

Defect Expression oz, [u,] [ﬂur]JruT [ﬂyT]erro* 5)

To generate the defect expression we identify and use the sym-
bols associated with the resource acquire, usage and release in the
design expression. Expression 5 shows an example defect expres-
sion representing sub-optimal binding for the example-app of Sec-
tion 2.1, where acquire(r), usage(r) and release(r) for resource
r are denoted by symbols x,, u, and y,, respectively. In the sce-
nario, where the intersection between defect expression and design
expression is non-empty, the design expression is re-factored. The
re-factoring is such that the (symbols for) resource acquire/release

are re-arranged to be as close to resource usage in the design ex-
pression. However, during the re-factoring relative ordering, be-
tween the acquire, usage and release is always maintained.

Nested Usages: As stated by guideline Sub-optimal Binding, re-
sources must be in the acquired state for the smallest period of
time possible to achieve the app functionality. Complementary to
this guideline is Nested Usage guideline, which states that nest-
ing of resources should be avoided. In particular, this guideline
applies to those resources which generate same (type of) informa-
tion. The utility of this guideline is that, if at any stage during
re-factoring nesting of resource usages is observed in the design
expression, the expression can be simplified by removing the nest-
ing so as to reduce the duration of time for which the acquired re-
source is active. For example, in the code fragment shown in Figure
6, from app Sensorium [14] (commit hash:9d141b7), the API call
requestLocationUpdates is invoked twice. However, since both
the invocations of API call provide location updates, these two in-
vocations can be merged into one, without loss of functionality.

public void enable() {
locationListener = new LocationListener() {
Y/
%
locationManager = (LocationManager) context.getSystemService(Context.LOCATION_SERVICE);

locationManager.requestLocationUpdates(LocationManager.GPS_PROVIDER, 0, 0, locationListener);
enabled = true;

1
2
3
4
5
6
7
8
91}

Figure 6: A code-fragment from Sensorium showing nested resource usage

In expression 6 we show an example of defect expression gener-
ation for detecting the presence of nested usage scenarios. Expres-
sion 6 is constructed in context of example-app from Section 2.1,
where acquire(r) and release(r) for resource r are denoted by
symbols z, and v, respectively.

Defect Expression oz [y xre” (6)
Trade-offs, QoS Vs Energy-efficiency: Mobile app functionality
is often based on sensor information (such as acceleration, orienta-
tion, efc) collected from the physical environment. To obtain this
information an app must interact with the available I/O compo-
nents. Since mobile OSs, such as Android, were designed to run
on energy-constrained device, they provide a number of ways (API
configurations; cf Figure 7) to interact with these devices. For
instance, in Android most of the power-hungry hardware compo-
nents (GPS, sensor, screen, etc), can be operated at various levels of
power consumption and Quality-of-Service (QoS). In this context,
higher QoS implies more precise data, at higher update-frequency.
In general, higher QoS leads to higher power consumption.

Table 1: Configuring resources for different QoS, energy-efficiency

Power | Location Updates
Cons. (GPS/Network)

Sensor Updates Wakelocks
(accelerometer, (Screen,
orientation, etc) CPU, Keypad)
full_wake_lock,
screen_bright_wake_lock

High gps_provider sensor_delay_fastest

Moderate |network_provider | sensor_delay_game | screen_dim_wake_lock

sensor_delay_normal,

Low assive_provider .
P -P sensor_delay_ui

partial_wake_lock

Table 1 shows a list of a few such configurations that can be used
in combination with Android API calls to obtain desired QoS. For
instance, column 1 of Table 1 lists three different variations of lo-
cation updates that can be used along with API call request Locati

locationManager.requestLocationUpdates(LocationManager.NETWORK_PROVIDER, 0, 0, locationListener);

onUpdates. Both gps_provider and network_provider actively
initiates a location fix, when invoked. passive_provider on the
other hand does not initiate a location fix actively but provides a
location fix by passively listening to location updates from other
apps (on the device). As a result, it has a significantly less im-
pact on the energy-consumption. However, since the information
generated by passive _provider can be stale it is only suitable
for apps that require a rough estimation of user’s location (for e.g.
news apps). Similarly, when comparing between gps_provider
and network_provider, the former provides more precise loca-
tion update (suitable for travel apps), whereas later is less-precise
but relatively more energy-efficient (suitable for continuous loca-
tion based content generation). It would be impractical to use one
set of configuration for all apps, however, once the app-developer
provides the app-category (such as used in Play store [15]), appro-
priate energy-efficient re-factoring can be suggested. In our frame-
work, we look for such configuration in the app source code, with
the help of Apache Lucene [16] search libraries.
provides access to location listens to location
based reqources updates
locationManager.requestLocationUpdates(<provider>, <minTime>, <minDistance>, locationListener);

configure the provider
(gps/network/passive)

minimum distance between
location updates
minimum time between
location updates

Figure 7: Various parameter that affect QoS, energy-consumption
for location updates

Resource Leaks: This is one of most commonly occurring and (en-
ergy) expensive defects in mobile apps. Essentially, any resource
acquired during the execution of an app must be released before
that app ceases to execute. However, since real-life apps have many
potential exit locations, ensuring resource releases at all such exit
locations may be challenging (specially for apps with many GUI
screens). In the presence of such a defect, the device (more specif-
ically the unreleased resource) keeps consuming energy even af-
ter the defective app ceases to execute. It is possible to view the
scenario of resource leaks as a very extreme case of sub-optimal
resource binding, where the acquired resources are released after
infinite period of time. However, we categorize them in two dif-
ferent categories so as to keep the analysis straightforward. For an
app to have a resource leak there should be at least one path within
the app triggered by a sequence of user-events that ends with an
unreleased resource. For instance, defect expression representing
resource leaks for the example-app of Section 2.1 is shown in ex-
pression 7, where acquire(r) and release(r) for resource r are
denoted by symbols ;- and v, respectively.

.*m'r [_‘yr]* (7)

3.2 Guideline Implementation

An important question that may arise at this point is how to en-
force the energy-efficiency guidelines described in Section 3.1. The
two approaches that we can think of for implementing these guide-
lines would be to either embed them in the platform itself (by means
of OS manipulation, middlewares, etc) or to enforce them through
energy-aware re-factoring tools that assist the app-developer during
the development process. It is worthwhile to know that the mid-
dleware approach may be unsuitable for real-life apps as it may
make the platform inflexible. This is because the functionalities of
real-life apps may vary widely and are usually subjected to devel-
oper discretion. For instance, faster, energy-hungry sensor updates
are unsuitable for battery life (such as stated in QoS Vs energy-
efficiency trade-offs guideline), however, the app-developer may

Defect Expression

still want to use it. Similarly, all acquired resources should be re-
leased before the (resource acquiring) app leaves the foreground
(as stated in resource leak guideline), but the app-developer may
choose not to do so (say for instance the app wants to log the
user whereabouts throughout the day using location-updates). In
contrast, our re-factoring framework approach is much more flex-
ible as it allows the developer to choose which of the suggested
re-factoring are to be applied to the source code. Additionally,
since all the changes are made only to the app and not to the plat-
form, the finished app should behave similarly across all devices
(OS/middleware is usually customized by the device vendor).

Algorithm 1 Re-factoring design expression

1: Input:

2: App: App source files

3: AppCt: Category such as Games, Travel, Books, etc
4: Output:

5: Refapp: Re-factored design expression

6‘

7

8

9

: Desapp <+ GenerateDesign (App)
: (v,T) < CheckViolation (DeSapp, App, AppCt)
: whilev € V' do
10: (X, Ur,Y;) < GetResSymbols (Desapp,T)
11: if (v = SubOptimal Binding) then

12: Refapp < insertBefore (Desapp, Ur, Xr)
13: Refapp < insertAfter (Refapp, Ur, Yr)

14: end if

15: if (v = NestedUsage) then

16: Refapp +merge (Desapp, Xr)

17: Refapp <merge (Refapp, Yr)

18: end if

19: if (v = TradeOf f) then

20: Refapp < reconfigure (Desapp, AppCt, X)
21: end if

22: if (v = ResourceLeak) then

23: Refapp

24 insertAfter (DeSapp, Ur, {getRelSysCall (1) })
25: end if

26: (v,r) < getDefect (ReSapp, App, AppCt)
27: end while

We use Algorithm 1 to implement the energy-efficiency guide-
lines that are described in Section 3.1. Algorithm 1 takes in an app
and its category as inputs and generates the re-factored design ex-
pression, Ref.pp. It begins by generating the design-expression
(procedure GenerateDesign) as described in section 2.2. This
design-expression is then checked for guideline violations using

procedure CheckViolation. The procedure CheckViolation

returns a tuple (v,r), where v € V[J{NoDefect} and V = {

SubOptimal Binding, TradeO f f, NestedU sage, ResourceLeak

}, whereas, r is the resource that participates in guideline violation
v. If a guideline violation is detected (i.e. v € V'), we proceed to
re-factor the design-expression based on the type of guideline vio-
lation. To begin re-factoring, we first extract the symbols associated
with acquire (X,), usage(U,) and release(Y;) of resource r from
the design-expression using the procedure GetResSymbols. The
procedure for re-factoring depends on the type of guideline viola-
tion. In case of suboptimal resource binding guideline violation,
the symbols in X, are inserted (in the re-factored expression) be-
fore symbols in U,.. This operation is done using the procedure
insertBefore. Similarly, procedure insertAfter isused to
insert symbols in Y, after symbols in U,.. In case of nested us-
age guideline violation, the symbols in X, are merged into a sin-
gle symbol using the procedure merge. Similar merging is done
for symbols in Y;.. In case of QoS/efficiency trade-off guideline
violation, the design expression stays the same, however, the An-

droid API calls associated with symbols in X, are re-configured
based on provided app category (AppC't). Finally, in case of re-
source leak guideline violation, the symbol for releasing resource
r is added after symbols in U,.. The final re-factored expression
(Re fapp) can be used to map the changes back to the source-code.
It is worthwhile to know that Algorithm 1 can re-factor resource
acquires/releases across event-handler (class/method) boundaries.
This increase the re-factoring opportunities drastically, however,
this may also cause some syntax-level inconsistencies (such as due
to modifiers associated with variables). However, since our re-
factoring technique is made for design/development stages of app-
development such inconsistencies can be removed with developer
assistance.

@Override
public void onResume() {
/...
long minTime = 6000;
float minDistance = 10;
locationManager.requestLocationUpdates(
LocationManager.GPS_PROVIDER,
minTime, minDistance,
locationListener);

These lines are moved
together, if the
requestLocationUpdates
needs to be re-factored to
another location

/]

Figure 8: Re-factoring while maintaining flow-dependencies

It is worthwhile to know that within the source code there may
be resource API calls that are dependent on other source code lines
for arguments to API calls. To discover and preserve these depen-
dencies we perform flow analysis using the tool Soot [25]. For in-
stance, in the example shown in Figure 8, the invocation of API call
requestLocationUpdates (line 6) depends on the value of the
long variable minTime (line 4) and float variable minDistance
(line 5). In such a scenario, if the re-factoring requires moving
the invocation of request LocationUpd ates to another location,
all related lines (i.e. lines 4 — 9) are also moved. Currently our
framework does not provide support for mitigating challenges that
may arise due to aliasing or inter-procedural dependencies. How-
ever, our framework can be extended to handle such challenges us-
ing the works such as [26]. To identify the re-factoring location
(class/method where re-factored lines will be moved/added), we
check the position of the resource related symbols with respect to
user-event related symbols in the re-factored design expression.

4. EVALUATION

In this section we shall describe the experimental setup and the
subject apps (in Section 4.1) and key results of the evaluation (in
Section 4.2). Finally, we will present a case study of one of the
subject apps, Sensorium, in Section 4.3.

4.1 Subject Apps & Experimental Setup

Primarily, we wish to evaluate the efficacy of our technique in
detecting the presence of inefficient design-patterns (cf. Definition
2.1) and in generating usable energy-efficient re-factoring of the
aforementioned patterns in Android apps. To achieve this objec-
tive, we create a suite of subject-apps consisting of ten open-source
application obtained from the F-droid, open-source Android app
repository. These apps [13, 14, 17-24] are diverse in terms of func-
tionality and size (¢f. Table 2), thereby allowing us to evaluate the
different aspects of our framework.

To measure the energy consumption of the mobile device, we
created an experimental setup as shown in Figure 9(a). We used
the Monsoon Power Monitor [27] to supply the mobile device with
a steady voltage of 4.2 Volts and to measure its power consump-

Table 2: Key results. For each app, we provide app-description, size metrics, observed defects and energy-saving observed as result of
applying the re-factoring suggested by our framework

Name(Version) App Description Apk Size (KB) LoC Energ()‘;vs)avmg Re-factoring Description

Sensorium Collect sensor data 1248 4001 2 Restricting use of sensors/GPS t(‘> key fgnctlonahly. Adding resource
(1.1.12) [14] release at exit.

UserHash Location reporting 171 837 15 Adding GPS release at exit.

(L.1[17]) service

Aripuca . . .
(1.34) [18] Tracking app 660 8093 15 Adding GPS release at exit.

Sh(ir%N{}]ll))(E‘;gaon Share your location 25 474 3 Replacing Full Wakelock with less-expensive counterparts.

DroidSat Satellite Viewer 146 15007 4 Removing nesting of location resources. Replacing GPS uses with
(2.47) [20] less-expensive counterparts.

iTLogger Speed/heading 553 4014 9 Replacing Full Wakelocks with less-expensive counterpart. Adding
(1.0.0) [21] information GPS, Sensor release at exit.

Izlfag)t [l;z;t]e Heart rate monitor 849 557 5 Replacing Screen Bn%};:l X:i(;ﬁcsks with less-expensive
ChessClock Touchable chess 336 725 14 Restricting use of Wakelock to key functionality. Replacing Full
(1.2.0) [13] clock timer ‘Wakelocks with less-expensive counterpart.
xBenchmarl obile benchmar! estricting use of Wakelock to key functionality. ing resource

OxBenchmark Mobile benchmark Restricti f Wakelock to key functionality. Addi
. 1020 9739 29 .

(1.1.5) [23] suite release at exit.
a SH ;)HEZ 4] Amateur radio tools 43 2224 6 Replacing GPS uses with less-expensive counterparts.

tion. The mobile device used in our experiments was Samsung S4,
running an Android KitKat OS (version 4.4.2). To maintain consis-
tency in power measurements across our experiments, we followed
a few timing restriction (as shown in Figure 9(b)). For instance,
while measuring the energy consumption of an app, the interval
between two input-events (such as touches,taps,clicks) was 15 sec-
onds. Additionally, an idle time (of 45 seconds), was observed
just after the app had started or stopped execution. Finally, the
screen time-out duration of the mobile device was set to 15 seconds.
The inputs (to the app) were encoded as monkeyrunner scripts and
were invoked from the Desktop PC. Our re-factoring framework
and a power measurement utility, were run on a Desktop PC. The
Desktop-PC was equipped with an Intel i7 processor, 8 GB main
memory and Windows 7 OS.

Mobile Device

Supply Power

Measure Power
Consumption

| E—
Power Power
- Consumption < o0 Meter
(a) Data
Start End
Measurement Measurement
| I
1
Event 1; Event 2 Event (n-1) Eventn;
(b) App Starts App Starts

Figure 9: (a) Measurement setup (b) Timing parameters

4.2 Key Results

Of the ten apps studied in the evaluation, we found sub-optimal
resource bindings in three apps, nested resource usage in one app,
QoS trade-offs in six apps and resource leaks in five apps. Even
though these apps are of considerable size (for instance, app Senso-
rium has 4,001 LoC, apk size is 1,248 KB), our framework was
able to generate design expressions in less than a minute’s time.
This goes on to show that our technique can be scalably applied
to real-world apps. It is worthwhile to know that the design ex-
pression generation time excludes the time required for EFG gen-
eration. This is because EFG is generated using a third-party tool
Dynodroid and can be done off-line. It is also worthwhile to know

that there is no termination criteria for the exploration algorithm
in Dynodroid other than the number of events that it is allowed
explored. As a result the time for EFG generation is heavily influ-
enced by how many events the user wishes Dynodroid to explore.

Currently our framework can not only, produce the re-factored
expression but also generate file/class names and method names,
as well as lines numbers, where the re-factoring must be done.
When we applied the re-factoring suggested by our framework,
we observed a reduction in energy-consumption between 3 % to
29 %(cf. Table 2). One potential enhancement of our framework
could be to implement this framework as an IDE plugin (such as
an Eclipse Plugin), so that the framework continuously runs in the
background, while monitoring and suggesting energy-efficient re-
factorings while the app-developer is writing the code.

4.3 Case Study

Sensorium is a publicly available Android app which allows its
user to collect sensor data such as network signal strength, location
information, battery status, etc. We specifically choose this app out
of the ten subject apps used in our evaluation because of its long
and well maintained repository at GitHub [28]. This project was
active for a period of approximately two years, in which duration
it saw 214 commits. However, due to space restrictions, it would
be impractical to discuss the design (& its re-factorings) for all of
these 214 commits. Therefore, we choose only 6 important com-
mits (referred to as commits a to f), by observing a plot of changes
(both GUI, as well as, source code), as shown in Figure 10.

Original Expression G1G2SE)
Re-factored Expression (i) G1G2SGGY)
Re-factored Expression (ii) G15G} (10)

During the earlier stages of the project (cf. commits a — c), the
code and layout are changed heavily across consecutive commits
(cf. Table 3) Whereas in the later commits (i.e. commits d — f),
where the project is fairly mature and stable, the GUI layout and
the design does not change substantially. During the evolution of
the project, a number of commits had one or more re-factoring op-
portunities due to sub-optimal binding (due to sub-optimal sensor
acquisitions), nested usage (such as nested location updates in com-
mit b) and resource leaks (due to not releasing the sensor on app
exit). These defects were successfully detected and re-factorings

suggested by our framework. For instance, commit b (design ex-
pression shown in expression 8, constituent symbols described in
Table 3), could be re-factored for resource leaks, such as shown in
expressions 9 and nested usage, such as shown in expression 10.

5. RELATED WORK

Increasingly large amount of research effort is being dedicated
to understanding and resolving energy-inefficient behaviour in mo-
bile apps. Here we shall discuss some of these works, specifically
related to (i) Understanding energy-inefficient behaviour, (ii) De-
tecting energy-inefficient behaviour and (iii) Optimizing energy-
consumption behaviour.

Understanding energy-inefficient behaviour: The first step in re-
solving energy-inefficient behaviour is to understand its character-
istics. Recent works such as [4,29-42] have presented some inter-
esting insights towards understanding energy-inefficient behaviour
in mobile apps. Profiling work such as [4] present insights such
as the fact that I/O components (such as GPS, Wifi) and power
management utilities (such as Android Wakelocks) are usually re-
sponsible for high energy consumption on mobile apps. Works
such [29,32,33] have presented frameworks that use energy-models
to estimate the energy consumption of an app, for a given work-
load. In particular, the works of [33] and [32] present techniques
to map the energy-profile of an app (for a given input), to the app
source-code. However, a key limitation of profiling-based tech-
niques is that they heavily depend on test-inputs to generate the
energy-profile. Manually, obtaining suitable test-inputs that can
expose energy-inefficient behaviour is often non-trivial. In com-
parison, in our framework we use design expressions (more specif-
ically, intersection between design expressions and defect expres-
sions) to detect energy-inefficiencies in an app.

Detecting energy-inefficient behaviour: In the recent years, a
number of works [5, 34,43-48] have proposed dynamic, as well as
static program analysis techniques for detecting energy-inefficient
behaviour in mobile apps. Dynamic program analysis techniques
such as [30], use symbolic execution to estimate the energy con-
sumption for a given path in a program. Other works [43, 44],
have used static program analysis techniques to detect the pres-
ence of resource leaks in apps. Test-generation techniques for mo-
bile apps have been mostly applied to functional properties. How-
ever, a few works, such as [5,45], exist that assist in energy-aware
test-generation. Our recent work [49] presents a framework that
uses energy-inefficient design patterns to debug and localize field
failures in mobile-apps. In general, techniques described in this
paragraph can assist in detecting energy-inefficiencies in an app
post-development, however, such techniques do not provide sup-
port for energy-aware app re-factoring. In contrast, our technique
is specifically designed to assist the app-developer by suggesting
energy-efficient re-factorings, during the app-development stage.

Optimizing energy-consumption behaviour: A number of or-
thogonal approaches [50-53]have been presented over the recent
year to optimize energy-efficiency of programs. For instance, [50]
proposes the use of a new energy-aware programming language.
Such languages, if used, can be instrumental in developing energy-
efficient application, however, so far, such languages have not wit-
nessed widespread use. Another group of work [51,52] focuses on
using energy-aware optimization. [S1] in particular proposes the
use of approximate implementations [51]. The key idea behind
this work is to encode multiple, approximate implementations of
a given (time-consuming) computation, such as loops. Since in

mobile apps time-consuming computation may not necessarily im-
ply energy intensive computation (because CPU may have a lesser
power consumption than I/O components [5]), therefore, direct use
of approximate implementation may not very beneficial for mobile-
apps. However, the underlying philosophy of trade-offs between
QoS and energy-efficiency is useful and therefore adapted to our
technique as well. One of our previous articles [53], discusses the
potential for energy-aware programming, however, it does not pro-
vide a framework necessary to conduct energy-aware re-factoring.
Another preliminary work [54] proposes a re-factoring technique
that uses compiler optimization to improve energy-efficiency of
Observer and Decorator design patterns in object-oriented pro-
grams.

6. THREATS TO VALIDITY

A threat to the validity of our framework may arise due to the
incompleteness of the EFG model. In our framework, a dynamic
exploration technique that is used to create the EFG may not able
to generate a complete UI model (EFG) for a given app. This may
cause certain part of the app code to be unmodeled and hence un-
analysed by our framework. It is worthwhile to mention alterna-
tive static analysis based techniques (such as the one used in [44])
that are based on parsing of XML-based Ul files, may also be un-
able to generate a complete UI model for a given app because An-
droid framework allows creation of dynamic UI screen program-
matically. To the best our knowledge no existing work provides a
technique for complete EFG generation. However, since the de-
sign expression generation part and the re-factoring part of our
framework are loosely coupled with the EFG generation part, if
any complete EFG generation technique is developed in future we
can easily integrate it with our framework. Another threat to valid-
ity to this work may arise due to the choice of subject programs.
Since we needed open source apps of our experiments we were re-
stricted to Fdroid open-source app repository. Even though Fdroid
is the biggest app repository of its kind, it is still small as compared
to Google Play Store. This may have introduced some sampling
bias [55] in our results.

7. DISCUSSION & CONCLUSION

In this paper, we present a technique to address the need for tools
that can assist in energy-aware app development. Our technique
uses a set of energy-efficiency guidelines to re-factor the design ex-
pression of an app. A design-expression is a regular-expression that
represents the ordering of energy-intensive, resource usages and in-
vocation of key functionalities (event-handlers) within the app. As
result of using design-expressions, our re-factored technique is not
limited by event-handler (class/method) boundaries. This not only
increases the re-factoring opportunities but also makes our tech-
nique scalable. To demonstrate the efficacy of our technique we
analysed a suite of open-source, apps with our technique. The re-
sultant re-factoring when applied, reduced the energy-consumption
of these apps between 3 % to 29 %. We also present a case study
for one of our subject apps that captures its design evolution over
a period of two-years and more than 200 commits. Our framework
found re-factoring opportunities in a number of commits, that could
have been implemented earlier on in the development stages, had
the developer used an energy-aware re-factoring technique such as
the one presented in this work.

Acknowledgement

The work was partially supported by a Singapore MoE Tier 2 grant
MOE2013-T2-1-115 “Energy aware programming".

(1 U249 qns) ‘K3Anoe uonensyuo) - IH
1G @omosar jo ased[oy - , 19
) 90IN0SaI JO 3sed[oY - ;%5
15 901n0sa1 JO 9seI[AY - , 1D
90UALIND00 Js1y ‘axnboe 10suas aInssald - TG
9OUALINDJ0 PU0I3S ‘DImboe UONBIOT - T£)
90ULLIND00 181y ‘annboe uoneso - tH

Aanoe uonensyuo) - H

(1 1u0A qns) ‘Kyanoe Snqaq - (7
Aanoe Snqaq - (7
U218 UO KJIATIOR UTRA] - &'

Arewwung - 7,
ddexg - 7

passaid uoynq nUAA - 7

a3es() pAIsON

A(100) WS 'OS 1S
O(1S''qqs®
LSTOSISIOI(t0D

IO
JUD3I ISOIA

@ vieeces

(o1ns
-saxd) 1osuas
JIow _ pIppy

(3) LPEYIP)

4100, 18O

‘SB[90INOSIY +INISTOSIS D | WO ws|I(taans
‘Surpuiq 90Inos (L }SDSIS ™D I('SEOTOID0 NS | woaros urew jo (p) 23q0E70
-1 eundo-qng 15195 1519)))) |(LNSI18))))T§ED 1 | moke a3ueyy
.L'00'D8
oSesn) paIsaN WAOaa™ | a,.0EwEnn)no
‘SB[90INOSAY elgvliciCeloloX STOWO|HAASTOO o[y

‘3urpurq 9oIn0S
-1 Tewndo-qng

DHI(Ioaarnins
DIN'Hs™o)))

l7Z((5ooEn1D) 1008

"aas|(ns)))ntH

paAowdI ‘Ino
-Ke] pauey)

(0) €9869%6

a8es) PASON

(uoneodoy) sios

‘SYBO] 20IN0SAY H,'98'D ASTOD | _yos arow ppy | P LAFIPG
“SJUDAD
0} paygdele jou
Io[puey JuaAg
i 45 A5 | yuwod penmy | (2) prp0qss
. soguey) | (#) yseH
s @EE%%_mwmaxm u3Isa(] Pa103Ie-NY uorssaxdxyy udisaq Jnoke] apod) Jamio))

01 231 ur paySIyYSIY SIwod J0J S3ULI0}oB)-a1 pue uoIssaIdxa uIsa(q ¢ 9[qeL,

ydein moj4 1uang

P MwWo> U 1udsaId 10N

/i
e

*

WO [eUL 3 YWWOD ﬂ_UU

Nwwod Isily e ywwo) 8

K103S1H HwWwod

2 wwo/

Ll
WY

pawoy <}

-
Y

awii yim sabueyd 3pod
awi] yum sabuey)d noke

> w0y J\V

L

quuwoy

lal bl

>
>

winiiosuag 19loxd

34} JO SO] Z AY) WOIJ JIWWOI dWOS ()] INS1]

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]
[16]

(17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

Get started with publishing.
http://developer.android.com/distribute/
googleplay/start.html.

Statista. http:
//www.statista.com/statistics/266210/

(23]

[24]

heart_rate_monitor.

Oxbenchmark.
https://f-droid.org/repository/browse/
?fdid=org.zeroxlab.zeroxbenchmark.

Ham. https://f-droid.org/repository/
browse/?fdfilter=Ham&fdid=com.smerty.ham.

number-of-available-applications—-in-the-googll@ShbBegt-bttpe//sable.github.io/soot/.

Monkeyrunner tool. http://developer.android.
com/tools/help/MonkeyRunner.html.

A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy
spent inside my app?: fine grained energy accounting on
smartphones with eprof. In EuroSys, 2012.

A. Banerjee, L.K. Chong, S. Chattopadhyay, and

A. Roychoudhury. Detecting energy bugs and hotspots in
mobile apps. In FSE, 2014.

F-droid. https://f-droid.org/.

Abhijeet Banerjee, Lee Kee Chong, Sudipta Chattopadhyay,
and Abhik Roychoudhury. Detecting energy bugs and
hotspots in mobile apps. In Proceedings of the 22Nd ACM
SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2014, 2014.

J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction
to Automata Theory, Languages, and Computation (3rd
Edition). Addison-Wesley Longman Publishing Co., Inc.,
2006.

A. M. Memon, I. Banerjee, and A. Nagarajan. GUI ripping:
Reverse engineering of graphical user interfaces for testing.
In WCRE, 2003.

A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: an input
generation system for android apps. In ESEC/SIGSOFT FSE,
2013.

Hierarchy viewer. http://developer.android.
com/tools/help/hierarchy-viewer.html.
Greenery. https://github.com/ferno/greenery.
Chessclock. https://f-droid.org/repository/
browse/?fdfilter=chessclock.

Sensorium. https://f-droid.org/repository/
browse/?fdfilter=Sensorium&fdid=at.
univie.sensorium.

App category. https://play.google.com/store/
apps/category/APPLICATION?hl=en.

Apache lucene core.
https://lucene.apache.org/core/.

Userhash. https://f-droid.org/repository/
browse/?fdfilter=Userhash&fdid=com.
threedlite.userhash.location.

Aripuca. https://f-droid.org/repository/
browse/?fdid=com.aripuca.tracker.
Sharemylocation.
https://f-droid.org/repository/browse/
?fdfilter=sharemyposition&fdid=net.
sylvek.sharemyposition.

Droidsat.
https://f-droid.org/repository/browse/
?fdfilter=droidsat&fdid=com.mkf.droidsat.
Itlogger.
https://f-droid.org/repository/browse/
?fdfilter=itlogger&fdid=de.tui.itlogger.
Heart rate monitor.
https://f-droid.org/repository/browse/
?fdfilter=heartrate&fdid=com.vanderbie.

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

(35]

[36]

(37]

(38]

[39]

[40]

Rohan Padhye and Uday P. Khedker. Interprocedural data
flow analysis in soot using value contexts. In Proceedings of
the 2Nd ACM SIGPLAN International Workshop on State Of
the Art in Java Program Analysis, SOAP *13, 2013.
Monsoon power monitor. https://www.msoon.com/
LabEquipment /PowerMonitor/.

Sensorium repository - github. https:
//github.com/fmetzger/android-sensorium.
Lide Zhang, B. Tiwana, R.P. Dick, Zhiyun Qian, Z.M. Mao,
Zhaoguang Wang, and Lei Yang. Accurate online power
estimation and automatic battery behavior based power
model generation for smartphones. In Hardware/Software
Codesign and System Synthesis (CODES+1SSS), 2010
IEEE/ACM/IFIP International Conference on, 2010.

T. Honig, C. Eibel, R. Kapitza, and W. Schroder-Preikschat.
SEEP: exploiting symbolic execution for energy-aware
programming. HotPower, 2011.

F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and

O. Spatscheck. Profiling resource usage for mobile
applications: a cross-layer approach. In MobiSys, 2011.

S. Hao, D. Li, W. G. J. Halfond, and R. Govindan.
Estimating mobile application energy consumption using
program analysis. In /CSE, 2013.

D. Li, S. Hao, W. G. J. Halfond, and R. Govindan.
Calculating source line level energy information for android
applications. In ISSTA, 2013.

Yepang Liu, Chang Xu, and Shing-Chi Cheung.
Characterizing and detecting performance bugs for
smartphone applications. In Proceedings of the 36th
International Conference on Software Engineering, ICSE
2014, 2014.

Aaron Carroll and Gernot Heiser. An analysis of power
consumption in a smartphone. In Proceedings of the 2010
USENIX Conference on USENIX Annual Technical
Conference, USENIXATC’ 10, 2010.

Marius Marcu and Dacian Tudor. Energy consumption
model for mobile wireless communication. In Proceedings of
the 9th ACM International Symposium on Mobility
Management and Wireless Access, MobiWac *11, 2011.
Mian Dong and Lin Zhong. Self-constructive high-rate
system energy modeling for battery-powered mobile
systems. In Proceedings of the 9th International Conference
on Mobile Systems, Applications, and Services, MobiSys
’11, pages 335-348, 2011.

Radhika Mittal, Aman Kansal, and Ranveer Chandra.
Empowering developers to estimate app energy
consumption. In Proceedings of the 18th Annual
International Conference on Mobile Computing and
Networking, Mobicom ’12, pages 317-328, 2012.

Alex Shye, Benjamin Scholbrock, and Gokhan Memik. Into
the wild: Studying real user activity patterns to guide power
optimizations for mobile architectures. In Proceedings of the
42Nd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 42, 2009.

Denzil Ferreira, AnindK. Dey, and Vassilis Kostakos.

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Understanding human-smartphone concerns: A study of
battery life. In Pervasive Computing, volume 6696, pages
19-33. Springer Berlin Heidelberg, 2011.

Abhinav Pathak, Y. Charlie Hu, Ming Zhang, Paramvir Bahl,
and Yi-Min Wang. Fine-grained power modeling for
smartphones using system call tracing. In Proceedings of the
Sixth Conference on Computer Systems, EuroSys "11, 2011.
Jason Flinn and M. Satyanarayanan. Powerscope: A tool for
profiling the energy usage of mobile applications. In
Proceedings of the Second IEEE Workshop on Mobile
Computer Systems and Applications, WMCSA ’99, pages
2—, 1999.

A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff. What is
keeping my phone awake?: characterizing and detecting
no-sleep energy bugs in smartphone apps. In MobiSys, 2012.
Chaorong Guo, Jian Zhang, Jun Yan, Zhigiang Zhang, and
Yanli Zhang. Characterizing and detecting resource leaks in
android applications. In ASE, 2013.

Y. Liu, C. Xu, S.C. Cheung, and J. Lu. Greendroid:
Automated diagnosis of energy inefficiency for smartphone
applications. Software Engineering, IEEE Transactions on,
2014.

Yepang Liu, Chang Xu, and S.C. Cheung. Where has my
battery gone? finding sensor related energy black holes in
smartphone applications. In Pervasive Computing and
Communications (PerCom), 2013 IEEE International
Conference on, 2013.

Adam J. Oliner, Anand P. Iyer, lon Stoica, Eemil Lagerspetz,
and Sasu Tarkoma. Carat: Collaborative energy diagnosis for
mobile devices. In Proceedings of the 11th ACM Conference
on Embedded Networked Sensor Systems, SenSys *13, pages
10:1-10:14.

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

Lide Zhang, Mark S. Gordon, Robert P. Dick, Z. Morley
Mao, Peter Dinda, and Lei Yang. Adel: An automatic
detector of energy leaks for smartphone applications. In
Proceedings of the Eighth IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System
Synthesis, CODES+ISSS *12, 2012.

Abhijeet Banerjee, Hai-Feng Guo, and Abhik Roychoudhury.
Debugging energy-efficiency related field failures in mobile
apps. In IEEE/ACM International Conference on Mobile
Software Engineering and Systems, MOBILESoft, 16, 2016.
M. Cohen, H. S. Zhu, E. E. Senem, and Y. D. Liu. Energy
types. In OOPSLA, 2012.

W. Baek and T. M. Chilimbi. Green: a framework for
supporting energy-conscious programming using controlled
approximation. In PLDI, 2010.

Irene Manotas, Lori Pollock, and James Clause. Seeds: A
software engineer’s energy-optimization decision support
framework. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, 2014.

A. Banerjee and A. Roychoudhury. Energy-aware design
patterns for mobile application development (invited talk). In
Proceedings of the 2Nd International Workshop on Software
Development Lifecycle for Mobile, DeMobile 2014, 2014.
Adel Noureddine and Ajitha Rajan. Optimising energy
consumption of design patterns. In Proceedings of the 37th
International Conference on Software Engineering - Volume
2,ICSE ’15, 2015.

William Martin, Mark Harman, Yue Jia, Federica Sarro, and
Yuanyuan Zhang. The app sampling problem for app store

mining. In Proceedings of the 12th Working Conference on
Mining Software Repositories, MSR ’15, 2015.

