
Footprinter: Round-trip Engineering via Scenario and State based Models

Ankit Goel
National Univ. of Singapore

ankit@comp.nus.edu.sg

Bikram Sengupta
IBM Research, India

bsengupt@in.ibm.com

Abhik Roychoudhury
National Univ. of Singapore

abhik@comp.nus.edu.sg

Abstract

In model-driven software development, while scenario-
based models are closer to distributed system requirements,
state-based models are suitable for code generation. Our
tool ‘Footprinter’ exploits relative strengths of these two
modeling styles in a round-trip engineering approach– from
requirements, to test-case generation and execution, to trac-
ing implementation defects back to requirements.

1 Introduction

The construction of formal behavioral models lies at the
core of model-driven software development. Convention-
ally, two classes of behavioral models have been studied —
(a) state-based models such as Statecharts [8] which show
a system as a composition of processes and highlights the
behavior of each process via finite state machines (FSMs),
and (b) scenario-based models such as High-level Mes-
sage Sequence Charts (HMSC) which capture the global
inter-process communication via interaction snippets called
Message Sequence Charts (MSCs) [4]. In some sense, the
intra- and inter-process views form two dual views of sys-
tem behavior — each having its distinct advantages. The
intra-process modeling via FSMs highlights the computa-
tion steps inside each process while suppressing the inter-
process communication. It leads more directly to code gen-
eration for the individual processes of the system — bring-
ing the model closer to implementation. However, when
the designer is trying to get a handle of the system behavior
at the very early stages starting from the informal require-
ments written in English — it is easier for the designer to
start by drawing sample scenarios as MSCs. The MSCs
highlight inter-process communication while suppressing
the computation steps inside each process. These MSCs
can then be combined to obtain a MSC-based system model
such as HMSC. In other words, the inter-process view of
modeling is useful for synthesizing system models from in-
formal requirements, while the intra-process view is useful
for generating code from system models.

Figure 1. Overall Architecture

In this paper, we exploit the distinct strengths of the two
modeling styles within a round-trip engineering and vali-
dation methodology for distributed systems (see Figure 1).
Starting from the initial system requirements, which are
generally written in natural language, our first step is to ob-
tain possible scenarios (MSCs) depicting the global interac-
tion patterns among various processes, and then structure
the scenarios into a HMSC to capture the intended flow.
The traceability information linking requirement snippets
with the corresponding MSCs (and events within) is also
captured. However, MSCs and HMSCs do not naturally
lead to state-based descriptions of individual components.
There are technical difficulties (e.g. non-local choice, im-
plied scenarios [13]) associated with the task of automati-
cally moving from global to local views of behavior. Hence,
obtaining the state-based per-process model and identifying
traceability links with the requirements, still requires con-
siderable manual effort on the part of the designer. For our
purpose, we consider the notation of Statecharts for specify-
ing a state-based model using the Rhapsody [2] tool, which
also supports automatic code generation. The generated
code is, of course, only as sound as the Statechart model,
and given the manual effort involved in designing the latter,



testing the final implementation with respect to the origi-
nal requirements forms a crucial part of our methodology.
To enable this, user-defined test purposes are used to de-
rive MSC-based test cases from the HMSC specification,
and the test cases are then executed on code generated from
statecharts. Execution sequences from unsuccessful test
cases are traced back to the HMSC specification and then
to the original requirements to aid debugging. This is the
essence of our round-trip engineering approach. Based on
the above methodology, in this paper we discuss our tool
Footprinter. The dashed boundary in Figure 1 represents
the part of round-trip engineering methodology supported
by Footprinter, while we assume existing tool-support for
the components lying outside (Rhapsody[2] in our case).

2 Tool Architecture and Usage

In this section we describe the architecture of our tool
Footprinter. The main components of Footprinter are:

1. A graphical editor for entering the scenario based
model of requirements. It allows user to input– (i) the re-
quirements model as a High-level Message Sequence Chart
(HMSC), and (ii) a test-purpose MSC used for guiding the
test generation.

2. A test generation engine which automatically gener-
ates test cases from HMSC model using test purpose MSC,
to produce test cases satisfying the test-purpose. Each of
these test cases is visualized as an MSC.

3. A component for generating the tester stubs (as C++
code) from a given test case MSC. In this step, user first
identifies lifelines representing the system under test (SUT)
in the test case MSC. Tester stubs are then generated corre-
sponding to the non-SUT lifelines in the test case MSC.

4. A visualization component for showing a test execu-
tion trace along with the traceability information relating
the trace events back to the HMSC model.
We now elaborate on each of the above components.

2.1 Graphical Editor

The graphical editor enables a user to visually input the
HMSC requirements model. The description of a HMSC
takes two separate inputs. The first input is a directed graph
G having nodes N and edges E ⊆ N ×N . It consists of a
unique start node s ∈ N , such that every other node in N
is reachable from s. Further, each node in N corresponds
to a MSC. Consequently, the second input required for de-
scribing the HMSC is a set of MSC descriptions which cor-
respond to various nodes in the HMSC graph described
above. Various paths in the HMSC graph G correspond
to different system behaviors. For illustration, the Foot-
printer screenshot in Figure 4(a) shows a HMSC graph in-
put, while the MSC input corresponding to the graph node

labeled RcvWthr in Figure 4(a) (encircled in thick bound-
ary) is shown in the Footprinter screenshot in Figure 4(b).

In addition to the HMSC requirements model, the graph-
ical editor is also used to specify the test-purpose MSC. Be-
sides usual MSC events1, user can also mark some mes-
sages as forbidden in a test purpose MSC. Visually, a mes-
sage is classified as forbidden by putting a cross over the
message arrow. A forbidden message specifies a message
that a user does not want to appear in the generated test
case(s). For illustration, consider the test-purpose TP1
shown in a Footrprinter screenshot in Figure 5.

2.2 Test case Generator

Once user has specified a HMSC requirements model
and a test purpose MSC, the test generator component of
Footprinter can automatically generate test case(s) from the
HMSC model, guided by the test purpose. The test gener-
ation process also takes as input a depth bound D, which
specifies the maximum length of a path in the HMSC graph
to be explored for test generation. Our test generator pro-
duces all test cases satisfying the test purpose, that can be
found within the given depth bound D.

At the core of our test generation process is the com-
parison of test purpose events with the events appearing in
the HMSC requirements model. Test case MSC(s) obtained
from the HMSC model contain all the test purpose events
(except for the forbidden events, corresponding to a forbid-
den message) according to the partial order specified by test
purpose MSC, possibly interspersed with other events ap-
pearing in the HMSC model.

Further, during the test generation, Footprinter embeds
traceability information in the generated test cases. This in-
formation is embedded at the event level, mapping an event
occurrence in a test case to the HMSC node and the corre-
sponding event within the MSC it represents.

2.3 Test stub Generator

This component of Footprinter generates tester stubs
from a MSC test case in the form of C++ code, which are
actually used for exercising the system under test or SUT.
This step requires user to identify which lifelines in a test
case MSC represent SUT. The remaining (non-SUT) life-
lines then represent the environment of SUT and a tester
stub is generated corresponding to each such lifeline. The
traceability information contained in a test case MSC event
is also captured for the corresponding code snippet gener-
ated in the tester stubs — enabling backward traceability of
test execution results to the original requirements for debug-
ging failed tests.

1A message send, receive or a local action.



We use the Rhapsody tool to (a) construct a Statechart
model of the requirements, and (b) automatically generate a
C++ implementation of the SUT from the Statechart model.
The tester stubs derived by Footprinter (corresponding to a
test case) are compiled and executed with SUT code gener-
ated from Rhapsody.

2.4 Visualization Component

During test execution, the tester stubs log information
regarding the events executed by them. Based on this in-
formation, Footprinter reconstructs the (part of) test case
MSC covered during test execution, which can then be vi-
sualized by the user. Further, using Footprinter user can
easily visualize the relationship between events in the test
execution trace, and the HMSC requirements model. This
is made possible by the traceability information embedded
in the test case.

Thus, in case of a test execution failure2, using traceabil-
ity information user can trace back the test execution results
back to the original requirements (via the HMSC model).
This can help provide a more precise location of failure in
the requirements, and aid the system designer to debug the
system.

3 System Validation using Footprinter
In this section, we illustrate successful use of Footprinter

in testing and debugging a real-life case-study.

CTAS Case Study The CTAS or Center TRACON Au-
tomation System [1] is a set of tools developed at NASA
to aid the air traffic controllers in managing high volume
of air traffic flows at large airports. Various processes such
as TS (Trajectory Synthesizer), RA (Route Analyzer) etc.
that CTAS system comprises of, require latest weather up-
dates for their functioning. The weather updates are pro-
vided to these processes by WCP (Weather Control Panel)
via the CM (Communications Manager) which is the cen-
tral controller responsible for communications among these
processes. Both WCP and CM are also part of the CTAS
system. We refer to various processes requiring the weather
updates simply as Clients. For the purpose of illustration,
we consider a CTAS system consisting of 2 Clients.

Constructing HMSC model The complete scenario-
based description of the CTAS requirements is obtained
by first deriving MSCs corresponding to various require-
ments and then composing together these MSCs to form
a High-level MSC (HMSC). For illustration, Footprinter

2A failure occurs when some tester stub either times out while waiting
for a message, or receives a message different from what it is expecting.

screenshots capturing the complete CTAS HMSC descrip-
tion and MSC RcvWthr corresponding to the CTAS require-
ment 2.8.12 (shown in Fig. 2) appear in Figure 4.

Test purpose specification After describing the HMSC
model of the CTAS system, user can specify different test
purposes using Footprinter. For illustration, consider the
test purpose appearing in the Footprinter screenshot Fig-
ure 5. The first two sets of Connect followed by Done mes-
sages represent the successful connection of two client ob-
jects to controller CM, while the subsequent Update mes-
sage corresponds to a weather update request initiated by
WCP. Various forbidden No messages from the two clients
match with, and hence avoid generating test cases with any
No message sent by either of the two clients to CM during
initial connection setup and subsequent weather update.

Test case generation Footprinter screenshots showing a
test case MSC generated by it corresponding to the test
purpose described above, appear in Figure 6. The mes-
sage names appearing in bold italics represent the matching
events in the test purpose (Fig. 5). This test case represents
the scenario where two clients Client1 and Client2 initially
get connected to CM by sending the Connect message, and
subsequently get updated with the latest weather informa-
tion via CM.

Test execution For the purpose of our experiments, we
considered C++ code as the given system implementation
for the CTAS example. The code was generated automati-
cally from the Statechart model of the CTAS requirements
using the Rhapsody tool [2]. Note that the Statechart model
was derived separately, by a person other than the authors.
In particular, we focused on testing the central controller
(CM) component of CTAS C++ implementation. Thus, for
the test case MSC shown in Figure 6, tester stubs corre-
sponding to lifelines Client1, Client2 and WCP were gen-
erated by Footprinter. These tester stubs were then used
for testing the CM’s implementation derived via Rhapsody.
However, the execution of this test case was unsuccessful
and resulted in a fail verdict.

Traceability The (partial) execution trace of the above
test case visualized using Footprinter (also as an MSC) is
shown in Figures 7 and 8. Note that various events in the ex-
ecution have been grouped together by Footprinter accord-
ing to the HMSC nodes they correspond to. The group-
ing is represented using a rounded box and is labeled with
the MSC name in the top right corner. This is achieved
by Footprinter using the traceability information embedded
in the test case events. The examination of this trace in-
dicated that the tester stubs corresponding to– a) Client1
and Client2 timed-out while waiting for ClientPostUpd and



Figure 2. CTAS requirement 2.8.12 Figure 3. Bug found via traceability.

CTAS GET NEW WTHR messages from CM, and b) WCP
timed-out waiting for WCPEnable message from CM. Since
MSC nodes in the HMSC model of CTAS closely corre-
spond to the original CTAS requirements, using informa-
tion provided by Footprinter we could trace the test execu-
tion results back to the original CTAS requirements. From
there, the source of error was discovered in the Statechart
description of CM.

Bug found The part of the Statechart where fault was
located corresponds to the CTAS requirement 2.8.12 (see
Figs. 2 and 4(b)) and is shown in Figure 3(a). In state s1 the
CM waits to receive the message Yes, and updates a counter
count to check if all the clients have replied. However, we
found that Rhapsody interprets this as another (supposedly
equivalent) structure (shown in Figure 3(b)). Now, in this
case the counter is incremented after checking the guard
count < nClients, instead of doing so before this check.
To ensure that the guards of outgoing transitions from the
condition node (marked with c) are evaluated after count is
incremented, a new state s3 was introduced between state
s1 and the condition node, which corrected this fault. The
updated structure is shown in Figure 3(c).

4 Related Work

There exists a large body of work in the domain of model
based testing (e.g. see [5] and the chapters therein). Some
approaches ([7] ) use MSC based scenario notations for
specifying the system models as well as test-purposes from
which test cases are generated. However, it is difficult to
specify complex system requirements using an unstructured
collection of MSCs. In [10], the play-engine tool for Live
Sequence Charts (LSCs), which are an extension of MSCs,
has been extended to support testing of scenario-based re-
quirements. This work, however, deals with testing the re-
quirements themselves and no test-execution of actual sys-
tem implementations is conducted. The UBET tool [3] also
supports test generation from a HMSC model, but the test
generation in UBET is driven only by the edge-coverage
criteria in a HMSC, and not by a user provided test-purpose
to elicit specific behaviors.

Many model-based techniques consider state-based
models for describing system specifications from which test
cases are derived (e.g., see [11, 6, 12, 9]). However, dis-
tributed system requirements are in general inter-process in
nature, and more naturally expressed as scenarios. In fact, it
is often the manual construction of intra-process state-based
models from such requirements that serves to introduce im-
plementation errors. Hence, in our approach, we have lever-
aged the dual strengths: (a) strength of MSC-based models
for capturing requirements and (b) strength of state-based
models for generating code.

Finally, we feel that the issue of tracing the results of test
cases back to requirements have not been adequately stud-
ied, and from a tool perspective, it is a novel contribution of
our work that can greatly aid debugging.

References

[1] Center-tracon automation system (CTAS) for air traffic con-
trol. http://ctas.arc.nasa.gov/.

[2] Telelogic rhapsody. http://modeling.telelogic.
com/modeling/products/rhapsody/.

[3] Ubet tool. http://cm.bell-labs.com/cm/cs/
what/ubet/.

[4] Message sequence charts (MSC). ITU-TS Recommendation
Z.120, 1996.

[5] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and
A. Prestchner. Model-Based Testing of Reactive Systems.
Springer, 2005.

[6] D. Clarke et al. STG: A Symbolic Test Generation Tool.
TACAS, LNCS, volume 2280, 2002.

[7] F. Fraikin and T. Leonhardt. SeDiTeC – Testing Based on
Sequence Diagrams. In ASE, 2002.

[8] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming,8, 1987.

[9] C. Jard and T. Jeron. TGV: theory, principles and algorithms.
Intl. Jnl. on Software Tools for Technology Transfer, 7, 2005.

[10] H. Kugler, M. Stern, and E. Hubbard. Testing Scenario-
Based Models. In FASE, 2007.

[11] S. Pickin et al. Test Synthesis from UML Models of Dis-
tributed Software. IEEE Trans. Softw. Eng., 33(4), 2007.

[12] A. Pretschner et al. One evaluation of model-based testing
and its automation. In ICSE, 2005.

[13] S. Uchitel, J. Kramer, and J. Magee. Detecting Implied Sce-
narios in Message Sequence Chart Specifications. In ESEC-
FSE, 2001.



Figure 4. Screenshots capturing CTAS HMSC and an MSC input.



Figure 5. Screenshot– test purpose TP1 for CTAS example.

(a) First half of test case TC1 (b) Second half of test case TC1

Figure 6. Screenshots capturing test case TC1 generated for test purpose TP1.



Figure 7. Screenshot– first half of execution trace for test case TC1.



Figure 8. Screenshot– second half of execution trace for test case TC1.


