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AL EX IS  A  software developer, a recent hire at the 
company of her dreams. She is finally ready to push 
a highly anticipated new feature to the shared code 
repository, an important milestone in her career as a 
developer. As is increasingly common in development 
practice, this kind of push triggers myriads of tests the 
code must pass before becoming visible to everyone in 
the company. Alex has heavily tested the new feature 
and is confident it will pass all the tests automatically 
triggered by the push. Unfortunately, Alex learns the 
build system rejected the commit. The continuous 
integration system reports failed tests associated with 
a software package developed by a different team 
entirely. Alex now must understand the problem and 
fix the feature manually.

What if, instead of simply informing Alex of the 
failing test, the build system also suggested one or two 
possible patches for the committed code? Although this 
general use case is still fictional, a growing community 

Automated 
Program 
Repair

DOI:10.1145/3318162

Automated program repair can relieve 
programmers from the burden of manually 
fixing the ever-increasing number of 
programming mistakes. 

BY CLAIRE LE GOUES, MICHAEL PRADEL, AND ABHIK ROYCHOUDHURY

 key insights
 ˽ Automated program repair is an emerging 

and exciting field of research that allows 
for automated rectification of software 
errors and vulnerabilities. 

 ˽ The uses of automated program repair 
can be myriad, such as improving 
programmer productivity, automated 
fixing of security vulnerabilities, self-
healing software for autonomous devices, 
and automatically generating hints for 
solving programming assignments.

 ˽ Automated repair can benefit from 
various techniques: intelligent navigation 
over a search space of program edits, 
symbolic reasoning to synthesize suitable 
code fragments, and techniques that 
learn from existing code and patches.
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of researchers is working on new tech-
niques for automated program repair 
that could make it a reality. A bibliography 
of automated program repair research 
has been composed by Monperrus.17

In essence, automated repair tech-
niques try to automatically identify 
patches for a given bug,a which can 
then be applied with little, or possibly 
even without, human intervention. 
This type of work is beginning to see 
adoption in certain, constrained, prac-

a We use the colloquial term “bug” to refer to 
programming mistakes that result in unin-
tended runtime behavior.

tical domains. Static bug finding tools 
increasingly provide “quick fix” sug-
gestions to help developers address 
flagged bugs or bad code patterns, and 
Facebook recently announced a tool 
that automatically suggests fixes for 
bugs found via their automatic testing 
tool for Android applications.15

The problem of bugs motivates a 
broad array of work on automatically 
identifying them. Advances in formal 
verification have shown the promise 
of fully assured software. However, the 
pace and scale of modern software de-
velopment often precludes the appli-
cation of such techniques from all but 

the most safety-critical systems. Light-
er-weight static approaches that rely 
most commonly on syntactic pattern 
matching or less complex static analy-
sis are becoming increasingly popular 
as quality gates in many companies.7,23 

Testing, at multiple levels of system ab-
straction, remains the most common 
bug detection technique in practice.

While detecting bugs is a necessary 
step toward improving software, it leaves 
the arguably harder task of fixing bugs un-
solved. In practice, program repair is chal-
lenging for several reasons. A developer 
must at first understand the problem and 
localize its root cause in the source code. 
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deploying a code base, CI provides the 
prerequisites for repair tools that use 
test suites as correctness specifications. 
Repair can become an activity in CI sys-
tems that suggests patches in response 
to regression test failures, such as for 
Alex, our hypothetical programmer.

Are we there yet? Existing tech-
niques for automated repair of correct-
ness bugs are typically evaluated for 
effectiveness using bugs taken from 
open source projects. Because many 
techniques require input tests to trig-
ger the bug under repair and to evalu-
ate the technique, such programs and 
bugs must be associated with one or 
more failing test cases. These bugs 
are typically collected systematically 
by going back in time through code 
histories to identify bug-fixing com-
mits and the regression tests associ-
ated with them. Open source projects 
whose bugs have been studied in this 
way include popular Java projects, for 
example, various Apache libraries, 
Log4J, and the Rhino JavaScript inter-
preter, as well as popular C projects, 
for example, the PHP and Python in-
terpreters, the Wireshark network pro-
tocol analyzer, and the libtiff library.

Recently, the Repairnator project33 
has presented a bot which monitors 
for software errors, and automati-
cally find fixes using repair tools. An-
other recent work from Facebook15 
describes experiences in integrating 
repair as part of continuous integra-
tion—a repair tool monitors test fail-
ures, reproduces them, and automati-
cally looks for patches. Once patches 
are found, they are presented to the 
developers for validation. Currently, 
the effort focuses on automatically re-
pairing crashes in Android apps, how-
ever, the project plan is to extend the 
work to general-purpose repair.

Repairing security vulnerabilities. 
Many security vulnerabilities are ex-
ploitable memory errors or program-
ming errors, and hence a relevant tar-
get for automated repair. Key software, 
including popular libraries process-
ing file formats or operating system 
utilities, are regularly and rigorously 
checked for vulnerabilities in response 
to frequent updates using grey-box 
fuzz testing tools, such as American 
Fuzzy Lop (AFLb). Microsoft recently 

b http://lcamtuf.coredump.cx/afl/

Next, she must speculate about strategies 
to possibly fix the problem. For some 
of these strategies, the developer will 
evaluate a potential patch, by applying 
it and evaluating whether the associated 
test cases then pass; if not, she might 
use the failing test cases to conduct addi-
tional debugging activities. Finally, the 
developer must select a patch and ap-
ply it to code base. The difficulty of all 
these tasks is compounded by the fact 
that complex software projects tend to 
contain legacy code, code written by oth-
er members of an organization, or even 
code written by third parties.

The promise of automated program 
repair is in reducing the burden of 
these tasks by suggesting likely correct 
patches for software bugs. At a high 
level, such techniques take as input a 
program and some specification of the 
correctness criteria that the fixed pro-
gram should meet. Most research tech-
niques use test suites for this purpose: 
one or more failing tests indicate a bug 
to be fixed, while passing tests indicate 
behavior that should not change. The 
end goal is a set of program changes 
(typically to source code) that leads all 
tests to pass, fixing the bug without 
breaking other behavior.

The grand challenge in today’s re-
search on automated program repair 
is the problem of weak specifications. 
Since detailed formal specifications of 
intended program behavior are typical-
ly unavailable, program repair is driven 
by weak correctness criteria, such as 
a test suite. As a result, the generated 
patches may over-fit the given test suite 
and may not generalize to tests outside 
the test suite.29

In the rest of this article, we discuss 
some of the technical developments in 
automated program repair, including 
an illustration of the overfitting prob-
lem. We start by sketching some of the 
use-cases of automated program repair.

Use Cases
This section discusses four practical 
use cases of automated repair, and re-
ports initial experience based on cur-
rent repair techniques.

Fixing bugs throughout develop-
ment. Existing continuous integration 
(CI) pipelines, such as Jenkins, are an 
important stepping stone for integrat-
ing repair into the development pro-
cess. By regularly building, testing, and 

The grand challenge 
in today’s research 
on automated 
program repair 
is the problem of 
weak specifications. 
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announced the Springfield project; 
Google similarly announced the OSS-
Fuzz project. Such continuous fuzzing 
workflows generate use cases for auto-
mated program repair. In particular, 
repair tools can receive tests produced 
by grey-box fuzz testing tools like AFL.

Are we there yet? Existing repair 
techniques are effective at fixing cer-
tain classes of security vulnerabilities, 
specifically integer and buffer over-
flows. An empirical study conducted 
on OSS Fuzz subjectsc shows that in-
teger overflow errors are amenable 
to one-line patches, which are easily 
produced by repair tools. For example, 
these changes add explicit casts of 
variables or constants, modify con-
ditional checks to prevent overflows, 
or change type declarations. Existing 
repair tools16 have also been shown to 
automatically produce patches for the 
infamous Heartbleed vulnerability:

if (hbtype == TLS1 _ HB _ REQUEST

   /* the following check being added 

is the fix */

   && payload + 18 < s->s3->rrec.

length) {

 ... 

 memcpy(bp, pl, payload);

 ...

}

It is functionally equivalent to the de-
veloper-provided patch:

/* the following check being added is 

the fix */

if (1 + 2 + payload + 16 > s->s3->rrec.

length) return 0;

...

if (hbtype == TLS1 _ HB _ REQUEST) {

  ...

}

c https://github.com/google/oss-fuzz

Intelligent tutoring. The computer 
programming learning community is 
growing rapidly.

This growth has increasingly led to 
large groups of potential learners, with 
often inadequate teaching support. Au-
tomated repair can serve as a key com-
ponent of intelligent tutoring systems 
that provide hints to learners for solv-
ing programming assignments and 
that automate the grading of students’ 
programming assignments by compar-
ing them with a model solution.

Are we there yet? While repair-based 
intelligent tutoring remains an open 
challenge for now, initial evidence on 
using program repair like processes 
for providing feedback to students28 
or for automatic grading of student as-
signments40 have been obtained. Auto-
mated assignment grading can benefit 
from computation of the “semantic 
distance” between a student’s buggy 
solution and an instructor’s model so-
lution. An important challenge for the 
future is that programming education 
requires nuanced changes to today’s 
program repair workflow, since teach-
ing is primarily focused on guiding the 
students to a solution, rather than re-
pairing their broken solution.

Self-healing of performance bottle-
necks. With the emergence of a wide  
variety of Internet of Things (IoT) soft-
ware for smart devices, drones, and 
other cyber-physical or autonomous 
systems, there is an increasing need for 
online program repair, especially for 
non-functional properties like energy 
consumption. Consider a drone used 
for disaster recovery, such as flood or 
fire control. The drone software may 
encounter unexpected or perilous in-
puts simply by virtue of being faced 
with an unforeseen physical environ-
ment, which may drain the device’s 
battery. There exists a need for online 
self-healing of the drone software. Au-

tomated repair targeted at non-func-
tional issues, such as performance bot-
tlenecks, can provide such self-healing 
abilities.

Are we there yet? Current repair 
techniques for non-functional proper-
ties have shown their effectiveness in 
improving real-world software. Con-
sider two examples of performance-re-
lated repair tools. First, the MemoizeIt 
tool31 suggests code that performs 
application-level caching, which al-
lows programs to avoid unnecessarily 
repeated computations. Second, the 
Caramel tool19 has suggested patches 
for a total of 150 previously unknown 
performance issues in widely used Java 
and C/C++ programs, such as Lucene, 
Chromium, and MySQL, that are now 
fixed based on the suggested repairs. 
While these examples are encourag-
ing, the question of how to apply non-
functional repair for fully automated 
self-healing remains open.

Simple Example
Here, we describe a simple example we 
will use to illustrate the various state-
of-the-art techniques in program re-
pair. The example is selected for didac-
tic purposes rather than to illustrate all 
the capabilities of repair techniques. 
Today’s techniques apply to signifi-
cantly more complex programs, as we 
described previously.

Consider a function that categorizes 
a given triangle as scalene, isosceles, or 
equilateral (Figure 1). From the defini-
tion of isosceles triangles learned in 
middle school, we can see that the con-
dition in line 6 should be rectified to

(a == b || b == c || a == c)

This repair is non-trivial; it goes be-
yond simply mutating one operator in 
the condition.

The test suite in Figure 2 captures 

Figure 1. Simple example for categorizing 
triangles.

1  int triangle(int a, int b, int c){

2        if (a <= "∅"  || b <= "∅"  || c <= "∅")

3                return INVALID;

4        if (a == b && b == c)

5                return EQUILATERAL;

6        if (a == b || b != c)      //  bug!

7                return ISOSCELES;

8        return SCALENE;

9  }

Figure 2. Test suite for the function in Figure 1.

Test-id a b c Expected output Pass/Fail

1 –1 –1 –1 INVALID Pass

2 1 1 1 EQUILATERAL Pass

3 2 2 3 ISOSCELES Pass

4 3 2 2 ISOSCELES Fail

5 2 3 2 ISOSCELES Fail

6 2 3 4 SCALENE Fail
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Heuristic repair. Heuristic search 
methods, shown at the left of Figure 3 
employ a generate-and-test methodol-
ogy, constructing and iterating over 
a search space of syntactic program 
modifications. These techniques can 
be explained schematically as follows:

for cand ∈ SearchSpace do
 validate cand // break if successful
done

with SearchSpace denoting the set of 
considered modifications of the pro-
gram. Validation involves calculating 
the number of tests that pass when a 
suggested patch has been applied. This 
can amount to a fitness function evalu-
ation in genetic programming or other 
stochastic search methods.

Heuristic repair operates by gen-
erating patches that transform the 
program abstract syntax tree (AST). 
An AST is a tree-based representation 
of program source code that captures 
important program constructs, while 
abstracting away syntactic details like 
parentheses or semicolons. Given 
fault localization information that pin-
points code locations in the program 
that are the most likely to be buggy, 
syntactic techniques render the search 
tractable by making choices along one 
of three axes: mutation selection, test 
execution, and the traversal strategy.

Mutation selection. Due to the 
combinatorial explosion of possible 
mutations, the number of program 
variants that can be generated and 
compiled is typically very large. Tech-
niques thus must limit the type and 
variety of edits considered for a re-
pair candidate. This in turn defines 
the search space, with which search-
based repair algorithms have great 
flexibility. However, this flexibility 
comes at a risk: If the search space is 
too small, the desired repair may not 
even be in the search space. For our 
triangle example (Figure 1), recall that 
the most natural patch replaces line 6 
with (a == b || b == c || a == c). If we only 
consider mutations that modify bi-
nary operators, the single-edit search 
space of the repair algorithm will not 
contain the developer-provided repair, 
which requires augmenting the branch 
condition with new conditions. On the 
other hand, if the search space is too 
large, the search can become intrac-

the various triangle categories consid-
ered by the function: INVALID, EQUI-
LATERAL, ISOSCELES, and SCALENE. 
Because the code contains a bug, sev-
eral of the tests fail. The goal of au-
tomated program repair is to take a 
buggy program and a test suite, such 
as these, and produce a patch that fixes 
the program. The test suite provides 
the correctness criterion in this case, 
guiding the repair toward a valid patch. 
In general, there may exist any number 
of patches for any particular bug, and 
even humans can find different patch-
es for real-world bugs.

At a high level, the program repair 
problem can be seen as follows: Given 
a buggy program P, and a test suite T such 
that P fails one or more tests in T, find a 
“small” modification of P such that the 
modified program P’ passes T. The term 
“small” simply refers to the fact that 
developers generally prefer a simpler 
patch over a complicated one. Some 
techniques even try to find a minimal 
patch. Others trade off patch size with 
other goals, such as finding a patch ef-
ficiently. A particular risk in automated 
repair is a “patch” that causes the pro-
vided test cases to pass but that does 
not generalize to the complete, typi-
cally unavailable, specification. That is, 
the patch produced by an automated 
repair method can overfit the test data. 
An extreme case of an overfitted repair 
for the tests in Figure 2 is the following:

if (a==-1 && b==-1 && c==-1)

 return INVALID;

if (a==1 && b==1 && c==1)

 return EQUILATERAL;

if (a==2 && b==2 && c==3)

 return ISOSCELES;

...

Of course, such a “repaired” program 
is not useful since it does not pass any 
tests outside the provided test suite. 
This example is deliberately extreme. 
More commonly, patches produced by 
current repair techniques tend to overfit 
the provided test suite by disabling (or 
deleting) undertested functionality.29

State of the Art
Automatically repairing a bug involves 
(implicitly) searching over a space 
of changes to the input source code. 
Techniques for constructing such 
patches can be divided into broad cat-
egories, based on what types of patches 
are constructed, and how the search is 
conducted. Figure 3 gives an overview 
of the techniques. The inputs to these 
techniques are a buggy program and a 
correctness criterion (the correctness 
criterion is often given as a test suite). 
Most techniques start with a com-
mon preprocessing step that identi-
fies those code locations that are likely 
to be buggy. Such a fault localization 
procedure, for example, that by Jones 
et al.,8 provides a ranking of code loca-
tions that indicates their potential bug-
gy-ness. At a high level, there are two 
main approaches: heuristic repair and 
constraint-based repair. These tech-
niques can sometimes be enhanced by 
machine learning, which we call learn-
ing-aided repair.

Figure 3. Overview of repair techniques.
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table, such that the repair may not be 
found by the algorithm in a reasonable 
amount of time.

To address this issue, some tech-
niques limit edits to only deletion, inser-
tion, or replacement of code at the state-
ment- or block-level. For code insertion 
or replacement, a common approach 
is to pull code from elsewhere in the 
same program or module, following the 
plastic surgery hypothesis (that correct 
code can be imported from elsewhere 
in the same program)6 or the competent 
programmer hypothesis (that program-
mers are mostly competent, and while 
they may make a mistake in one portion 
of a program, they are likely to have pro-
grammed similar logic correctly, else-
where). Such a technique would there-
fore only consider moving entire blocks 
or lines of code around, for example, an 
entire if condition semantically simi-
lar to the one shown in Figure 1. This 
can often work by virtue of the fact that 
source code is repetitive.22

Other techniques have benefited 
from using more expressive transfor-
mation templates, such as guarding 
a de-reference operation with a null-
pointer check. Such transformation 
templates trade off repair space size 
for readability and “naturalness” of the 
resulting patches. Moving from state-
ment-level edits to expression-level ed-
its increases the search space, with the 
amount of increase depending on the 
transformation templates used to con-
struct the search space.

However, even if the search space is 
large, the mutation operators may not 
support the behavioral change needed 
by the program or may affect the de-
sired change in ways different from 
what a human might propose. A tech-
nique that may modify operators or in-
sert conditions (copied from elsewhere 
in the program) would still struggle on 
this small program, since (a == c) nev-
er appears verbatim in our example. 
Such a lack of correct code fragments 
can result in degenerate behavior on 
smaller programs that provide little 
repair material. It also motivates re-
search in intelligently augmenting the 
search space, for example, by consider-
ing past versions of a program.

Test execution. Repair candidates are 
evaluated by running the modified pro-
gram on the provided set of test cases. 
Test execution is typically the most 

expensive step, as test suites can be 
large and techniques may need to re-
run them many times. Various strate-
gies have been proposed to reduce this 
cost, including test suite selection and 
prioritization. Search strategies that 
do not require a fitness function, for 
example, based on random or deter-
ministic search, can reduce the cost 
of testing by simply failing early (at 
the first test failure). Moreover, such 
techniques may run the test cases in 
a heuristic order designed to maxi-
mize the chance that, if a test case is 
going to fail, it is run early in the vali-
dation process.

Traversal strategy. Finally, tech-
niques vary in how they choose which 
patches to explore, and in what order. 
GenProg,37 an early technique pro-
posed in this domain, implements a 
genetic programming algorithm with 
a fitness function based on the num-
ber of test cases passed by a patched 
program. Subsequent techniques 
like PAR9 have followed, varying in 
the mutation operators (PAR) or the 
fitness function. Other techniques 
simply sample randomly typically 
restricting themselves to single-edit 
patches,21 or in a heuristic, determin-
istic order as in GenProg AE.36

Constraint-based repair. In contrast 
to heuristic repair techniques, con-
straint-based techniques proceed by 
constructing a repair constraint that 
the patched code should satisfy, as il-
lustrated in Figure 3. The patch code 
to be generated is treated as a function 
to be synthesized. Symbolic execution 
or other approaches extract properties 
about the function to be synthesized; 
these properties constitute the repair 
constraint. Solutions to the repair con-
straint can be obtained by constraint 
solving or other search techniques. In 
these approaches, formulation of the 
repair constraint is the key, not the 
mechanism for solving it. This class of 
techniques can be captured via the fol-
lowing schematic:

for test t ∈ test-suite T
compute repair constraint ψt

synthesize e as solution for Vt ψt

In this case, T is the test suite used 
as the correctness criterion to guide 
repair. The constraint ψt will be com-
puted via a symbolic execution10 of the 

path traversed by test t ∈ T. The con-
straint ψt is often of the form
ψt ≡ πt ∧ output = expected

where πt is the path condition of the 
path traversed by test t, output is the 
symbolic expression capturing the out-
put variable in the execution of t and ex-
pected captures the oracle or expecta-
tion. The path condition of a program 
path is a formula, which is true for 
those inputs which traverse the path.10

Computing repair constraints and 
angelix values. To illustrate constraint-
based repair, reconsider our running 
example from earlier. SemFix,18 which 
is representative for constraint-based 
techniques, substitutes the faulty con-
dition in line 6 with an abstract func-
tion f (a,b,c) on the live variables. In this 
example, f is a predicate that takes the 
integer values a,b,c and returns true/
false. Then, the technique symbolically 
executes the tests in the given test suite 
to infer properties about the unknown 
function f. These properties are crucial 
for synthesizing an appropriate f that 
can pass all the given test cases.

The first t wo t ests i n o ur t est s uite 
do not even reach line 6. Hence, Sem-
Fix will not infer any property about the 
function f from them. From the last four 
tests, it can infer the repair constraint

f (2,2,3) ∧ f (3,2,2) ∧ f (2,3,2) ∧! f (2,3,4)

This is because analysis of the pro-
gram has revealed that for input exer-
cising line 6 if f is true, the program 
returns ISOSCELES and otherwise 
SCALENE.

Inferring detailed constraint speci-
fications can be difficult, sometimes 
posing significant scalability issues. 
This motivates more efficient infer-
ence of value-based specifications.16 In 
particular, angelic values are inferred 
for patch locations, where an angelic 
value for a fixed location is one that 
makes a failing test case pass. Once 
(collections of) angelic values are iden-
tified for each failing test, program 
synthesis can then be employed to gen-
erate patch code meeting such a value-
based specification. This is the phi-
losophy embodied in the Angelix tool16 
where angelic values are obtained via 
symbolic execution (instead of produc-
ing repair specifications in the form of 
SMT constraints via symbolic execu-
tion directly). This way of dividing the 
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software efficiency, several approaches 
identify optimization opportunities 
and make suggestions on how to refac-
tor the code to improve performance. 
These approaches typically focus on a 
particular kind of performance prob-
lem, for example, unnecessary loop 
executions19 or repeated executions of 
the same computation.31 Another line 
of work selects which data structure 
is most likely to provide the best per-
formance for a given program out of 
a given set of functionally equivalent 
data structures.26 All these approaches 
suggest code changes but leave the fi-
nal decision whether to apply an opti-
mization to the developer.

To mitigate security threats, various 
techniques for repairing programs at 
runtime have been proposed. These ap-
proaches automatically rewrite code to 
add a runtime mechanism that enforces 
some kind of security policy. For exam-
ple, such repair techniques can enforce 
control flow integrity,1 prevent code in-
jections,30 automatically insert sanitiz-
ers of untrusted input, or enforce auto-
matically inferred safety properties.20

We note that existing techniques 
to repair non-functional properties 
typically focus on a particular kind of 
problem, for example, a kind of perfor-
mance anti-pattern or attack. This dis-
tinguishes them from the core repair 
literature for fixing correctness bugs, 
which typically aim at fixing a larger set 
of errors.

Perspectives and Challenges
Despite tremendous advances in pro-
gram repair during the last decade, 
there remain various open challenges 
to be tackled by future work. We iden-
tify three core challenges: increasing 
and ensuring the quality of repairs; 
extending the scope of problems ad-
dressed by repair; and integrating re-
pair into the development process.

Quality. The quality challenge is 
about increasing the chance an auto-
matically identified repair provides a 
correct fix that is easy to maintain in 
the long term. Addressing this chal-
lenge is perhaps the most important 
step toward real-life adoption of pro-
gram repair.

Measures of correctness. An impor-
tant aspect of fix quality is whether the 
fix actually corrects the bug. In prac-
tice, program repair relies on measures 

repair task into angelic value determi-
nation and patch code generation to 
meet angelic values is symptomatic of 
semantic repair approaches.

Instead of obtaining angelic values 
by symbolic execution and constraint 
solving, they may also be obtained by 
search, particularly for conditional 
statements. This is because each oc-
currence of a conditional statement 
has only two possible return values: 
true and false. Techniques that work 
on enumerating possible angelic val-
ues without adopting symbolic execu-
tion13,39 typically try to repair condi-
tional statements exclusively, where 
the angelic values are exhaustively enu-
merated until all failing test cases pass. 
Such techniques adopt the work-flow of 
semantic repair techniques (specifica-
tion inference followed by patch gen-
eration), with an enumeration step fully 
or partially replacing symbolic program 
analysis. Symbolic analysis-based ap-
proaches such as Mechtaev et al.16 on 
the other hand, avoid exhaustive enu-
meration of possible angelic values.

Solving constraints to find a patch. 
Once repair constraints or angelic 
value(s) of a statement to be fixed are 
obtained, these techniques must gen-
erate a patch to realize the angelic 
value. Finding a solution to the repair 
constraint yields a definition of the ab-
stract function f, which corresponds to 
the patched code. This is often achieved 
by either search or constraint solving, 
where the operators allowed to appear 
in the yet-to-be synthesized function f 
are restricted. In this example, if we re-
strict the operators allowed to appear in f 
to be relational operators most search or 
solving techniques will find the expres-
sion a == b || b == c || a == c. Efficient 
program synthesis techniques (see Alur 
et al.2 for an exposition of some recent 
advances in program synthesis) are often 
used to construct the function f.

Learning-based repair. Recent im-
provements in advanced machine learn-
ing, especially deep learning, and the 
availability of large numbers of patches 
enable learning-based repair. Current 
approaches fall approximately into 
three categories that vary by the extent to 
which they exploit learning during the 
repair process. One line of work14 learns 
from a corpus of code a model of correct 
code, which indicates how likely a given 
piece of code is with regard to the code 

corpus. The approach then uses this 
model to rank a set of candidate patch-
es to suggest the most realistic patches 
first. Another line of work infers code 
transformation templates from suc-
cessful patches in commit histories.3,12 
In particular, Long et al.12 infers AST-to-
AST transformation templates that sum-
marize how patches modify buggy code 
into correct code. These transformation 
templates can then be used to generate 
repair candidates.

The third line of work not only im-
proves some part of the repair pro-
cess through learning, but also trains 
models for end-to-end repair. Such a 
model predicts the repaired code for a 
given piece of buggy code, without re-
lying on any other explicitly provided 
information. In particular, in contrast 
to the repair techniques discussed 
previously, such models do not rely 
on a test suite or a constraint solver. 
DeepFix5 trains a neural network that 
fixes compilation errors, for example, 
missing closing braces, incompatible 
operators, or missing declarations. 
The approach uses a compiler as an 
oracle to validate patch candidates 
before suggesting them to the user. 
Tufano et al.32 propose a model that 
predicts arbitrary fixes and trains this 
model with bug fixes extracted from 
version histories. According to their 
initial results, the model produces 
bug-fixing patches for real defects in 
9% of the cases. Both approaches ab-
stract the code before feeding it into 
the neural network. For the running 
example in Figure 1, this abstraction 
would replace the application-spe-
cific identifiers triangle and EQUI-
LATERAL with generic placeholders, 
such as VAR1 and VAR2. After this 
abstraction, both approaches use an 
RNN-based sequence-to-sequence 
network that predicts how to modify 
the abstracted code.

Given the increasing interest in 
learning-based approaches toward 
software engineering problems, we will 
likely see more progress on learning-
based repair in the coming years. Key 
challenges toward effective solutions 
include finding an appropriate repre-
sentation of source code changes and 
obtaining large amounts of high-quali-
ty human patches as training data.

Repair of non-functional proper-
ties. To help developers improve the 
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of correctness. Finding such a measure 
is a difficult and unsolved problem, 
which applies both to patches pro-
duced by humans and by machines. To 
date, researchers have assessed quality 
using human judgment, crowdsourced 
evaluations, comparison to developer 
patches of historical bugs, or patched 
program performance on indicative 
program workloads or held-out test 
cases. The recent work of Xiong et al.38 
provides a novel outlook for filtering 
patches based on the behavior of the 
patched program vis-a-vis the original 
program on passing and failing tests.

Alternative oracles. The bulk of the 
existing literature focuses on test-based 
repair where the correctness criteria is 
given as a test suite. Richer correctness 
properties, for example, assertions or 
contracts, can be used to guide repair 
when available.34 Other approaches 
consider alternative oracles, such as 
potential invariants inferred from dy-
namic executions.20 Such approaches 
can follow the “bugs as deviant behav-
ior” philosophy, where deviations of an 
execution from “normal” executions 
are observed and avoided. In particu-
lar, Weimer et al.35 provide an overview 
of various (partial) oracles that can be 
used for repair.

Correctness guarantees. Few of to-
day’s repair techniques provide any 
guarantees about the correctness of 
produced patches, which can hinder 
the application of automated repair, 
especially to safety-critical software. If 
correctness guarantees are available 
as properties, such as pre-conditions, 
post-conditions, and object invariants, 
these can be used to guide program 
repair. The work of Logozzo and Ball11 
reports such an effort where repair 
attempts to increase the number of 
property-preserving executions, while 
reducing the number of violating ex-
ecutions. However, such formal tech-
niques are contingent on the proper-
ties to drive the repair being available.

Maintainability. Once a correct fix 
has been detected and applied to the 
code base, the fixed code should be as 
easy to maintain as a human fix. Initial 
work in this domain has investigated 
the effect that automatically generated 
patches impact human maintenance 
behavior.4 More study is needed to de-
velop a foundational understanding of 
change quality, especially with respect 

to the human developers who will in-
teract with a modified system.

A promising avenue for tackling the 
quality challenge is by leveraging infor-
mation available from other develop-
ment artifacts, including documenta-
tion or formal specifications, language 
specifications and type systems, or 
source control histories of either the 
program under repair or of the broad 
corpora of freely available open source 
software. Such additional information 
can reduce the repair search space by 
imposing new constraints on potential 
program modifications (for example, 
as suggested by a type system) and 
increase the probability that the pro-
duced patch is human-acceptable.

Scope. The scope challenge is about 
further extending the kinds of bugs 
and programs to which automated re-
pair applies.

General-purpose repair. Research 
in program analysis has long focused 
on special-purpose repair tools for 
specific kind of errors, such as buffer 
overflow errors,20 or bugs in domain-
specific languages.24 More recent work, 
as discussed earlier, focuses on gen-
eral-purpose repair tools that do not 
make any assumptions about the kind 
of bugs under consideration. While au-
tomatically fixing all bugs seems out of 
reach in the foreseeable future, target-
ing a broad set of bugs remains an im-
portant challenge.

Complex programs and patches. 
Many of the key innovations in the 
initial research in program repair con-
cerned the scalability of techniques 
to complex programs. For example, 
search-based techniques moved from 
reasoning over populations of pro-
gram ASTs to populations of small edit 
programs (the patches themselves) 
and developed other techniques to ef-
fectively constrain the search space. 
Constraint-based repair strategies 
have moved from reasoning about the 
semantics of entire methods to only 
reasoning about the desired change 
in behavior. These efforts enable scal-
ing to programs of significant size, 
and multi-line repairs.16 We antici-
pate that scalability will periodically 
return to the fore as program repair 
techniques engage in more complex 
reasoning. We emphasize here that 
program repair techniques should 
remain scalable with respect to large 

Once repair 
constraints  
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but possibly incorrect patches by, for 
example, favoring smaller patches or 
favoring patches “similar” to human 
patches. Nevertheless, the developer 
still needs to explore the remaining 
large set of patch suggestions.

Explaining repairs. A strongly re-
lated problem is to explain repair sug-
gestions. One idea worth pursuing 
is to compute and present the corre-
lation of patches based on program 
dependencies and other semantic 
features, which allow the developer 
to loosely group together plausible 
patches. Explaining repairs is needed 
particularly in its application to pro-
gramming education.40 Instead of 
merely fixing a students’ incorrect 
program to the model correct pro-
gram, it is useful for the repair tool to 
generate hints of what is missing in 
the students’ repair. Such hints may 
take the form of logical formulae cap-
turing the effect of repairs, which are 
gleaned from constraint-based repair 
tools; these hints may be presented in 
natural language, instead of logic, for 
easy comprehension by the learners.

Conclusion
Automated program repair remains an 
enticing yet achievable possibility that 
can improve program quality while im-
proving programmers’ development 
experience.

Technically speaking, automated 
repair involves challenges in defining, 
navigating, and prioritizing the space 
of patches. The field benefits from past 
lessons learned in search space defini-
tion and navigation in software testing, 
as embodied by the vast literature in 
test selection and prioritization. The 
GenProg tool37 is just one example of 
how genetic search, which has been 
useful for testing, can be potentially 
adapted for repair. At the same time, 
automated repair comes with new chal-
lenges because it may generate patches 
that overfit the given tests. This is a 
manifestation of tests being incom-
plete correctness specifications. Thus, 
there is a need for inferring specifica-
tions to guide repair, possibly by pro-
gram analysis. The Semfix and Ange-
lix tools16,18 are a few examples of how 
the repair problem can be envisioned 
as one of inferring a repair constraint, 
and they have shown the scalability of 
such constraint-based techniques.

programs as well as large search spaces 
(complex changes).

Development process. The final 
challenge is about integrating repair 
tools into the development process.

Integration with bug detection. Bug 
detection is the natural step preceding 
program repair. It is possible to fuse 
debugging and repair into one step, by 
viewing repair as the minimal change, 
which makes the program pass the 
given tests. We envision future work 
integrating repair with bug detection 
techniques, such as static analysis 
tools. Doing so may enable repair tech-
niques to obtain additional informa-
tion about possible repairs from static 
analyses, in addition to the test cases 
used nowadays. As a first step in this 
direction, a static analysis infrastruc-
ture used at Google suggests fixes for 
a subset of its warnings.23 A promising 
future direction here could be to ex-
tend static analysis tools for generat-
ing dynamic witnesses or scenarios of 
undesirable behavior.

IDE integration. Most of today’s 
repair tools are research prototypes. 
Bringing these tools to the fingertips 
of developers in a user-friendly fashion 
will require efforts toward integrating 
repair into integrated development 
environments (IDEs). For example, an 
IDE-integrated repair tool could re-
spond to either failed unit or system 
tests or developer prompting. To the 
best of our knowledge, this applica-
tion has not yet been widely explored. 
Suitably interactive response times are 
a precondition for such an approach. 
This research direction will benefit 
from interaction with experts in devel-
oper tooling and human-computer in-
teraction, to ensure tools are designed 
and evaluated effectively.

Interactivity. As program repair 
gets integrated into development en-
vironments, interacting with the de-
veloper during repair is important. 
While the focus in the past decade has 
been on fully automated repair, put-
ting the developer back into the loop 
is necessary, in particular, due to the 
weak specifications (test suites) often 
used to guide program repair. User 
interactivity may be needed to yield 
expected outputs of additional test 
inputs that are generated to strength-
en the test-suite driving repair.27 It is 
of course possible to filter plausible 
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Conceptually speaking, automated 
program repair closes the gap be-
tween the huge manual effort spent 
today in writing correct programs, 
and the ultimate dream of generating 
programs automatically via learning 
approaches. Given the challenges of 
generating multiline program fixes in 
program repair, we can thus imagine 
the difficulty of generating explain-
able programs automatically.

Pragmatically speaking, automated 
program repair also makes us keenly 
aware of the challenges in managing 
changes in software engineering proj-
ects, and the need for automation in 
this arena. Today, manual debugging 
and maintenance often takes up 80% 
of the resources in a software project, 
prompting practitioners to long de-
clare a legacy crisis.25 In the future, 
program repair can provide tool sup-
port by repairing bugs from complex 
changes in software projects. This can 
help resolve a dilemma of developers 
when managing program changes: 
“Our dilemma is that we hate change 
and love it at the same time; what we 
really want is for things to remain the 
same but get better.”d
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