
56 COMMUNICATIONS OF THE ACM | DECEMBER 2019 | VOL. 62 | NO. 12

review articles

AL EX IS A software developer, a recent hire at the
company of her dreams. She is finally ready to push
a highly anticipated new feature to the shared code
repository, an important milestone in her career as a
developer. As is increasingly common in development
practice, this kind of push triggers myriads of tests the
code must pass before becoming visible to everyone in
the company. Alex has heavily tested the new feature
and is confident it will pass all the tests automatically
triggered by the push. Unfortunately, Alex learns the
build system rejected the commit. The continuous
integration system reports failed tests associated with
a software package developed by a different team
entirely. Alex now must understand the problem and
fix the feature manually.

What if, instead of simply informing Alex of the
failing test, the build system also suggested one or two
possible patches for the committed code? Although this
general use case is still fictional, a growing community

Automated
Program
Repair

DOI:10.1145/3318162

Automated program repair can relieve
programmers from the burden of manually
fixing the ever-increasing number of
programming mistakes.

BY CLAIRE LE GOUES, MICHAEL PRADEL, AND ABHIK ROYCHOUDHURY

 key insights
 ˽ Automated program repair is an emerging

and exciting field of research that allows
for automated rectification of software
errors and vulnerabilities.

 ˽ The uses of automated program repair
can be myriad, such as improving
programmer productivity, automated
fixing of security vulnerabilities, self-
healing software for autonomous devices,
and automatically generating hints for
solving programming assignments.

 ˽ Automated repair can benefit from
various techniques: intelligent navigation
over a search space of program edits,
symbolic reasoning to synthesize suitable
code fragments, and techniques that
learn from existing code and patches.

http://dx.doi.org/10.1145/3318162

DECEMBER 2019 | VOL. 62 | NO. 12 | COMMUNICATIONS OF THE ACM 57

I
M

A
G

E
 B

Y
 V

I
S

U
A

L
 G

E
N

E
R

A
T

I
O

N

of researchers is working on new tech-
niques for automated program repair
that could make it a reality. A bibliography
of automated program repair research
has been composed by Monperrus.17

In essence, automated repair tech-
niques try to automatically identify
patches for a given bug,a which can
then be applied with little, or possibly
even without, human intervention.
This type of work is beginning to see
adoption in certain, constrained, prac-

a We use the colloquial term “bug” to refer to
programming mistakes that result in unin-
tended runtime behavior.

tical domains. Static bug finding tools
increasingly provide “quick fix” sug-
gestions to help developers address
flagged bugs or bad code patterns, and
Facebook recently announced a tool
that automatically suggests fixes for
bugs found via their automatic testing
tool for Android applications.15

The problem of bugs motivates a
broad array of work on automatically
identifying them. Advances in formal
verification have shown the promise
of fully assured software. However, the
pace and scale of modern software de-
velopment often precludes the appli-
cation of such techniques from all but

the most safety-critical systems. Light-
er-weight static approaches that rely
most commonly on syntactic pattern
matching or less complex static analy-
sis are becoming increasingly popular
as quality gates in many companies.7,23

Testing, at multiple levels of system ab-
straction, remains the most common
bug detection technique in practice.

While detecting bugs is a necessary
step toward improving software, it leaves
the arguably harder task of fixing bugs un-
solved. In practice, program repair is chal-
lenging for several reasons. A developer
must at first understand the problem and
localize its root cause in the source code.

58 COMMUNICATIONS OF THE ACM | DECEMBER 2019 | VOL. 62 | NO. 12

review articles

deploying a code base, CI provides the
prerequisites for repair tools that use
test suites as correctness specifications.
Repair can become an activity in CI sys-
tems that suggests patches in response
to regression test failures, such as for
Alex, our hypothetical programmer.

Are we there yet? Existing tech-
niques for automated repair of correct-
ness bugs are typically evaluated for
effectiveness using bugs taken from
open source projects. Because many
techniques require input tests to trig-
ger the bug under repair and to evalu-
ate the technique, such programs and
bugs must be associated with one or
more failing test cases. These bugs
are typically collected systematically
by going back in time through code
histories to identify bug-fixing com-
mits and the regression tests associ-
ated with them. Open source projects
whose bugs have been studied in this
way include popular Java projects, for
example, various Apache libraries,
Log4J, and the Rhino JavaScript inter-
preter, as well as popular C projects,
for example, the PHP and Python in-
terpreters, the Wireshark network pro-
tocol analyzer, and the libtiff library.

Recently, the Repairnator project33
has presented a bot which monitors
for software errors, and automati-
cally find fixes using repair tools. An-
other recent work from Facebook15
describes experiences in integrating
repair as part of continuous integra-
tion—a repair tool monitors test fail-
ures, reproduces them, and automati-
cally looks for patches. Once patches
are found, they are presented to the
developers for validation. Currently,
the effort focuses on automatically re-
pairing crashes in Android apps, how-
ever, the project plan is to extend the
work to general-purpose repair.

Repairing security vulnerabilities.
Many security vulnerabilities are ex-
ploitable memory errors or program-
ming errors, and hence a relevant tar-
get for automated repair. Key software,
including popular libraries process-
ing file formats or operating system
utilities, are regularly and rigorously
checked for vulnerabilities in response
to frequent updates using grey-box
fuzz testing tools, such as American
Fuzzy Lop (AFLb). Microsoft recently

b http://lcamtuf.coredump.cx/afl/

Next, she must speculate about strategies
to possibly fix the problem. For some
of these strategies, the developer will
evaluate a potential patch, by applying
it and evaluating whether the associated
test cases then pass; if not, she might
use the failing test cases to conduct addi-
tional debugging activities. Finally, the
developer must select a patch and ap-
ply it to code base. The difficulty of all
these tasks is compounded by the fact
that complex software projects tend to
contain legacy code, code written by oth-
er members of an organization, or even
code written by third parties.

The promise of automated program
repair is in reducing the burden of
these tasks by suggesting likely correct
patches for software bugs. At a high
level, such techniques take as input a
program and some specification of the
correctness criteria that the fixed pro-
gram should meet. Most research tech-
niques use test suites for this purpose:
one or more failing tests indicate a bug
to be fixed, while passing tests indicate
behavior that should not change. The
end goal is a set of program changes
(typically to source code) that leads all
tests to pass, fixing the bug without
breaking other behavior.

The grand challenge in today’s re-
search on automated program repair
is the problem of weak specifications.
Since detailed formal specifications of
intended program behavior are typical-
ly unavailable, program repair is driven
by weak correctness criteria, such as
a test suite. As a result, the generated
patches may over-fit the given test suite
and may not generalize to tests outside
the test suite.29

In the rest of this article, we discuss
some of the technical developments in
automated program repair, including
an illustration of the overfitting prob-
lem. We start by sketching some of the
use-cases of automated program repair.

Use Cases
This section discusses four practical
use cases of automated repair, and re-
ports initial experience based on cur-
rent repair techniques.

Fixing bugs throughout develop-
ment. Existing continuous integration
(CI) pipelines, such as Jenkins, are an
important stepping stone for integrat-
ing repair into the development pro-
cess. By regularly building, testing, and

The grand challenge
in today’s research
on automated
program repair
is the problem of
weak specifications.

DECEMBER 2019 | VOL. 62 | NO. 12 | COMMUNICATIONS OF THE ACM 59

review articles

announced the Springfield project;
Google similarly announced the OSS-
Fuzz project. Such continuous fuzzing
workflows generate use cases for auto-
mated program repair. In particular,
repair tools can receive tests produced
by grey-box fuzz testing tools like AFL.

Are we there yet? Existing repair
techniques are effective at fixing cer-
tain classes of security vulnerabilities,
specifically integer and buffer over-
flows. An empirical study conducted
on OSS Fuzz subjectsc shows that in-
teger overflow errors are amenable
to one-line patches, which are easily
produced by repair tools. For example,
these changes add explicit casts of
variables or constants, modify con-
ditional checks to prevent overflows,
or change type declarations. Existing
repair tools16 have also been shown to
automatically produce patches for the
infamous Heartbleed vulnerability:

if (hbtype == TLS1 _ HB _ REQUEST

 /* the following check being added

is the fix */

 && payload + 18 < s->s3->rrec.

length) {

 ...

 memcpy(bp, pl, payload);

 ...

}

It is functionally equivalent to the de-
veloper-provided patch:

/* the following check being added is

the fix */

if (1 + 2 + payload + 16 > s->s3->rrec.

length) return 0;

...

if (hbtype == TLS1 _ HB _ REQUEST) {

 ...

}

c https://github.com/google/oss-fuzz

Intelligent tutoring. The computer
programming learning community is
growing rapidly.

This growth has increasingly led to
large groups of potential learners, with
often inadequate teaching support. Au-
tomated repair can serve as a key com-
ponent of intelligent tutoring systems
that provide hints to learners for solv-
ing programming assignments and
that automate the grading of students’
programming assignments by compar-
ing them with a model solution.

Are we there yet? While repair-based
intelligent tutoring remains an open
challenge for now, initial evidence on
using program repair like processes
for providing feedback to students28
or for automatic grading of student as-
signments40 have been obtained. Auto-
mated assignment grading can benefit
from computation of the “semantic
distance” between a student’s buggy
solution and an instructor’s model so-
lution. An important challenge for the
future is that programming education
requires nuanced changes to today’s
program repair workflow, since teach-
ing is primarily focused on guiding the
students to a solution, rather than re-
pairing their broken solution.

Self-healing of performance bottle-
necks. With the emergence of a wide
variety of Internet of Things (IoT) soft-
ware for smart devices, drones, and
other cyber-physical or autonomous
systems, there is an increasing need for
online program repair, especially for
non-functional properties like energy
consumption. Consider a drone used
for disaster recovery, such as flood or
fire control. The drone software may
encounter unexpected or perilous in-
puts simply by virtue of being faced
with an unforeseen physical environ-
ment, which may drain the device’s
battery. There exists a need for online
self-healing of the drone software. Au-

tomated repair targeted at non-func-
tional issues, such as performance bot-
tlenecks, can provide such self-healing
abilities.

Are we there yet? Current repair
techniques for non-functional proper-
ties have shown their effectiveness in
improving real-world software. Con-
sider two examples of performance-re-
lated repair tools. First, the MemoizeIt
tool31 suggests code that performs
application-level caching, which al-
lows programs to avoid unnecessarily
repeated computations. Second, the
Caramel tool19 has suggested patches
for a total of 150 previously unknown
performance issues in widely used Java
and C/C++ programs, such as Lucene,
Chromium, and MySQL, that are now
fixed based on the suggested repairs.
While these examples are encourag-
ing, the question of how to apply non-
functional repair for fully automated
self-healing remains open.

Simple Example
Here, we describe a simple example we
will use to illustrate the various state-
of-the-art techniques in program re-
pair. The example is selected for didac-
tic purposes rather than to illustrate all
the capabilities of repair techniques.
Today’s techniques apply to signifi-
cantly more complex programs, as we
described previously.

Consider a function that categorizes
a given triangle as scalene, isosceles, or
equilateral (Figure 1). From the defini-
tion of isosceles triangles learned in
middle school, we can see that the con-
dition in line 6 should be rectified to

(a == b || b == c || a == c)

This repair is non-trivial; it goes be-
yond simply mutating one operator in
the condition.

The test suite in Figure 2 captures

Figure 1. Simple example for categorizing
triangles.

1 int triangle(int a, int b, int c){

2 if (a <= "∅" || b <= "∅" || c <= "∅")

3 return INVALID;

4 if (a == b && b == c)

5 return EQUILATERAL;

6 if (a == b || b != c) // bug!

7 return ISOSCELES;

8 return SCALENE;

9 }

Figure 2. Test suite for the function in Figure 1.

Test-id a b c Expected output Pass/Fail

1 –1 –1 –1 INVALID Pass

2 1 1 1 EQUILATERAL Pass

3 2 2 3 ISOSCELES Pass

4 3 2 2 ISOSCELES Fail

5 2 3 2 ISOSCELES Fail

6 2 3 4 SCALENE Fail

60 COMMUNICATIONS OF THE ACM | DECEMBER 2019 | VOL. 62 | NO. 12

review articles

Heuristic repair. Heuristic search
methods, shown at the left of Figure 3
employ a generate-and-test methodol-
ogy, constructing and iterating over
a search space of syntactic program
modifications. These techniques can
be explained schematically as follows:

for cand ∈ SearchSpace do
 validate cand // break if successful
done

with SearchSpace denoting the set of
considered modifications of the pro-
gram. Validation involves calculating
the number of tests that pass when a
suggested patch has been applied. This
can amount to a fitness function evalu-
ation in genetic programming or other
stochastic search methods.

Heuristic repair operates by gen-
erating patches that transform the
program abstract syntax tree (AST).
An AST is a tree-based representation
of program source code that captures
important program constructs, while
abstracting away syntactic details like
parentheses or semicolons. Given
fault localization information that pin-
points code locations in the program
that are the most likely to be buggy,
syntactic techniques render the search
tractable by making choices along one
of three axes: mutation selection, test
execution, and the traversal strategy.

Mutation selection. Due to the
combinatorial explosion of possible
mutations, the number of program
variants that can be generated and
compiled is typically very large. Tech-
niques thus must limit the type and
variety of edits considered for a re-
pair candidate. This in turn defines
the search space, with which search-
based repair algorithms have great
flexibility. However, this flexibility
comes at a risk: If the search space is
too small, the desired repair may not
even be in the search space. For our
triangle example (Figure 1), recall that
the most natural patch replaces line 6
with (a == b || b == c || a == c). If we only
consider mutations that modify bi-
nary operators, the single-edit search
space of the repair algorithm will not
contain the developer-provided repair,
which requires augmenting the branch
condition with new conditions. On the
other hand, if the search space is too
large, the search can become intrac-

the various triangle categories consid-
ered by the function: INVALID, EQUI-
LATERAL, ISOSCELES, and SCALENE.
Because the code contains a bug, sev-
eral of the tests fail. The goal of au-
tomated program repair is to take a
buggy program and a test suite, such
as these, and produce a patch that fixes
the program. The test suite provides
the correctness criterion in this case,
guiding the repair toward a valid patch.
In general, there may exist any number
of patches for any particular bug, and
even humans can find different patch-
es for real-world bugs.

At a high level, the program repair
problem can be seen as follows: Given
a buggy program P, and a test suite T such
that P fails one or more tests in T, find a
“small” modification of P such that the
modified program P’ passes T. The term
“small” simply refers to the fact that
developers generally prefer a simpler
patch over a complicated one. Some
techniques even try to find a minimal
patch. Others trade off patch size with
other goals, such as finding a patch ef-
ficiently. A particular risk in automated
repair is a “patch” that causes the pro-
vided test cases to pass but that does
not generalize to the complete, typi-
cally unavailable, specification. That is,
the patch produced by an automated
repair method can overfit the test data.
An extreme case of an overfitted repair
for the tests in Figure 2 is the following:

if (a==-1 && b==-1 && c==-1)

 return INVALID;

if (a==1 && b==1 && c==1)

 return EQUILATERAL;

if (a==2 && b==2 && c==3)

 return ISOSCELES;

...

Of course, such a “repaired” program
is not useful since it does not pass any
tests outside the provided test suite.
This example is deliberately extreme.
More commonly, patches produced by
current repair techniques tend to overfit
the provided test suite by disabling (or
deleting) undertested functionality.29

State of the Art
Automatically repairing a bug involves
(implicitly) searching over a space
of changes to the input source code.
Techniques for constructing such
patches can be divided into broad cat-
egories, based on what types of patches
are constructed, and how the search is
conducted. Figure 3 gives an overview
of the techniques. The inputs to these
techniques are a buggy program and a
correctness criterion (the correctness
criterion is often given as a test suite).
Most techniques start with a com-
mon preprocessing step that identi-
fies those code locations that are likely
to be buggy. Such a fault localization
procedure, for example, that by Jones
et al.,8 provides a ranking of code loca-
tions that indicates their potential bug-
gy-ness. At a high level, there are two
main approaches: heuristic repair and
constraint-based repair. These tech-
niques can sometimes be enhanced by
machine learning, which we call learn-
ing-aided repair.

Figure 3. Overview of repair techniques.

Learning/
inference

Model
of patches

Predict
patch

Generate repair
candidate

Validate repair
candidate

Feedback

Heuristic
repair

Extract
constraints

Synthesize code
via constraint solving

Constraint-based
repair

Code
corpus

Buggy
program

Fault
localization

Passing and
failing tests

Code
transformations

Patch
Learning-based

repair

DECEMBER 2019 | VOL. 62 | NO. 12 | COMMUNICATIONS OF THE ACM 61

review articles

table, such that the repair may not be
found by the algorithm in a reasonable
amount of time.

To address this issue, some tech-
niques limit edits to only deletion, inser-
tion, or replacement of code at the state-
ment- or block-level. For code insertion
or replacement, a common approach
is to pull code from elsewhere in the
same program or module, following the
plastic surgery hypothesis (that correct
code can be imported from elsewhere
in the same program)6 or the competent
programmer hypothesis (that program-
mers are mostly competent, and while
they may make a mistake in one portion
of a program, they are likely to have pro-
grammed similar logic correctly, else-
where). Such a technique would there-
fore only consider moving entire blocks
or lines of code around, for example, an
entire if condition semantically simi-
lar to the one shown in Figure 1. This
can often work by virtue of the fact that
source code is repetitive.22

Other techniques have benefited
from using more expressive transfor-
mation templates, such as guarding
a de-reference operation with a null-
pointer check. Such transformation
templates trade off repair space size
for readability and “naturalness” of the
resulting patches. Moving from state-
ment-level edits to expression-level ed-
its increases the search space, with the
amount of increase depending on the
transformation templates used to con-
struct the search space.

However, even if the search space is
large, the mutation operators may not
support the behavioral change needed
by the program or may affect the de-
sired change in ways different from
what a human might propose. A tech-
nique that may modify operators or in-
sert conditions (copied from elsewhere
in the program) would still struggle on
this small program, since (a == c) nev-
er appears verbatim in our example.
Such a lack of correct code fragments
can result in degenerate behavior on
smaller programs that provide little
repair material. It also motivates re-
search in intelligently augmenting the
search space, for example, by consider-
ing past versions of a program.

Test execution. Repair candidates are
evaluated by running the modified pro-
gram on the provided set of test cases.
Test execution is typically the most

expensive step, as test suites can be
large and techniques may need to re-
run them many times. Various strate-
gies have been proposed to reduce this
cost, including test suite selection and
prioritization. Search strategies that
do not require a fitness function, for
example, based on random or deter-
ministic search, can reduce the cost
of testing by simply failing early (at
the first test failure). Moreover, such
techniques may run the test cases in
a heuristic order designed to maxi-
mize the chance that, if a test case is
going to fail, it is run early in the vali-
dation process.

Traversal strategy. Finally, tech-
niques vary in how they choose which
patches to explore, and in what order.
GenProg,37 an early technique pro-
posed in this domain, implements a
genetic programming algorithm with
a fitness function based on the num-
ber of test cases passed by a patched
program. Subsequent techniques
like PAR9 have followed, varying in
the mutation operators (PAR) or the
fitness function. Other techniques
simply sample randomly typically
restricting themselves to single-edit
patches,21 or in a heuristic, determin-
istic order as in GenProg AE.36

Constraint-based repair. In contrast
to heuristic repair techniques, con-
straint-based techniques proceed by
constructing a repair constraint that
the patched code should satisfy, as il-
lustrated in Figure 3. The patch code
to be generated is treated as a function
to be synthesized. Symbolic execution
or other approaches extract properties
about the function to be synthesized;
these properties constitute the repair
constraint. Solutions to the repair con-
straint can be obtained by constraint
solving or other search techniques. In
these approaches, formulation of the
repair constraint is the key, not the
mechanism for solving it. This class of
techniques can be captured via the fol-
lowing schematic:

for test t ∈ test-suite T
compute repair constraint ψt

synthesize e as solution for Vt ψt

In this case, T is the test suite used
as the correctness criterion to guide
repair. The constraint ψt will be com-
puted via a symbolic execution10 of the

path traversed by test t ∈ T. The con-
straint ψt is often of the form
ψt ≡ πt ∧ output = expected

where πt is the path condition of the
path traversed by test t, output is the
symbolic expression capturing the out-
put variable in the execution of t and ex-
pected captures the oracle or expecta-
tion. The path condition of a program
path is a formula, which is true for
those inputs which traverse the path.10

Computing repair constraints and
angelix values. To illustrate constraint-
based repair, reconsider our running
example from earlier. SemFix,18 which
is representative for constraint-based
techniques, substitutes the faulty con-
dition in line 6 with an abstract func-
tion f (a,b,c) on the live variables. In this
example, f is a predicate that takes the
integer values a,b,c and returns true/
false. Then, the technique symbolically
executes the tests in the given test suite
to infer properties about the unknown
function f. These properties are crucial
for synthesizing an appropriate f that
can pass all the given test cases.

The first t wo t ests i n o ur t est s uite
do not even reach line 6. Hence, Sem-
Fix will not infer any property about the
function f from them. From the last four
tests, it can infer the repair constraint

f (2,2,3) ∧ f (3,2,2) ∧ f (2,3,2) ∧! f (2,3,4)

This is because analysis of the pro-
gram has revealed that for input exer-
cising line 6 if f is true, the program
returns ISOSCELES and otherwise
SCALENE.

Inferring detailed constraint speci-
fications can be difficult, sometimes
posing significant scalability issues.
This motivates more efficient infer-
ence of value-based specifications.16 In
particular, angelic values are inferred
for patch locations, where an angelic
value for a fixed location is one that
makes a failing test case pass. Once
(collections of) angelic values are iden-
tified for each failing test, program
synthesis can then be employed to gen-
erate patch code meeting such a value-
based specification. This is the phi-
losophy embodied in the Angelix tool16
where angelic values are obtained via
symbolic execution (instead of produc-
ing repair specifications in the form of
SMT constraints via symbolic execu-
tion directly). This way of dividing the

62 COMMUNICATIONS OF THE ACM | DECEMBER 2019 | VOL. 62 | NO. 12

review articles

software efficiency, several approaches
identify optimization opportunities
and make suggestions on how to refac-
tor the code to improve performance.
These approaches typically focus on a
particular kind of performance prob-
lem, for example, unnecessary loop
executions19 or repeated executions of
the same computation.31 Another line
of work selects which data structure
is most likely to provide the best per-
formance for a given program out of
a given set of functionally equivalent
data structures.26 All these approaches
suggest code changes but leave the fi-
nal decision whether to apply an opti-
mization to the developer.

To mitigate security threats, various
techniques for repairing programs at
runtime have been proposed. These ap-
proaches automatically rewrite code to
add a runtime mechanism that enforces
some kind of security policy. For exam-
ple, such repair techniques can enforce
control flow integrity,1 prevent code in-
jections,30 automatically insert sanitiz-
ers of untrusted input, or enforce auto-
matically inferred safety properties.20

We note that existing techniques
to repair non-functional properties
typically focus on a particular kind of
problem, for example, a kind of perfor-
mance anti-pattern or attack. This dis-
tinguishes them from the core repair
literature for fixing correctness bugs,
which typically aim at fixing a larger set
of errors.

Perspectives and Challenges
Despite tremendous advances in pro-
gram repair during the last decade,
there remain various open challenges
to be tackled by future work. We iden-
tify three core challenges: increasing
and ensuring the quality of repairs;
extending the scope of problems ad-
dressed by repair; and integrating re-
pair into the development process.

Quality. The quality challenge is
about increasing the chance an auto-
matically identified repair provides a
correct fix that is easy to maintain in
the long term. Addressing this chal-
lenge is perhaps the most important
step toward real-life adoption of pro-
gram repair.

Measures of correctness. An impor-
tant aspect of fix quality is whether the
fix actually corrects the bug. In prac-
tice, program repair relies on measures

repair task into angelic value determi-
nation and patch code generation to
meet angelic values is symptomatic of
semantic repair approaches.

Instead of obtaining angelic values
by symbolic execution and constraint
solving, they may also be obtained by
search, particularly for conditional
statements. This is because each oc-
currence of a conditional statement
has only two possible return values:
true and false. Techniques that work
on enumerating possible angelic val-
ues without adopting symbolic execu-
tion13,39 typically try to repair condi-
tional statements exclusively, where
the angelic values are exhaustively enu-
merated until all failing test cases pass.
Such techniques adopt the work-flow of
semantic repair techniques (specifica-
tion inference followed by patch gen-
eration), with an enumeration step fully
or partially replacing symbolic program
analysis. Symbolic analysis-based ap-
proaches such as Mechtaev et al.16 on
the other hand, avoid exhaustive enu-
meration of possible angelic values.

Solving constraints to find a patch.
Once repair constraints or angelic
value(s) of a statement to be fixed are
obtained, these techniques must gen-
erate a patch to realize the angelic
value. Finding a solution to the repair
constraint yields a definition of the ab-
stract function f, which corresponds to
the patched code. This is often achieved
by either search or constraint solving,
where the operators allowed to appear
in the yet-to-be synthesized function f
are restricted. In this example, if we re-
strict the operators allowed to appear in f
to be relational operators most search or
solving techniques will find the expres-
sion a == b || b == c || a == c. Efficient
program synthesis techniques (see Alur
et al.2 for an exposition of some recent
advances in program synthesis) are often
used to construct the function f.

Learning-based repair. Recent im-
provements in advanced machine learn-
ing, especially deep learning, and the
availability of large numbers of patches
enable learning-based repair. Current
approaches fall approximately into
three categories that vary by the extent to
which they exploit learning during the
repair process. One line of work14 learns
from a corpus of code a model of correct
code, which indicates how likely a given
piece of code is with regard to the code

corpus. The approach then uses this
model to rank a set of candidate patch-
es to suggest the most realistic patches
first. Another line of work infers code
transformation templates from suc-
cessful patches in commit histories.3,12
In particular, Long et al.12 infers AST-to-
AST transformation templates that sum-
marize how patches modify buggy code
into correct code. These transformation
templates can then be used to generate
repair candidates.

The third line of work not only im-
proves some part of the repair pro-
cess through learning, but also trains
models for end-to-end repair. Such a
model predicts the repaired code for a
given piece of buggy code, without re-
lying on any other explicitly provided
information. In particular, in contrast
to the repair techniques discussed
previously, such models do not rely
on a test suite or a constraint solver.
DeepFix5 trains a neural network that
fixes compilation errors, for example,
missing closing braces, incompatible
operators, or missing declarations.
The approach uses a compiler as an
oracle to validate patch candidates
before suggesting them to the user.
Tufano et al.32 propose a model that
predicts arbitrary fixes and trains this
model with bug fixes extracted from
version histories. According to their
initial results, the model produces
bug-fixing patches for real defects in
9% of the cases. Both approaches ab-
stract the code before feeding it into
the neural network. For the running
example in Figure 1, this abstraction
would replace the application-spe-
cific identifiers triangle and EQUI-
LATERAL with generic placeholders,
such as VAR1 and VAR2. After this
abstraction, both approaches use an
RNN-based sequence-to-sequence
network that predicts how to modify
the abstracted code.

Given the increasing interest in
learning-based approaches toward
software engineering problems, we will
likely see more progress on learning-
based repair in the coming years. Key
challenges toward effective solutions
include finding an appropriate repre-
sentation of source code changes and
obtaining large amounts of high-quali-
ty human patches as training data.

Repair of non-functional proper-
ties. To help developers improve the

DECEMBER 2019 | VOL. 62 | NO. 12 | COMMUNICATIONS OF THE ACM 63

review articles

of correctness. Finding such a measure
is a difficult and unsolved problem,
which applies both to patches pro-
duced by humans and by machines. To
date, researchers have assessed quality
using human judgment, crowdsourced
evaluations, comparison to developer
patches of historical bugs, or patched
program performance on indicative
program workloads or held-out test
cases. The recent work of Xiong et al.38
provides a novel outlook for filtering
patches based on the behavior of the
patched program vis-a-vis the original
program on passing and failing tests.

Alternative oracles. The bulk of the
existing literature focuses on test-based
repair where the correctness criteria is
given as a test suite. Richer correctness
properties, for example, assertions or
contracts, can be used to guide repair
when available.34 Other approaches
consider alternative oracles, such as
potential invariants inferred from dy-
namic executions.20 Such approaches
can follow the “bugs as deviant behav-
ior” philosophy, where deviations of an
execution from “normal” executions
are observed and avoided. In particu-
lar, Weimer et al.35 provide an overview
of various (partial) oracles that can be
used for repair.

Correctness guarantees. Few of to-
day’s repair techniques provide any
guarantees about the correctness of
produced patches, which can hinder
the application of automated repair,
especially to safety-critical software. If
correctness guarantees are available
as properties, such as pre-conditions,
post-conditions, and object invariants,
these can be used to guide program
repair. The work of Logozzo and Ball11
reports such an effort where repair
attempts to increase the number of
property-preserving executions, while
reducing the number of violating ex-
ecutions. However, such formal tech-
niques are contingent on the proper-
ties to drive the repair being available.

Maintainability. Once a correct fix
has been detected and applied to the
code base, the fixed code should be as
easy to maintain as a human fix. Initial
work in this domain has investigated
the effect that automatically generated
patches impact human maintenance
behavior.4 More study is needed to de-
velop a foundational understanding of
change quality, especially with respect

to the human developers who will in-
teract with a modified system.

A promising avenue for tackling the
quality challenge is by leveraging infor-
mation available from other develop-
ment artifacts, including documenta-
tion or formal specifications, language
specifications and type systems, or
source control histories of either the
program under repair or of the broad
corpora of freely available open source
software. Such additional information
can reduce the repair search space by
imposing new constraints on potential
program modifications (for example,
as suggested by a type system) and
increase the probability that the pro-
duced patch is human-acceptable.

Scope. The scope challenge is about
further extending the kinds of bugs
and programs to which automated re-
pair applies.

General-purpose repair. Research
in program analysis has long focused
on special-purpose repair tools for
specific kind of errors, such as buffer
overflow errors,20 or bugs in domain-
specific languages.24 More recent work,
as discussed earlier, focuses on gen-
eral-purpose repair tools that do not
make any assumptions about the kind
of bugs under consideration. While au-
tomatically fixing all bugs seems out of
reach in the foreseeable future, target-
ing a broad set of bugs remains an im-
portant challenge.

Complex programs and patches.
Many of the key innovations in the
initial research in program repair con-
cerned the scalability of techniques
to complex programs. For example,
search-based techniques moved from
reasoning over populations of pro-
gram ASTs to populations of small edit
programs (the patches themselves)
and developed other techniques to ef-
fectively constrain the search space.
Constraint-based repair strategies
have moved from reasoning about the
semantics of entire methods to only
reasoning about the desired change
in behavior. These efforts enable scal-
ing to programs of significant size,
and multi-line repairs.16 We antici-
pate that scalability will periodically
return to the fore as program repair
techniques engage in more complex
reasoning. We emphasize here that
program repair techniques should
remain scalable with respect to large

Once repair
constraints
or angelic value(s)
of a statement
to be fixed
are obtained,
these techniques
generate a patch
to realize the
angelic value.

64 COMMUNICATIONS OF THE ACM | DECEMBER 2019 | VOL. 62 | NO. 12

review articles

but possibly incorrect patches by, for
example, favoring smaller patches or
favoring patches “similar” to human
patches. Nevertheless, the developer
still needs to explore the remaining
large set of patch suggestions.

Explaining repairs. A strongly re-
lated problem is to explain repair sug-
gestions. One idea worth pursuing
is to compute and present the corre-
lation of patches based on program
dependencies and other semantic
features, which allow the developer
to loosely group together plausible
patches. Explaining repairs is needed
particularly in its application to pro-
gramming education.40 Instead of
merely fixing a students’ incorrect
program to the model correct pro-
gram, it is useful for the repair tool to
generate hints of what is missing in
the students’ repair. Such hints may
take the form of logical formulae cap-
turing the effect of repairs, which are
gleaned from constraint-based repair
tools; these hints may be presented in
natural language, instead of logic, for
easy comprehension by the learners.

Conclusion
Automated program repair remains an
enticing yet achievable possibility that
can improve program quality while im-
proving programmers’ development
experience.

Technically speaking, automated
repair involves challenges in defining,
navigating, and prioritizing the space
of patches. The field benefits from past
lessons learned in search space defini-
tion and navigation in software testing,
as embodied by the vast literature in
test selection and prioritization. The
GenProg tool37 is just one example of
how genetic search, which has been
useful for testing, can be potentially
adapted for repair. At the same time,
automated repair comes with new chal-
lenges because it may generate patches
that overfit the given tests. This is a
manifestation of tests being incom-
plete correctness specifications. Thus,
there is a need for inferring specifica-
tions to guide repair, possibly by pro-
gram analysis. The Semfix and Ange-
lix tools16,18 are a few examples of how
the repair problem can be envisioned
as one of inferring a repair constraint,
and they have shown the scalability of
such constraint-based techniques.

programs as well as large search spaces
(complex changes).

Development process. The final
challenge is about integrating repair
tools into the development process.

Integration with bug detection. Bug
detection is the natural step preceding
program repair. It is possible to fuse
debugging and repair into one step, by
viewing repair as the minimal change,
which makes the program pass the
given tests. We envision future work
integrating repair with bug detection
techniques, such as static analysis
tools. Doing so may enable repair tech-
niques to obtain additional informa-
tion about possible repairs from static
analyses, in addition to the test cases
used nowadays. As a first step in this
direction, a static analysis infrastruc-
ture used at Google suggests fixes for
a subset of its warnings.23 A promising
future direction here could be to ex-
tend static analysis tools for generat-
ing dynamic witnesses or scenarios of
undesirable behavior.

IDE integration. Most of today’s
repair tools are research prototypes.
Bringing these tools to the fingertips
of developers in a user-friendly fashion
will require efforts toward integrating
repair into integrated development
environments (IDEs). For example, an
IDE-integrated repair tool could re-
spond to either failed unit or system
tests or developer prompting. To the
best of our knowledge, this applica-
tion has not yet been widely explored.
Suitably interactive response times are
a precondition for such an approach.
This research direction will benefit
from interaction with experts in devel-
oper tooling and human-computer in-
teraction, to ensure tools are designed
and evaluated effectively.

Interactivity. As program repair
gets integrated into development en-
vironments, interacting with the de-
veloper during repair is important.
While the focus in the past decade has
been on fully automated repair, put-
ting the developer back into the loop
is necessary, in particular, due to the
weak specifications (test suites) often
used to guide program repair. User
interactivity may be needed to yield
expected outputs of additional test
inputs that are generated to strength-
en the test-suite driving repair.27 It is
of course possible to filter plausible

Automated
program repair
remains an enticing
yet achievable
possibility that
can improve
program quality
while improving
programmers’
development
experience.

DECEMBER 2019 | VOL. 62 | NO. 12 | COMMUNICATIONS OF THE ACM 65

review articles

Conceptually speaking, automated
program repair closes the gap be-
tween the huge manual effort spent
today in writing correct programs,
and the ultimate dream of generating
programs automatically via learning
approaches. Given the challenges of
generating multiline program fixes in
program repair, we can thus imagine
the difficulty of generating explain-
able programs automatically.

Pragmatically speaking, automated
program repair also makes us keenly
aware of the challenges in managing
changes in software engineering proj-
ects, and the need for automation in
this arena. Today, manual debugging
and maintenance often takes up 80%
of the resources in a software project,
prompting practitioners to long de-
clare a legacy crisis.25 In the future,
program repair can provide tool sup-
port by repairing bugs from complex
changes in software projects. This can
help resolve a dilemma of developers
when managing program changes:
“Our dilemma is that we hate change
and love it at the same time; what we
really want is for things to remain the
same but get better.”d

Acknowledgments. The authors
acknowledge many discussions with
researchers at the Dagstuhl seminar
17022 on Automated Program Repair
(Jan. 2017). Claire Le Goues acknowl-
edges support of the U.S. National
Science Foundation under grants no.
CCF-1750116 and CCF-1738253. Mi-
chael Pradel acknowledges support of
BMWF/Hessen within CRISP and sup-
port of the DFG within the ConcSys and
Perf4JS projects. Abhik Roychoudhury
acknowledges support of National Re-
search Foundation Singapore, Nation-
al Cybersecurity R&D program (Award
No. NRF2014NCR-NCR001-21).

d Quote by Sydney J. Harris.

References
1. Abadi, M., Budiu, M., Erlingsson, U. and Ligatti, J.

Control-flow integrity. In Proceedings of the 12th
ACM Conference on Computer and Communications
Security, 2005, ACM, 340–353.

2. Alur, R., Singh, R., Fisman, D. and Solar-Lezama, A.
Search-based program synthesis. Commun. ACM 61
(2018), 84–93.

3. Brown, D.B., Vaughn, M., Liblit, B. and Reps, T.W.
The care and feeding of wild-caught mutants.
In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, (Paderborn,
Germany, Sept. 4–8, 2017), 511–522.

4. Fry, Z.P., Landau, B., and Weimer, W. A human study
of patch maintainability. In Proceedings of the Intern.
Symp. on Software Testing and Analysis, 2012, 177–187.

5. Gupta, R., Pal, S., Kanade, A. and Shevade, S.
DeepFix: Fixing common C language errors by deep
learning. Assoc. for the Advancement of Artificial
Intelligence, 2017.

6. Harman, M. Automated patching techniques: The fix is
in. Commun. ACM 53 (2010), 108–108.

7. Johnson, B., Song, Y., Murphy-Hill, E. and Bowdidge,
Z. Why don’t software developers use static analysis
tools to find bugs? In Proceedings of the Intern. Conf.
on Software Engineering, 2013, 672–681.

8. Jones, J.A., Harrold, M.J. and Stasko, J. Visualization
of test information to assist fault localization. In
Proceedings of the ACM/IEEE Intern. Conf. on
Software Engineering, 9.

9. Kim, D., Nam, J., Song, J. and Kim, S. Automatic patch
generation learned from human-written patches.
In Proceedings of the ACM/IEEE International
Conference on Software Engineering, 2013.

10. King, J.C. Symbolic execution and program testing.
Commun. ACM 19 (1976).

11. Logozzo, F. and Ball, T. Modular and verified
automatic program repair. In Proceedings of Object-
Oriented Programming Systems Languages and
Applications, 2012.

12. Long, F., Amidon, P. and Rinard, M. Automatic
inference of code transforms for patch generation. In
Proceedings of the ACM SIGSOFT Intern. Symp. on
Foundations of Software Engineering, 2017.

13. Long, F. and Rinard, M. Staged program repair with
condition synthesis. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software
Engineering, 2015.

14. Long, F. and Rinard, M. Automatic patch generation
by learning correct code. In Proceedings of the
ACM Intern. Symp. on Principles of Programming
Languages, 2016.

15. Marginean, A., Bader, J., Chandra, S., Harman,
M., Jia,Y., Mao, K., Mols, A. and Scott, A. Sapfix:
Automated end-to-end repair at scale. In Proceedings
of the Intern. Conf. on Software Engineering, Software
Engineering in Practice track, 2019.

16. Mechtaev, S., Yi, J. and Roychoudhury, A. Angelix:
Scalable multiline program patch synthesis via
symbolic analysis. In Proceedings of the ACM/IEEE
Intern. Conf. on Software Engineering, 2016.

17. Monperrus, M. Automatic software repair: A
bibliography. ACM Computing Surveys 51, 1 (2017).

18. Nguyen, H.D.T., Qi, D., Roychoudhury, A. and Chandra,
S. SemFix: Program repair via semantic analysis.
In Proceedings of the ACM/IEEE Intern. Conf. on
Software Engineering, 2013.

19. Nistor, A., Chang, P-C., Radoi, C. and Lu, S. Caramel:
Detecting and fixing performance problems that have
non-intrusive fixes. In Proceedings of ICSE, 2015.

20. Perkins, J.H. et al. Automatically patching errors in
deployed software. In Proceedings of the Symp. on
Operating Systems Principles. ACM, 2009.

21. Qi, Y., Mao, X., Lei, Y., Dai, Z. and Wang, C. The strength
of random search on automated program repair.
In Proceedings of the Intern. Conf. on Software
Engineering, 2014.

22. Ray, B., Hellendoorn, V., Godhane, S., Tu, Z., Bacchelli,
A. and Devanbu, P. On the “naturalness” of buggy
code. In Proceedings of the 38th Intern. Conf. on
Software Engineering (Austin, TX, USA, May 14–22,
2016), 428–439.

23. Sadowski, C., Aftandilian, E., Eagle, A., Miller-Cushon,
L. and Jaspan, C. Lessons from building static analysis
tools at google. Commun. ACM 61, 4 (Apr. 2018), 58–66.

24. Samimi, H., Schäfer, M., Artzi, S., Millstein,T., Tip, F.
and Hendren, L. Automated repair of HTML generation
errors in PHP applications using string constraint
solving. In Proceedings of the 34th Intern. Conf. on
Software Engineering, 2012.

25. Seacord, R., Plakosh, D. and Lewis, G. Modernizing
Legacy Systems: Software Technologies,
Engineering Processes and Business Practices.
Addison Wesley, 2003.

26. Shacham, O.M., Vechev, M.T. and Yahav, E. Chameleon:
Adaptive selection of collections. In Proceedings
of Conf. on Programming Language Design and
Implementation, 2009. ACM, 408–418.

27. Shriver, D., Elbaum, S. and Stolee, K.T. At the
end of synthesis: narrowing program candidates.
In Proceedings of the Intern. Conf. on Software
Engineering, 2017.

28. Singh, R., Gulwani, S. and Solar-Lezama, A.
Automated feedback generation for introductory
programming assignments. In Proceedings of the
Intern. Conf. on Programming Language Design and
Implementation, 2013.

29. Smith, E.K., Barr, E., Le Goues, C. and Brun, Y. Is the
cure worse than the disease? overfitting in automated
program repair. In Proceedings of the International
Symposium on Foundations of Software Engineering
(FSE), 2015.

30. Su, Z. and Wassermann, G. The essence of command
injection attacks in Web applications. In Proceedings
of Symp. on Principles of Programming Languages,
2006, 372–382.

31. Toffola, L.D., Pradel, M. and Gross, T.R. Performance
problems you can fix: A dynamic analysis of
memoization opportunities. In Proceedings of Conf. on
Object-Oriented Programming, Systems, Languages,
and Applications, 2015.

32. Tufano, M., Watson, C., Bavota, G., Di Penta, M., White,
M. and Poshyvanyk, D. An empirical investigation
into learning bug-fixing patches in the wild via neural
machine translation. In Proceedings of Intern. Conf.
on Automated Software Engineering, 2018.

33. Urli, S., Yu, Z., Seinturier, L. and Monperrus, M. How
to design a program repair bot? insights from the
repairnator project. In Proceedings of Intern. Conf. on
Software Engineering, Track Software Engineering in
Practice, 2018.

34. Wei, Y., Pei, Y., Furia, C.A., Silva, L.S., Buchholz, S.,
Meyer, B. and Zeller, A. Automated fixing of programs
with contracts. In Proceedings of ACM Intern. Symp.
on Software Testing and Analysis, 2010.

35. Weimer, W., Forrest, S., Kim, M., Le Goues, C. and
Hurley, P. Trusted software repair for system
resiliency. In Proceedings of 46th Annual IEEE/IFIP
Intern. Conf. on Dependable Systems and Networks
Workshops, 2016.

36. Weimer, W., Fry, Z, and Forrest, S. Leveraging program
equivalence for adaptive program repair: Models and
first results. In Proceedings of ACM/IEEE Intern.
Conf. on Automated Software Engineering, 2013.

37. Weimer, W., Nguyen, T.V., Le Goues, C. and Forrest,
S. Automatically finding patches using genetic
programming. In Proceedings of ACM/IEEE Intern.
Conf. on Software Engineering, 2009.

38. Xiong, Y., Liu, X., Zeng, M., Zhang, L. and Huang, G.
Identifying patch correctness in test-based program
repair. In Proceedings of Intern. Conf. on Software
Engineering, 2018.

39. Xuan, J., Martinez, M., Demarco, F., Clement,
M., Marcote, S.L., Durieux, T., Le Berre, D. and
Monperrusm M. Nopol: Automatic repair of conditional
statement bugs in Java programs. IEEE Trans.
Software Engineering 43, (2017).

40. Yi, J., Ahmed, U.Z., Karkare, A., Tan, S.H. and
Roychoudhury, A. A feasibility study of using
automated program repair for introductory
programming assignments. In Proceedings of ACM
SIGSOFT Intern. Symp. Foundations of Software
Engineering, 2017.

Claire Le Goues (clegoues@cs.cmu.edu) is an associate
professor at Carnegie Mellon University, Pittsburgh,
PA, USA.

Michael Pradel (michael@binaervarianz.de) is a
professor at the University of Stuttgart, Germany.

Abhik Roychoudhury (abhik@comp.nus.edu.sg) is a
professor at the National University of Singapore.

© 2019 ACM 0001-0782/19/12

Watch the authors discuss
this work in the exclusive
Communications video.
https://cacm.acm.org/videos/
automated-program-repair

