

This chapter was originally published in the book Advances in Computers, Vol. 101 published by Elsevier,

and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's

institution, for non-commercial research and educational use including without limitation use in instruction

at your institution, sending it to specific colleagues who know you, and providing a copy to your

institution’s administrator.

All other uses, reproduction and distribution, including without limitation commercial reprints, selling or

licensing copies or access, or posting on open internet sites, your personal or institution’s website or

repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's

permissions site at:

http://www.elsevier.com/locate/permissionusematerial

From Abhijeet Banerjee, Sudipta Chattopadhyay and Abhik Roychoudhury, On Testing Embedded

Software. In: Atif Memon, editor, Advances in Computers, Vol. 101, Burlington: Academic Press, 2016,

pp. 121-153.

ISBN: 978-0-12-805158-0

© Copyright 2016 Elsevier Inc.

Academic Press

Provided for non-commercial research and educational use only.
Not for reproduction, distribution or commercial use.

CHAPTER THREE

On Testing Embedded Software
Abhijeet Banerjee*, Sudipta Chattopadhyay†, Abhik Roychoudhury*
*National University of Singapore, Singapore
†Saarland University, Saarbrücken, Germany

Contents

1. Introduction 122
2. Testing Embedded Software 125

2.1 Testing Functional Properties 125
2.2 Testing Non-functional Properties 127

3. Categorization of Testing Methodologies 130
4. Black-Box Abstraction 131
5. Grey-Box Abstraction 133

5.1 Timed State Machines 134
5.2 Markov Decision Process 136
5.3 Unified Modeling Language 137
5.4 Event Flow Graph 138

6. White-Box Abstraction 140
6.1 Testing Timing-related Properties 140
6.2 Testing Functionality-related Properties 143
6.3 Building Systematic Test-execution Framework 145

7. Future Directions 146
8. Conclusion 148
Acknowledgment 149
References 150
About the Authors 152

Abstract

For the last few decades, embedded systems have expanded their reach into major
aspects of human lives. Starting from small handheld devices (such as smartphones)
to advanced automotive systems (such as anti-lock braking systems), usage of embed-
ded systems has increased at a dramatic pace. Embedded software are specialized soft-
ware that are intended to operate on embedded devices. In this chapter, we shall
describe the unique challenges associated with testing embedded software. In partic-
ular, embedded software are required to satisfy several non-functional constraints, in
addition to functionality-related constraints. Such non-functional constraints may
include (but not limited to), timing/energy-consumption related constrains or reliability
requirements, etc. Additionally, embedded systems are often required to operate in

Advances in Computers, Volume 101 # 2016 Elsevier Inc.
ISSN 0065-2458 All rights reserved.
http://dx.doi.org/10.1016/bs.adcom.2015.11.005

121

Author's personal copy

http://dx.doi.org/10.1016/bs.adcom.2015.11.005

interaction with the physical environment, obtaining their inputs from environmental
factors (such as temperature or air pressure). The need to interact with a dynamic, often
non-deterministic physical environment, further increases the challenges associated
with testing, and validation of embedded software. In the past, testing and validation
methodologies have been studied extensively. This chapter, however, explores the
advances in software testing methodologies, specifically in the context of embedded
software. This chapter introduces the reader to key challenges in testing non-functional
properties of software by means of realistic examples. It also presents an easy-to-follow,
classification of existing research work on this topic. Finally, the chapter is concluded
with a review of promising future directions in the area of embedded software testing.

1. INTRODUCTION

Over the last few decades, research in software testing has made sig-

nificant progress. The complexity of software has also increased at a dramatic

pace. As a result, we have new challenges involved in validating complex,

real-world software. In particular, we are specifically interested in testing

and validation of embedded software. In this modern world, embedded sys-

tems play a major role in human lives. Such software can be found ubiqui-

tously, in electronic systems such as consumer electronics (eg, smartphones,

mp3 players, and digital cameras) and household appliances (eg, washing

machines and microwave ovens) to automotive (eg, electric cars and anti-

lock braking systems) and avionic applications. Software designed for

embedded systems have unique features and constraints that make its valida-

tion a challenging process. For instance, unlike Desktop applications, the

behavior of an embedded systems often depends on the physical environ-

ment it operates in. As a matter of fact, many embedded systems often take

their inputs from the surrounding physical environment. This, however,

poses unique challenges to testing of such systems because the physical envi-

ronment may be non-deterministic and difficult to recreate during the test-

ing process. Additionally, most embedded systems are required to satisfy

several non-functional constraint such as timing, energy consumption, reli-

ability, to name a few. Failure to meet such constraints can result in varying

consequences depending upon the application domain. For instance, if the

nature of constraints on the software are hard real time, violation may lead to

serious consequences, such as damage to human life and property. There-

fore, it is of utmost importance that such systems be tested thoroughly before

being put to use. In the proceeding sections, we shall discuss some of the

techniques proposed by the software engineering community that are

122 Abhijeet Banerjee et al.

Author's personal copy

targeted at testing and validation of real life, embedded systems from various

application domains and complexities. However, first we shall present an

example, inspired from a real life embedded system, that will give the reader

an idea on the nature of constraints commonly associated with embedded

systems.

Fig. 1 provides the schematic representation of a wearable fall detection

application [1]. Such an application is used largely in the health care domain

to assist the frail or elderly patients. The purpose of the system, as shown in

Fig. 1, is to detect a potential fall of its wearer and to invoke appropriate safety

measures. In order to detect a fall, the system needs to monitor the user’s

movement. This task is accomplished via a number of sensors, that are posi-

tioned at different parts of the patient’s body. These sensors detect physical

motions and communicate the information via wireless sensor networks. In

the scenario when the system detects a potential fall it activates appropriate

safety measures, such as informing the health care providers over mobile net-

works. Testing the fall-detection system is essential to ensure its functional

correctness, such as a potential fall must not go undetected. However, such a test-

ing requires the inputs from the sensors. To properly test the system, its

designers should be able to systematically model the inputs from sensors

and the surrounding environment.

Apart from the functional correctness, the fall-detection system also

needs to satisfy several non-functional constraints. For instance, the detec-

tion of a fall should meet hard timing constraints. In the absence of such con-

straints, the respective patient might get seriously injured, making the system

impractical to use. Moreover, if the application is deployed into a battery

operated device, its energy consumption should be acceptable to ensure a

graceful degradation of battery life. Finally, due to the presence of unreliable

hardware components (eg, sensors) and networks (eg, sensor and mobile

Alert to health
care providers

Airbag
inflation

Gyroscope

Accelerometer

.

.

.

Sensors

Computing fall

detection
Wireless sensor

network

(fitted in human body)
Safety measures

Mobile
network

Unreliable components

Real-time constraints

Figure 1 A wearable fall-detection application.

123On Testing Embedded Software

Author's personal copy

networks), the application should also guarantee that a potential fall of the

patient is detected with acceptable reliability.

Non-functional properties of embedded software, such as timing and

energy, are extremely sensitive to the underlying execution platform. This

makes the testing process complicated, as the underlying execution platform

may not be available during the time of testing. Besides, if the embedded

software is targeted at multiple execution platforms, its non-functional prop-

erties need to be validated for each such platform. To alleviate these issues, a

configurable model for the execution platform might be used during the

testing process. For instance, such a configurable model can capture the

timing or energy behavior of different hardware components. Building such

configurable models, however, may turn out challenging due to the com-

plexity of hardware and its (vendor-specific) intellectual properties.

Over the last two decades, numerous methods in software testing have

been proposed. These include random testing, search-based testing, and

directed testing (eg, based on symbolic execution), among several others.

These testing methodologies have focused primarily on the validation of

functional properties. Validation of non-functional software properties, have

gained attention only recently. In this Chapter, we explore the potential of

different testing methodologies in the context of embedded software. For

an embedded software, its non-functional aspects play a crucial role in the val-

idation process. We introduce some salient properties of validating typical

embedded systems in Section 2. Subsequently, we shall explore the recent

advances in testing embedded systems in Section 3.We first categorize all test-

ing methodologies into three broader categories. Such categories reflect the

level of abstraction, in which embedded systems are validated. In particular,

our first category captures black-box testing, where the system is abstracted

away and test inputs are generated via sampling of the input space. The

remaining categories either use an abstract model of the system or the actual

implementation.We shall discuss that different testing machineries (eg, evo-

lutionary testing and symbolic execution) can be employed for such catego-

ries. Based on our categorization of testing embedded systems, we shall argue

that no single category can be decided to be superior than others. In general,

the choice of abstraction, for testing embedded system, largely depends on the

intentionof thedesigner. For instance, if thedesigner is interested in detecting

fine-grained events (eg, memory requests and interrupts), it is recommended

to carry out the testing process on the actual implementation (eg, binary

code). On the contrary, testing binary code may reveal non-functional bugs

too late in the design process, leading to a complete redesign of the software.

124 Abhijeet Banerjee et al.

Author's personal copy

Through this chapter, we aim to bring the attention of software engi-

neering community towards the unique challenges involved in embedded

software testing. Specifically, testing of non-functional properties is an inte-

gral part of validating embedded software. In order to validate non-functional

properties, software testing methodologies should explicitly target to dis-

cover non-functional bugs, such as the loss of performance and energy.

Moreover, in order to test functional properties of embedded software,

the designer should be able to simulate the interaction of software with

the physical environment. We shall discuss several efforts in recent years

to discover functional as well as non-functional bugs in embedded soft-

ware. In spite of these efforts, numerous challenges still exist in validating

embedded software. For instance, non-functional behaviors of embedded

software (eg, time and power) can be exploited to discover secret inputs

(eg, secret keys in cryptographic algorithms). Testing of timing and

energy-related properties is far from being solved, not to mention the

immaturity of the research field to validate security constraints in embed-

ded software. We hope this chapter will provide the necessary background

to solve these existing challenges in software testing.

2. TESTING EMBEDDED SOFTWARE

Analogous to most software systems, testing embedded software is an

integral part of the software development life cycle. To ensure the robustness

of embedded software, both its functional and non-functional properties

need to be examined. In the following discussion, we outline some salient

features that make the testing of embedded systems unique and challenging,

compared to traditional software systems.

2.1 Testing Functional Properties
The functionality of software systems capture the way such systems should

behave. Therefore, testing functional properties is a critical phase for all

applications. Typically, the functionality testing of software aims to discover

“buggy” scenarios. For instance, such buggy scenarios may capture the vio-

lation of software behavior with respect to the specification or an implemen-

tation bug (eg, null pointer dereference and assertion failure). To discover

and investigate a buggy scenario, the designer must be provided with appro-

priate test inputs that trigger the respective bug. Therefore, software testing

tools should have a clear domain knowledge of the relevant inputs to

the system. For embedded software, the functionality is often (partially)

125On Testing Embedded Software

Author's personal copy

controlled by the physical environment. Such physical environment might

include air pressure, temperature, physical movement, among others.

Unfortunately, the physical environment, where an embedded software is

eventually deployed, is often not present during the testing time. For

instance, consider the fall-detection application, which was introduced in

the preceding section. It is crucial that the designed software invokes appro-

priate actions according to the movement of the patient. In the actual work-

ing environment, such movements are sampled from sensor inputs.

Consider the code fragment in Fig. 2, which reads an accelerometer and

takes action accordingly. The function f(buffer) captures a predicate on

the values read into the buffer. The else branch of the code fragment

exhibits a division-by-zero error when buffer[0] ¼ 0. In order to execute

the else branch, the test input must, additionally, satisfy the condition

f(buffer)¼ 0. As the value of buffer depends on the physical environment,

the inputs from the accelerometer might often need to be simulated via suit-

able abstractions. Similarly, for embedded software, whose functionality

might depend on air pressure or temperature, the testing process should

ensure that the respective software acts appropriately in different environ-

mental conditions. In general, to simulate the physical environment, the

designer may potentially take the following approaches:

• The physical environment (eg, inputs read from sensors) might be made

completely unconstrained during the time of testing. This enables the test-

ing of software under all operating conditions of the physical environ-

ment. However, such an approach might turn infeasible for complex

embedded software. Besides, unconstraining the physical environment

might lead to unnecessary testing for irrelevant inputs. Such inputs

may include sensor readings (such as �300 K for air temperature read-

ings) that may never appear in the environment where the software is

deployed.

int x, y, buffer[128];

buffer = read_accelerometer(); //read accelerometer

if (f(buffer))
 Code A; //non-buggy code fragment
else
 y = x/buffer[0]; //buggy code fragment

Figure 2 The dependency of functionality on the physical environment.

126 Abhijeet Banerjee et al.

Author's personal copy

• The physical environment might be simulated by randomly generating

synthetic inputs (eg, generating random temperatures readings). How-

ever, such an approach may fail to generate relevant inputs. However,

like traditional software testing, search-based techniques might improve

the simulation of physical environment via evolutionary methods and

metaheuristics.

• With a clear knowledge of the embedded software, the testing process

can be improved. For instance, in the fall-detection system, it is probably

not crucial to simulate themovement for all possible movement angles. It

is, however, important to test the application for some inputs that indi-

cate a fall of the patient (hence, indicating safety) and also for some inputs

that does not capture a fall (hence, indicating the absence of false posi-

tives). In general, building such abstractions on the input space is chal-

lenging and it also requires a substantial domain knowledge of the

input space.

We shall now discuss some non-functional properties that most embedded

software are required to satisfy.

2.2 Testing Non-functional Properties
In general, most embedded software are constrained via several non-

functional requirements. In the following and for the rest of the chapter,

we shall primarily concentrate on three crucial properties of embedded soft-

ware—timing, energy, and reliability.

2.2.1 Timing Constraints
Timing constraints capture the criteria to complete tasks within some time

budgets. The violation of such constraints may lead to a complete failure of

the respective software. This, in turn, may have serious consequences. For

instance, consider the fall-detection application. The computation of a

potential fall should have real-time constraints. More precisely, the time-

frame between the sampling of sensor inputs and triggering an alarming sit-

uation should have strict timing constraints. Violation of such constraints

may lead to the possibility of detecting a fall too late, hence, making the

respective software impractical. Therefore, it is crucial that the validation

process explicitly targets to discover the violation of timing-related con-

straints. It is, however, challenging to determine the timing behavior of

an application, as the timing critically depends on the execution platform.

The execution platform, in turn, may not be available during the testing

phase. As a result, the validation of timing-related constraints, may often

127On Testing Embedded Software

Author's personal copy

involve building a timing model of the underlying execution platform. Such

a timing model should be able to estimate the time taken by each executed

instruction. In general, building such timing models is challenging. This is

because, the time taken by each instruction depends on the specific instruc-

tion set architecture (ISA) of the processor, as well as the state of different

hardware components (eg, cache, pipeline, and interconnect). To show

the interplay between the ISA and hardware components, let us consider

the program fragment shown in Fig. 3.

In Fig. 3, the true leg of the conditional executes an add instruction and

the false leg of the branch executes a multiply instruction. Let us assume

that we want to check whether this code finishes within some given time

budget. In other words, we wish to find out if the execution time of branch

with the longer execution time is less than the given time budget. In a typical

processor, a multiplication operation generally takes longer than an addition

operation. However, if the processor employs a cache between the CPU

and the memory, the variable z will be cached after executing the statement

z :¼ 3. Therefore, the statement x :¼ x*z can be completed without accessing

the memory, but the processor may need to access the memory to execute

x :¼ x+y (to fetch y for the first time). As a result, even though multiplication

is a costly operation compared to addition, in this particular scenario, the

multiplication may lead to a faster completion time. This example illustrates

that a timing model for an execution platform should carefully consider such

interaction between different hardware components.

Once a timing model is built for the execution platform, the respective

software can be tested against the given timing-related constraints. Broadly,

the validation of timing constraints may involve the following procedures:

• The testing procedure may aim to discover the violation of constraints.

For instance, let us assume that for a fall-detection application to be

int x, y, z;

z := 3; //z is accessed and put into the cache

if (x > 0)
 x := x + y; //y needs to be fetched from the cache
else
 x := x * z; //all variables are cached

Figure 3 The timing interplay between hardware components (eg, caches) and
instructions.

128 Abhijeet Banerjee et al.

Author's personal copy

practical, the alarming situation must be notified within 1 ms (cf. Fig. 1).

Such a constraint can be encoded via the assertion: assert(time <¼ 1ms),

where time is the time taken by the fall-detection application to compute

a potential fall. The value of time can be obtained by executing the appli-

cation directly on the targeted platform (when available) or by using a

timing model for the same. The testing process aims to find test inputs

that may potentially invalidate the encoded assertions.

• It may, however, turn difficult for a designer to develop suitable asser-

tions that capture timing constraints. In such cases, she might be inter-

ested to know the worst-case execution time (WCET) of the software.

As the name suggests, WCET captures the maximum execution time of

an application with respect to all inputs. Accurately determining the

WCET of an application is extremely challenging, especially due to

the complex interactions across different software layers (application,

operating systems, and hardware) and due to the absence of (proprietary)

architectural details of the underlying execution platform. However,

WCET of an application can be approximated via systematically testing

the software with appropriate inputs. For instance, we shall discuss in

Section 3 about the progress in evolutionary testing to discover

the WCET.

2.2.2 Energy Constraints
Like timing, energy consumption of embedded software may also need care-

ful consideration. In particular, if the respective software is targeted for a

battery-operated device, the energy consumption of the software may pose

a serious bottleneck. For instance, if a fall-detection software is battery-

operated, the power drained from the battery should be acceptable in a

way to trigger the alarming situation. Like timing, the energy consumption

of software is also highly sensitive to the underlying execution platform.

Therefore, in the absence of the execution platform, an appropriate

energy-model needs to be developed. Such an energy model can be used

during the test time to estimate the energy consumption of software and

to check whether the software satisfies certain energy constraints. Similar

to timing constraints, energy constraints can be captured systematically

via assertions or via computing the worst case energy consumption

(WCEC) of the respective software. The computation of WCEC has

similar challenges as the computation of the WCET and therefore, such

computations might involve approximations via systematically generating

test inputs.

129On Testing Embedded Software

Author's personal copy

2.2.3 Reliability Constraints
As embedded software often interacts with the physical environment, it

needs to reliably capture the data acquired from the physical world. Usually,

this is accomplished via sensors (eg, gyroscope and accelerometers), which

interacts with the software via communicating the data from the physical

world. For instance, in the fall detection application, the data read via the

sensors are sent via wireless sensor network. In general, it is potentially infea-

sible to get the sensor data accurately. This might be due to the inaccuracy of

sensor chips or due to potential packet drops in the network. Therefore, the

reliability of different software components may pose a concern for a critical

embedded software, such as a fall detector. Besides, the reliability of a com-

ponent and its cost has nontrivial trade-offs. For instance, a more accurate

sensor (or a reliable network) might incur higher cost. Overall, the designer

must ensure that the respective software operates with an acceptable level

of reliability. As an example, in the fall detector, the designer would like

to ensure that a physical fall is alarmed with x% reliability. Computing

the reliability of an entire system might become challenging when the sys-

tem consists of several components and such components might interact

with each other (and the physical world) in a fairly complex fashion.

To summarize, apart from the functionality, most embedded software

have several non-functional aspects to be considered in the testing process.

Such non-functional aspects include timing, energy, and reliability, among

others. In general, the non-functional aspects of embedded software may

lead to several complex trade-offs. For instance, an increased rate of sampling

sensor inputs (which capture the data from the physical world) may increase

energy consumption; however, it might increase the reliability of the soft-

ware in terms of monitoring the physical environment. Similarly, a naive

implementation to improve the functionality may substantially increase

the energy consumption or it may lead to the loss of performance. As a result,

embedded software are required to be systematically tested with respect to

their non-functional aspects. In the next section, we shall discuss several test-

ing methodologies for embedded software, with a specific focus on their

non-functional properties.

3. CATEGORIZATION OF TESTING METHODOLOGIES

Real-time and embedded systems are used extensively in a wide vari-

ety of applications, ranging from automotive and avionics to entertainment

and consumer electronics. Depending on the application, the constraints

applicable on such systems may range from mission-critical to soft-real time

130 Abhijeet Banerjee et al.

Author's personal copy

in nature. Additionally, embedded systems often have to interact with the

physical environment that may be deterministic or non-deterministic. Such

factors imply that embedded systems have to be designed and developedwith

varying operational requirements and no single testing technique is well

suited to all systems. In some scenarios, the system under test (SUT) may

be too complex to model and hence, approximate, yet fast sampling-based

techniques are suitable. In other scenarios, where the SUT has mission-

critical constraints and requires thorough testing, a fine-grained modeling

of the system is crucial. In the following paragraphs, we shall categorize

and discuss some of the existing works on testing embedded systems, with

a specific focus on works being published in the past 5 years. In particular,

we categorize all works into following three divisions (as shown in Figure 4):

Black-Box Abstraction : Such techniques often consider the SUT as a

black-box. Test cases are generated by sampling, randomized testing

techniques.

Grey-Box Abstraction : Such techniques do not treat the SUT as a black-

box. The SUT is represented by a model, which captures only the infor-

mation related to the property of interest. Test cases are generated by

exploring the search space of the model.

White-Box Abstraction : Techniques in this category often require the

source code or binary of the implemented system for the testing process.

In other words, the source code and binary serves as the model of the

system. Test cases are generated by searching the input space of the

implemented system.

In subsequent sections, we shall elaborate on each of the categorization as

described in the preceding paragraphs.

4. BLACK-BOX ABSTRACTION

One of the most simple (but not necessarily effective) approaches of

testing complex systems is to uniformly sample its input space. The goal

Black-Box
abstraction

White-Box
abstraction

Grey-Box
abstraction

Ease of modeling ; Faster exploration

Precision ; Complexity ; Completeness

System treated
as a black-box

System represented
by an abstract model

System implementation
used for test generation

Figure 4 Classification of existing approaches for embedded software testing.

131On Testing Embedded Software

Author's personal copy

of such sampling is to generate test inputs. As exceedingly simple as such a

method might seem, the effectiveness of such uniform (or unguided) sam-

pling remains questionable. When testing a system, in general, the objective

is to produce test inputs that bears witnesses to failure of the system. Such a

failure might capture the violation of a property of interest. Besides, such

violations should be manifested within a certain time budget for testing.1

Testing approaches, which are purely based on uniform random sampling,

clearly do not adhere to the aforementioned criteria. For example, consider a

system that expects an integer value as an input. For such a system uniform

random sampling may blindly continue to generate test inputs forever with-

out providing any information about the correctness (or in-correctness) of

the system. However, there will be systems in the wild that are too complex

to model. Such systems require some sort of mechanism by which they can

be tested to some extent. For such systems, the sampling based technique, as

discussed in the following paragraphs, might be useful.

The work in [2, 3] proposes sampling based techniques to generate

failure-revealing test inputs for complex embedded systems. In particular,

they focus on generating test inputs that lead to violation of timing-related

properties. For these techniques to work, the essential timing-related prop-

erties of the system must be formulated via Metric Temporal Logic (MTL).

An MTL formula can be, in a broad way, described as a composition of

propositional as well as temporal operators. Common examples of proposi-

tional operators are conjunction, disjunction, and negation, whereas some exam-

ple of temporal operators would be until, always, and eventually. Besides,

MTL extends the traditional linear temporal logic (LTL) with timing con-

straints. For instance, consider our example in Fig. 1. Let us consider that a

potential fall of the patient must be reported within 100 time units. Such a

criteria can be captured via the following MTL formula:

hð fall!◊ð0;100ÞalarmÞ

fall captures the event of a potential fall and alarm captures the event to

notify the health care providers. Besides, the temporal operators □ and ◊
capture always and eventually, respectively. Once the timing-related proper-

ties of the system have been identified and encoded as MTL formulas, the

next step is to identify test inputs (as shown in Fig. 5), for which the afore-

mentioned formula do not hold true (ie, the system fails).

1 Otherwise, the testing process should terminate with assurance that the system functionality is expected

under all feasible circumstances.

132 Abhijeet Banerjee et al.

Author's personal copy

The cornerstone of sampling-based approaches lies in the definition of a

metric, as often called robustness metric. Such a metric represents the distance

of a given execution trace (of the SUT, for a given input) from a failure

revealing execution trace. The metric is designed in such a manner that if

an execution trace has a negative value for the robustness metric, then it implies

that the respective execution has lead to a violation of some timing-related

property. Similarly, a positive value for a robustness metric signifies that the

execution satisfies the MTL formulas. In general, the robustness metric pro-

vides a measure of how robustly an execution trace satisfies the encoded

MTL formulas. Once such a metric has been defined, it needs to be decided

whether there exists an input that leads to the violation of the given property. This

decision problem can be transformed into an optimization problem. For

instance, this optimization problem might aim to discover the execution

with the lowest robustness value. Existing works have discussed a number

of ways of solving the optimization (minimizing robustness) problem. For

example, the technique of [2] uses Monte-Carlo simulations to solve this

optimization problem. An obvious drawback being that the technique of

[2] can only give probabilistic guarantees to find failure inducing test inputs.

At the same time, an advantage of such a technique is to find execution

where the timing-related property was the closest to being violated. Subse-

quent work in this direction have experimented with other optimization

techniques, such as [3] uses Cross-entropy method based optimization

and [4] uses ant-colony based optimization, in trying to improve the effi-

ciency of the test-generation process.

5. GREY-BOX ABSTRACTION

This class of techniques work by creating an abstract model of the

SUT. As shown in Fig. 6, in general, frameworks discussed in this category

require three key components as follows:

System
under test

Compute
robustness

(proximity to a failing trace)

Generate test input
to minimize
robustness

Test
input

Robustness
value

Execution
trace

Initial test
input

Test input with
minimum robustness
(negative robustnes

implies failure)

Figure 5 Overview of sampling based test-generation techniques.

133On Testing Embedded Software

Author's personal copy

• A technique for model generation

• A technique for model exploration (to generate test cases), and

• An oracle for identifying failure-revealing tests

Once the property of interest has been identified, the model of the SUT can

be generated through an automatic, semi-automatic or manual approaches.

The model can be generated by analyzing the system specification, the

source code or the environment. The generated model is then explored

using a wide variety of techniques, ranging from random walk of the model

to evolutionary or genetic algorithms. Test oracle is a critical component of

the framework and it is used to differentiate between the correct and incor-

rect system execution. A test oracle is used to identify failure-revealing test

inputs, while exploring the model of the SUT. The efficacy of the test-

generation technique largely depends on the level of abstraction of the

model and the efficiency of the exploration algorithm. A coarse-grained

model is relatively easy to create and explore, but it may miss some of the

important (failure-revealing) scenarios. On the contrary, a very detailed

and fine-grained model is difficult to create and explore. However, such

a fine-grained model is likely to discover more failure revealing test inputs.

Considering the accuracy and precision of abstraction, we further classify the

techniques in this category, based on the respective models used for testing.

In the following sections, we describe each such model in more details.

5.1 Timed State Machines
Modelings tools, such as Markov chains have been used to model and test

systems for a long time. To be more specific, Markov Chain Usage Models

(MCUM) can be described as directed graphs, where the nodes of the graph

represent the states of the SUT. The nodes of the system are connected by

edges, representing events (inputs) that may arrive at a given state of the

system. Additionally, edges are annotated with the probability of the occur-

rence of an event, when the system is in a given state. However MCUMs,

by themselves, do not provide a suitable way of representing the timing-

related properties of the SUT. Such timing-related properties may require

certain events to happen before, after or within a specific deadline. Since

timing-related requirements are often an integral part of real-time embedded

Model
generation

Model
exploration

Test
oracle

Specification/
source code/
user input

Failure revealing
test inputs

Model Path in
model

If path exposed failure

Figure 6 Overview of grey-box abstraction based testing techniques.

134 Abhijeet Banerjee et al.

Author's personal copy

system (eg, in automotive applications), MCUMs were extended to capture

such requirements. One of the earliest such extensions of MCUMs was

proposed in [5], where the extended MCUMs are referred to as Timed

Usage Models (TUMs). Similar to the conventional MCUMs, all paths,

from the start state to the end state in a TUM, represent feasible executions

of the SUT. Figure 7A provides a simple example of a timed usage model.

However, there also exists some key differences between an MCUM and a

TUM that are listed in the following:

• Similar to the conventional MCUMs, a TUM has a set of states to cap-

ture the feasible usage of the system. However, in TUM, an additional

probability distribution function (pdf) is associated with each state. This

pdf encodes the time, for which the SUT will be in the respective state.

• In TUM, each transition between two states is triggered by a stimulus.

Additionally, edges connecting the states are associated with two vari-

ables, a transition probability and a probability distribution function

(pdf) of stimulus time. As the name suggests, the transition probability

captures the probability of the respective transition between two states.

Therefore, the transition probability has a similar role to that of conven-

tional MCUMs. The pdf of the stimulus time represents the duration of

execution of the stimulus on the system, at a given state.

• In a deterministic MCUM, there could be at most one transition (from a

given state) for a given stimulus. However, in a TUM, the next state not

only depends on the stimulus, but also on the duration of the execution

of the stimulus. This feature is required to capture timing-related depen-

dencies in the system. Additionally, to maintain consistency, the pdfs of

stimulus time, originating from a state, do not overlap.

S1

S3

S4

S2

S1 S2

S3S4

Initial State = {S1}
Final State = {S4}

U C

r1

r2

r3

r4

p12
t12

p13 t13

p23 t23

p34
t34

pij : transition probability

tij : probability distribution function of stimulus time

ri : residence time

x > = mintime
x < = maxtime

x : clock variable
C : commited state
U : urgent state

no time can
be spent in
these states

}

BA

Figure 7 Simple example showing (A) timed usage model and (B) timed automata.

135On Testing Embedded Software

Author's personal copy

Once the model of the system has been created, a variety of model-

exploration techniques can be used to generate test cases. For instance [5]

and [6] perform a simple random walk of the TUM model to generate test

cases while other works such as [7] and [8], have designed coverage metrics

to guide the test-generation process. In particular, works in [7] and [8], com-

bine the usage of TUMs with dependencies between the different compo-

nents of the SUT. This allows them to generate test cases that not only

represent different timing scenarios, but also capture dependencies between

critical system components.

Another line of work [9] propose to extend finite state machines model

(FSM) to incorporate timing-related constraints. Such a model is most com-

monly known as timed automata (TA). In timed automata, an FSM is aug-

mented with a finite number of clocks. These clocks are used to generate

boolean constraints and such constraints are labeled on the edges of the

TA. Additionally, clock values can be manipulated and reset by different

transitions of the automata. The boolean constraints succinctly captures

the criteria for the respective transition being triggered. Timed automata also

has the feature to label time-critical states. For instance, states marked as

Urgent or Committed imply that no time can be spent in these states. Besides,

while exploring the model, certain states (such as states marked as Commit-

ted), have priority over other states. These additional features make the pro-

cess of modeling intuitive and also make the model easier to read. Figure 7B

provides a simple example of timed automata. A major difference between

the works (eg, works in [5–8]) that use TUM as a modeling approach as

compared to works (eg, work in [9]) that use timed automata, is in the model

exploration. Whereas the former use either random or guided walks of the

model to generate test cases, the later use evolutionary algorithms to explore

the model and generate test cases.

5.2 Markov Decision Process
One of the key assumptions, which were made while designing TUMs

(as described in the preceding section), was that the probability distributions

for transitions were known a priori. This is usually true for deterministic sys-

tems. However, as argued by the work in [10], such transition probabilities

are often unavailable for non-deterministic systems. Therefore, when testing

non-deterministic systems for non-functional properties, such as reliability,

TUMs do not present a suitable approach. For such systems, the work of [10]

proposes an approach based on Markov-Decision Process (MDP). In

particular, the system-level modeling is performed via MDPs. Since MDPs

136 Abhijeet Banerjee et al.

Author's personal copy

can support non-determinism, it is a suitable platform for capturing the

non-determinism in a system. Once an MDP model is created for the sys-

tem, the work in [10] uses a combination of hypothesis testing and proba-

bilistic model checking to check reliability constraints. Hypothesis testing is

a statistical mechanism, in which, one of many competing hypothesis are

chosen based on the observed data. In particular, [10] uses hypothesis testing

to obtain the reliability distribution of the deterministic components in the

system. Such reliability distribution are computed within the specific error

bounds that the user needs to provide. Subsequently, probabilistic model

checking is used on MDPs to compute the overall reliability of the system.

Thework of [11] uses a similar technique to obtain reliability distribution

for a real life, healthcare system. The system tested in [11] is an ambient-

assisted-living-system for elderly people with dementia. Such embedded

systems must function reliably under all operating scenarios. Failure to do

so may cause serious injuries to the respective patients. For such systems,

the non-determinism in the environmental factors (eg, the input from the

sensors and human behavior) makes the system complex and make it chal-

lenging to produce the required reliability assurances. However, the work of

[11] has shown that an MDP-based approach can be effectively used to test

complex, real life systems in a scalable and efficient manner.

5.3 Unified Modeling Language
A different line of work [12–14] uses UnifiedModeling Language (UML) to

model and test real-time systems for timing-related and safety-related prop-

erties. UML provides a well known (and well accepted) standard for soft-

ware modeling and it is used in different dimensions of software testing.

In UML, the structure of a system under test can easily be represented via

the utilities provided by UML, such as object diagrams and components dia-

grams. Additionally, the behavior of the modeled system can be represented

by use cases, state charts or message-sequence charts. However, for model-

ing embedded, real-time systems, UML needs to be extended with addi-

tional packages, such as packages for non-functional properties and

scheduling or management of resources. These packages can be availed

through Modeling and Analysis of Real time Embedded Systems Extension

(MARTE) of UML. In particular, constraints (such as timing-related con-

straints) on real-time system can be captured through a standard language

known as Object Constraint Language (OCL). Once the system is modeled

with appropriate constraints, failure-inducing test cases can be generated by

exploring the model. For instance, the search techniques in [12, 13]

137On Testing Embedded Software

Author's personal copy

compares the effectiveness of their test-generation process for random test-

ing, adaptive random testing and evolutionary algorithms, while other

works [14] experiment with the effectiveness of genetic algorithms as a sea-

rch strategy. These works observe that, at least for the evaluated case studies,

none of the search strategies (for test generation) were definitively superior

than others. However, subsequent works [13] have claimed better effi-

ciency, when searching for failure-inducing test cases, through hybrid search

strategies.

5.4 Event Flow Graph
Systematic testing of event-driven applications for non-functional proper-

ties, such as energy consumption, is a challenging task. This is primarily

because of the fact that like any other non-functional property, information

related to energy consumption is seldom present in the source code. Addi-

tionally, such information may differ across different devices. Therefore,

generating energy-consumption annotation, for each application and

device, is definitely time consuming and error-prone. A real-life scenario

of such event-driven systems is mobile applications. Mobile applications

are usually executed on battery-constrained systems, such as smartphones.

Smartphones, in turn, are equipped with energy-hungry components, such

as GPS, WiFi and display. This necessitates the development of efficient and

automated testing technique to stress energy consumption. One such tech-

nique has been presented in [15]. It automatically generates the Event Flow

Graph (EFG) [16] of the application under test. An EFG can be described as a

directed graph, where the nodes of the graph represent events and the edges

capture the happens-after relationship between any two events. It is possible

(and often the case) that EFGs of mobile applications have cycles (such as the

example shown in Fig. 8). Such cycles typically do not have an explicit iter-

ation bounds. Therefore, although an EFG has a finite number of events, an

unbounded number of event sequences can be generated from the same.

This further complicates the process of test generation, as any effective test-

ing technique should not only be able to generate all failure-revealing test

cases, but also do so in a reasonable amount of time.

The framework presented in [15] has two key innovations that helps it to

tackle the challenges described in the preceding paragraph. The first of those

two innovations being the definition of a metric that captures the energy

inefficiency of the system, for a given input. To design such a metric, it is

important to understand what exactly qualifies as energy-inefficient

138 Abhijeet Banerjee et al.

Author's personal copy

behavior. In other words, let us consider the following question: Does high-

energy consumption always imply higher energy-inefficiency? As it turns out [15],

the answer to this question is not trivial. For instance, consider a scenario

where two systems have similar energy-consumption behavior but one is

doing more work (has a higher utilization of its hardware components) than

the other. In such a scenario, it is quite intuitive that the system with higher

utilization is the more energy-efficient one. Taking inspiration from this

observation, the work in [15] defines the metric of E/U ratio (energy con-

sumption vs utilization) to measure the energy inefficiency of a system. For a

given input, the framework executes the application on a real hardware

device and analyses the E/U ratio of the device at runtime. An anomalously

high E/U ratio, during the execution of the application, indicates the pres-

ence of an energy hotspot. Additionally, a consistently high E/U ratio, after

the application has completed execution, indicates the presence of an energy

bug. In general, energy bugs can cause more wastage of battery power than

energy hotspots and can drastically reduce the operational time of the

smartphone. With the metric of E/U ratio, it is possible to find energy-

inefficient behavior in the SUT, for a given input. However, another chal-

lenge is to generate inputs to stress energy behavior of a given application, in

a reasonable amount of time. Interestingly, for smartphone applications, a

number of previous studies (primarily based on Android operating system)

have observed that most of the energy-hungry components can only be

Wifi 3G/4G

GPS

Sensors

CPU

E1

E2 E3

Fetches and displays information
from remote website

Displays real-time sensor,
GPS related data

Transmits information
to remote website

Some of potentially infinite test inputs

E1 - E2 - E3 - E2 - E1 - E3 - E1 - E2 - E3
E1 - E2 - E1 - E2 - E1 - E2 - E1 - E2 - E1
E1 - E3 - E2 - E2 - E3 - E2 - E3 - E2 - E1

Event Flow Graph for an example smartphone app

Modern smartphones have variety of I /O components,
many of which consume significant amount of battery power

Figure 8 Modern smartphones have a wide variety of I/O and power management util-
ities, improper use of which in the application code can lead to suboptimal energy-
consumption behavior. Smartphone application are usually nonlinear pieces code, sys-
tematic testing of which requires addressing a number of challenges.

139On Testing Embedded Software

Author's personal copy

accessed through a predefined set of system calls. The work in [15] uses this

information to prioritize the generation of test inputs. In particular, [15] uses

a heuristic-based approach. This approach tries to explore all event traces

that may invoke system calls to energy-hungry components. Besides, the

work also prioritizes inputs that might invoke a similar sequence of system

calls compared to an already discovered, energy-inefficient execution.

6. WHITE-BOX ABSTRACTION

In this section, we shall discuss software testing methodologies that are

carried out directly on the implementation of an application. Such an imple-

mentation may capture the source code, the intermediate code (after various

stages of compilation) or the compiled binary of an embedded software.

Whereas we only specialize the testing procedures at the level of abstractions

they are carried out, we shall observe in the following discussion that several

methodologies (eg, evolutionary testing and symbolic execution) can be

used to test the implementation of embedded software. The idea of directly

testing the implementation is promising in the context of testing embedded

software. In particular, if the designer is interested in accurately evaluating

the non-functional behaviors (eg, energy and timing) of different software

components, such non-functional behaviors are best observed at the level

of implementation. On the flip side, if a serious bug was discovered in

the implementation, it may lead to a complete redesigning of the respective

application. In general, it is important to figure out an appropriate level of

abstraction to run the testing procedure. We shall now discuss several works

to test the implementation of embedded software and reason about their

implications. In particular, we discuss testing methodologies for timing-

related properties in Section 6.1 and for functionality-related behaviors in

Section 6.2. Finally, in Section 6.3, we discuss challenges to build an appro-

priate framework to observe and control test executions of embedded soft-

ware and we also describe some recent efforts in the software engineering

community to address such challenges.

6.1 Testing Timing-related Properties
The work in [17] shows the effectiveness of evolutionary search for testing

embedded software. In particular, this work targets to discover the maxi-

mum delay caused due to interrupts. In embedded software, interrupts are

common phenomenon. For instance, the incoming signals from sensors

or network events (eg, arrival of a packet) might be captured via interrupts.

140 Abhijeet Banerjee et al.

Author's personal copy

Besides, embedded systems often consist of multiple tasks, which share

resources (eg, CPU and memory). As a result, switching the CPU from a

task t to a task t0 will clearly induce additional delay to the task t. Such

switching of resources are also triggered via interrupts. Therefore, the delay

caused due to interrupts might substantially affect the overall timing behav-

ior. For instance, in the fall detection application, each sensor might be

processed by a different task and another task might be used to compute

a potential fall of the patient. If all these tasks share a common CPU, a par-

ticular task might be delayed due to the switching of CPU between tasks.

Fig. 9 illustrates scenarios where the task to compute a fall is delayed by

interrupts generated from the accelerometer and the gyroscope. In particu-

lar, Fig. 9A demonstrates the occurrence of a single interrupt. On the con-

trary, Fig. 9B illustrates nested interrupts, which prolonged the execution

time of the computation task. In general, arrival of an interrupt is highly

non-deterministic in nature. Moreover, it is potentially infeasible to test

an embedded software for all possible occurrences of interrupts.

The work in [17] discusses a genetic algorithm to find the maximum

interrupt latency. In particular, this work shows that a testing method based

on genetic algorithm is substantially more effective compared to random

testing. This means that the interrupt latency discovered via the genetic

algorithm is substantially larger than the one discovered using random test-

ing. An earlier work [18] also uses genetic algorithm to find the WCET of a

program. In contrast to [17], the work in [18] focuses on the uninterrupted

execution of a single program. More specifically, the testing method, as pro-

posed in [18], aims to search the input space andmore importantly, direct the

search toward WCET revealing inputs.

Interrupt from
gyroscope

Interrupt
processing

Fall detection
computation

Fall detection
computation

Interrupt from
gyroscope Interrupt from

accelerometer

Interrupt
processing

Interrupt
latency

Interrupt
latency

A B

Figure 9 Interrupt latency, (A) single interrupt and (B) Nested interrupts.

141On Testing Embedded Software

Author's personal copy

It is well known that the processing power of CPUs have increased dra-

matically in the last few decades. In contrast, memory subsystems are several

order of magnitudes slower than the CPU. Such a performance gap between

the CPU and memory subsystems might be critical for embedded software,

when such software are restricted via timing-related constraints. More spe-

cifically, if the software is spending a substantial amount of time in accessing

memory, then the performance of an application may have a considerable

slowdown. In order to investigate such problems, some recent efforts in soft-

ware testing [19, 20] have explicitly targeted to discover memory bottle-

necks. Such efforts directly test the software binary to accurately

determine requests to the memory subsystems. In particular, requests to

the memory subsystems might be reduced substantially by employing a

cache. Works in [19, 20] aim to exercise test inputs that lead to a poor usage

of caches. More specifically, the work in [19] aims to discover cache thrashing

scenarios. A cache thrashing scenario occurs when several memory blocks

replace each other from the cache, hence, generating a substantial number

of requests to the memory subsystems. For instance, the code fragment in

Fig. 10 may exhibit a cache thrashing when the cache can hold exactly

one memory block. In the code fragment, m1 and m2 replace each other from

the cache, leading to a cache thrashing. This behavior is manifested only for the

program input ‘t’.

The work in [19] shows that the absence of such cache thrashing scenar-

ios can be formulated by systematically transforming the programwith asser-

tions. Subsequently, a search procedure on the software input space can be

invoked to find violation of such assertions. Any violation of an assertion,

thus, will produce a cache thrashing scenario. The methodology proposed

in [19] uses a combination of static analysis and symbolic execution to search

the input space and discover inputs that violate the formulated assertions.

int n = 100;

while (n-- >= 0) {
 if (input == 't') {
 //access memory block m1
 //access memory block m2
 } else {
 //access memory block m1
 }

Figure 10 Input dependent cache thrashing.

142 Abhijeet Banerjee et al.

Author's personal copy

The work in [20] lifts the software testing of embedded software for mas-

sively parallel applications, with a specific focus on general-purpose graphics

processing units (GPGPU). It is well known that future technology will be

dominated by parallel architectures (eg, multicores and GPGPUs). For such

architectures, software testing should take into account the input space of the

application, as well as the non-deterministic nature of scheduling multiple

threads. The work in [20] formally defines a set of scenarios that capture

memory bottlenecks in parallel architectures. Subsequently, a search proce-

dure is invoked to systematically traverse the input space and the space con-

sisting of all possible scheduling decisions among threads. Like the approach

in [19], the work in [20] also uses a combination of static analysis and sym-

bolic execution for the search. In summary, both the works [19, 20] revolve

around detecting fine-grained events such as memory requests. In general,

such fine-grained events are appropriate to test only at the implementation

level (eg, software binary). This is because the occurrence of such events

would be significantly difficult to predict at intermediate stages of the

development.

6.2 Testing Functionality-related Properties
In the preceding Section, we have discussed software testing methodologies

that focus on validating timing-related constraints of embedded software. In

contrast to such methodologies, the work in [21] primarily targets functional

properties of embedded software. In particular, authors of [21] discuss some

unique challenges that might appear only in the context of testing embedded

software and systems. The key observation is that embedded systems often

contain different layers of hardware and software. Besides, an embedded

application may contain multiple tasks (eg, programs) and such tasks might

be active simultaneously. For instance, in our fall-detection application, the

access to hardware components (eg, gyroscope and accelerometers) might be

controlled by a supervisory software, such as operating systems (OS). Sim-

ilarly, sampling signals from sensors and computation of a potential fall might

be accomplished by different tasks that run simultaneously in the system.

The work in [21] argues the importance of testing interactions between dif-

ferent hardware/software layers and different tasks. Fig. 11 conceptually

captures such interactions in a typical embedded system.

In order to exercise interactions between tasks and different software

layers, authors of [21] have described a suitable coverage criteria for testing

embedded systems. For instance, the interaction between application layer

143On Testing Embedded Software

Author's personal copy

and OS layer can happen via system calls. Similarly, the application might

directly access some hardware components via a predefined set of application

programmer interfaces (APIs). The work in [21] initially performs a static

analysis to infer data dependencies across different layers of the embedded

system. Besides, if different tasks of the system use shared resources, such

an analysis also tracks the data dependencies across tasks. For instance, con-

sider the piece of code fragment in Fig. 12, where syscall captures a system

call implemented in the kernel mode. In the code shown in Fig. 12, there

exists a data dependency between application layer variable g and the system

call syscall. As a result, it is important to exercise this data dependency to

test the interaction between application layer and OS layer. Therefore, the

work in [21] suggests to select test cases that can manifest the data depen-

dency between variable g and syscall. To illustrate the dependency

between multiple tasks, let us consider the code fragment in Fig. 13.

The keyword __shared__ captures shared variables. In Fig. 13, there is a

potential data dependency between Task 1 and Task 2. However, to exercise

this data dependency, the designer must be able to select an input that sat-

isfies the condition input¼¼‘x’. The work in [21] performs static analysis to

discover the data dependencies across tasks, as shown in this example. Once

I/O components

......Tasks

Hardware Processor Network Sensors

Supervisory software (operating systems)

System calls, interrupts

Interaction between tasks

Interaction with
the hardware

Figure 11 Interaction among different tasks and hardware/software layers.

 f = 0;
 if (input = 'x') {
 g := g + 1;
 f := f + 1;
 }
 if (f != 0)
 syscall(g);
 else
 syscall(0);

Figure 12 Interaction between application layer variable and operating system.

144 Abhijeet Banerjee et al.

Author's personal copy

all data dependencies are determined via static analysis, the chosen test inputs

aim to cover these data dependencies.

6.3 Building Systematic Test-execution Framework
So far in this section, we have discussed test input generation to validate

either functional or non-functional properties of embedded software. How-

ever, as discussed in [22, 23], there exists numerous other challenges for test-

ing embedded software, such as observability of faulty execution.Test oracles

are usually required to observe faulty execution. Designing appropriate ora-

cles is difficult even for traditional software testing. In the context of embed-

ded software, designing oracles may face additional challenges. In particular,

as embedded systems consist of many tasks and exhibit interactions across

different hardware and software layers, they may often have non-

deterministic output. As a result, oracles, which are purely based on output,

are insufficient to observe faults in embedded systems. Moreover, it is cum-

bersome to build output-based oracles for each test case. In order to address

these challenges, authors in [22] propose to design property-based oracles for

embedded systems. Property-based oracles are designed for each execution

platform. Therefore, any application targeting such execution platform

might reuse the oracles and thereby, it can avoid substantial manual efforts

to design oracles for each test case. The work in [22] specifically targets con-

currency and synchronization properties. For instance, test oracles are

designed to specify proper usage of binary semaphores and message queues,

which are used for synchronization and interprocess communication,

respectively. Such synchronization and interprocess communication APIs

are provided by the operating system. Once test oracles are designed, a test

case can be executed, while instrumenting the application, OS and hardware

interfaces simultaneously. Each execution can subsequently be checked for

violation of properties captured by an oracle. Thus property-based test

__shared__ int s = 0;

Task 1: Task 2:
int y;
y := y + 2; if (s > 0)
if (input = 'x') //do something
 s = y;
else
 y = y - 1;

Figure 13 Interaction between tasks via shared resources (shared variable s).

145On Testing Embedded Software

Author's personal copy

oracles can provide a clean interface to observe faulty executions. Apart from

test oracles, authors in [23] discuss the importance of giving the designer

appropriate tools that control the execution of embedded systems. Since

the execution of an embedded system is often non-deterministic, it is, in

general difficult to reproduce faulty executions. For instance, consider the

fall detection application where a task reads sensor data from a single queue.

If new data arrives, an interrupt is raised to update the queue. It is worth-

while to see the presence of a potential data race between the routine that

services the interrupt and the task which reads the queue. Unfortunately, the

arrival of interrupts is highly non-deterministic in nature. As a result, even

after multiple test executions, the testing may not reveal a faulty execution

that capture a potential data race. In order to solve this, authors in [23] design

appropriate utilities that gives designer the power to raise interrupts explic-

itly. For instance, the designer might choose a set of locations where she sus-

pects the presence of data races due to interrupts. Subsequently, a test

execution can be carried out that raise interrupts exactly at the locations

specified by the designer.

Summary
To summarize, in this section, we have seen efforts to generate test inputs

and test oracles to validate both functional and non-functional aspects of

embedded software. A common aspect of all these techniques is that the test-

ing process is carried out directly on the implementation. This might be

appealing in certain scenarios, for instance, when the designer is interested

in events that are highly sensitive to the execution platform. Such events

include interrupts, memory requests and cache misses, among others.

7. FUTURE DIRECTIONS

As discussed in this chapter, analysis of non-functional properties is

crucial to ensure that embedded systems behave as per its specification.

However, there exists an orthogonal direction of work, where analysis of

non-functional properties, such as power consumption, memory accesses

and computational latencies, have been used for security-related exploits.

Such exploits are commonly referred to as side-channel attacks and are

designed to extract private keys2 from cryptographic algorithms, such as

2 Cryptographic algorithms such as AES and DES are used to encrypt a message in a manner such that

only the person having the private key is capable of decrypting the message.

146 Abhijeet Banerjee et al.

Author's personal copy

algorithms used in smart cards and smart tokens. The intention of the

attacker is not to discover the theoretical weaknesses of the algorithm.

Instead, the attacker aims to break the implementation of the algorithms

through side channels, such as measuring execution time or energy con-

sumption. In particular, the attacker tries to relate such measurements with

the secret key. For instance, if different secret keys lead to different execu-

tion time, the attacker can perform statistical analysis to map the measured

execution time with the respective key. In general, any non-functional

behavior that has a correlation with cryptographic computation, is capable

of leaking information, if not managed appropriately. For example, the dif-

ferential power attack, as proposed in [24], uses a simple, yet effective sta-

tistical analysis technique to correlate the observed power-consumption

behavior to the private key. Since then, a number of subsequent works have

proposed counter-measures (eg, [25]) against side-channel vulnerabilities

and bypasses to those counter-measures (eg, [26]). Similarly, researchers

have also studied side-channel attacks (and their counter-measures) based on

other non-functional behaviors, such as computational latency [27, 28]

and memory footprint [29]. Even though works on side-channel attacks

have a very different objective compared to those on non-functional testing,

there exists a number of commonalities. In essence, both lines of work are

looking for test inputs that lead to undesirable non-functional behavior. The def-

inition of the phrase undesirable non-functional behavior is based on the system

under test (SUT). For instance, in an embedded system that has hard timing-

related constraints, an undesirable input would be the violation of such con-

straints.On the contrary, for a cryptographic algorithm, such as implemented

in a smart card, an undesirable input may lead to information leaks via side

channels. Undesirable non-functional behavior in one scenario may lead

to performance loss, sometimes costing human lives (such as in an anti-lock

braking system), whereas, in the other scenario undesirable non-functional

behaviormay cause information leaks,which, in turnmay often lead to finan-

cial losses. It is needless to motivate the fact that testing embedded crypto-

graphic systems for such undesirable non-functional behaviors is crucial.

More importantly, testing methodologies for detecting side-channel attacks

need to be automated. However, as of this writing, this line of research is far

from being solved.Newworks on this topic could draw inspiration from ear-

lier works on non-functional testing, such as works described in Section 3.

Another more generic direction is related to the detection of root cause

and automatic repair of non-functional properties in embedded systems. In

general, the purpose of software testing is to expose suboptimal or unwanted

147On Testing Embedded Software

Author's personal copy

behavior in the SUT. Such suboptimal behaviors, once identified, should be

rectified bymodifying the system.More specifically, the rectification process

can be subdivided into two parts: fault-localization3 and root-cause detec-

tion, followed by debugging and repair. Fault-localization is, in general,

the more time-consuming (and expensive) phase of this modification process

and therefore, there is a huge demand for effective, automated techniques

for fault-localization. Over the past years, several works have proposed

methodologies for fault-localization. However, most of these works have

focused on the functionality of software. As of this writing, there exists a lack

of efforts in fault-localization techniques for non-functional properties. One

plausible explanation can be that designing such a framework, for non-

functional properties, is significantly more challenging. This is because

the non-functional behavior of system depends not only on the source code,

but also on the underlying execution platform. Some of the well known

techniques [30] for fault-localization include comparing a set of failed exe-

cution to a set of passing executions and subsequently, deriving the root

cause for the fault. Such works narrow down the search space for the root

cause by assigning suspiciousness values to specific regions of source code. As

is the case with fault-localization, considerable research needs to be per-

formed on automated debugging and repair of non-functional software

properties. As a matter of fact, automated program repair, even in the con-

text of software functionality, is far from being matured, not to mention the

lack of research for non-functional software properties. As for embedded

software and systems, both functional and non-functional behaviors play

crucial roles in validating the respective system. We hope that future works

in software testing will resolve these validation challenges faced by embed-

ded system designers.

8. CONCLUSION

Embedded systems are ubiquitous in the modern world. Such systems

are used in a wide variety of applications, ranging from common consumer

electronic devices to automotive and avionic applications. A property com-

mon to all embedded systems is that they interact with the physical environ-

ment, often deriving their inputs from the surrounding environment. Due

to the application domains such systems are used in, their behavior is often

constrained by functional (such as the input–output relationship) as well as

3 In this context, the word “fault” implies all type of suboptimal, non-functional behavior.

148 Abhijeet Banerjee et al.

Author's personal copy

non-functional properties (such as execution time or energy consumption).

This makes the testing and validation of such systems a challenging task. In

this chapter, we discussed a few challenges and their solutions in the context

of testing embedded systems. In particular, we take a closer look into existing

works on testing non-functional properties, such as timing, energy con-

sumption, reliability, for embedded software. To put the existing works

in perspective, we classify them in three distinct categories, based on the

level of system abstraction used for testing. These categories include,black-

box, grey-box and white-box abstraction based testing approaches. In general,

black-box abstraction based testing methods use sampling based techniques

to generate failure-revealing test cases for the system under test. Such

methods consider the system as a black-box and hence are equally applicable

to simple and complex systems alike. However, such ease of use usually

comes at the cost of effectiveness. In particular, these methods often cannot

provide completeness guarantees (ie, by the time the test-generation process

completes, all failure revealing test inputs must have been uncovered). The

grey-box abstraction based approaches are usually more effective than the black-

box abstraction based approaches. This is because such methods often employ

an abstract model of the system under test to generate failure-revealing test

cases. Effectiveness of these test-generation methodologies is often dictated

by the level of system abstraction being used.White-box abstraction based test-

ing approaches use the actual system implementation to generate failure

revealing test cases and hence are capable of providing maximum level of

guarantee to discover failure revealing inputs.We observe that existing tech-

niques vary hugely in terms of complexity and effectiveness. Finally, we have

discussed future research directions related to embedded software testing.

One of which was automated fault-localization and repairing of bugs related

to non-functional properties. Another direction was related to the develop-

ment of secure embedded systems. In particular, we explored the possibility

of testing techniques to exploit the vulnerability toward side-channel

attacks. Over the recent years, there have been a number of works, which

analyze non-functional behavior to perform side-channel (security related)

attacks. It would be appealing to see how existing testing methodologies can

be adapted to test and build secure embedded software.

ACKNOWLEDGMENT
The work was partially supported by a Singapore MoE Tier 2 grant MOE2013-T2-1-115

entitled “Energy aware programming” and the Swedish National Graduate School on

Computer Science (CUGS).

149On Testing Embedded Software

Author's personal copy

REFERENCES
[1] A wearable miniaturized fall detection system for the elderly. http://www.fallwatch-

project.eu/press_release.php.
[2] T. Nghiem, S. Sankaranarayanan, G. Fainekos, F. Ivancić, A. Gupta, G.J. Pappas,

Monte-carlo techniques for falsification of temporal properties of non-linear hybrid sys-
tems, in: Proceedings of the 13th ACM International Conference on Hybrid Systems:
Computation and Control, HSCC ’10, 2010.

[3] S. Sankaranarayanan, G. Fainekos, Falsification of temporal properties of hybrid systems
using the cross-entropy method, in: Proceedings of the 15th ACM International Con-
ference on Hybrid Systems: Computation and Control, HSCC ’12, 2012.

[4] Y.S.R. Annapureddy, G.E. Fainekos, Ant colonies for temporal logic falsification of
hybrid systems, in: IECON 2010–36th Annual Conference on IEEE Industrial Elec-
tronics Society, 2010.

[5] S. Siegl, K. Hielscher, R. German, Introduction of time dependencies in usage model
based testing of complex systems, in: Systems Conference, 2010 4th Annual IEEE, 2010,
pp. 622–627.

[6] S. Siegl, K. Hielscher, R. German, C. Berger, Formal specification and systematic
model-driven testing of embedded automotive systems, in: 4th Annual IEEE Systems
Conference, 2010, 2011.

[7] S. Siegl, P. Caliebe, Improving model-based verification of embedded systems by ana-
lyzing component dependences, in: 2011 6th IEEE International Symposium on Indus-
trial Embedded Systems (SIES), 2011, pp. 51–54.

[8] P. Luchscheider, S. Siegl, Test profiling for usage models by deriving metrics from
component-dependency-models, in: 2013 8th IEEE International Symposium on
Industrial Embedded Systems (SIES), 2013, pp. 196–204.

[9] J. Hansel, D. Rose, P. Herber, S. Glesner, An Evolutionary algorithm for the generation
of timed test traces for embedded real-time systems, in: 2011 IEEE Fourth International
Conference on Software Testing, Verification and Validation (ICST), 2011.

[10] L. Gui, J. Sun, Y. Liu, Y.J. Si, J.S. Dong, X.Y. Wang, Combining model checking and
testing with an application to reliability prediction and distribution, in: Proceedings of
the 2013 International Symposium on Software Testing and Analysis, ISSTA 2013,
2013.

[11] Y. Liu, L. Gui, Y. Liu, MDP-based reliability analysis of an ambient assisted living sys-
tem, in: FM 2014: Formal Methods, Lecture Notes in Computer Science, vol. 8442,
Springer International Publishing, 2014.

[12] A. Arcuri, M.Z. Iqbal, L. Briand, Black-box system testing of real-time embedded
systems using random and search-based testing, in: Proceedings of the 22Nd IFIP
WG 6.1 International Conference on Testing Software and Systems, ICTSS’10,
2010, pp. 95–110.

[13] M.Z. Iqbal, A. Arcuri, L. Briand, Combining search-based and adaptive random testing
strategies for environment model-based testing of real-time embedded systems,
in: Proceedings of the 4th International Conference on Search Based Software Engi-
neering, SSBSE’12, 2012.

[14] M.Z. Iqbal, A. Arcuri, L. Briand, Empirical investigation of search algorithms for envi-
ronment model-based testing of real-time embedded software, in: Proceedings of the
2012 International Symposium on Software Testing and Analysis, ISSTA 2012, 2012.

[15] A. Banerjee, L.K. Chong, S. Chattopadhyay, A. Roychoudhury, Detecting energy bugs
and hotspots in mobile apps, in: Proceedings of the 22Nd ACMSIGSOFT International
Symposium on Foundations of Software Engineering, 2014.

[16] A.M. Memon, I. Banerjee, A. Nagarajan, GUI ripping: reverse engineering of graphical
user interfaces for testing, in: Working Conference on Reverse Engineering, 2003,
pp. 260–269.

150 Abhijeet Banerjee et al.

Author's personal copy

http://www.fallwatch-project.eu/press_release.php
http://www.fallwatch-project.eu/press_release.php
http://www.fallwatch-project.eu/press_release.php
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0010
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0010
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0010
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0010
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0015
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0015
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0015
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0020
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0020
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0020
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0025
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0025
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0025
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0030
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0030
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0030
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0035
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0035
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0035
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0040
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0040
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0040
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0045
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0045
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0045
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0050
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0050
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0050
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0050
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0055
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0055
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0055
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0060
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0060
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0060
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0060
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0065
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0065
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0065
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0065
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0070
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0070
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0070
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0075
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0075
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0075
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0080
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0080
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0080

[17] S. Weissleder, H. Schlingloff, An evaluation of model-based testing in embedded
applications, in: 2014 IEEE Seventh International Conference on Software Testing,
Verification and Validation (ICST), 2014, pp. 223–232.

[18] P.P. Puschner, R. Nossal, Testing the results of static worst-case execution-time anal-
ysis, in: IEEE Real-Time Systems Symposium, 1998, pp. 134–143.

[19] A. Banerjee, S. Chattopadhyay, A. Roychoudhury, Static analysis driven cache perfor-
mance testing, in: Real-Time Systems Symposium (RTSS), 2013 IEEE 34th, 2013,
pp. 319–329.

[20] S. Chattopadhyay, P. Eles, Z. Peng, Automated software testing of memory perfor-
mance in embedded GPUs, in: 2014 International Conference on Embedded Software
(EMSOFT), 2014, pp. 1–10.

[21] T. Yu, A. Sung, W. Srisa-An, G. Rothermel, An approach to testing commercial
embedded systems, J. Syst. Softw. 88 (2014).

[22] T. Yu, A. Sung, W. Srisa-an, G. Rothermel, Using property-based oracles when testing
embedded system applications, in: 2011 IEEE Fourth International Conference on Soft-
ware Testing, Verification and Validation (ICST), 2011, pp. 100–109.

[23] T. Yu, W. Srisa-an, G. Rothermel, SimTester: a controllable and observable testing
framework for embedded systems, in: Proceedings of the 8th ACM SIGPLAN/
SIGOPS Conference on Virtual Execution Environments, VEE ’12, London, England,
UK, ISBN 978-1-4503-1176-2, 2012.

[24] P. Kocher, J. Jaffe, B. Jun, Differential power analysis, 1998. http://www.cryptography.
com/public/pdf/DPA.pdf.

[25] M.-L. Akkar, C. Giraud, An implementation of DES and AES, secure against some
attacks, in: Proceedings of the Third International Workshop on Cryptographic Hard-
ware and Embedded Systems, CHES ’01, 2001.

[26] S. Mangard, N. Pramstaller, E. Oswald, Successfully attacking masked AES hardware
implementations, in: Cryptographic Hardware and Embedded Systems, CHES 2005,
Lecture Notes in Computer Science, 2005.

[27] P. Kocher, Timing attacks on implementations of diffe-hellman, RSA, DSS, and other
systems. http://www.cryptography.com/public/pdf/TimingAttacks.pdf.

[28] B. K€opf, L. Mauborgne, M. Ochoa, Automatic quantification of cache side-channels,
in: Proceedings of the 24th International Conference on Computer Aided Verification,
CAV’12, Berkeley, CA, Springer-Verlag, Berlin, ISBN 978-3-642-31423-0, 2012,
pp. 564–580, http://dx.doi.org/10.1007/978-3-642-31424-7_40.

[29] S. Jana, V. Shmatikov, Memento: learning secrets from process footprints,
in: Proceedings of the 2012 IEEE Symposium on Security and Privacy, SP ’12, IEEE
Computer Society, Washington, DC, ISBN 978-0-7695-4681-0, 2012,
pp. 143–157, http://dx.doi.org/10.1109/SP.2012.19.

[30] J.A. Jones, M.J. Harrold, Empirical evaluation of the tarantula automatic fault-
localization technique, in: Proceedings of the 20th IEEE/ACM International Confer-
ence on Automated Software Engineering, ASE ’05, Long Beach, CA, USA, ACM,
New York, NY, ISBN 1-58113-993-4, 2005, pp. 273–282, http://dx.doi.org/
10.1145/1101908.1101949.

151On Testing Embedded Software

Author's personal copy

http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0085
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0085
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0085
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0090
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0090
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0095
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0095
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0095
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0100
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0100
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0100
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0105
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0105
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0110
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0110
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0110
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0115
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0115
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0115
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0115
http://www.cryptography.com/public/pdf/DPA.pdf
http://www.cryptography.com/public/pdf/DPA.pdf
http://www.cryptography.com/public/pdf/DPA.pdf
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0125
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0125
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0125
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0130
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0130
http://refhub.elsevier.com/S0065-2458(15)00066-2/rf0130
http://www.cryptography.com/public/pdf/TimingAttacks.pdf
http://www.cryptography.com/public/pdf/TimingAttacks.pdf
http://dx.doi.org/10.1007/978-3-642-31424-7_40
http://dx.doi.org/10.1109/SP.2012.19
http://dx.doi.org/10.1145/1101908.1101949
http://dx.doi.org/10.1145/1101908.1101949

ABOUT THE AUTHORS

Abhijeet Banerjee is a Ph.D. scholar at

the School of Computing, National

University of Singapore. He received

his B.E. in Information Technology from

Indian Institute of Engineering Science

and Technology, Shibpur, India in

2011. His research interests include auto-

mated software testing, debugging, and

re-factoring with specific emphasis on

testing and verification of non-functional

properties of software.

Sudipta Chattopadhyay is a Post-

doctoral Research Fellow in the Center

for IT-Security, Privacy, and Account-

ability (CISPA) in Saarbrücken,Germany.

He received his Ph.D. in computer

science from National University of

Singapore (NUS) in 2013. His research

interests include software analysis and

testing, with a specific focus on designing

efficient and secure software systems.

Abhik Roychoudhury is a Professor of

Computer Science at School of Comput-

ing, National University of Singapore. He

received his Ph.D. in Computer Science

from the State University of New York

at Stony Brook in 2000. Since 2001, he

has been employed at the National

University of Singapore. His research has

focused on software testing and analysis,

software security, and trust-worthy soft-

ware construction. His research has

received various awards and honors,

including his appointment as ACM

152 Abhijeet Banerjee et al.

Author's personal copy

Distinguished Speaker in 2013.He is currently leading the TSUNAMi center,

a large 5-year long targeted research effort funded by National Research

Foundation in the domain of software security. His research has been funded

by various agencies and companies, including the National Research Foun-

dation (NRF), Ministry of Education (MoE), A*STAR, Defense Research

and Technology Office (DRTech), DSO National Laboratories, Microsoft,

and IBM. He has authored a book on “Embedded Systems and Software Val-

idation” published by Elsevier (Morgan Kaufmann) Systems-on-Silicon series

in 2009, which has also been officially translated to Chinese by Tsinghua Uni-

versity Press. He has served in various capacities in the program committees

and organizing committees of various conferences on software engineering

including ICSE, ISSTA, FSE, and ASE. He is currently serving as an Editorial

Board member of IEEE Transactions on Software Engineering (TSE).

153On Testing Embedded Software

Author's personal copy

	On Testing Embedded Software
	Introduction
	Testing Embedded Software
	Testing Functional Properties
	Testing Non-functional Properties
	Timing Constraints
	Energy Constraints
	Reliability Constraints

	Categorization of Testing Methodologies
	Black-Box Abstraction
	Grey-Box Abstraction
	Timed State Machines
	Markov Decision Process
	Unified Modeling Language
	Event FlowGraph

	White-Box Abstraction
	Testing Timing-related Properties
	Testing Functionality-related Properties
	Building Systematic Test-execution Framework
	Summary

	Future Directions
	Conclusion
	Acknowledgment
	References
	About the Authors

