Computation Tree Logic Guided Program Repair

Yu Liu*, Yahui Song*, Martin Mirchev, and Abhik Roychoudhury

Abstract—Temporal logics like Computation Tree Logic (CTL) have been widely used as expressive formalisms to capture rich
behavioural specifications. CTL can express properties such as reachability, termination, invariants and responsiveness, which are
difficult to test. This paper suggests a mechanism for the automated repair of infinite-state programs guided by CTL properties. Our
produced patches avoid the overfitting issue that occurs in test-suite-guided repair, where the repaired code may not pass tests outside
the given test suite. To realise this vision, we propose a novel find-and-fix framework based on Datalog, a widely used domain-specific
language for program analysis, which readily supports nested fixed-point semantics of CTL via stratified negation. Specifically, our
framework encodes the program and CTL properties into Datalog facts and rules and performs the repair by modifying the facts to pass
the analysis rules. In the framework, to achieve both analysis and repair results, we adapt existing techniques — including loop
summarisation and Symbolic Execution of Datalog (SEDL) — with key modifications. Our approach achieves analysis accuracy of
56.6% on a CTL verification benchmark and 88.5% on a termination/responsiveness benchmark, surpassing the best baseline
performances of 27.7% and 76.9%, respectively. Our approach repairs all detected bugs, which is not achieved by existing tools.

Index Terms—Program Analysis and Automated Repair, Datalog, Loop Summarisation

1 INTRODUCTION

Computational Tree Logic (CTL) is based on a branching
notion of time — at each moment, there may be several dif-
ferent possible futures — which is sufficiently expressive to
formulate a rich set of properties for infinite-state programs,
such as reactive systems. CTL can specify many critical
properties to prevent bugs, such as non-termination [1],
in the form of AF(Fzit()); and unresponsive behaviours
[2], in the form of AG(¢1—AF ¢3), e.g. whenever an error
occurs, the server will eventually respond with the corre-
sponding error code. Here, ¢; and ¢, are the CTL sub-
formulae; A and E are universal/existential quantifiers over
the execution paths, and F' and G stand for finally and
globally, respectively.

Typically, when a program fails to satisfy a CTL property,
developers must examine counterexample traces identified
by a model checker and manually fix them iteratively. Here,
we propose a mechanism that, instead of requiring iterative
fixes, deals with all counterexamples at once and automat-
ically. To realize this vision, we propose a Datalog-based
framework that encodes the given program’s control flow
into Datalog rules, the abstract program states into Datalog
facts, and the CTL checking into Datalog query rules. The
presence of the expected output fact indicates whether the
program satisfies the specified property. The repair is then
achieved by modifying the input facts to allow the query
rules to output the expected fact. We chose Datalog for its

o Yu Liu is with the National University of Singapore
E-mail:liu.yu@u.nus.edu

o Yahui Song is with the National University of Singapore
E-mail: yahui.song@u.nus.edu

o Martin Mirchev is with the National University of Singapore
E-mail: martin.mirchev@u.nus.edu

o Abhik Roychoudhury is with the National University of Singapore
E-mail: abhik@nus.edu.sg

inherent purity, which sufficiently captures the entire spec-
trum of CTL properties. Additionally, its symbolic execution
capability — namely Symbolic Execution of Datalog (SEDL) [3]
— can identify potential modifications to the input facts
that influence the output facts, thereby repairing the code
to satisfy the given property.

Specifically, symbols denoting unknown constants and
the truthfulness of facts are injected into the input facts. The
outcome of SEDL on these symbolic inputs summarizes the
logical constraints over the symbols that enable the output.
Then, any valuation of symbols that produces the desired
query output corresponds to a patch. This allows us to
repair all the violations of the property at once and find
all possible repairs within the defined search space. Besides,
the relation between CTL and Datalog is longstanding [4],
showing that the semantics of CTL properties — nested
least and greatest fixed points — can be readily supported
by Datalog with stratified negation without introducing
approximation. However, the challenges are: the current
SEDL supports only positive Datalog programs, and it is
unclear how to precisely handle loops in a CTL analysis.

To address the first challenge, we extend SEDL
to support stratified negation. SEDL operates by over-
approximating the domain of symbolic constants, then us-
ing delta-debugging [5] to select the dependent input facts
that enable the expected output fact. There are two rea-
sons why this is limited to positive Datalog: (i) its over-
approximation only handles positive rules; and (ii) delta
debugging requires monotonicity, which is only applicable
to positive rules. In this work, we propose a new solution
in which the over-approximation takes account of stratified
negations. It uses an Answer Set Programming (ASP) solver
that works with non-monotonic rules, and the generated fact
modifications are sound by construction, i.e. they lead to the
expected output results.

To address the second challenge, we propose summa-
rizing programs, including the loops, using an intermedi-

Map back to the source code

Prog. CFG

CTL Property ¢ (3) Gottlob encoding

Stratified Datalog [(4)

Update Facts

(5) SEDL
Delete Facts
@ Safe patches (if any)

I:l {Add Facts

Fig. 1: System overview of CTLEXPERT

ate representation, denoted by ®, which is a guarded w-
reqular language. Unlike existing loop summarization tech-
niques, which do not explicitly capture non-terminating
behaviours, ® enables us to capture both terminating and
non-terminating behaviours in a (guarded) disjunctive form.
Existing CTL analyzers suffer from imprecision in their
termination analysis, primarily due to limitations of ranking
function synthesis techniques [6], [7]. We show that our
novel loop summarization enables an effective linear rank-
ing function [8] generation by inspecting the guards of the
disjunctive summaries. Next, the control flow and abstract
program states represented by ® can be encoded using a
Datalog program, leveraging the Datalog execution for CTL
property queries. Experimental results show that our tool
CTLEXPERT can significantly improve the precision of the
CTL checking. Our contributions are as follows:

o We design a novel find-and-fix framework that takes a
program and a CTL property and returns the repaired
program if the property is violated.

o We extend existing SEDL to support stratified negations,
enabling repair guided by CTL properties that involve a
mixture of least- and greatest-fix-point-defined analysis.

o We extend the existing loop summarisation by calcu-
lating both termination and non-termination summaries
to prove both safety and liveness properties, which im-
proves the precision of the analysis.

o We prototype our proposal and evaluate CTLEXPERT
on two benchmarks: a CTL verification benchmark (fea-
turing small-scale examples with complex loops) and
a termination/responsiveness benchmark (derived from
GitHub bug-fix commits). Our experiments demonstrate
that CTLEXPERT surpasses state-of-the-art tools in de-
tecting and fixing CTL bugs. The complete source code
and benchmark dataset are publicly available at: https:
//doi.org/10.5281/zenodo.15896690

2 OVERVIEW AND ILLUSTRATIVE EXAMPLES

As shown in Fig.|1} CTLEXPERT takes the program’s control-
flow graph (CFG) and a CTL specification and produces safe
patches if the property does not hold. The main steps are
highlighted in the rounded boxes and the arrows around
them. In particular, we deploy an SMT solver [9] and an
ASP solver [10] for solving linear arithmetic constraints
and deciding the truth assignments for Datalog facts. The
workflow of CTLEXPERT is as follows:

(1) Given any CFG, it is converted to our intermedi-
ate representation, i.e. the guarded w-regular expression (or
guarded w-RE), demonstrated in Sec. In this process,
loops are managed using a summary calculus, as detailed in

Sec. Given the undecidable nature of loop termination
analysis, the framework outputs “Unknown” when there
exists a path for which we cannot conclusively prove either
termination or non-termination.

(2) Given any guarded w-RE, it is translated into a
Datalog program, shown in Sec.

(3) For any CTL property, we convert it into stratified
Datalog rules, detailed in Sec.

(4) The SEDL execution checks CTL properties precisely.

(5) When a given property does not hold, the erroneous
Datalog program is sent for repair, as outlined in Sec.
The relationship between facts modifications and the
source code is as follows: Adding facts leads to additional
assignments along existing paths. Updating facts modifies
the current assignments on those paths. Deleting facts ne-
cessitates the inclusion of conditional statements for early
exits on problematic paths. Collectively, these modifications
form patches that consist of iteratively adding or revising
assignments and conditional statements.

CTL Analysis using Datalog. The program depicted in
Fig. [2| initiates by assigning the value y=1 while allowing
the variables ¢ and x to assume any values. Here, the symbol
* makes all the nondeterminism explicit. Following this
initialization, the program executes a conditional statement,
which includes an assignment of x=1. Subsequently, the
program enters a while loop, and once the while loop
is entered, it results in infinite execution. Finally, before
returning, it assigns the value y=>5. There are three symbolic
paths: (1) When ¢>10, it enters the infinite loop; (2) When
1<10 A z=y, it also enters the infinite loop; and (3) When
1<10 A z#y, it terminates normally with y=>5. The CTL
property ¢ of interest is “AF (y=>5)", stating that “for all
paths, finally y’s value is 5”. However, the current implemen-
tation fails to satisfy ¢ as the first two paths (1) and (2) never
reach the state where y=>5.

The state-of-the-art tool FUNCTION [7] concludes ‘un-
known” for this example. To achieve a more precise CTL
analysis for such infinite-state programs, we propose rep-
resenting the program using Datalog facts and rules and
leveraging the Datalog execution for sound and complete

I void main (
2 int y =
int i =
4 int x =
if (i >
while (x
y = 5;
8 return; }

Fig. 2: A Program Fails the CTL Specification

https://doi.org/10.5281/zenodo.15896690
https://doi.org/10.5281/zenodo.15896690

(y=1)Q1 - (i=+)Q2 - (x=+)Q3 - <\/

[i>10]Q4 - (z=1)@5 - (v

[i<10]@6 -

x#y|Q7 - (y=>5)Q11
=y]@8 - ((x>y)@12)~)

[z#y]@9 - (y=5)Q11
(v [r=y]@10 - ((z>y)@12)*)

B)

Fig. 3: The Guarded w-RE Representation, ®,,,:, (€n are uniquely assigned state numbers)

CTL checking. Specifically, we first convert programs into
an intermediate representation, i.e., ®,,4in, shown in Fig.
where [7] denotes a guard upon pure constraints. These
guards are derived from conditional, loop guards and asser-
tions. For example, the loop in line 5 is summarized into the
following disjunction ([z#£y]-€)V ([x=y]- (z>y)*), where “€”
denotes an empty trace while “w” denotes an infinite trace.
This summary over-approximates the behaviours of the
loop symbolically: when z#y it terminates, and otherwise it
infinitely repeats the state z>y.

Next, from ®,,,4ir, the generated Datalog program is out-
lined in Fig. E} For better visualization, here, the numbers in
red refer to the state numbers in Fig.[3| Abstract predicates
are over program variables, constants, and state numbers.
The predicate £low represents the control flows; and some
of them are persistent such as £low (1, 2), whereas some
of them only exist if certain promises are satisfied, such
as flow (3, 4), which only occurs when (transitivity) ¢ is
greater than 10 at state 3. Moreover, it is standard to encode
finite traces into infinite traces by adding self-transition
flows at last states, such as flow (11, 11). Facts are gen-
erated concerning the abstract states that lead to different
paths, namely, whether >10 and whether z=y. Also, since
¢ concerns the reachability of y=>5, we generate Datalog
facts w.r.t. the truth values of the following predicates: :>10,
1<10, x=y, 7y, and y=>5, which are abstracted using facts

flow(l,2). flow(2,3). flow(4,5).
flow(7,11). flow(8,12). flow(9,11).
flow(10,12). flow(11l,11). flow(1l2,12).
flow(3,4) :— Gt(i,10,3).

flow(3,6) :- LtEg(i,10,3).

flow(5,7) :- NotEgVar(x,y,5).
flow(5,8) :— EgVar(x,vy,5).

flow(6,9) :- NotEgVar(x,y,6).
flow(6,10) :- EgVar(x,y,6) .

Gt (i,10,2). LtEg(i,10,2). Eg(y,5,11).

EgVar (x,y,3) . NotEgVar(x,y,3). EgqVar(x,y,5) .

Fig. 4: The (Simplified) Datalog Representation

yEQ5(S) :- Eq(y,5,8).

AFT_yEQ5(S,S1) :— !vEQ5(S), flow(S,S1).

AFT_yEQ5(S,S1) :— AFT_yEQ5(S,S2), !vEQ5(S2),
flow(S2,S1).

AFS_yEQ5(S) :— AFT_yEQ5(S,S).

AFS_yEQ5(S) :— !YEQ5(S),flow(S,S1),AFS_yEQ5(S1).

AF_yEQ5(S) :— State(S), !AFS_yEQ5(S).

Fig. 5: Datalog Rules for “AF(y=5)"

Gt, LtEq, EqVar, NotEqVar, Eq, respectively.

The Datalog query rules generated for ¢ are shown in
Fig.[5| and after executing the Datalog engine, the expected
output fact R is AF_yEQ5 (1), which would indicate that
¢ holds at state 1 — the starting point of the program.
Intuitively, a predicate “AFT_yEQ5 (S, S1)” indicates that
the property y=5 fails to hold at every state along the
segment from S to S1. Therefore, “AFT_yEQ5 (S, S) ” denotes
a cycle from s back to itself where y=>5 is never satisfied.
Next, “AFS_yEQ5 (S)” captures the existence of a stem
path starting at S leading to a specific program location,
followed by a cycle back to the same location with y=5
remaining false throughout both the stem and the cycle.
Finally, “AF_yEQ5 (S)” is the negation of “AFS_yEQ5 (S)”,
indicating that y=>5 finally becomes true in all paths.

Since the variables i and = can assume any values,
all possible execution paths (1), (2), and (3) are enabled.
Consequently, after executing the Datalog engine, it fails
to produce R. This result indicates that the program does
not satisfy the specified property. At this stage, CTLEXPERT
successfully disproves the property, paving the way for sub-
sequent repairs to be implemented.

Need for Negation. The semantics of Datalog is defined
by least fixed point semantics, while greatest fixed point
properties can be represented using negation over Datalog
predicates. CTL properties involve a combination of least
and greatest fixed point properties. For example, consider
AGAF ¢, which can be encoded in Datalog through strati-
fied negation.

€1Gt (1,10,2). € LtEq(i,10,2).
§3Eq(y,5,11). &Eqvar (x,y,3).
&5 NotEqVar (x,vy,3) . & EqVar(x,y,5). &7Eq(al, az,as) .

Fig. 6: Symbolic Facts

YE(—& AN N A€ NEs N e N —E7) (a)
V (EaNEaNESNEANEsN EeN Er N an=yA aa=bN a3=12) (D)
\VAR

Fig. 7: Logical Constraints Enabling AF_yEQ5 (1)

Repairing Property with Negation via Extended SEDL.
Continuing with the earlier example, given that the expected
output fact R = AF_yEQ5 (1), CTLEXPERT converts input
facts to symbolic input facts by injecting symbolic constants
a1, o, ag, and symbolic signs &1,...&7. A symbolic con-
stant, ¢, represents an unknown value from its domain
(e.g., integers, strings), while a symbolic sign, £, represents
an unknown Boolean value indicating the presence of its
associated fact. After injecting symbols, those facts that

contain symbolic constants or signs are shown in Fig.[6} We
choose to explore modifications to variable states. Therefore,
we assign symbolic signs to variable state facts such as Gt (
i, 10,2) and EqVvar (x, vy, 3). There are in total six variable
state facts in the original EDB. Assigning symbolic signs
to them means that these variable states may be removed
— that is, the variable may no longer fall within the value
ranges described by the facts. One additional symbolic sign
is introduced for the fact Eq (a1, a2, a3), which represents
that variable «; is assigned the value a2 at as. This fact
expresses the assignment of a specific value to a variable.
Since it is unclear whether this assignment is necessary,
we also associate a symbolic sign with it. By applying the
rules outlined in Fig.] and Fig. | to these symbolic facts
and the unchanged facts, our SEDL generates the logical
constraints 1) for R, as shown in Fig. [/} Each disjunctive case
corresponds to a patch that enables the generation of R. The
satisfying assignment of case (b) introduces the fact Eq(y
,5,12), which effectively adds the assignment y=5 along
the existing path, specifically within the body of the while
loop. This patch successfully allows the program to pass the
CTL analysis.

The satisfying assignment of (a) drops the newly intro-
duced symbolic fact Eq (a1, a2, 3), and deletes the exist-
ing facts: Gt (i,10,2) and Eqvar (x,y, 3), indicating that
neither should 7 be greater than 10 at state 2 nor should =
equal y at state 3. The deleted facts suggest that when the
condition i>10V x=y is met, the program fails to satisfy
the intended property. As a result, during the first iteration
of the repair process, a conditional statement is added: if

(1>10| | x==y) return;. This line is placed before the
main logic of the program to prevent it from following
the problematic execution path represented by the removed
facts. However, the currently patched program still does not
satisfy the condition AF(y=5) because the newly added
path does not reach the state where y=5. Therefore, during
the second iteration, the analysis shows that the property
does not hold. As a result, the repair inserts the statement
y=>b before the return statement, similar to the generation
of (a). These iterative processes ultimately lead to the cor-
rect conditional patch being added. Both source code level
patches, referred to as Patch (a) and Patch (b), are illustrated

in Fig.

+ if (i>10 || x==y) {y = 5; return;}
6 if (i > 10) {x = 1;}
7 while (x ==y) { +y = 5;}
8 y = 5; return; }

Fig. 8: Patch Options, Revised from Fig.

Remark. While simple, this example showcases our
technical contributions in the following two aspects: loop
summarization for both terminating and non-terminating
behaviours and achieving the SEDL that accommodates
stratified negations. Moreover, we define how to interpret
fact modifications at the Datalog level into meaningful and
general source-code level patches. To our knowledge, this
work is the first to generate repairs based on a novel CTL
analysis.

3 PRELIMINARY

In this section, we introduce the background knowledge of
the techniques we use in this paper.

3.1 Computational Tree Logic and Datalog

(CTL) ¢ u=ap|—p| p1Ap2 | 1V | EF¢ |
EX¢ | AF¢ | E(01Ugs) | pr1—2 |

AX¢ | AGo | EGo | A(p1U¢2)

(AP) ap == (p,)

(Pure) 7w = T| F|bop(ti,ta) | R| miAme | w1V
(Terms) tu= v|_|ti+ta |-t

(Relation) R := p(v*)

Fig. 9: CTL Syntax

Computational Tree Logic (CTL) is a branching-time
logic for reasoning about multiple possible execution paths.
As shown in Fig. [} we capture each atomic proposition as
a pure formula 7 with a unique identifier p. Pure formulas
are quantifier-free arithmetic predicates over program vari-
ables and constants. Binary operators are represented us-
ing predicates, where bop € {>, <, >, <, =}. Other uninter-
preted relations are represented using relational predicates
R. A predicate has a name (p) and a set of arguments (v*).
Terms consist of simple values, the wild card _, and simple
computations of terms. Each temporal operator contains a
quantifier over paths: “A” means for all the paths, while “E”
means there exists a path; and a linear temporal logic [11]
operator: “F” for finally, “G” for globally, “U” for until, and
“ X" for next time. We use the * superscript to denote a finite
set of items.

(Datalog) D == R*++Q*
(Rule) Q == R-L"
(Literal) L = R|!R
(Relation) R == p(v*)
(Arguments) v == c| X

Fig. 10: A Core Syntax of Datalog

The core syntax of Datalog is shown in Fig.[10} A Datalog
program consists of a set of facts (R*) and rules (Q¥).
Arguments are constants (c), or program variables (X). A
Datalog rule is a Horn clause that comprises a head literal
(an atom) and a set of body literals, with the head on
the left side and the body on the right side of the arrow
symbol (:—). A fact is a rule with an empty body, i.e.it is
unconditionally true. A Datalog query is executed against
a database of facts, known as the extensional database (EDB),
and produces a set of derived facts, known as the intensional
database (IDB). Unification in Datalog is a pattern-matching
operation determining whether two arguments can be made
identical through substitution. Arguments unify if they are
identical constants or if one is a variable. The semantics of
Datalog is based on the least fixed point computation, where
facts are iteratively derived by applying rules to existing
facts until no new facts can be generated. Datalog with
stratified negation can be partitioned into a finite number
of Datalog programs, capturing the different strata. If the
rule producing the R contains R’ negated in the body, then

R and R’ are in different partitions, and R is in a higher
strata than R’. The least fixed point of the lower strata is
computed first and then used to compute the least fixed
point in the higher strata.

3.2 Symbolic execution of Datalog

Symbolic Execution of Datalog (SEDL) aims to identify
how varying database values impact query results by ex-
ecuting Datalog queries on a symbolic database, repre-
senting a range of concrete databases. SEDL uses sym-
bolic constants and signs. Symbolic constants represent
unknown arguments in facts, such as flow (a, 8), where
a and 3 are symbolic constants over a finite domain of
state numbers. Symbolic signs, denoted as £ are Boolean
values indicating the presence of facts. Collectively, these
symbols form X e {o1,...,0n} over domains Dy,...,D,,
ranging from integers, Booleans, strings. Any concrete val-
uation of ¥, is represented as {01 =vy, ..., 0, = vy}, where
Vie{l...n}. v; € D;. We use ¢* to represent all the logical
constraints for 3. Given any 1), its satisfying assignment is
a concrete valuation of ¥. A symbolic EDB, denoted by €&,
is a set of input facts that contain symbolic constants and
signs. The concretization of a symbolic EDB is obtained
by applying a concrete valuation. The symbolic execution
upon any symbolic EDB produces a set of pairs, and each
pair contains an output fact R and the corresponding logical
constraints enabling the generation of R. More specifically,
it takes £ and returns (R x 9*)*.

3.2.1 Implementation

SEDL is implemented in SYMLOG [3]], which uses a meta-
programming approach. Specifically, given a Datalog query
and a symbolic EDB, it converts them into a meta-query and
a meta-EDB so that executing the meta-query on the meta-
EDB with standard Datalog semantics produces the sym-
bolic execution output of the original query on the original
symbolic database. Consider the first rule in Fig. E} AF_yEQ5
(S) :— Eq(y,5,8) . When symbolic constants a1, ..., o, are
injected into the original EDB, SYMLOG converts this rule
into the following meta-query: (where (1, ..., C,, are auxil-
iary variables)

AF_yEQ5(s, Ci, ..., Cn) :- Eq(y,5,5, Ci, ..., Cn).

Each concrete instantiation of C1, ..., (), is a concrete valu-
ation of oy, ..., o, Given a symbolic EDB fact Eq (y, 5, a1),
it is transformed into the following meta-EDB rule: (where
the predicate domain_alpha_iis true for all values from the
domain of «;)

Eq(y,5,C1, Ci, ..., Cp)
domain_alpha_n (Cy) .

:— domain_alpha_1(C1), ...,

SYMLOG computes the constraints in two steps: (1) Con-
straints over Symbolic Constants. When the meta-query is
evaluated on the meta-EDB, each value of C; represents a
possible instantiation of the corresponding symbolic con-
stant «;, collectively forming the constraints over the sym-
bolic constants. The output facts with the same assignments
of auxiliary variables share the same constraints over the
symbolic constants. While a symbolic constant could theo-
retically take any value from an infinite domain (such as
integers or strings), in practice, we only need to consider

5

values that could potentially match with terms in the ex-
isting facts through unification. SYMLOG overapproximates
the domain of a symbolic constant by analyzing how values
flow through the Datalog program, tracking dependencies
between predicates and constants to determine which val-
ues each symbolic constant could potentially take during
execution. This over-approximation ensures that all possible
instantiations of a symbolic constant are considered. (2)
Constraints over symbolic signs. For output facts sharing
the same symbolic constant constraints, SYMLOG uses delta-
debugging [5] to identify the sets of input facts (annotated
with symbolic signs) that are necessary to derive each out-
put fact. Delta-debugging is a divide-and-conquer technique
identifying the minimal subset of inputs necessary to pro-
duce a target output. The symbolic signs of the identified
input facts must be true, while the values of other symbolic
signs are false.

Given each output fact associated with concrete instan-
tiation of the auxiliary variables, the constraint v is con-
structed by the conjunction of two types of constraints: those
over symbolic signs and those over symbolic constants. The
final constraints for the expected output fact are formed by
taking the disjunction of all such %, resulting in the pair

(R, ¢7).

3.2.2 Datalog Repair

Datalog is widely used in program analysis, where EDB
represents the analyzed program, and IDB represents the
analysis results. SEDL guides program repair in several
ways. For instance, if SEDL produces (R,%*), and R in-
dicates the expected results, then a satisfying assignment
of 1* suggests a patch that enables the desired output.
Conversely, if R indicates a bug, the satisfying assignment
of =)™ points to a patch that can eliminate the bug.

3.2.3 Limitation of the Existing SEDL

SYMLOG only supports positive Datalog. For symbolic con-
stants, its domain approximation cannot handle negation.
We resolve this by removing negations from the rules and
then applying its method. For symbolic signs, its deployed
delta-debugging requires the program to be monotonic,
i.e.when input facts increase, the output of a rule must
not decrease. We resolve this using an ASP solver to com-
pute truth assignments for the symbolic signs. Overall,
we achieve a SEDL that accommodates stratified negations
and thereby supports the repair for CTL-defined analysis,
detailed in Sec.[5l

4 CTL ANALYSIS USING DATALOG

In this section, we outline the essential steps for conducting
a CTL analysis using Datalog.

4.1 From CTL Properties to Datalog Rules

Given a CTL formula ¢, the relation “CTL2D($)~(p, Q*)”
holds if ¢ can be translated into a set of Datalog rules Q*.
The validity of ¢ against a program is then indicated by the
presence of the IDB predicate p after executing Q* against
the program facts. Since most of the encoding rules are
standard [12], we selectively present them in Fig. (12, where
we use “++” for both string and list concatenation.

For instance, in [CD-AP], given a CTL formula contain-
ing one atomic proposition (p,), it produces the Datalog
rule “p(S) :—m(S)”, which generates the predicate p for all
states that satisfy the pure constraint .

Different from prior work [12], which relies on the “find-
all” operator — to encode the AF' operator. However, since
“findall” introduces logical impurity and is not supported
by Datalog, we adopt the encoding from the work of [4],
which enables the greatest fixed point encoding using the
least fixed point semantics of Datalog while maintaining
the Datalog purity. Intuitively, given a CTL formula AF ¢,
the resulting Datalog rules from [CD-AF)] are to prove the
absence of the lasso-shaped [13] counterexamples, i.e. “ps” —
a stem path to a particular program location followed by
a cycle that returns to the same program location, i.e. the
“pe(S5,.5)”, and the property ¢ does not hold along the stem
and the cycle. One example for AF(y=>5) is shown in Fig.

xEQ5 (3) :— Eg(x,5,9).
EF_x_EQ 5(S) :— xEQ5(S).
EF_x_EQ 5(S) :- flow(S,S1), EF_x_EQ_5(S1).

Fig. 11: Datalog Rules for “EF(x=5)"

The Datalog encoding rule for “EF” is omitted, but
we show an example using EF(z=>5) in Fig. which
recursively searches for the reachability of states which
satisfy #=>5. Similarly, “AG” and “EG” can be encoded as
the negation of “EF” and “AF”, respectively; implications
can be encoded using disjunction and negation, etc.

4.2 From Programs to Guarded Omega-Regular Ex-
pressions

As defined in Fig. any program P consists of a set of
functions, which is identified by a name p, and represented
by a CFG with a starting node NV and a transition function 7,
which returns all the immediate successors of a given node.
Each node is parameterized with a unique (integer) state
identifier s. We assume that the sets of nodes in different
functions are pairwise disjoint. Apart from the Start and
Exit, Join is used to connect disjunctive paths (usually
created by conditionals and loops), while Prune associates
an arithmetic guard before a node. Finally, Stmt stores
statements such as assignments, returns, and function calls
where the return value is explicitly denoted by .

As shown in Fig. the Guarded w-RFE formulas are
similar to those in the classic Omega Regular Expressions,
containing L for false, ¢ for empty traces, sequence con-
catenations (® - ®3), disjunctions ($;V P®3), and infinite
repetitions of a trace by ®“. The main difference is, in
Guarded w-REF, singleton events can be either 7 or [r]. The
former updates the program states with respect to the =
formula, while the latter serves as program guards. Program
guards are the sole means of introducing and controlling
non-determinism. For the formula “[7] - ®”, the guarded
trace ® is executed only when the guard does not fail. When
checking a guard, a Boolean expression is evaluated. If it
denotes false, the guard fails. If it denotes true, it allows the
execution to proceed without affecting the program states.
Moreover, Guarded w-RFE does not contain Kleene stars as it

6

aims to eliminate the unknown number of repetitions using
either fixed-number-length finite traces or w formulas for
infinite executions.

Each function is converted to a Guarded w-RE formula
via Algorithm [I, which enumerates all paths from the
CFG and replaces the cycles using the loop summaries. If
the current node is an exiting node (line 2), it returns its
corresponding ® formula. Here,)(N) maps from nodes to
®. If the current node is a Join, it firstly checks if it leads
to a cycle via calling EXISTSCYCLE (line 4), which returns
“None” if none of its successors directly leads to cycles;
otherwise, it returns “Some (7y, Pcycie, NnonCycleSuce)”s
indicating that one successor of N leads to a path with
guard 7, that comes back to itself, and ® ;. describes the
behaviour of one iteration of the cycle, and Nponcyclesuce 15
the other successor, which does not directly lead to a cycle.
The EXISTSCYCLE is implemented using a depth-first search
algorithm. The cycle behaviours are sent to a summary
calculus (line 8). In all other cases (lines 5 and 9), it uses an
auxiliary function MOVEFORWARD to accumulate the effects
of the current node and recursively combine the behaviours
of all the following nodes. If there are no successors, MOVE-
FORWARD terminates; otherwise, it goes through successors
and applies CFG2GWRE to calculate the formulas for the
remainder of the path. It then disjunctively combines the
outcomes.

Definition 4.1 (CFG Nodes to Guarded w-RFE). Given any

Algorithm 1 CFG2GWRE

Require: A node N, and a transition function 7
Ensure: The final Guarded w-RE, ®
1: if N matches Fzit(s) or Stmt(return(z), s) then

2: return O(N)

3: else if N matches Join(s) then

4 cycleInfo + EXISTSCYCLE (N, T)

5. if cyclelnfo is None then

6: return MOVEFORWARD (N, T)

7: else

8 Extract (g, Peyeie, NnonCyclesuce) from cyclelnfo
9: q)rest <~ MOVEFORWARD(NnonCycleSucca T)
10: return LOOPSUMMARY (7g, D cyere, Prest)
11: end if

12: else

13: return MOVEFORWARD (N, 7))

14: end if

15:

16: Function MOVEFORWARD(N, 7))

17: if T(N) = [| then

18: return O(N)

19: else

200 Dy +— L

21: forall N € T(N) do

220 Baue Do V CFG2GWRE(N', T)

23: end for
24: return (O(N) - DPyee)
25: end if

Q=p(S) -7(S) CTL2D(¢)~(p, Q*) DPrew="NOT_” ++p Q' =pueu(S) =!p(S)
CTL2D((p, M)~ () |7 A CTLAD(~) (prons @ ++1Q)) |CD-Neg]
CTL2D(¢)~(p, Q7) Prew="AF_" ++p ps=“AFS_" ++p pe=%“AFT " ++p
Q= pe(S,97) — p(S), flow(S,S’) pe(S,8) = (S,57),! p(S”), £low(S”, S")
ps(S) =pe(S,S) ps(S):=!p(S), £1ow(S,), ps(S") Pneu(S) :=!ps(S) (CD-AF]
CTL2D(AF &)~ (pnew, QT ++ Q%)

Fig. 12: Selected CTL-to-Datalog Encoding (The positive predicate State(S) is implicitly inserted to ground the variables)

N, its ® formula is defined as follows:

O(Stmt(x:=t, s))=(z=t)Qs
O(Stmt(return(_), s))=((Ezit())Qs)*
(

O(Prune(m, s))=[r]Qs O(Exit(s))=((Fzit())Qs)~
(p(z7))@s - (r=x)Qs
OSmt(p(a*,),)= o “’7;” gi?

when (P, (y*, ret) € P)

The function ¢, as described in Definition maps the
Prune nodes into guards and excludes the not mentioned
node constructs (Start and Join), using e. Function calls
with undefined callees are modelled as non-deterministic
choices, denoted by r=+. When the callee is defined, we
retrieve its summary ®, and instantiate it by substitut-
ing formal arguments with actual arguments, denoted by

D, [x*/y*, r/ret].

4.3 From CFG Cycles to Guarded Omega-Regular Ex-
pressions

Targeting sequential non-recursive infinite-state programs,
summaries are constructed from the innermost loop. In
the case of nested loops, inner loops are expected to be
replaced with summaries first. At any point during the
analysis, the problem is therefore reduced to the analysis of
a single loop. Intuitively, our loop summaries aim to replace
terminating behaviours using their final states and convert
non-terminating behaviours using w constructs over finite
traces.

The LOOPSUMMARY function is detailed in Algorithm 2}
which takes three arguments: a loop guard 74, the repetitive
behaviours of the loop ® ..., and the behaviours after the
loop ®,.s:. Instead of being directly dedicated to the ranking
function synthesis problem, the algorithm obtains a set of
candidate ranking functions (CRFs) from the guard of the
repetitive case 74, denoted by CRF (m).

(Program) P = func®

(Func. Def.) func == p=(N,T)

(Statements) e u= m=t| return(x) | p(a*,r)
(Trans. Fun.) T == N-N*

(Nodes) N Start(s) | Ezit(s) | Join(s) |

Prune(r, s) | Stmt(e, s)

Fig. 13: CFG Structure of Target Programs

Oi=1 |e|mQs | [r]Qs | Dy - Dy | Dy V Py | ¥

Fig. 14: The Syntax of Guarded w-RE

For each CREF, we compute the weakest precondition
(WPC) for termination and non-termination, denoted by
ngc and 7Twpc, respectively. Here, the difference between
the initial value of rf and the updated value rf’ after the
transition ® is denoted by Arf(®), ie Arf(®)=rf-rf".
Intuitively, under ngc, rf can be proven to be strictly de-
creasing for all the transitions in the loop body; thus, it leads
to terminating executions. Likewise, under ﬂ’i\{pc, rf can be
proven to be strictly not-decreasing for all the transitions in
the loop body; thus, it leads to non-terminating executions.

To achieve a sound CTL analysis, we only obtain con-
clusive results when the union of these two WPCs cov-
ers the full path upon entering the loop (checked in line
4). This means that the summary should not contain any
paths for which we cannot determine whether they lead
to termination or non-termination. Otherwise, we report
“Unknown” and quit the analysis. In the loop summary,
®!,,,., denotes the case when the execution did not enter
into the loop at all, 2, denotes the case when entering
the loop and terminates eventually, and ®,,,y,7erm denotes
the case when entering the loop and getting into an infi-
nite execution where 7f>0 is the recurrent state [8] that
witnesses non-termination. The status of other (non-CRF)
program variables can be included in the summary relative
to terminating and non-terminating cases, respectively.

Algorithm 2 Loop Summary Computation

Require: 7, <I>Cyde, D rest
Ensure: A loop summary ® or Unknown
for all rf € RF(m,) {Obtain CRFs} do
Nl%c < Arf(cycle) Z 1
— Al‘f(cycle) <1

Twpe
if 1, = (ﬂVTVPC \Y, WVI},TPT,J {Full Path Conclusive} then
(ptlerm [_'ﬂ—g] (prest

(pt2erm &~ [Wg A ’/Twpc] (I‘f < 0) : (I)rest

(bnonTerm «— [A 7-‘-vl\vlgc] (I‘f 2 O)W
return ®L \/ B2V PronTerm
end if
end for

return Unknown {Inconclusive Result}

Example 1. Revisiting the loop shown in Fig. 2} when
triggering LOOPSUMMARY, the arguments are my=(z=y),
O yere=¢€ and P,,=(y=>5). By Definition we obtain:
rf=(z-y) and rf € CRF(z=y). Based on rf, we compute
mh,.=F and ©})L=T, as rf never decreases. Thus, we con-
clude the final summary to be ([z#y] - (y=5)) V ([x=y A F]-
(rf<0) - (y=5)) V (J[r=y AT] - (rf>0)“); which reduces to
the summary concluded in Fig. |3} i.e. ([x#y] - (y=5) V [z=y] -
(z>y)*).

Definition 4.2 (Generating CRFs from Pure). Given any
loop guard 7™ on CFG, we propagate a set of terms which
are candidate ranking functions: () for unmentioned con-
structs)

CRF(ty>ty)={t1-ts} CRF(t1<ts)={ts-t1}
CR]‘—(tl >t2):{t1-t2-1} CR]:(t1<t2)={t2-t1-1}
CR]:(tl :tg):{(tl-tg); (tg-tl)}

Theorem 4.1 (Soundness of the Generation of CRFs). If
the generated CRFs, from Definition decreases at each
iteration of the cycle, the cycle does terminate.

Proof sketch. By case analysis of the possible loop guard .
For example, when m=(t;>t3), and rf=t;-t2: to enter the
loop, the state must satisfy rf>0, if rf is decreasing at each
iteration, it will finally reach the state rf<O0, ie.t;-t2<0,
which no longer satisfy the loop guard; thus, the loop is
terminating. Similar proofs for the rest of the cases. O

Since all the conjunctions and disjunctions in arithmetic
constraints are systematically decomposed by the CFG con-
struction, we soundly over-approximate the set of CRFs
using Definition meaning that if one of them concludes
termination, the loop must be terminating. In particular,
there are two possible cases for a loop guard of the form
t1=to: either ¢1-t5 is decreasing, or t2-¢; is decreasing. Con-
sequently, the resulting set contains exactly two elements.
The soundness is defined in Theorem However, this
approach may lack completeness, as we focus on loops that
can be proven terminating through linear ranking functions
(LRFs) [14], where loops are ranked linearly. As a result,
the actual ranking functions — when there exist leaking
paths in the cycle or those that progress through phases
— may not be generated adequately. These situations will
be classified as Unknown in the current setup. Computing
loop summaries for other types of ranking functions is
considered future work.

4.4 From Guarded w-RFE to Datalog Programs

There are two tasks for generating a Datalog program given
a Guarded w-RE ®, and a CTL property ¢: produce the
rules for conditional flows, and map concrete program
states into abstract predicates in the form of facts. First, we
provide the definitions of the deployed auxiliary functions.
Informally, the Nullable function 6(®) returns a Boolean
value indicating whether ® contains the empty trace; the
First function fst(®) computes a set of possible initial trace
segments from ®; the Derivative function D (P) eliminates
a segment f from the head of ® and returns what remains.

Definition 4.3 (Nullable). Given any ®, we define 6(®) as
follows: (false for unmentioned constructs)

5(6):tTU€ 5((131 @2):5((1)1)/\5(@2)
5(D1 V Do) =5(D1) V 5(Ds)

Definition 4.4 (First). We define fst(®) to be the set of initial
segments derivable from a ® formula.
fst(m@s)={r@s} fst([r]Qs)={[r]Qs}
fSt(‘I)l v@g):fst(¢1) UfSﬁ(@Q) fSt((I)w):{@w}
fst(®1)U fst(P2) when §(Pi)=true
t(P1 - Po)=
Jst(®1- @) {fst(@l) when 6(®q)=false

Definition 4.5 (Derivative). The derivative D (®) subtracts
a trace segment f from the head of ® and returns what
remains, defined as follows: (L for unmentioned constructs)

Dras(m@s)=e Dipjas([r]@s)=¢

Do (P¥)=¢ Dy(P1V P2)=Dy(P1) VDs(P2)
(Dy(P1) - Do) V Dy(P2)
Di(®; - Dy) = when §(®1) = true

Dy (D) - o
when 6(P1) = false

As shown in Fig. translation rules are in the form
of II- GWRE2D(s,,®) ~D, where II is a context con-
taining a set of abstract predicates, s, is the preced-
ing state, and the formula ® will be converted into the
Datalog program D. The translation is initially invoked
with II=Pure(®) U Pure(¢), sp=-1 and mpe=T. We use
Pure(®) to extract the predicates from the guards in ®, and
use Pure(¢) to extract the atomic propositions in ¢. In total,
IT gathers all the abstract predicates of interest.

When the given ® contains no initial elements, i.e.it
is already the end of the trace, [GD-Base| adds a self-
transition flow. Otherwise, [GD-Ind] unions the Datalog
programs generated from each initial segment and their
derivatives via the relation II+ (f,s,, ®) < D. There are
three kinds of initial segments: When f=®%, apart from
the Datalog program generated from ®, [GD-Omega] gen-
erates the flow facts connecting end and start states of ®;
When f=n@s, [GD-Pure] generates a flow rule from the
previous state to the current state and generates facts for
predicates, which are entailed by the current state, denoted
by {n'(s) | Va’' €Il . 7@s=-7")} where the implication of
mQ@s=7 is solved by a SMT solver [9]. For example, if
the concrete state is y=1 at state s and II includes y>1
and y<1, then it generates one fact GtEq("y", 1, s), since
(y=1)=(y>1) and (y=1)#(y<1). Lastly, when f=[r]Qs,
[GD-Guard] generates a conditional flow from the previous
state to the current state, with the premise to be 7 holds at
the previous state. It then continues to generate the Datalog
program for the remainder of the trace.

4.5 Soundness Discussion

Our tool significantly improves the precision of CTL analy-
sis compared to the state-of-the-art tool Function, based on
abstract interpretation. While abstract interpretation tends
to be overly conservative, our method reduces the “un-
known” results by leveraging a refined trace representation.
Crucially, our termination analysis is provably sound, as

fst(@)={} D=[flou(sy,s,)]

F=fst(®)

- GWREZD(s,, @)D \CD-Base]

[GD-Omegal
Dy =tailToHeadFlows(®)
I+ GWRE2D(s,, ®) ~ Dy

[GD-Guard]

Dy=[flow(sp, s) = 7(sp)]
I+ GWRE2D(s,) ~ Dy

D-Ind
- GWREZD(s,, ®) ~ UD; (GD-Ind]

Dy=[f1low(sp, s)]
Do={n'(s) | V' €Il . 1@Qs=7")}
T+ GWRE2D (s, ®) ~ Ds

ITF (2, sp, _) = Dy ++Do

IIF ([7]@s, sp, @) — Dy ++Dy

D-P
T+ (7@s, sp, ®) < Dy ++Da++Dj3 (G D-Pure]

Fig. 15: Translating a Guarded w-RE to a Datalog Program

guaranteed by the sound generation of CRFs. For general
CTL analysis, however, soundness is intentionally relaxed to
achieve better precision. Specifically, we over-approximate
program states when summarising infinite executions us-
ing w-regular expressions — a well-established trade-off
in model checking. Empirical results demonstrate that our
approach strikes a better balance between precision and
performance than purely sound alternatives.

5 PROGRAM REPAIR

We present an approach for repairing CTL violations via
SEDL. We cannot directly leverage the existing implemen-
tation of SEDL, namely SYMLOG, since it is limited to least
fixed-point defined analyses, considering only positive Dat-
alog programs. However, the CTL analysis involves nested
least and greatest fixed points; thus, stratified negations
frequently occur. In this section, we present our solution,
enabling SEDL to repair CTL violations. We also separate
the computation of the constraints related to symbolic con-
stants and symbolic signs. The former is computed using an
over-approximation method, while the latter is computed
using ASP.

5.1 Symbolic Constants

The logical constraints related to symbolic constants in-
volve assigning these symbolic constants to specific concrete
constants, enabling the generation of the expected output
facts. While a symbolic constant can represent any concrete
constant, in practice, we only need to consider the concrete
constants that can match the arguments in the existing
facts through unification, called the domain of a symbolic
constant. For example, given facts a(«) and b(1), and rule
c(X):-a(X),b(X), o must be 1 to generate ¢(1) through
unification with b(1). Thus, 1 belongs in a’s domain. For
each constant ¢ in &’s domain, o = c is a condition in the
logical constraint .

To estimate the domain of a symbolic constant, we first
remove all the negative literals in the rules and then use
SYMLOG's method, which computes the “depend” relations,
defined in Fig. Here @}, is the set of rules with all
negative literals removed. We use p(...,w;,...) to mean
that w appears at the i-th argument in a literal p, and w
can be constants, symbolic constants, or variables. Relation
“depend(p, i,¢)” says that the constant ¢ may appear at
the ¢-th position of the fact p during evaluation, which is
designed to over-approximate the possible constants that
appear at i-th argument of fact p. This over-approximation

ooy iy ...) € E = depend(p,i,n) [DO]
where n is a placeholder for o
(.., €y ...) € E = depend(p, i, ¢) [D1]
Ri—..,p(...,Cis...), ... € Qpos = depend(p,i,c) [D2]
R:— ...,1)1(...7 X,)7 ...J)Q(.,.,Xj,), . € Q;m, Xi=X;
= Vc. depend(pi, i, ¢) < depend(p2, 7, ¢) [D3]

Fig. 16: The “depend” Relation. (£ is the symbolic EDB,
X; = X, denotes that X; and X are identical variables.
« is a symbolic constant, ¢ is a concrete constant, and n is
the placeholder for «)

is introduced because it is impractical to compute the exact
set of constants at the position after introducing symbolic
constants [3].

For any fact p(..,0,...), rule [DO0] generates
depend(p,i,n), where n is the placeholder for . Every
symbolic constant has a corresponding placeholder, which
is useful for ‘inventing’ new output facts whose arguments
are unseen in the current EDB. Usually, the placeholders
will be instantiated by the constants in the target facts.
Similarly, rule [D1] generates depend(p,i,c) for all the
concrete constant arguments. Rule [D2] states that if there
is a positive literal p(...,c;,...), then depend(p,i,c) is
generated. This is because the additional facts instantiated
from symbolic constants may enable this occurrence. Rule
[D3] states that if variables X; and X are identical across
different literals in a rule, then any c that can appear at the
position of X; in a p; fact may also appear at the position
of X; in a py fact. This propagation of potential constants
happens regardless of whether the literals are in the head
or body of the rule.

SYMLOG also over-approximates the positions where the
instantiation of « is used for unification with the constant in
a fact for generating new output facts. These positions, de-
noted as pos(a), include: (i) the position where the symbolic
constant « appears, (ii) all argument positions in the same
rule positions in the same rule that refer to the same variable
as the one bound at a’s position; (iii) all positions in other
rules that transitively receive this variable through predicate
calls. For a symbolic constant o, the over-approximation of

its domain is defined as:
domainﬁ(a) £ {c|depend(p, i,c), (p,i) € pos(a) } [Dom]

[Dom] computes the over-approximation of «’s domain by
taking the union of all potential constants that « is used for

unification during the Datalog program evaluation.

After removing all the negative literals, the domain®(«)
computed by [Dom] is an over-approximation of the do-
main of « in the original stratified Datalog program. A
rule () containing negative literals is more restrictive than
its positive-only version ()p,s because (o5 only requires
matching positive conditions. In contrast, () must ensure
that no facts correspond to the negative literals. So, given
the same input facts, at each step during the evaluation, the
set of facts that can be generated from @}, is a superset
of that from @Q*. Therefore, when other symbolic constants
and symbolic signs are fixed, the set of constants that appear
at each position (p,i) in the facts generated from Q7 is
a superset of that from Q* at each step of the evaluation.
The set of positions (p,i) where « is used for unification
with the i-th argument in p in @}, is also a superset of
that in Q*. This is also because the conditions for allowing
o to be propagated to a position in () are less than that
of QQpos. Furthermore, since domain®(a) over-approximates

the domain of ain @, it does so in () as well.

Example 2: Constraints over Symbolic Constants. To
illustrate how the domains of symbolic constants are com-
puted, we use the motivating examples shown in Fig. [4
Fig. b} and the simplified symbolic EDB from Fig. [6} The
simplified EDB is as follows:

Eg(a1, o2, az).

The over-approximated positions of o consist only of (Eq
, 0), which means the first position of Eq. This is because
the only rule involving Eq, i.e., yEQ5(S) :- Egq(y,5,S) .,
uses a constant in the first argument position, not a variable.
Therefore, there are no shared variables, and hence no other
positions. Similarly, pos(as) is (Eq, 1). The positions of as
include many locations, since multiple rules transitively re-
ceive the variable S. In the first rule mentioned above, (yEQ5
, 0) is included. Through transitive propagation, the second
rule adds (flow, 0) and (AFT_yEQ5, 0), because they all
share the variable S with !y_EQS5 (S). By applying the same
logic, pos(as) includes all positions except for pos(ay) and
pos(az). Next, we compute the “depend” outputs, which
indicate all possible values that may appear at each position,
as shown in Fig. The “depend” values at each position
in pos(a3) are the values appearing in the £1low facts, which
essentially include all program states, i.e., 1 through 12. The
“depend” value at pos(a1), i.e., (Eq, 0), is ”y”, because it is
the only value that appears at this position in both facts and
rules. The “depend” value at pos(as), i.e., (Eq, 1), is ”5”, for
the same reason.

5.2 Symbolic Signs

After instantiating all the symbolic constants, we next com-
pute the Boolean values of the symbolic signs to generate
the final 1. SYMLOG converts the problem into finding a
set of dependent facts, such that the expected output fact
can only be inferred when their signs are positive. To find
these dependent facts, SYMLOG uses delta-debugging (DD)
[5]. However, this approach can lead to incorrect results for
rules with negations.

Example 3: Incapacity of SYMLOG. In Fig. as-
sume that R=a(l) is the target output fact, and all

10

the following facts are associated with symbolic signs:
{b(1),¢(1),e(1),d(1)}. DD divides the fact set evenly and
tests if the right half still can produce R. The subset
{e(1),d(1)} still can generate R, so DD further divides it
to {d(1)}, which still produces R according to the second
rule. Thus, DD returns {d(1)} as a dependent fact set.
Since SYMLOG needs to find all dependent fact sets, it
iteratively selects one fact from the returned dependent
facts and removes it from the fact set, then it searches for
new dependent facts from the updated fact set, continuing
this process until no new dependent facts can be found. In
this example, removing d(1) leaves {b(1), ¢(1),e(1)}, which
cannot generate R, so DD concludes that {d(1)} is the only
dependent fact set. However, {b(1),¢(1)} and {e(1)} are
also dependent fact sets. If R represents a bug, removing
only d(1) would not be able to disable it.

To support both positive rules and rules with stratified
negations, we encode these rules using Answer Set Pro-
gramming (ASP) [10], a declarative programming for solv-
ing complex search problems. ASP solvers can find sets of
facts that satisfy given constraints, even if the rules are non-
monotonic. An ASP program includes Prolog/Datalog-style
rules and facts, and allows for specifying constraints with
an empty head rule. It also supports choice rules, enabling
alternative solutions. A solution of the ASP program is
referred to as an answer set.

ASP can be used to compute the sets of facts that enable
the target output fact R. Specifically, given any concrete
valuation of the symbolic constants, the procedure for com-
puting dependent fact sets is: (i) transform the Datalog rules
to ASP rules; (ii) transform the facts instantiated with the
valuation to ASP facts and surround the facts with sym-
bolic signs using the choice structure; and (iii) specify the
expected output fact via R and the facts with placeholders.
The answer sets of the converted ASP program correspond
to the sets of facts enabling R. The union of answer sets
gathered from each valuation is the complete dependent fact
set for R.

Example 4: Constraints over Symbolic Signs. Continue
from Example 3, taking {£16(n1), £2¢(n1)} instantiated from
& and the first rule in Fig.[17]as an example. Assuming the
target fact is a(1), the corresponding ASP program is shown
in Fig. The choice structure, {}, indicates that any of the
enclosed facts can be selected for the answer set. The con-
straint “:- not a(l), not a(ni1)” is to prevent all a(1)
and a(n1) from not being generated simultaneously, i.e., at

a(X):=b(X),c(X),!d(X),!e(X).
a(X):-d(x).
a(X):—e(X),'!'c(X).

Fig. 17: Example for Illustrating the Incapacity of SYMLOG

a(X) := b(X), c(X), not d(X), not e(X).
{b(n1); c(ni)}.
:— not a(l), not a(ni).

Fig. 18: An ASP Program Computing the Answer Sets ({ } is
a choice structure representing any elements within it that
can be included in the answer set)

least one of them should be generated. Such a constraint
eliminates any answer set that satisfies the constraint. The
fact a(ny) is also included in the constraint, as it is possible
that the target output cannot be produced by the ‘seen’
constants in the given fact set, as shown in this example.
The placeholders can be replaced with the constants in
the target fact to generate the final dependent facts. The
solution of this constraint is {b(n1), ¢(n1)}. In this example,
ny can be replaced with 1, and a(n1)’s dependent fact set
{b(n1),c(n1)} correspondingly becomes {b(1),¢(1)}. Since
b(ny) and c¢(ny) are selected, the truth assignments for &;
and & are both true. Combining the constraints related
to symbolic constants, a;=n1 A aa=nq, and the truth as-
signments for & and &5, the logical constraints for a(1)
is ¥ 1 a1=n1 Aaw=n; Ani=1A& A&. Computing 1 for
{&1 b(n2), & ¢(n2)} similarly, our method returns:

(a(l),(alznl ANas=ni Ani=1A& /\52) V
(a1=ng Aag=ny Ana=1 A& N&a))

To compute the truth assignments that prevent a given
output fact from being generated, we can remove the ‘not’
in front of the ASP constraint. The ASP results can directly
serve our symbolic sign assignments, as the semantics of
stratified Datalog coincide with the answer set semantics,
where the facts cannot be inferred from existing facts are
considered false [15].

5.3 Patch Generation
5.3.1 Atomic Templates

We introduce three atomic templates for fact modifications:
(1) Fact Addition introduces facts along existing paths to
satisfy the CTL property. These added facts map to inserting
assignments in the source code. For this template, we inject
symbolic constants only into “assignment” facts without
injecting any symbolic signs into the EDB. (2) Fact Update
revises current assignments on existing paths to satisfy the
CTL property. These fact modifications map to removing
and adding assignments in the source code. Similar to the
first template, we only inject symbolic constants into “as-
signment” facts, but we also associate symbolic signs with
the existing “assignment” facts. (3) Fact Deletion highlights
symbolic paths that do not satisfy the CTL property. These
modifications essentially involve inserting conditional state-
ments that prevent the program from reaching the paths
described by the deleted facts. In this template, we associate
symbolic signs with facts which are generated to model
the non-deterministic values of the program variables. Since
the generated patches may impact the program’s transition
structures, CTLEXPERT must re-analyze the modified pro-
gram to verify whether the CTL property is satisfied.

5.3.2 Repair Configuration

After applying an atomic template, if the CTL property
is still not satisfied, CTLEXPERT can switch to a different
atomic template to either repair the original program or
continue to address the updated, yet still incorrect, pro-
gram. There are two common strategies for proceeding;:
applying atomic templates in a depth-first manner (where
one template is exhaustively applied before moving on to
another) or in a breadth-first manner (where all templates

11

are applied to the program before addressing the updates).
When multiple patches are generated from applying an
atomic template, we select the ones requiring the fewest
modifications. Among the selected patches that involve
inserting assignments, we further choose the option where
the inserted assignments are closest to the exit points. This
approach minimizes the scope affected by the patch.

6 IMPLEMENTATION AND EVALUATION

We prototype our proposal into a tool CTLEXPERT, using
approximately 5K lines of OCaml (for the program analysis)
and 5K lines of Python code (for the repair). In particular,
we employ Z3 [9] as the SMT solver, clingo [10] as the
ASP solver, and Soulffle [16] as the Datalog engine. To show
the effectiveness, we design the experimental evaluation to
answer the following research questions (RQ): (Experiments
ran on a server with an Intel® Xeon® Platinum 8468V,
504GB RAM, and 192 cores. Source code and benchmark
dataset are publicly available from [17])

o RQ1: How effective is CTLEXPERT in verifying CTL prop-
erties for relatively small but complex programs, com-
pared to the state-of-the-art tool FUNCTION [7]?

o RQ2: What is the effectiveness of CTLEXPERT in detecting
bugs that can be encoded using both CTL and linear tem-
poral logic (LTL), such as non-termination gathered from
GitHub [1] and unresponsive behaviours in protocols [2],
compared with ULTIMATE LTL AUTOMIZER [18]]?

« RQ3: How effective is CTLEXPERT in repairing CTL vi-
olations identified in RQ1 and RQ2? which has not been
achieved by any existing tools.

6.1 RAQ1: Verifying CTL Properties

The programs listed in Table [I|and their CTL specifications
were obtained from the evaluation benchmark of FUNC-
TION, which includes a total of 83 test cases across over
2,000 lines of code. We categorise these test cases into
six groups, labelled according to the types of their CTL
properties. These programs are short but challenging, as
they often involve complex loops or require a more precise
analysis of the target properties. The FUNCTION tends to be
conservative, often leading it to return “unknown” results,
resulting in an accuracy rate of 27.7%. In contrast, CTL-
EXPERT demonstrates advantages with improved accuracy,
particularly in 56.6%. The failure cases faced by CTLEXPERT
highlight our limitations when loop guards are not explicitly
defined or when LRFs are inadequate to prove termination.
Although both FUNCTION and CTLEXPERT struggle to ob-
tain meaningful invariances for infinite loops, the benefits of
our loop summaries become more apparent when proving
properties related to termination, such as reachability and
responsiveness.

6.2 RQ2: CTL Analysis on Termination/Responsive-
ness Properties

The first 13 programs in Table [2| are from public reposito-
ries, each associated with a GitHub commit number where
developers identify and fix the bug manually. In particular,
the CTL property used for programs 1-9 (drawn from a

12

TABLE 1: Accuracy comparison for CTL property verification. For each property type, we show the percentage of
successfully verified properties, the number of files, representative examples, and total verification time.
. FUNCTION CTLExpert
Property Type| #Files| LoC |Examples Accuracy |Total Time(s)| Accuracy "l!:)tal Time(s)
1| Termination 15 | 402 | AF(Exit()) 40.0% (6/15) 0.357 66.7% (10/15) 3.082
2| Reachability 25 | 470 |EF(resp>5), EF(r=1) 36.0% (9/25) 0.303 68.0% (17/25) 2.423
3| Responsive 32 |1,027 | AG(t=0—AF(o=1)) 18.8% (6/32) 3.279 50.0% (16/32) 0.937
4 |Invariance 2 30 | AG(AF(t=1)AAF(t=0)) 0.0% (0/2) 0.226 0.0% (0/2) 0.045
5| Until 6 193 | AU@=0)(AU(@i=1)(AG(i=3)))| 0.0% (0/6) 6.756 33.3% (2/6) 0.223
6 | Next 3 18 | AX(AX(x=0)) 66.7% (2/3) 0.006 66.7% (2/3) 0.299
Total 83 (2,140 27.7% (23/83) 10.927 56.6% (47/83) 7.008
TABLE 2: Experimental results for detecting termination/responsiveness bugs.
Proeram LoC ULTIMATE | CTLEXPERT Proeram LoC ULTIMATE | CTLEXPERT
& Res. Time | Res. Time & Res. Time | Res. Time
1 X |libvnc... 25 X 285 | X 0.86 24 / | insertion...2.c 36 | v | 1403 | / 1.97
1v | (c311535) 27 v | 374 | v | 048 25 |invert_s..-1-2c| 40 | v | 6.61 v 1.72
2 X | Ffmpeg 40 X 1525 | X 0.61 26 v | invert_s...-2-2.c | 38 v 16.64 | v/ 1.26
2V | (abcbal6) 44 v 4018 | v | 040 27 v/ | matrix-1.c 35 | v | 1031 | v | 0.87
3X | cmus 87 X 6.90 | X 0.58 28 v/ | matrix-2...c 39 ? | 1439 | / 1.02
3V | (d5396¢4) 86 v |3357| v | 099 29 X | n.cll.c 36 ? 11072 | ? 0.00
4 X | e2fsprogs 58 X 595 | X 0.92 30 v | n.c40.c 27 | V/ 3.14 ? 0.00
4 v/ | (caa6003) 63 v | 453 | v | 084 31 X | necll.c 35 | X 4.29 X 0.66
5X | csound-... 43 X 365 | X 0.78 32 v | nec20.c 47 ? | 1215 | V/ 2.18
5V | (7abl1ab) 45 | TO - v | 0.65 33 v/ | nec40.c 33 | v/ | 316 ? 0.00
6 X | fontcon... 25 X 3.86 | X 0.77 34 / | string-1.c 65 | v [10441] ? 5.43
6 v | (fa741cd) 25 | Error | - v | 0.65 35 v/ | string-2.c 67 | vV [8673 | ? 5.33
7 X | asterisk 22 ? 1269 ? 0.20 36 v | sum01_b...c 25 | /| 404 | / 1.03
7V |(3322180) 25 ? 1133 ? 0.34 37 v/ | sum01-2.c 23 | v/ | 329 | / 1.16
8 X | dpdk 45 X 371 | X 0.45 38 v/ | sum03-1.c 28 ? 1976 | V/ 1.25
8 v | (cd6bdeeac) 45 v 297 | ? 0.48 39 X | sum03-2.c 26 ? 8.08 X 0.64
9 X | xorg-s... 19 X 311 | X 0.58 40 v/ | sum04-1.c 22 | v/ | 369 | vV | 076
9 v | (930b9a06) 20 v | 310 | v | 041 41 v/ | sum04-2.c 21 | v | 336 | v | 085
10 X | pure-f... 42 v 256 | X 0.93 42 v/ | termina...1.c 26 | V 3.47 4 0.61
10 v | (37ad222) 49 v |229 | v | 038 43/ |termina.2-2.c | 43 | V/ | 442 | v/ | 240
11 X | live555,, 34 v | 272 | X 0.51 44 / | termina..3-2.c | 37 | v/ | 564 | V/ 1.05
11 /| (181126) 37 vV |28 | v | 034 45 / | trex01-1.c 47 | v/ | 8.06 ? 0.00
12 X | openssl 88 X 415 | X 0.78 46 v/ | trex01-2.c 56 | v/ | 3639 | ? 0.00
12 v/ | (b8d2439) 88 v | 381 | v | 099 47 / | trex02-1.c 33 | v | 330 | v | 052
13 X | liveb55, 83 X 284 | X 0.60 48 v/ | trex02-2.c 33 | v | 329 | v | 072
13 v | (131205) 84 v |23 | v | 057 49 / | trex03-1.c 34 ? 9.76 ? 0.01
14 v/ | while_i...c 37 v |29 | v | 079 50 v | trex03-2.c 33 ? 9.77 ? 0.01
15 v/ | array-1.c 33 v/ 698 | vV 1.08 51 X | trex04.c 50 X 3.78 X 6.64
16 v | array-2.c 33 4 716 | v/ 1.09 52 v/ | veris.c_...p.Cc 41 4 3.78 4 0.72
17 v | count_u...1.c | 25 ? 8.97 v 0.97 53 v/ | veris.c_...r.c 205 ? 2.25 ? 0.00
18 v | count_u...2.c 24 ? 9.41 v 0.99 54 v/ | veris.c_...p.Cc 41 ? 10.20 ? 0.00
19 v/ | eureka_0...c 45 v 3128 | v 1.97 55 v/ | verisec_...p.c 42 v 3.61 v 0.61
20 v/ | for_bou...c 34 v |312 | / 1.24 56 v/ | verisec_...r.c 200 | ? 2.13 ? 0.00
21 X | for_inf...1.c 30 ? 822 | X 0.56 57 X | while_i...1.c 22 | X 3.10 X 0.35
22 X | for_inf..2.c 30 ? 799 | X 0.63 58 X | while_i..2.c 21 X 3.15 X 0.35
23 / | insertion...1.c | 36 v |1324| v/ 1.99 59 X | while_i...3.c 36 | X 3.16 X 0.34

termination benchmark [1]]) is AF(Exit()), preventing non-
termination bugs. The properties used for programs 10-
13 (drawn from [2]) are of the form AG(¢1—AF(¢p2)),
capturing unresponsive behaviours from the protocol im-
plementation. The remaining 46 programs are from the ter-
mination benchmark of SV-COMP [19]. All the test cases are
under 100 lines of code (LoC), preserving features like data
structures and pointer arithmetic. Our evaluation includes

both buggy (e.g. 1X) and developer-fixed (e.g. 1v') versions.
After converting the CTL properties to LTL formulas, we
compared our tool with the latest release of UltimateLTL
(v0.2.4), a regular participant in SV-COMP with competitive
performance. Table [3] summarizes the overall performance
of the two tools. Both tools demonstrate high accuracy
in bug detection, while ULTIMATE often requires longer
processing time. This experiment indicates that LRFs can

effectively handle commonly seen loops, and CTLEXPERT
performs a more lightweight summary computation with-
out compromising accuracy.

TABLE 3: Overall results of Ultimate and CTLEXPERT

Tool Avg. Time (s) | Acc.(%) | LoC #Programs
Ultimate 11.19 72.2 .
CTLEXPERT 0.93 79.2 3219 | 72 (1372+46)

6.3 RQ3: Repairing CTL Property Violations

Table {4 gathers all the program instances (from Table [1|and
Table 2) that violate their specified CTL properties and are
sent to CTLEXPERT for repair. The Symbols column records
the number of symbolic constants + symbolic signs, while
the Facts column records the number of facts allowed to
be removed + added. We gradually increase the number
of symbols and the maximum number of facts that can be
added or deleted. The Configuration column shows the first
successful configuration that led to finding patches, and we
record the total searching time till reaching such config-
urations. We configure CTLEXPERT to apply three atomic
templates in a breadth-first manner with a depth limit of 1,
i.e., Table[drecords the patch result after one iteration of the
repair. The templates are applied sequentially in the order:
delete, update, and add. The repair stops upon finding a
correct patch or exhausting all three templates.

Due to the current configuration, CTLEXPERT only finds
patch (b) for Program 1 (AF_yEQS5), while the patch (a)
shown in Fig. 8| can be obtained by allowing two iterations
of the repair: the first iteration adds the conditional then
a second iteration to add a new assignment on the up-
dated program. Non-termination bugs are resolved within
a single iteration by adding a conditional statement that
provides an earlier exit. For instance, Fig. illustrates
the main logic of 1X, which enters an infinite loop when
linesToRead <0. CTLEXPERT successfully provides a fix that
prevents linesToRead <0 from occurring before entering the
loop. Note that such patches are more desirable which fix
the non-termination bug without dropping the loops com-
pletely. Fig.20|shows a similar example in which infinite ex-
ecution occurs when the non-deterministic loop guard eval-
uates to true. Consequently, a similar patch is successfully
generated to prevent such cases. Unresponsive bugs involve
adding more function calls or assignment modifications.
The program trex04.c is not successfully repaired because
the patch requires removing 26 facts representing a series
of variable states. Allowing the deletion of 26 facts leads
to an enormous search space, prohibiting CTLEXPERT from
finishing in a reasonable time (we set a 5-minute timeout).

1 void main () {

int lines ToRead = x;
3 int h = %;
4 + if (linesToRead <= 0) return;

5 while (h>0) {

6 if (linesToRead>h)
7 linesToRead=h;
8 h-=1inesToRead; }

9 return; }

Fig. 19: Fixing a Possible Hang Found in libvncserver [20]

13

On average, the time taken to solve ASP accounts for
49.6% (18.4/37.086) of the total repair time. We also keep
track of the number of patches that successfully eliminate
the CTL violations. More than one patch is available for non-
termination bugs, as some patches exit the entire program
without entering the loop. While all the patches listed are
valid, those that intend to cut off the main program logic
can be excluded based on the minimum change criteria.
After a manual inspection of each buggy program shown
in Table [} we confirmed that at least one generated patch
is “correct”. Generally, a patch is considered correct if the
resulting program satisfies the given CTL property. In the
context of repairing termination bugs, to avoid property
overfitting, a stronger correctness criterion is that the patch
should prevent infinite execution from occurring and leave
the terminating paths unchanged. As the first tool to achieve
automated repair of CTL violations, CTLEXPERT success-
fully resolves 22 out of 23 bugs.

1 int main () {

2 int a[5]; int len=0;
3 _Bool c=x;

4 + if (c == true)
5 while (c) {

6 if (len==4)
7 allen]=0;

8 len++; }

9 return 1; }

return;

len=0;

Fig. 20: A Non-Terminating Program (necll.c) from SV-
comr

7 RELATED WORK

Analyses for CTL Properties. Existing approaches for prov-
ing CTL properties either do not support CTL formulas
with arbitrary nesting of universal and existential path
quantifiers [21]], or support existential path quantifiers in-
directly by building upon the prior works for proving non-
termination [22], or by considering their universal dual (T2)
[6]. In particular, the latter approach is problematic since the
universal dual of an existential “until” formula is non-trivial
to define. FUNCTION [Z] presents a CTL properties analyser
via abstract interpretation. It deploys a backward analysis
to propagate the weakest preconditions, which make the
program satisfy the property. While being the first work
to deal with a full class of CTL properties, it has several
sources of the loss of precision, such as the dual widening
[23] technique for proving the termination of loops; as well
as the alternatively applied over/under approximation to
deal with existential /universal quantifiers.

Loop Summarization and Conditional Termination.
Loop summarization is widely used in termination analysis
[24], [25], [26], primarily focusing on summarizing the ter-
minating behaviours. Additionally, partial loop summariza-
tion has been applied in dynamic test generation [27], where
the loop structure and induction variables are identified on
the fly. However, little attention has been given to summa-
rizing non-terminating program executions. The construc-
tion of our dual summaries is based on the concept of
conditional termination presented in previous works [28], [29],

14

TABLE 4: Experimental results for repairing CTL bugs. Time spent by the ASP solver is separately recorded.

LoC Configuration .

Program (Datalog) Symbols Fgcts Template Fixed #Patch ASP(s) Total(s)
AF_yEQ5 (Fig. 115 3+0 0+1 Add v 1 0.979 1.593
test_until.c 101 0+3 1+0 Delete v 1 0.023 0.498
next.c 87 0+4 1+0 Delete v 1 0.023 0.472
libvncserver 118 0+6 1+0 Delete v 3 0.049 1.081
Ffmpeg 227 0+12 1+0 Delete v 4 13.113 13.335
cmus 145 0+12 1+0 Delete v 4 0.098 2.052
e2fsprogs 109 0+8 1+0 Delete v 2 0.075 1.515
csound-android 183 0+8 1+0 Delete v 4 0.076 1.613
fontconfig 190 0+11 1+0 Delete v 6 0.098 2.507
dpdk 196 0+12 1+0 Delete v 1 0.091 2.006
Xorg-server 118 0+2 1+0 Delete 4 2 0.026 0.605
pure-ftpd 258 0+21 1+0 Delete v 2 0.069 3.590
live, 112 3+4 1+1 Update v 1 0.552 0.816
openssl 315 1+0 0+1 Add. 4 1 1.188 2.277
livey 217 1+0 0+1 Add v 1 0.977 1.494
for_inf...1.c 179 0+4 2+0 Delete v 16 0.139 0.256
for_inf...2.c 179 0+4 2+0 Delete v 16 0.139 0.259
necll.c 136 0+2 1+0 Delete v 11 0.138 0.22
sum03-2.c 137 042 1+0 Delete v 1 0.132 0.27
trex04.c 2732 - - - X - TO TO
while_i...1.c 114 0+2 1+0 Delete v 1 0.148 0.213
while_i...2.c 114 0+2 1+0 Delete v 1 0.135 0.201
while_i...3.c 161 0+2 1+0 Delete v 1 0.132 0.213
Total 6243 184 37.086

[30]. We extend this approach by computing the precondi-
tions that lead to non-termination and only proceeding with
CTL analysis when all paths yield conclusive results, which
is shown practical for verifying both safety and liveness
properties, effectively separating termination analysis from
temporal analysis. We share an algebraic perspective with
previous work [30], where w-REs are generated to represent
the paths through a program. However, their approach
represents the cycles in the CFG directly into w formulas
and then focuses on a specific termination analysis through
recursion on that expression. In contrast, we construct w
formulas only after proving that the cycles (conditionally)
lead to non-terminating behaviours.

Logic Programming for Temporal Analysis. To enable
the expressivity for CTL properties using Datalog, prior
work [4] presents Datalog LITE, a new deductive query
language. We borrow their encoding of the AF operator,
which requires the finiteness of the input Kripke structure.
This encoding also follows from the facts that, over finite
structures, CTL can be embedded into transitive closure
logic [31] and that transitive closure logic has the same
expressive power as stratified linear Datalog programs [32],
[33]. Prior work [12] encodes CTL analysis in ASP using
“findall” to encode AF. However, “findall” is a logical
impurity requiring second-order logic programming, which
is not supported by declarative Datalog. This makes it
incompatible with SEDL-based repair solutions that operate
on first-order logic formulae. In contrast, our work encodes
AF using Datalog with stratified negation, enabling greatest
fixpoint encoding without relying on “findall.”

Model Repair. Prior work [34] proposed a CTL model
update algorithm based on primitive operations and a min-
imal change criterion in Kripke structure models; Subse-
quently, [35] present a model repair solution for bounded
and deadlock-free Petri nets, which is guided by CTL spec-
ifications via two basic repair operations: modifying transi-

tions and the truth value of atomic propositions. Both these
operations can be reflected in our approach by deleting and
adding/updating facts. Prior work, [36] maps an instance of
the repair program, i.e. a Kripke structure model and a CTL
property to a Boolean formula, and the satisfiability resulted
from the SAT solver indicates a patch exists or not. When
satisfiable, the returned model will be mapped to a patch
solution to remove transitions/states. In [37], the repair
problem for CTL is considered and solved using abductive
reasoning. Their method generates repair suggestions based
on each concrete counter-example, which needs an iterative
process to address all the counterexamples. Our approach
also employs a repair-verify iterative process; however, it
differs from previous methods by symbolically address-
ing all the CTL violations and progressively constructing
source-code level patches during each iteration. Addition-
ally, unlike model repair, which focuses on models, our
approach is the first to target infinite-state programs and
generate source-level patches.

Prior work [38] investigated how to automatically re-
place the components of a system to make it satisfy a
given Linear Temporal Logic (LTL) specification. Interest-
ingly, they defined the repair process as a game between the
system, which needs to be repaired, and the environment,
which acts against the system to hinder the repair. They
assume that any given program can be encoded as a game,
i.e., a deterministic finite-state system, without exploring
how to encode a possible infinite-state program into such
a finite-state game. On the contrary, we provide a practical
solution via loop summarisation. Another difference is that
they focus on the LTL formula, which requires a doubly
exponential blowup when translated into an automaton.
In contrast, this paper focuses on CTL properties, which
operate directly on the finite-state model using fixed-point
algorithms that can be naturally encoded using Datalog.
Furthermore, it employs a “memoryless strategy,” where

the structure and logic of the program remain unchanged,
and it avoids introducing new variables. Such a strategy
can only generate patches which mutate either the left-
hand side or the right-hand side of an existing assignment
statement. In contrast, our patch results can be inserting,
deleting assignments, or adding conditionals.

General Automated Program Repair. Automated pro-
gram repair has been extensively studied, with prior work
falling mainly into three main categories. Test-based ap-
proaches, including search-based techniques such as Gen-
Prog [39] and Prophet [40], and semantic-based techniques
such as SemFix [41] and Angelix [42], rely on test suites to
validate candidate patches but often overfit due to test in-
completeness. Static analysis-based methods,systems (e.g.,
MemFix [43], Hippodrome [44], Phoenix [45], ProveNFix
[46]) exploit static analyzers to repair specific bug classes
such as memory errors, null pointer exceptions, and concur-
rency violations. More recently, learning-based approaches,
including those leveraging large language models [47], have
shown strong performance across diverse benchmarks by
training on massive code corpora, but face challenges of
explainability and reliability.

Our approach presents a static analysis-based repair
technique for correcting violations of CTL properties. In
contrast to test-based methods, which are constrained by
specific test cases, our method leverages static analysis to ex-
haustively traverse all possible execution paths. This guar-
antees that generated patches are comprehensive, resolving
all instances of a property violation. To our knowledge, this
is the first work to specifically address the automated repair
of CTL properties.

Temporal Property guided Automated Program Repair.
Prior work [48] synthesizes a “repairable” past-time Signal
Temporal Logic (ptSTL) formula (representing the buggy
behaviors) from simulation traces and performs the repair
on discrete-time systems or timed automata. An inherent
characteristic of this trace-based approach is that its repair
capability is confined to the behaviors captured by the pro-
vided simulation traces. ProveNFix [46] repairs C programs
against LTL specifications over single traces by inserting
or deleting function calls. In contrast, CTLEXPERT operates
at a finer granularity, capable of modifying statements like
assignments. Moving beyond single traces, both [49] and
[50] address hyperproperties, which relate multiple traces;
the former operates on abstract models (finite-state Kripke
structures), while the latter advances to repairing real code
using symbolic execution and syntax-guided synthesis (Sy-
GuS), but requires the user to specify fault locations. In con-
trast, CTLEXPERT automatically locates faults and employs
a novel two-stage repair: it first derives patch semantics in
Datalog and then translates them into concrete source code.

8 THREATS TO VALIDITY AND LIMITATIONS

Several factors may threaten the validity of this work: (1)
the limited scale of the subject programs, (2) the incom-
pleteness of the specified properties, and (3) the overfitting
caused by the incomplete specified properties. While our
evaluation uses focused subject programs rather than full-
scale projects, they incorporate complex control structures
like loops that represent significant repair challenges. Our

15

experimental results demonstrate the effectiveness of our
approach in handling this complexity. The completeness of
the specified properties affects the quality of the generated
patches. Our approach generates patches that satisfy the
given properties, therefore a patch may subtly violate other
unspecified properties, that is, it overfits the incomplete
property. A natural mitigation strategy is to enrich the prop-
erty set, for example by combining additional specifications
from other static analyses or developer annotations, thereby
reducing the risk of property-level overfitting. Nevertheless,
this limitation differs from the overfitting suffered by many
test-based program repair methods [51]], which cover only a
subset of feasible program execution paths. In contrast, our
approach ensures that the specified properties hold across
all execution paths.

As noted above, our approach prioritizes generating
correct patches that satisfy the target properties over pro-
ducing patches that are identical to a developer’s original
fix. This focus on property-based correctness is intentional,
as it ensures the repaired program’s behavior is aligned with
its specification. Future research could focus on synthesizing
patches that are not only correct but also align with human-
like coding styles and practices, potentially by learning from
historical fix patterns.

9 CONCLUSION

We demonstrate the feasibility of identifying and repairing
CTL violations for infinite-state programs. We propose a
method that transforms a given program into a Datalog
program, enabling its repair by adjusting Datalog facts. Our
technical contribution includes support for repairing both
safety and liveness properties. This work advances existing
Datalog-based repair techniques to encompass analyses de-
fined by both least-fixpoint and greatest-fixpoint semantics.
We have developed a prototype to illustrate our proposal
and present experimental results that showcase its utility.
Instead of generating counterexamples and fixing them
individually, our tool provides a comprehensive find-and-
fix framework for addressing CTL violations.

ACKNOWLEDGMENTS

This work was partially supported by a Singapore Ministry
of Education (MoE) Tier 3 grant “Automated Program Re-
pair”, MOE-MOET32021-0001.

REFERENCES

[1] X. Shi, X. Xie, Y. Li, Y. Zhang, S. Chen, and X. Li,
“Large-scale analysis of non-termination bugs in real-world
OSS projects,” in Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2022, Singapore, Singapore,
November 14-18, 2022, A. Roychoudhury, C. Cadar, and
M. Kim, Eds. ACM, 2022, pp. 256-268. [Online]. Available:
https://doi.org/10.1145/3540250.3549129

[2] R. Meng, Z. Dong,]J. Li, 1. Beschastnikh, and A. Roychoudhury,
“Linear-time temporal logic guided greybox fuzzing,” in 44th
IEEE/ACM 44th International Conference on Software Engineering,
ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022. ACM, 2022, pp.
1343-1355. [Online]. Available: https://doi.org/10.1145/3510003.
3510082

https://doi.org/10.1145/3540250.3549129
https://doi.org/10.1145/3510003.3510082
https://doi.org/10.1145/3510003.3510082

(3]

(4]

(5]

(6]

(71

(8]

(9]

(10]

[11]

[12]

(13]

[14]

[15]

[16]

[17]

[18]

Y. Liu, S. Mechtaev, P. Subotic, and A. Roychoudhury, “Program
repair guided by datalog-defined static analysis,” in Proceedings of
the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE
2023, San Francisco, CA, USA, December 3-9, 2023, S. Chandra,
K. Blincoe, and P. Tonella, Eds. ACM, 2023, pp. 1216-1228.
[Online]. Available: https://doi.org/10.1145/3611643.3616363

G. Gottlob, E. Grddel, and H. Veith, “Datalog lite: A deductive
query language with linear time model checking,” ACM Transac-
tions on Computational Logic (TOCL), vol. 3, no. 1, pp. 42-79, 2002.
A. Zeller, “Yesterday, my program worked. today, it does not.
why?” ACM SIGSOFT Software engineering notes, vol. 24, no. 6,
pPp- 253-267, 1999.

B. Cook, H. Khlaaf, and N. Piterman, “Faster temporal
reasoning for infinite-state programs,” in Formal Methods in
Computer-Aided Design, FMCAD 2014, Lausanne, Switzerland,
October 21-24, 2014. 1EEE, 2014, pp. 75-82. [Online]. Available:
https://doi.org/10.1109/FMCAD.2014.6987598

C. Urban, S. Ueltschi, and P. Miiller, “Abstract interpretation of
CTL properties,” in Static Analysis - 25th International Symposium,
SAS 2018, Freiburg, Germany, August 29-31, 2018, Proceedings,
ser. Lecture Notes in Computer Science, A. Podelski, Ed.,
vol. 11002. Springer, 2018, pp. 402-422. [Online]. Available:
https://doi.org/10.1007/978-3-319-99725-4_24

A. M. Ben-Amram, J. J. Doménech, and S. Genaim, “Multiphase-
linear ranking functions and their relation to recurrent
sets,” in Static Analysis - 26th International Symposium, SAS
2019, Porto, Portugal, October 8-11, 2019, Proceedings, ser.
Lecture Notes in Computer Science, B. E. Chang, Ed.,
vol. 11822. Springer, 2019, pp. 459-480. [Online]. Available:
https:/ /doi.org/10.1007 /978-3-030-32304-2_22

L. M. de Moura and N. Bjerner, “Z3: an efficient SMT solver,” in
Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, ser.
Lecture Notes in Computer Science, C. R. Ramakrishnan and
J. Rehof, Eds., vol. 4963. Springer, 2008, pp. 337-340. [Online].
Available: https:/ /doi.org/10.1007 /978-3-540-78800-3_24

V. Lifschitz, Answer Set Programming. Springer, 2019. [Online].
Available: https:/ /doi.org/10.1007 /978-3-030-24658-7

A. Pnueli, “The temporal logic of programs,” in 18th Annual
Symposium on Foundations of Computer Science, Providence,
Rhode Island, USA, 31 October - 1 November 1977. IEEE
Computer Society, 1977, pp. 46-57. [Online]. Available: https:
//doi.org/10.1109/SFCS.1977.32

A. Rocca, N. Mobilia, E. Fanchon, T. Ribeiro, L. Trilling, and K. In-
oue, “Asp for construction and validation of regulatory biological
networks,” Logical Modeling of Biological Systems, pp. 167-206, 2014.
M. Heizmann, J. Hoenicke, and A. Podelski, “Termination analysis
by learning terminating programs,” in Computer Aided Verification
- 26th International Conference, CAV 2014, Held as Part of the Vienna
Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014.
Proceedings, ser. Lecture Notes in Computer Science, A. Biere and
R. Bloem, Eds., vol. 8559. Springer, 2014, pp. 797-813. [Online].
Available: https:/ /doi.org/10.1007 /978-3-319-08867-9_53

A. M. Ben-Amram and S. Genaim, “On multiphase-linear ranking
functions,” in Computer Aided Verification - 29th International
Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017,
Proceedings, Part 1I, ser. Lecture Notes in Computer Science,
R. Majumdar and V. Kuncak, Eds., vol. 10427. Springer,
2017, pp. 601-620. [Online]. Available: https://doi.org/10.1007/
978-3-319-63390-9_32

K. T. Tekle and Y. A. Liu, “Extended magic for negation: Efficient
demand-driven evaluation of stratified datalog with precise com-
plexity guarantees,” arXiv preprint arXiv:1909.08246, 2019.

B. Scholz, H. Jordan, P. Suboti¢, and T. Westmann, “On fast
large-scale program analysis in datalog,” in Proceedings of the 25th
International Conference on Compiler Construction, 2016, pp. 196-206.
Zenodo, “Benchmark and source code,” 2025. [Online]. Available:
https://doi.org/10.5281/zenodo.15896690

D. Dietsch, M. Heizmann, V. Langenfeld, and A. Podelski,
“Fairness modulo theory: A new approach to LTL software
model checking,” in Computer Aided Verification - 27th International
Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I, ser. Lecture Notes in Computer Science,
D. Kroening and C. S. Pasareanu, Eds., vol. 9206. Springer,

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

16

2015, pp. 49-66. [Online]. Available: https://doi.org/10.1007/
978-3-319-21690-4_4

“Competition on software verification (sv-comp),” 2025. [Online].
Available: https:/ /sv-comp.sosy-lab.org/

LibVNCClient, “Libvncclient commit c311535: fix
possible infinite loop,” 2018. [Online]. Avail-
able: |https://github.com/Sugon-Beijing/libvncserver/commit/
¢3115350eb8bb635d0fdb4dbbb0d0541f38ed19¢

B. Cook, E. Koskinen, and M. Y. Vardi, “Temporal property
verification as a program analysis task,” in Computer Aided
Verification - 23rd International Conference, CAV 2011, Snowbird,
UT, USA, July 14-20, 2011. Proceedings, ser. Lecture Notes in
Computer Science, G. Gopalakrishnan and S. Qadeer, Eds.,
vol. 6806. Springer, 2011, pp. 333-348. [Online]. Available:
https:/ /doi.org/10.1007 /978-3-642-22110-1_26

A. Gupta, T. A. Henzinger, R. Majumdar, A. Rybalchenko, and
R. Xu, “Proving non-termination,” in Proceedings of the 35th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2008, San Francisco, California, USA, January 7-12,
2008, G. C. Necula and P. Wadler, Eds. ACM, 2008, pp. 147-158.
[Online]. Available: https://doi.org/10.1145/1328438.1328459

N. Courant and C. Urban, “Precise widening operators for
proving termination by abstract interpretation,” in Tools and
Algorithms for the Construction and Analysis of Systems - 23rd
International ~Conference, TACAS 2017, Held as Part of the
European Joint Conferences on Theory and Practice of Software,
ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings,
Part I, ser. Lecture Notes in Computer Science, A. Legay
and T. Margaria, Eds., vol. 10205, 2017, pp. 136-152. [Online].
Available: https:/ /doi.org/10.1007 /978-3-662-54577-5_8

H. Chen, C. David, D. Kroening, P. Schrammel, and B. Wachter,
“Bit-precise procedure-modular termination analysis,” ACM
Trans. Program. Lang. Syst., vol. 40, no. 1, pp. 1:1-1:38, 2018.
[Online]. Available: https://doi.org/10.1145/3121136

A. Tsitovich, N. Sharygina, C. M. Wintersteiger, and D. Kroening,
“Loop summarization and termination analysis,” in Tools and
Algorithms for the Construction and Analysis of Systems - 17th
International Conference, TACAS 2011, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS
2011, Saarbriicken, Germany, March 26-April 3, 2011. Proceedings, ser.
Lecture Notes in Computer Science, P. A. Abdulla and K. R. M.
Leino, Eds., vol. 6605. Springer, 2011, pp. 81-95. [Online].
Available: https:/ /doi.org/10.1007 /978-3-642-19835-9_9

X. Xie, B. Chen, L. Zou, Y. Liu, W. Le, and X. Li, “Automatic
loop summarization via path dependency analysis,” IEEE Trans.
Software Eng., vol. 45, no. 6, pp. 537-557, 2019. [Online]. Available:
https://doi.org/10.1109/TSE.2017.2788018

P. Godefroid and D. Luchaup, “Automatic partial loop
summarization in dynamic test generation,” in Proceedings of
the 20th International Symposium on Software Testing and Analysis,
ISSTA 2011, Toronto, ON, Canada, July 17-21, 2011, M. B. Dwyer
and F. Tip, Eds. ACM, 2011, pp. 23-33. [Online]. Available:
https://doi.org/10.1145/2001420.2001424

B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and
M. Sagiv, “Proving conditional termination,” in Computer
Aided Verification, 20th International Conference, CAV 2008,
Princeton, NJ, USA, July 7-14, 2008, Proceedings, ser. Lecture
Notes in Computer Science, A. Gupta and S. Malik, Eds.,
vol. 5123. Springer, 2008, pp. 328-340. [Online]. Available:
https://doi.org/10.1007/978-3-540-70545-1_32

C. Borralleras, M. Brockschmidt, D. Larraz, A. Oliveras,
E. Rodriguez-Carbonell, and A. Rubio, “Proving termination
through conditional termination,” in Tools and Algorithms for the
Construction and Analysis of Systems - 23rd International Conference,
TACAS 2017, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29,
2017, Proceedings, Part I, ser. Lecture Notes in Computer Science,
A. Legay and T. Margaria, Eds., vol. 10205, 2017, pp. 99-117.
[Online]. Available: https://doi.org/10.1007 /978-3-662-54577-5_6
S. Zhu and Z. Kincaid, “Termination analysis without the
tears,” in PLDI '21: 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, Virtual
Event, Canada, June 20-25, 2021, S. N. Freund and E. Yahav,
Eds. ACM, 2021, pp. 1296-1311. [Online]. Available: https:
//doi.org/10.1145/3453483.3454110

N. Immerman and M. Y. Vardi, “Model checking and transitive-
closure logic,” in Computer Aided Verification, 9th International

https://doi.org/10.1145/3611643.3616363
https://doi.org/10.1109/FMCAD.2014.6987598
https://doi.org/10.1007/978-3-319-99725-4_24
https://doi.org/10.1007/978-3-030-32304-2_22
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-24658-7
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/978-3-319-08867-9_53
https://doi.org/10.1007/978-3-319-63390-9_32
https://doi.org/10.1007/978-3-319-63390-9_32
https://doi.org/10.5281/zenodo.15896690
https://doi.org/10.1007/978-3-319-21690-4_4
https://doi.org/10.1007/978-3-319-21690-4_4
https://sv-comp.sosy-lab.org/
https://github.com/Sugon-Beijing/libvncserver/commit/c3115350eb8bb635d0fdb4dbbb0d0541f38ed19c
https://github.com/Sugon-Beijing/libvncserver/commit/c3115350eb8bb635d0fdb4dbbb0d0541f38ed19c
https://doi.org/10.1007/978-3-642-22110-1_26
https://doi.org/10.1145/1328438.1328459
https://doi.org/10.1007/978-3-662-54577-5_8
https://doi.org/10.1145/3121136
https://doi.org/10.1007/978-3-642-19835-9_9
https://doi.org/10.1109/TSE.2017.2788018
https://doi.org/10.1145/2001420.2001424
https://doi.org/10.1007/978-3-540-70545-1_32
https://doi.org/10.1007/978-3-662-54577-5_6
https://doi.org/10.1145/3453483.3454110
https://doi.org/10.1145/3453483.3454110

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

(43]

[44]

(45]

[46]

[47]

Conference, CAV '97, Haifa, Israel, June 22-25, 1997, Proceedings,
ser. Lecture Notes in Computer Science, O. Grumberg, Ed.,
vol. 1254. Springer, 1997, pp. 291-302. [Online]. Available:
https://doi.org/10.1007 /3-540-63166-6_29

M. P. Consens and A. O. Mendelzon, “Low complexity
aggregation in graphlog and datalog,” Theor. Comput. Sci.,
vol. 116, no. 1, pp. 95-116, 1993. [Online]. Available: https:
//doi.org/10.1016/0304-3975(93)90221-E

E. Grddel, “On transitive closure logic,” in Computer Science
Logic, 5th Workshop, CSL ‘91, Berne, Switzerland, October 7-11,
1991, Proceedings, ser. Lecture Notes in Computer Science,
E. Borger, G. Jager, H. K. Biining, and M. M. Richter, Eds.,
vol. 626. Springer, 1991, pp. 149-163. [Online]. Available:
https:/ /doi.org/10.1007 /BFb0023764

Y. Ding and Y. Zhang, “CTL model update: Semantics, computa-
tions and implementation,” in ECAI 2006, 17th European Conference
on Artificial Intelligence, August 29 - September 1, 2006, Riva del
Garda, Italy, Including Prestigious Applications of Intelligent Systems
(PAIS 2006), Proceedings, ser. Frontiers in Artificial Intelligence and
Applications, G. Brewka, S. Coradeschi, A. Perini, and P. Traverso,
Eds., vol. 141. IOS Press, 2006, pp. 362-366.

U. Martinez-Araiza and E. Lépez-Mellado, “Ctl model repair for
bounded and deadlock free petri nets,” IFAC-PapersOnLine, vol. 48,
no. 7, pp. 154-160, 2015.

P. C. Attie, A. Cherri, K. Dak-Al-Bab, M. Sakr, and]. Saklawi,
“Model and program repair via SAT solving,” in 13. ACM/IEEE
International Conference on Formal Methods and Models for
Codesign, MEMOCODE 2015, Austin, TX, USA, September
21-23, 2015. IEEE, 2015, pp. 148-157. [Online]. Available:
https://doi.org/10.1109/MEMCOD.2015.7340481

F. Buccafurri, T. Eiter, G. Gottlob, and N. Leone, “Enhancing
model checking in verification by AI techniques,” Artif.
Intell., vol. 112, no. 1-2, pp. 57-104, 1999. [Online]. Available:
https://doi.org/10.1016/50004-3702(99)00039-9

B. Jobstmann, A. Griesmayer, and R. Bloem, “Program repair as a
game,” in Computer Aided Verification, 17th International Conference,
CAV 2005, Edinburgh, Scotland, UK, July 6-10, 2005, Proceedings,
ser. Lecture Notes in Computer Science, K. Etessami and S. K.
Rajamani, Eds., vol. 3576. Springer, 2005, pp. 226-238. [Online].
Available: https:/ /doi.org/10.1007/11513988_23

C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” leee transactions on
software engineering, vol. 38, no. 1, pp. 54-72, 2011.

F. Long and M. Rinard, “Automatic patch generation by learning
correct code,” in Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ser.
POPL. ACM, 2016, pp. 298-312.

H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra,
“Semfix: Program repair via semantic analysis,” in 2013 35th
International Conference on Software Engineering (ICSE). 1EEE, 2013,
pp. 772-781.

S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multi-
line program patch synthesis via symbolic analysis,” in Proceedings
of the 38th international conference on software engineering, 2016, pp.
691-701.

J. Lee, S. Hong, and H. Oh, “Memfix: static analysis-based repair
of memory deallocation errors for ¢,” in Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2018, pp. 95—
106.

A. Costea, A. Tiwari, S. Chianasta, A. Roychoudhury, and I. Sergey,
“Hippodrome: Data race repair using static analysis summaries,”
ACM Transactions on Software Engineering and Methodology, vol. 32,
no. 2, pp. 1-33, 2023.

R. Bavishi, H. Yoshida, and M. R. Prasad, “Phoenix: Automated
data-driven synthesis of repairs for static analysis violations,” in
Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2019, pp. 613-624.

Y. Song, X. Gao, W. Li, W. Chin, and A. Roychoudhury,
“Provenfix: Temporal property-guided program repair,” Proc.
ACM Softw. Eng., vol. 1, no. FSE, pp. 226-248, 2024. [Online].
Available: https:/ /doi.org/10.1145/3643737.

C. S. Xia, Y. Wei, and L. Zhang, “Automated program repair in
the era of large pre-trained language models,” in Proceedings of the
45th International Conference on Software Engineering (ICSE 2023).
Association for Computing Machinery, 2023.

(48]

[49]

[50]

[51]

17

M. Ergurtuna, B. Yalcinkaya, and E. A. Gol, “An automated
system repair framework with signal temporal logic,” Acta
Informatica, vol. 59, no. 2-3, pp. 183-209, 2022. [Online]. Available:
https:/ /doi.org/10.1007 /s00236-021-00403-z

B. Bonakdarpour and B. Finkbeiner, “Program repair for
hyperproperties,” CoRR, vol. abs/2101.08257, 2021. [Online].
Available: https:/ /arxiv.org/abs/2101.08257

R. Beutner, T. Hsu, B. Bonakdarpour, and B. Finkbeiner,
“Syntax-guided automated program repair for hyperproperties,”
in Computer Aided Verification - 36th International Conference, CAV
2024, Montreal, QC, Canada, July 24-27, 2024, Proceedings, Part
III, ser. Lecture Notes in Computer Science, A. Gurfinkel and
V. Ganesh, Eds., vol. 14683. Springer, 2024, pp. 3-26. [Online].
Available: https:/ /doi.org/10.1007 /978-3-031-65633-0_1

Z. Qi, F Long, S. Achour, and M. Rinard, “An analysis of patch
plausibility and correctness for generate-and-validate patch gen-
eration systems,” in Proceedings of the 2015 international symposium
on software testing and analysis (ISSTA), 2015.

https://doi.org/10.1007/3-540-63166-6_29
https://doi.org/10.1016/0304-3975(93)90221-E
https://doi.org/10.1016/0304-3975(93)90221-E
https://doi.org/10.1007/BFb0023764
https://doi.org/10.1109/MEMCOD.2015.7340481
https://doi.org/10.1016/S0004-3702(99)00039-9
https://doi.org/10.1007/11513988_23
https://doi.org/10.1145/3643737
https://doi.org/10.1007/s00236-021-00403-z
https://arxiv.org/abs/2101.08257
https://doi.org/10.1007/978-3-031-65633-0_1

	Introduction
	Overview and Illustrative Examples
	Preliminary
	Computational Tree Logic and Datalog
	Symbolic execution of Datalog
	Implementation
	Datalog Repair
	Limitation of the Existing SEDL

	CTL Analysis using Datalog
	From CTL Properties to Datalog Rules
	From Programs to Guarded Omega-Regular Expressions
	From CFG Cycles to Guarded Omega-Regular Expressions
	From Guarded -RE to Datalog Programs
	Soundness Discussion

	Program Repair
	Symbolic Constants
	Symbolic Signs
	Patch Generation
	Atomic Templates
	Repair Configuration

	Implementation and Evaluation
	RQ1: Verifying CTL Properties
	RQ2: CTL Analysis on Termination/Responsiveness Properties
	RQ3: Repairing CTL Property Violations

	Related Work
	Threats to Validity and Limitations
	Conclusion
	References

