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Abstract—Caches are widely used in modern computer
systems to bridge the increasing gap between processor speed
and memory access time. On the other hand, the presence of
caches, especially data caches, complicates the static worst case
execution time (WCET) analysis. Correctness and tightness of
WCET estimates are of crucial importance for system level
design of embedded systems. In this report, we show that
the originally proposed persistence analysis is both unsafe and
pessimistic for worst-case cache behavior modeling. We propose
a new update and join functions for persistence analysis and
prove their soundness. Furthermore, we extend the semantics
of memory block persistence, and propose a scope-aware
persistence analysis which combines access pattern analysis and
abstract interpretation. The dynamic behavior of a memory
access is captured by its temporal scope (the loop iterations
where a given memory block is accessed for a given data
reference) during address analysis. Temporal scopes as well
as loop hierarchy structure (the static scopes) are integrated
and utilized to achieve a more precise abstract cache state
modeling. We also prove the correctness of the proposed new
persistence analysis.

I. INTRODUCTION

Worst-case Execution Time (WCET) is a key metric for
real-time embedded software. In hard real-time systems,
WCET is an essential parameter for system level schedu-
lability analysis, which ensures a set of tasks will always
meet their deadlines. Static WCET analysis provides a safe
bound on the maximum execution time of a program on a
target platform over all possible program inputs. For cost-
sensitive domains like automotive electronics, the WCET es-
timation must be tight for cost-effective design and resource
dimensioning. On the other hand, modern processors contain
performance enhancing features such as caches and pipeline
whose run-time timing behavior is hard to predict statically.
This makes micro-architectural modeling (building timing
models for micro-architectural features such as caches) a
key component of WCET analysis.

Timing models of instruction caches for WCET analysis
have been well-studied [17]. However, static timing analysis
of data cache behavior remains a major challenge for WCET
analysis methods and tools. Accurate data cache modeling is
of paramount importance for tight WCET analysis of data-
intensive routines. However, the run-time computed access
address (which data locations are accessed by different
instances of an instruction) and dynamic cache behavior
make it difficult to develop a tight yet flexible and scalable
static analysis. Conservatively assuming that every memory

access results in a cache miss yields a safe but pessimistic
WCET estimate.

Different static data cache analysis techniques have been
developed so far. Access pattern-based techniques (e.g.,
cache miss equation framework in [11]) achieve tight es-
timation, but are applicable to programs that contain only
regular accesses with predictable patterns. On the other hand,
abstract interpretation-based data cache analysis techniques
([10], [15]) work on general programs but suffer from large
over-estimation. In this report, we first show that the original
persistence analysis proposed in [9] and [10] is unsafe, i.e.,
the abstract cache state maintained in persistence analysis
may under-estimate the worst case behaviors in a reachable
concrete cache state. We show the safety issue can be fixed
with our proposed update and join function with necessary
proofs. Furthermore, we observe that the over-estimation in
existing data cache persistence analysis ([10]) stems from
the globally defined abstract domain. In particular, a coarse-
grained address analysis is adopted to compute a set of
memory blocks possibly referenced by a memory access,
while temporal property of the access is ignored (e.g., a
memory block can be accessed in only certain iterations of
a loop execution). The approximation in the address anal-
ysis causes substantial over-estimation in WCET estimates.
Moreover, traditionally the abstract interpretation computes
fixed point of the abstract cache state conservatively for the
entire program execution (disregarding cache behavior in
specific program scopes), leading to large over-estimation.
We propose a multi-level scope-aware persistence analysis
that overcomes the pessimism and achieve tighter WCET
estimation. In this technical report, we focus on proving the
soundness of the proposed analysis.

II. ASSUMPTIONS AND NOTATIONS

In our cache analysis, we consider a memory hierarchy
containing separated L1 instruction and data caches. We
use the following notations to represent the instruction/data
cache configuration and accessibility.
• Capacity C: size of the cache in number of bytes
• Block (line) size B: number of contiguous bytes to be

loaded from memory to cache on each memory access.
• Associativity A: A-way set associative cache means

that information stored at some addresses in memory
could be loaded into any of A locations in the cache
(depends on the cache replacement policy).



• Cache set F = 〈f1, . . . , f(C/B)/A〉: A cache set fi is
a sequence of cache blocks (lines) CL = 〈l1, . . . , lA〉
which contains all the A ways that can be addressed
with the same index. set(m) returns the cache set
memory block m maps to.

We assume LRU (Least Recently Used) replacement pol-
icy is used to determine relative age of a memory block
in the A-way associative cache set. Among common cache
replacement policies, LRU is the most predictable policy
thus more suitable for safety critical real-time systems [7].
Given a concrete cache state c at a program point p, the
concrete set state si describes the state of cache set c[fi] at
p. If si(lx) = m, memory block m has a relative age x in
c[fi] (1 ≤ x ≤ A).

We assume write-through with no-write-allocate policy for
a memory store instruction in our discussion of data cache
analysis. However, our data cache analysis framework is
applicable to different write policies with minor amendments
in the analysis (discussed in Section VIII-A). We consider
the static and temporal scope information of data references
at the assembly code level in our analysis. Finally, we would
like to clarify that our proposed persistence analysis (Section
VIII) is “multi-level” in the sense that an independent
analysis is performed at each loop nesting level (also referred
as the static scope), which should not be confused with
analysis of the multi-level caches (e.g., the L2, L3 caches).

III. PERSISTENCE ANALYSIS

A. Overview

Persistence analysis determines if a memory block m is
persistent: once loaded, it will not be evicted out of the cache
in any possible execution. Therefore, the first access to a
persistent memory block m may encounter a miss. However,
all subsequent accesses are guaranteed to result in cache hits.

To determine if a memory block m is persistent at a
program point p, the persistence analysis [9], [10] computes
an abstract cache state (ACS) to determine maximum relative
age x for each memory block m which may be in the cache
when the program control reaches p. If x is not higher than
cache associativity A, once loaded, m is not evicted from
the cache at program point p in all possible executions. As
a result, m is classified as persistent.

An ACS ĉ = 〈ŝ1, ..., ŝn/A〉 at a program point p models an
A-way set associative cache with n cache lines, n/A cache
sets. Each abstract set state ŝk = 〈l1, ..., lA, l>〉 consists of
A cache lines l1, ..., lA and an additional evicted cache line
l> to record evicted memory blocks. For each memory block
m, ŝ = ĉ[set(m)] returns the abstract set state ŝ in ACS ĉ
where m is mapped to. If m ∈ ŝ(lx), m has maximal relative
age x in all possible concrete cache states when program
control reaches p. If m is in evicted line ŝ(l>), the maximum
relative age of m is greater than cache associativity A, so it
may be evicted from the cache in some executions.

Persistence analysis can be performed on the control
flow graph (CFG). A CFG consists of a set of node V =
{n1, ..., nk} connected by directed edges. Each control flow
node nk is a basic block where the program execution is
strictly sequential without any jump or jump target. At basic
block nk with incoming ACS ĉin, if the program accesses
memory block m, the cache update function ÛĈ computes
the output ACS ĉout after accessing m. If a basic block nk

has two or more incoming ACSs, the cache join function
ĴĈ combines upper bound of all incoming ACSs into the
representative input ACS ĉin of node n. The persistence
analysis repeatedly traverses through the CFG and performs
these computations until the input ACSs of all nodes reach
fixed-point.

Given an accessed to memory block m and a concrete
cache state c, the updating of A-way set associative cache
is modeled using the concrete cache update function UC [9]
as follows:

UC(c, m) = c[set(m) 7→ US(c[set(m)], m)]

The concrete cache update function UC models the change
in cache set s = set(m) where referenced memory block m
is mapped to using concrete set update function US

US(s, m) =



l1 7→ {m},
li 7→ s(li−1)|i = 2...h
li 7→ s(li)|i = h + 1...A

if∃h ∈ {1..A}, m ∈ s(lh)
l1 7→ {m},
li 7→ s(li−1)|i = 2...A

otherwise

From the concrete update function, Ferdinand and Wil-
helm [10] proposes an abstract cache update function ÛĈ to
compute the ACS after an access to memory block m as
follows:

ÛĈ(ĉ, m) = ĉ[set(m) 7→ ÛŜ(ĉ[set(m)], m)]

ÛŜ(ŝ, m) =



l1 7→ {m},
li 7→ ŝ(li−1)|i = 2...h− 1
lh 7→ ŝ(lh) ∪ ŝ(lh−1) \ {m}
li 7→ ŝ(li)|i = h + 1...A,>

if∃h ∈ {1..A}, m ∈ ŝ(lh)
l1 7→ {m},
li 7→ ŝ(li−1)|i = 2...A
l> 7→ ŝ(l>) ∪ ŝ(lA) \ {m}

otherwise

The abstract set update function ÛŜ computes the change
in abstract state set state ŝ = ĉ[set(m)] after accessing m.
It brings (or renews) the newly accessed memory block m
to youngest cache line l1. If m /∈ ŝ, ÛŜ ages all memory
blocks m′ currently in ŝ. If m ∈ ŝ(lh), for each m′ ∈ ŝ(lk),
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Figure 1. Running example and analysis result of original persis-
tence analysis

if m′ is younger than m in the ACS (k < h), m will age
m′ to ŝ(lk+1) . Otherwise (k ≥ h), m′ remains in ŝ(lk).

If a CFG node n has two immediate predecessors n1 and
n2, a join function JĈ combines the output ACSs of n1

and n2 to form the input ACS of n. The new relative age
of a memory block m is equal to the maximum age of its
existences in all output ACSs of the predecessor nodes of
n. Let ĉ1, ĉ2 be the output ACS of predecessors n1, n2, join
function JĈ computes the input ACS ĉ of node n as follows:

JĈ(ĉ1, ĉ2) = ĉ[si 7→ JŜ(ĉ1[si], ĉ2[si])]
JŜ(ŝ1, ŝ2) = ŝ where:
ŝ(lx) = {m|m ∈ ŝ1(la) ∧m ∈ ŝ2(lb), x = max(a, b)}

∪ {m|m ∈ ŝ1(lx) ∧m /∈ ŝ2}
∪ {m|m /∈ ŝ1 ∧m ∈ ŝ2(lx)}

B. Safety issue

It has been pointed out that the original persistence
analysis proposed in Ferdinand [9], [10] is unsafe. Figure
1 illustrates an unsafe scenario of the original persistence
analysis. The CFG in Figure 1(a) with six nodes B0,...,B5
in a loop. The program accesses memory block a in B1 and
B4, b in B3, and c in B2. Assume a, b, c are all mapped
to cache set s with associativity A = 2. Figure 1(b) shows
the abstract set state ŝout

B3 of B3, ŝout
B4 of B4, and ŝin

B5 of B5
after the first iteration through the loop. According to the
update function ÛŜ described above, since memory block a
is in the ACS and c is not younger than a, an access to a will
not increase the maximal relative age of c, and similarly for
c. Since all memory blocks a, b, and c are the in ACS, all
accesses to a, b, c will not increase their maximal relative
age from l2 to l>.

Figure 1(c) gives the ACS at fixed-point. The input ACS
of B5 at fixed point (ŝin

B5 in Figure 1(c)) shows that memory
block c is persistent in the loop. However, in the path B0→
B2 → B4 → B5, then B0 → B1 → B3, we see that c is
evicted by accesses to a and b. Therefore, c is not persistent
at B5, and the persistence analysis in [10] is unsafe.

The incorrectness is due to an error of the update function
ÛŜ . It wrongly assumes that if memory block b ∈ ŝin

B5

(Figure 1(c)), b is in concrete set sin
B5 in all possible

execution paths. Consequently, the update function does not
age memory blocks with relative age equal or older than b in
ŝin

B5 such as a or c. However, when b ∈ ŝin
B5, b just may be

in concrete set state sin
B5. As a result, there exists concrete

set states sin
B5 that do not contain b (e.g. only a and c are

in sin
B5 of path B0 → B2 → B4 → B5). In that case, b

will age both a and c in sin
B5, and the original persistence

analysis [9] will underestimate the relative age of a and c.
Let concĈ(ĉ

in) be the set of all possible concrete cache
states represented by ACS ĉin at program point p, the unsafe
scenario when accessing a memory block ma ∈ ĉ can be
formulated mathematically as follows:

ŝin = ĉin[set(ma)] ∧ma ∈ ŝin(lh)

→ ∃cin ∈ concĈ(ĉ
in), sin = cin[set(ma)] ∧ma /∈ sin

∧ ∃m, m ∈ ŝin(lh) ∧m ∈ sin(lh)
∧ h > 1 ∧ h ≤ A

Let sout = US(sin, ma) and ŝout = ÛŜ(ŝin, ma) be the
output concrete set state sout and abstract set state ŝout after
the cache update. The relative age of memory block m in the
output concrete set sout and abstract set ŝout are as follows

m ∈ sin(lh) ∧ma /∈ sin,

sout = US(sin, ma)→ m ∈ sout(lh+1)

m ∈ ŝin(lh) ∧ma ∈ ŝin(lh)

ŝout = ÛŜ(ŝin, ma)→ m ∈ ŝout(lh)

Because ma is not in sin, ma ages m in line lh to lh+1.
On the other hand, ma is in ŝin(lh), so update function ÛŜ

does not age m from lh to lh+1. Therefore, m ∈ ŝout(lh)
but m ∈ sout(lh+1), the abstract set state ŝout underestimate
the maximum relative age of m in concrete set state sout.

C. Correcting the persistence analysis

As demonstrated above, we cannot use the maximum
relative age of memory block ma in ACS ĉ to determine if
an access to ma would further age other memory blocks in
ĉ. Given abstract set state ŝ with ma ∈ ŝ(lh) and m ∈ ŝ(lk),
an access to ma could still increase maximum relative age
k of memory block m even when m has older maximum
relative age (k ≥ h). As a result, we propose to track the set
of memory blocks that may be more recently used (younger)
than memory block m in the ACS. An access to memory
block ma will increase the maximum relative age of m only
if ma is not in the current younger set of m. Otherwise, ma

is already counted as a possible younger memory block than
m. Therefore according to LRU policy, it will not further
increase the maximum relative age of memory block m. We
define the Younger Set (YS) as follows.
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Figure 2. Analysis result of with proposed update and join function

Definition 1: (Younger Set): For an abstract set state ŝ at
program point p, the younger set YS(ŝ, m) of m captures
a superset of all memory blocks that may have smaller
relative ages (younger) than m at p in some possible program
execution that reaches p. �
In LRU replacement policy, the relative age of memory
block m is determined by the number of memory blocks
more recently used (younger) than m in the same cache
set. Consequently, the maximum relative age x of m in ŝ
should be larger than the number of memory blocks possibly
younger than m, i.e. the size of younger set YS(ŝ, m)
(x = |YS(ŝ, m)| + 1). If maximum relative age x is not
greater than cache associativity A, memory block m is
guaranteed to remain in the cache once it has been accessed.

To optimize analysis performance, we stop tracking
younger set YS(ŝ, m) of m once it has more memory
blocks than cache associativity A (hence m is not persistent).
For cache using LRU replacement, A is usually small (e.g.
A ≤ 4). Therefore, the younger set YS(ŝ, m) is generally
small and easy to track.

Figure 2(a) illustrates the younger set of each memory
blocks a, b, c in ACS of B3, B4, B5 in the first loop itera-
tion. In B3, b is just accessed so b is brought to the youngest
line ŝout

B3 (l1) with no younger memory block. a is older than
b, so a is in ŝout

B3 (l2) with younger set YS(ŝout
B3 , a) = {b}.

Similarly in B4, a is just accessed so a is in the newest
cache line ŝout

B4 , and the younger set YS(ŝout
B4 , a) is empty.

c is older than a, so YS(ŝout
B4 , c) = {a}. In B5, b has no

younger memory block in both incoming block B3 and B4,
so it has no younger memory block in B5. a has younger
memory block b in incoming block B3 and none in B4, so
the younger set YS(ŝin

B5, a) = {b}. Similarly, c has only
one younger memory block a in B4, so the younger set
YS(ŝin

B5, c) = {a}.
Notice that from the younger set, we know that in first

iteration, memory block b is not a possible younger memory
block of c in any concrete cache state at B5 even though
the maximum relative age of b is smaller than the maximum

relative age of c in ŝin
B5. Therefore, we know that a subse-

quent access to b will increase the maximum relative age
of c. Consequently, our proposed younger set notion helps
avoid the incorrectness of original persistence analysis in
[10] (Figure 2(c)).

We propose a new update and join function to track and
use younger set notion in ACS computation as follows.

New update function: Given a program point p with
ACS ĉin, if the program accesses memory block ma at p,
our cache update function ÛĈ updates the state of cache set
set(ma) using the set update function ÛŜ
ÛĈ(ĉ

in, ma) = ĉout[set(ma) 7→ ÛŜ(ĉ
in[set(ma)], ma)]

Given the accessed memory block ma and the input
abstract set state ŝin where ma is mapped to, the update
function ÛŜ computes the output abstract set state ŝout and
calculate the younger set YS(ŝout, m) for each memory
block m in ŝout as follows:

ÛŜ(ŝ
in, ma) = ŝout with

ŝout(lx) = {m|m ∈ ŝin ∪ {ma},
x = min(|YS(ŝout, m)|+ 1,>)}

Where ∀m ∈ ŝin ∪ {ma},

YS(ŝout, m) =
{
YS(ŝin, m) ∪ {ma} if m 6= ma

∅ if m = ma

When ma is accessed, for each memory block m in ŝin,
if m 6= ma, ma becomes a more recently used memory
block than m. Therefore, update function ÛŜ adds ma to the
younger set YS(ŝout, m) and changes maximum relative age
of m accordingly. If m = ma, m is accessed and becomes
the youngest memory block in set ŝout. As a result, update
function ÛŜ brings m to ŝout(l1) and set its younger set
YS(ŝout, m) to empty.

Figure 2(b) shows our update function at B1 after the
first iteration described in Figure 2(a). ŝin

B1 contains memory
block b in cache line l1, a and c in cache line l2. As seen in
Figure 2(a), after the first iteration, b is the youngest memory
block. Therefore, YS(ŝin

B1, b) is empty. a is aged by b in
B3 so YS(ŝin

B1, a) = {b}. And similarly, c is aged by a
in B4 so YS(ŝin

B1, c) = {a}. At B1, the program accesses
memory block a. Consequently, a is renewed to youngest
line ŝin

B1(l1) and younger set YS(ŝout
B1 , a) is set to empty. a

becomes a new younger block of b so YS(ŝout
B1 , b) = {a}.

With one possible younger memory block, b has maximal
relative age x = 2. Because c already has a in its younger
set YS(ŝin

B1, c), it keeps the same maximal relative age and
younger set.

New join function: Given a program point p with two
incoming edges from p1 and p2 having ACS ĉ1 and ĉ2, the
join function JĈ computes the joined ACS ĉ as combined
upper bound of incoming ACSs

JĈ(ĉ1, ĉ2) = ĉ[si 7→ JŜ(ĉ1[si], ĉ2[si])]
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Figure 3. Cache update for set of possible access addresses

Given two incoming abstract set state ŝ1 and ŝ2, we
propose a new join function to compute combined abstract
set state ŝ and track the younger set for each memory block
m ∈ ŝ as follows:

JŜ(ŝ1, ŝ2) = ŝ with:
ŝ(lx) = {m|m ∈ ŝ1 ∪ ŝ2, x = min(|YS(ŝ, m)|+ 1,>)}
where ∀m ∈ ŝ1 ∪ ŝ2

YS(ŝ, m) =



YS(ŝ1, m) ∪ YS(ŝ2, m)
if m ∈ ŝ1 ∧m ∈ ŝ2

YS(ŝ1, m)
if m ∈ ŝ1 ∧m /∈ ŝ2

YS(ŝ2, m)
if m /∈ ŝ1 ∧m ∈ ŝ2

The joined abstract set state ŝ is a set union of ŝ1 and ŝ2.
Moreover, the younger set YS(ŝ, m) of each memory block
m in ŝ is also the set union of younger set of m in ŝ1 and ŝ2

if there is. The relative age of m in ŝ is then set according the
size of its younger set. Because the younger set YS(ŝ, m)
always contain all younger memory blocks of m in ŝ1 and
ŝ2, it safely estimates the possible memory blocks younger
than m in ŝ in all possible executions.

Figure 2(c) illustrates our join function. In B3, memory
block b has no younger memory block but in B4, b has
two younger memory blocks a and c, so YS(ŝin

B5, b) =
{a, c} in combined abstract set state ŝin

B5 of B5. Similarly,
YS(ŝin

B5, c) = {a, b} and YS(ŝin
B5, a) = {b}. Our proposed

persistence analysis accurately points out that a is persistent
at B5. However, b and c have up to two possible younger
memory blocks so they may be evicted.

New update function for set: Unlike instruction ref-
erences, a data reference D can access a set of possible
different data addresses Addr(D). Therefore, cache update
function ÛĈ need to handle sets of possibly referenced
memory blocks, as in [10]. We propose a new update
function for set to update the change in ACS ĉ and track the

younger set after an access of data reference D as follows:

ÛĈ(ĉ, Addr(D)) = ĉ[fi 7→ ÛŜ(ĉ[fi], Xfi)]
for allfi ∈ {f = set(m)|m ∈ Addr(D)}
where Xfi = {my|my ∈ Addr(D), set(my) = fi},

Given a set of possible access addresses Addr(D) of data
reference D, the abstract cache update function ÛĈ divides
it into Xfi

, the set of possible access addresses in Addr(D)
corresponds to cache set fi. Our new abstract set update
function ÛŜ compute the output abstract set state ŝout from
the input abstract set state ŝin and the set Xfi of Addr(D)
mapped to this cache set as follows

ÛŜ(ŝ
in, Xfi

) = ŝout

with ŝout(lx) = {m|m ∈ ŝin ∪Xfi ,

x = min(|YS(ŝout, m)|+ 1,>)}
Where ∀m ∈ ŝin ∪Xfi

YS(ŝout, m) =
{
YS(ŝin, m) ∪Xfi

\ {m} if m ∈ ŝin

∅ otherwise

Because no memory block ma ∈ Addr(D) is guaranteed
to be accessed, we cannot renew ma ∈ ŝin even though
ma ∈ Addr(D). However, any ma ∈ Xfi could possibly
become a new younger memory block of all memory block
m currently in ŝin. Therefore, the update function ÛŜ adds
Xfi

to the younger set YS(ŝ, m) of m. If a memory block
ma ∈ Xfi

and ma /∈ ŝ, ma may be a newly accessed
memory block in ŝout. Therefore, update function ÛŜ adds
ma to the abstract set state ŝout as a youngest memory block
with empty younger set.

Figure 3(a) illustrates such scenario. A data reference D
in B3 may access a set of possible memory block {b, c, d}
mapped to ŝin

B3. Figure 3(b) shows the input abstract set
state ŝin

B3 and the resulting abstract set state ŝout
B3 after the

memory access. As all of {b, c, d} could be accessed, the
set update function adds all of them to the younger set of
memory block a and b in ŝin

B2. Therefore, a is aged to evicted
line l> because it has {b, c, d} as possible younger blocks.
b is also evicted to l> because it has two possible younger
blocks c, d. c and d are added to ŝout

B2 (l1) as most recently
used memory blocks with no younger memory block.

IV. SAFETY PROOFS OF CORRECTED PERSISTENCE
ANALYSIS

In this section, we will prove the safety and termination
of our proposed persistence analysis.

In our persistence analysis and the proofs, we consider
a program point before and after each program instruction.
Note that for data cache analysis, it is possible that there is
no data memory references between two program points if
the instruction does not access data memory.

For each memory block m, the relative age of m in
the cache is determined by the number of more recently



used (younger) memory blocks in the same cache set. At
program point p, given a execution path pa that reaches
p with concrete cache state c. Memory block m in cache
set s = c[set(m)] will have relative age y (m ∈ s(ly)) if
there are y − 1 younger memory blocks in s (from s(l1)
to s(ly−1)). We define the concrete younger set of memory
block m as follows:

Definition 2: (Concrete younger set) Concrete younger
set ys(s, m) of memory block m is the set of memory blocks
more recently used (younger) than m in concrete set state s
of cache set where m is mapped to. �

m ∈ s(ly)→ ys(s, m) = s(l1) ∪ ... ∪ s(ly−1)
∧ y = |ys(s, m)|+ 1

In our proposed persistence analysis, at program point
p with ACS ĉ at fixed point, we determine the maximum
relative age x of memory block m by the younger set
YS(ŝ, m), the set of all memory blocks possibly younger
(more recently used) than m in the abstract set state ŝ =
ĉ[set(m)], i.e. x = |YS(ŝ, m)| + 1. To prove the safety of
our persistence analysis, we prove that from our proposed
update and join function, the younger set YS(ŝ, m) is the
superset of concrete younger set ys(s, m) in concrete set
state s = c[set(m)] at p in any execution path that reaches
p, captured by the younger set property.

Definition 3: (YS property): Given an arbitrary path pa
from start of execution to program point p which results in
concrete cache state c. Let ĉ be the computed fixed point
ACS at p. For each memory block m ∈ c, let ŝ = ĉ[set(m)]
and s = c[set(m)] be the abstract and concrete state of cache
set where m is mapped to, the younger set YS(ŝ, m) is the
superset of the concrete younger set ys(s, m). �

∀m ∈ c, s = c[set(m)], ŝ = ĉ[set(m)],
ys(s, m) ⊆ YS(ŝ, m)

If the younger set YS(ŝ, m) is the superset of concrete
younger set ys(s, m), the maximum relative age x of m in
ŝ computed by our analysis (x = |YS(ŝ, m)|+ 1) is always
greater or equal than the concrete relative age y of m in s
(y = |ys(s, m)| + 1). Hence if maximum relative age x is
less than or equal cache associativity A, m is not evicted
out of the cache for any concrete cache set s at p. Therefore,
our persistence analysis is safe.

A. Structure of the proof

We prove by induction that the YS property holds in all
possible execution paths in the program.
• Because the concrete cache state c is empty at the start

of the execution, YS property is trivially true initially.
• Assume YS property holds at pin, before program point

p. If at p, the program accesses memory block ma (or a
set of possible memory blocks Addr(D) = {m1...mk}
of data reference D), we prove that YS property holds

at pout, after program point p by proving the correctness
of our update function ÛŜ (Section IV-B and Section
IV-D).

• Assume YS property holds at pout, after program point
p, we prove that YS property holds at pin

n , before the
next program point pn by proving the correctness of
our join function ĴŜ (Section IV-C)

As YS property is true at the start of the execution, before
and after each program point, and from one program point
to another, YS property holds for all possible executions of
the program. Therefore, given fixed-point ACS ĉ at program
point p, in any execution path that reaches p with concrete
cache state c, let ŝ = ĉ[set(m)] and s = c[set(m)], the
younger set YS(ŝ, m) is the superset of the concrete younger
set ys(s, m) of m in s. Consequently, the maximal relative
age x of m in ŝ (x = |YS(ŝ, m)|+ 1) is always greater or
equal than the relative age y of m in s (y = |ys(s, m)|+1).
As a result, if the maximal relative age x is less than or equal
to cache associativity A, m is persistent when the program
control reaches p in all executions.

B. Safety of update function

We prove our update function preserves the YS property.
If the program accesses ma at program point p, assume YS
property holds at pin, we prove YS property holds at pout.

Given a path pa having concrete cache state cin at pin,
before program point p. Let ĉin be the fixed-point ACS at
pin. Assume YS property holds at pin, we have

∀m ∈ cin, sin = cin[set(m)], ŝin = ĉin[set(m)],

ys(sin, m) ⊆ YS(ŝin, m) [B.1]

If the program accesses memory block ma at program
point p, let cout be the concrete cache state of path pa at
pout, after program point p. Let ĉout be the fixed-point ACS
at pout. We prove YS property holds at pout

∀m ∈ cout, sout = cout[set(m)], ŝout = ĉout[set(m)],
ys(sout, m) ⊆ YS(ŝout, m) [B.2]

Case 1: set(m) 6= set(ma)
Because set(m) 6= set(ma), the cache state of m is

unaffected by the access to memory block ma. As a result,
there is no change in the concrete set state, sout = sin,
so ys(sout, m) = ys(sin, m). Similarly, there is no change
in the abstract set state, ŝout = ŝin, so YS(ŝout, m) =
YS(ŝin, m). Therefore, YS property continues to hold from
pin to pout.

Case 2: set(m) = set(ma)
As m and ma are mapped to the same cache set, if

m 6= ma, ma becomes a new younger memory block of



m. Otherwise (ma = m), m is accessed so it is brought (or
renewed) to youngest line l1.

ys(sout, m) =
{

ys(sin, m) ∪ {ma} if m 6= ma

∅ if m = ma
[B.3]

From our proposed update function ÛŜ , the new younger
set of each memory block in ŝin is computed as follows.

YS(ŝout, m) =
{
YS(ŝin, m) ∪ {ma} if m 6= ma

∅ if m = ma
[ÛŜ ]

As a result, we have

[B.1]→ ys(sin, m) ⊆ YS(ŝin, m)

[B.3]→ ys(sout, m) =
{

ys(sin, m) ∪ {ma} if m 6= ma

∅ if m = ma

[ÛŜ ] YS(ŝout, m) =
{
YS(ŝin, m) ∪ {ma} if m 6= ma

∅ if m = ma

[B.1],[B.3], [ÛŜ ]→

if m = ma

ys(sout, m) = ∅ ⊆ YS(ŝout, m)
if m 6= ma

ys(sout, m) = ys(sin, m) ∪ {ma}
YS(ŝout, m) = YS(ŝin, m) ∪ {ma}
ys(sin, m) ⊆ YS(ŝin, m)
→ ys(sout, m) ⊆ YS(ŝout, m)

Therefore, YS property holds at pout, after the execution of
step p.

C. Safety of join function

Assume YS property holds at pout, after program point p,
we prove that YS property holds at pin

n , before the immediate
program point pn by proving the correctness of our join
function ĴŜ .

Given a path pa having concrete cache state cout at pout.
Let ĉout be the fixed-point ACS at pout. Assume YS property
holds at pout, we have

∀m ∈ cout, sout = cout[set(m)], ŝout = ĉout[set(m)],
ys(sout, m) ⊆ YS(ŝout, m) [C.1]

Let cin
n be the concrete cache state of path pa at pin

n ,
before the next program point pn. Let ĉin

n be the fixed-point
ACS at pin

n . We prove YS property holds at ĉin
n

∀m ∈ cin
n , sin

n = cin
n [set(m)], ŝin

n = ĉin
n [set(m)],

ys(sin
n , m) ⊆ YS(ŝin

n , m) [C.2]

From our proposed join function ŝ = ĴŜ(ŝ1, ŝ2), younger
set YS(ŝ, m) of m at pin

n is the union of all younger sets
of incoming edges of pin

n . As pout is one of the incoming
edge, we have

YS(ŝout, m) ⊆ YS(ŝin
n , m) [ĴŜ ]

Because program point pin
n is immediately after pout, no

new memory block is accessed, so the concrete set state
remains the same, sin

n = sout. As a result, the concrete
younger set for each memory block m also remains the same

ys(sin
n , m) = ys(sout, m) [C.3]

In summary

[C.1] → ys(sout, m) ⊆ YS(ŝout, m)

[ĴŜ ] → YS(ŝout, m) ⊆ YS(ŝin
n , m)

[C.3] → ys(sin
n , m) = ys(sout, m)

→ ys(sin
n , m) ⊆ YS(ŝin

n , m)

So the younger set YS(ŝin
n , m) always contains all possible

memory blocks younger than m in set(m) of cin at pin
n .

Therefore the YS property holds at next program point pin
n .

D. Safety of set update function

A data reference D can access a set of possible different
data addresses Addr(D) = {m1...mk}. Therefore, cache
update function ÛĈ need to handle sets of possibly refer-
enced memory blocks, as in [10]. We prove our set update
function preserves the YS property. If the program may
access any ma ∈ Addr(D) = {m1...mk} at p, assume YS
property holds at pin, before program point p, we prove
YS property holds at pout, after the data memory access at
program point p.

Given a path pa having concrete cache state cin at pin.
Let ĉin be the fixed-point ACS at pin. Assume YS property
holds at pin, we have

∀m ∈ cin, sin = cin[set(m)], ŝin = ĉin[set(m)],

ys(sin, m) ⊆ YS(ŝin, m) [D.1]

Let cout be the concrete cache state of path pa at pout,
after the memory access at p. Let ĉout be the fixed-point
ACS at pout. We prove YS property holds at pout

∀m ∈ cout, sout = cout[set(m)], ŝout = ĉout[set(m)],
ys(sout, m) ⊆ YS(ŝout, m) [D.2]

For each memory block m in the cache set sin, let Xfi be
the set of memory blocks in Addr(D) mapped to sin. The
data reference D can access any memory block ma ∈ Xfi

.
If m 6= ma, ma becomes a new younger memory block of
memory block m. Otherwise (m = ma), m is renewed to
the youngest cache line and has no younger memory block.

ys(sout, m) =


ys(sin, m) ∪ {ma},∀ma ∈ Xfi

if m ∈ sin ∧m 6= ma

∅
Otherwise

[D.3]



Our proposed set update function calculates new possible
younger set of m in ŝin when accessed by set Xfi

as follow

YS(ŝo, m) =

 YS(ŝi, m) ∪Xfi
\ {m}

if m ∈ ŝi

∅ otherwise
[ÛŜ ]

In summary

[D.1], [D.3], [ÛŜ ]→
if m 6= ma

ys(sout, m) = ys(sin, m) ∪ {ma},∀ma ∈ Xfi

YS(ŝout, m) = YS(ŝin, m) ∪Xfi
\ {m}

ys(sin, m) ⊆ YS(ŝin, m)
→ ys(sout, m) ⊆ YS(ŝout, m)

if m = ma

ys(sout, m) = ∅ → ys(sout, m) ⊆ YS(ŝout, m)

So YS(ŝout, m) contains all possible memory blocks
younger than m in cout[set(m)] at pout after the access
of data reference D. As a result, the YS property holds at
program point pout, after the data access in p.

E. Termination of the analysis

The number of memory blocks in a program and the
number of cache lines are finite. Therefore, the abstract
domain ĉ : L 7→ 2S is finite. Moreover, the cache update
function ÛŜ , and join function ĴŜ are monotonic. Therefore,
our analysis will always terminate.

V. SCOPE-AWARE PERSISTENCE ANALYSIS

VI. MOTIVATIONS

Current persistence analysis (proposed by Ferdinand [9],
[10], corrected in the above chapter) determines if once
loaded, a memory block m will not be evicted out of the
cache under all circumstances. However, a data memory
block m remains in the cache under all circumstances only
when the data cache is large enough to hold all possible data
addresses. Otherwise, memory block m could be evicted
hence it cannot be classified as persistence. Consequently,
all data accesses to unclassified m are conservatively treated
as all miss.

However, we notice that for each loop L, a data reference
D may access memory block m only in a limited interval
[lw, up] of L’s iterations (from iteration lw to iteration up of
loop L). In this interval, if memory block m is guaranteed to
remain in the cache once loaded, the first time D accesses m
may causes one cache miss, but all subsequent accesses to
m must result in cache hit. Moreover, outside this interval,
memory block m is not accessed by data reference D, so
it causes no cache miss to D. As a result, if memory block
m is persistent (not evicted out of the cache once loaded)
in the interval [lw, up] of loop L’s iterations, it causes at
most one cache miss to D each time loop L is executed.

Therefore, by capturing the persistence of memory block m
in a smaller scope (i.e. interval [lw, up] of loop L), we could
guarantee a tighter worst-case performance of data cache.

Figure 4(a) presents our motivating example with four
array references in two nested loop L1 and L2. The un-
predictable array reference A[x] could access any memory
block in address set Addr(A) = {m0, m1} (assume A[x]
always accesses within address range of array A). Similarly,
the array reference B[i][j] and C[i][j] could access any
memory block in address set Addr(B) = {m2...m9} and
Addr(C) = {m12...m15} respectively. And D[0] accesses
only memory block m10. Figure 4(b) shows the CFG and
possible memory addresses of each data references. Assume
a 2-way associative cache with four cache sets {f0...f3},
Figure 4(d) gives the possible cache conflicts within the
loop nest. Because no memory block is persistent throughout
the program execution, all data accesses are conservatively
treated as all-miss in worst case according to the existing
persistence analysis framework.

However, Figure 4(c) describes the access pattern for
each data reference in the running example. As A[x] is an
unpredictable data access, it could access either m0 or m1

in any iteration of loop L1. On the other hand, B[i][j] and
C[i][j] are loop-affine array access with statically predictable
access pattern. When i = 2 and j = 0..7, B[i][j] only
accesses m6. Therefore, if m6 is not evicted in the scope
{L1 7→ [2, 2], L2 7→ [0, 7]} (interval [0, 7] of L2’s iterations,
for each L2’s execution in interval [2, 2] of L1’s iterations),
B[i][j] has at most one cache miss for 8 accesses. Similarly,
if m15 is persistent in the scope {L1 7→ [3, 3], L2 7→ [0, 15]}
, C[i][j] has at most one cache miss for 16 accesses. As
a result, by capturing the persistence of memory block in
those scopes, we could obtain a much tighter data cache
performance estimation.

VII. TEMPORAL SCOPE AND ADDRESS ANALYSIS

Central to our scope-aware data cache analysis is the
notion of temporal scope that characterizes the behavior of
a data reference over different loop iterations. Furthermore,
we parameterize the definition and operations of temporal
scopes with the static scope information on loop nesting.
We will discuss how our proposed persistence analysis can
utilize such information for more accurate abstract domain
construction in Section VIII.

Definition 4: (Temporal scope) A temporal scope mD of
memory block m which may be accessed by a data reference
D is defined as

mD = {Li 7→ [lw, up]|∀Li ∈ reside(D)}

where reside(D) is the set of loops where D resides in.
To simplify the presentation, we use m to denote mD when
there is no ambiguity about the data reference. For each
of such loops Li, temporal scope m (or mD) maintains a



i<4
int A[16];  int B[4][16];
int D[4]; short int C[4][16];
for ( i=0; i<4; i++) { //L1
    a = A[x];
    for (j=0; j<16; j++) {//L2
        if (a%2==0) b = B[i][j];
        else b = C[i][j];
        sum += D[0] + b;
    }
}

A[x]{m0,m1}; j=0;

j<16

a%2==0

B[i][j]{m2...m9} C[i][j]{m12...m15}

D[0] {m10}; j++

i++

(a) Code fragment
(c) Memory block accessed according to 

loop iterations of L1 and L2(b) CFG & memory block references

L2

L1

B1 B2

B5
B4

…
B3

B6 B7

B8
(d) Cache mapping

m0,  m4,  m8,  m12

m1,  m5,  m9,  m13

m2,  m6,  m10,  m14

m3,  m7,  m15

f0

f1
f2

f3

i
j

0 1 2 3

A[x] 0..15 m0,m1
B[i][j] 0..7 m2 m4 m6 m8
B[i][j] 8..15 m3 m5 m7 m9
C[i][j] 0..15 m12 m13 m14 m15
D[0] 0..15 m10

i
j

0 1 2 3

A[x] 0..15 m0,m1

B[i][j] 0..7 m2 m4 m6 m8

B[i][j] 8..15 m3 m5 m7 m9

C[i][j] 0..15 m12 m13 m14 m15

D[0] 0..15 m10

m0, m4, m8, m12

m1, m5, m9, m13

m2, m6, m10, m14

m3, m7, m15

f0

f1

f2

f3

Figure 4. Motivating example

mapping between Li and m[Li], a closed interval [lw, up]
of Li’s iterations where D may access m. �

For a data reference D, address analysis calculates set
of memory blocks possibly accessed by D. We follow the
register expansion framework in [18] to identify address
expression for each data reference at binary-code level.
For each register used to specify address of load/store
instruction, we perform register expansion to trace the source
registers and the computation performed. We recursively
expand a source register until it traces back to a defined
constant c, an unpredictable value ⊥, or a loop induction
variable V . Readers are referred to White et al. [18] for
details of address expression detection.

Given the address expression of a data reference D, set
of possibly accessed memory blocks and their corresponding
temporal scopes are automatically derived as follows.

• In case the address expression is a constant, it corre-
sponds to a scalar access to a fixed memory block m.
Data reference D will access m in all loop iterations.
Therefore, the temporal scope mD covers all iterations
of each loop L where D resides in. In Figure 5(a), ad-
dress expression of D[0] is evaluated to BaseD, which
corresponds to m10. Because D[0] will access m10 in
all iterations of loop L1 and L2 where it resides in, the
temporal scope m10 = {L1 7→ [0, 3], L2 7→ [0, 15]}.

• If the address expression contains unpredictable value
⊥, the corresponding array access may reference any of
the memory blocks contained in the array. For example
in Figure 5, A[x] is an unpredictable access which may
reference m0 or m1 in any iteration of L1. Therefore,
the temporal scope m0 = {L1 7→ [0, 3]}. Similarly,
temporal scope m1 = {L1 7→ [0, 3]}.

• If the address expression contains linear expression of
loop-induction variables, it corresponds to loop-affine
access with predictable access pattern, such as B[i][j]
in Figure 5(a). By enumerating possible values of the
loop induction variables i and j, temporal scope of
each memory block that is possibly accessed by B[i][j]
can be automatically calculated. For example, when
i = 2 and 0 ≤ j ≤ 7, value of the address expression
for B[i][j] is evaluated to [128 + BaseB, 128 + 28 +
BaseB], where BaseB is the base address of B[i][j].
Given our assumption that BaseB corresponds to

{ L1 [0

{ L1 [2,2], L

{ L1 [2,2], L

0m

6m

Address Expression

A[x] ⊥×4 + m0 (BaseA)

B[i][j] 16 × i × 4 + j × 4 + m2 (BaseB ) m

(b) T l

{ [ , ],

{ L1‐>[3,3], L2

{ L1 [0,3], L10m

( ) Add i

[ ][j] j 2 ( )

C[i][j] 16 × i × 2 + j × 2 + m12 (BaseC )

D[0] m10 (BaseD )

15m
7m

(b) Temporal s(a) Address expressions

0,3] }

L2 [0,7] }

2 [8,15] }[8, 5] }

2 [0,15] }

2 [0,15] }

copes 

Figure 5. Address expressions and temporal scopes

memory block m2 and memory block size is 32-Byte,
the address range [128 + BaseB, 128 + 28 + BaseB]
corresponds to m6, so the temporal scope m6 = {L1 7→
[2, 2], L2 7→ [0, 7]}.

Given two memory blocks mi and mj accessed in tem-
poral scope mi and mj respectively. An access to mi in
scope mi[L] will increase the relative age of mj in scope
mj [L] only if mi and mj are mapped to the same cache
set and their temporal scopes overlap during execution of
L. We define the overlapping between two temporal scope
mi and mj in loop L as follows

Definition 5: (Scope overlap) The overlapping between
two temporal scope mi and mj in loop L is recursively
defined as

overlap(mi, mj , L) ⇐⇒ mi 6= mj

∧ (mi[L] ∩mj [L]) 6= ∅ ∧ overlap(mi, mj , outer(L))
(1)

where outer(L) is the immediate outer loop of L. Thus, two
temporal scopes overlap at loop level L only if the access
intervals for loop L and all outer loops containing L are not
mutually exclusive.

In Figure 5(b), since m6[L2] and m7[L2] refer to interval
[0, 7] and [8, 15] of L2’s iterations, they do not overlap. In
an other example, m15[L2] and m6[L2] overlap in interval
[0, 7] of L2’s iterations. However, in the parent loop L1,
m15[L1] refers to interval [3, 3] while m6[L1] refers to a
separated interval [2, 2] of loop L1’s iterations. Therefore,
the scope m15[L2] and m6[L2] do not overlap because they
belong to L2’s executions in separated intervals of L1.

To capture the persistence of a data memory in a scope
for more accurate WCET analysis, we integrate access
pattern analysis into the abstract interpretation framework.
In our analysis, we extend the definition of memory block
persistence in [10], and utilize the computed temporal scope



information for a scope-aware analysis. The proposed frame-
work is built on our correct version of persistence analysis
as described in Section III-C. The soundness proofs are
presented in Section IX.

VIII. SCOPE-AWARE PERSISTENCE ANALYSIS

The basic idea of our scope-aware persistence analysis
is to categorize the persistence of memory blocks in the
calculated temporal scopes (Section VII), instead of the
globally defined persistence in [10]. For a data reference D,
the temporal scope mD identifies a mapping between loop L
where D resides in and L’s iteration interval mD[L] where
D may access m. The scope-aware analysis approach allows
us to integrate access pattern into the abstract interpretation
framework, and determine the local behavior of data cache.
In particular, our scope-aware persistence analysis computes
memory block persistence within its temporal scope for each
static scope (loop hierarchy) it may get accessed.

Definition 6: (Scope persistence) Let mD defines the
loop interval [mD[L].lw,mD[L].up] where data reference
D may access memory block m in an execution of loop
L (between L’s entry and exit). The temporal scope mD

is persistent at loop level L if and only if within interval
mD[L], m is guaranteed to remain in the cache after the
first time it is loaded into cache by D. �

Given the above definition of scope persistence, for mem-
ory block m to cause only one cache miss to data reference
D in one complete execution of loop L, it does not need
to stay in the cache for all iterations of L. In loop L, the
temporal scope mD (or m for short) defines an interval
m[L] (from iteration m[L].lw to iteration m[L].up of loop
L) where D may access m. If once loaded, memory block
m is not evicted out of the cache in any execution within
the interval m[L], all data accesses to m from D cause at
most one cache miss for each complete execution of L.

To capture the scope persistence in the abstract domain
of the persistence analysis framework, we define our scope-
aware abstract set state and abstract cache state as follows.

Definition 7: (Scope-aware abstract cache state) In
analysis at loop level L, abstract cache state ĉ[L]: F → Ŝ
maps cache sets to abstract set states. �

Definition 8: (Scope-aware abstract set state) An ab-
stract set state ŝ: {l1 . . . lA} ∪ {l>} → 2TS maps cache
lines (including the evicted line l>) to set of all temporal
scopes TS (refer to Figure 6(c) for an example). Ŝ denotes
the set of all abstract set states. �
In our scope-aware ACS ĉ[L] of loop L, if temporal scope m
is in ŝ(lx), once loaded to the cache in scope m[L], memory
block m reaches maximum relative age x in any possible
execution from iteration m[L].lw to iteration m[L].up of
loop L.

We have re-designed the update function ÛĈ and join
function ĴĈ to utilize the scope information when modeling
cache conflicts in the ACS. By capturing such fine-grained

persistence properties, our analysis can accurately model the
local behavior of data cache for WCET estimation.

A. Overall framework

We adopt the multi-level persistence framework for instruc-
tion cache analysis from [2], and extend it for our data
cache analysis. As shown in Figure 6(a), for each loop
L, we perform a separate persistence analysis on the CFG
fragment within L, with empty initial ACS ĉin

Lentry
[L] = ⊥

as input ACS of the L’s entry node Lentry. Consequently, the
analysis will consider only paths and data accesses within
loop L. As a result, we can determine the local persistence
of a memory block in different loop levels. In Figure 6 we
show the estimation results of our analysis for the motivating
example presented in Figure 4, and a detailed discussion will
be given in Section VIII-C.

Algorithm 1 MPA(L) — Multi-level Persistence Analysis
Algorithm. L denotes a loop (or the main procedure) under
analysis.
1: ĉin

Lentry
[L] = ⊥;

2: Queue.insert(Lentry);
3: while !Queue.empty() do
4: n = Queue.remove();
5: ĉin

n [L] = ĴĈ({ĉout
n′ [L]|∀n′ ∈ Pred(n) ∧ n′ ∈ L});

6: if reached fixed point( ĉin
n [L]) then continue;

7: ĉout
n [L] = ĉin

n [L];
8: for each data reference D in n do
9: ĉout

n [L] = ÛĈ(ĉout
n [L], TSD, L);

10: end for
11: Queue.insert({n′|∀n′ ∈ Succ(n) ∧ n′ ∈ L});
12: end while

Algorithm 1 describes the multi-level persistence analysis
algorithm to analyze loop L. ĉin

n [L] and ĉout
n [L] denote

the input and output ACSs of a node n for analysis at
loop level L. Pred(n) and Succ(n) refer to the sets of
predecessors and successors of n within the CFG of loop
L currently being analyzed. We perform a standard fixed-
point computation of the ACSs. The analysis initializes
the input ACS of loop entry node Lentry to empty (line
1) because initially no memory block has been accessed
in this loop. The processing queue Queue starts with the
loop entry node (line 2). For each node n, we compute
the input ACS ĉin

n [L] by joining all the output ACSs of
its predecessors within L (line 5). The scope-aware join
function ĴĈ computes the joined ACS as the union of all
input ACSs. If the input ACS ĉin

n [L] has reached fixed point,
the analysis continue to process the next node in Queue (line
6). Otherwise, for each memory reference D in node n, we
compute ĉout

n [L] from its input ACS and the set TSD of
temporal scopes of D as computed in Section VII (line 7-
10). In case where no-write-allocate is used (in write-through
or write-back policy), a store instruction does not modify the
cache state. We consider only load instructions in the cache
analysis. Otherwise for write-allocate policy, all load and
store instructions will be considered in the ACS calculation.
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Figure 6. Multi-level analysis and results for the motivating example in Figure 4

Finally, all successors of n within L are inserted into Queue
to capture the possible changes in ĉout

n [L] (line 11).

B. Scope-aware update and join functions

Scope-aware update function:
Given a data reference D which accesses a set of possible

addresses Addr(D) = {m1...mk} in loop L, the scope-
aware update function ÛĈ calculate the change in ACS ĉ[L]
after a data reference of D (line 9 in Algorithm 1). For
each memory block ma ∈ Addr(D), the temporal scope
mD

a (or ma for short) identify the loop intervals where D
may access ma. An access to ma in scope ma[L] (from
iteration ma[L].lw to iteration ma[L].up) does not affect
the maximum relative age (and the scope persistence) of a
memory block m in scope m[L] if ma and m do not overlap
in loop L (refer to Equation 1 in Section VII). Therefore,
our proposed scope-aware update function ÛĈ only considers
memory block ma as conflict with memory block m in scope
m[L] when the temporal scope ma and m overlap in L.

ÛĈ(ĉ, TSD = {m1...mk}, L) = ĉ[fi 7→ ÛŜ(ĉ[fi], Xfi , L)]
for all fi ∈ {set(m1)..set(mk)}

where Xfi = {my|my ∈ {m1...mk}, set(my) = fi}

Given data reference D and its set of possible addresses
Addr(D), our scope-aware cache update function ÛĈ com-
putes the change in cache set fi possibly affected by the
data access using our scope-aware set update function ÛŜ .
For each input abstract set state ŝin, the set update function
computes the output abstract set state ŝout and tracks the
Younger Set of each temporal scope m ∈ ŝin as follows.

ÛŜ(ŝ
in, Xfi

, L) = ŝout with :

ŝout(lx) = {m|m ∈ ŝin ∪Xfi
,

x = min(|YS(ŝout, m)|+ 1,>)}
where ∀m ∈ ŝin ∪Xfi

,YS(ŝout, m) =
∅ if m /∈ ŝin

∅ else if m ∈ Xfi
∧ ¬overlap(m, ma, L),

∀ma ∈ TSD

YS(ŝin, m) ∪ {ma|ma ∈ Xfi
∧ overlap(m, ma, L)}

Otherwise.

where overlap(m, ma, L) is true when the temporal scopes
m and ma overlap in loop level L according to Equation 1.

The update function ÛŜ determines the maximum relative
age x of temporal scope m in output abstract set state ŝout

by computing the younger set YS(ŝout, m). In our scope-
aware ACS, the younger set YS(ŝout, m) identifies the set
of all possible memory blocks that could be younger than
m in all executions in scope m[L] after the first access to
m in this scope. To determine the younger set YS(ŝout, m),
we have the following scenarios:

• If temporal scope m is not in ŝin, memory block m has
not been accessed the first time in scope m[L] in any
execution. If the data reference D accesses m, m will
be brought to youngest cache line l1 with no younger
memory block. Otherwise, memory block m remains
not accessed. Since our scope-aware persistence analy-
sis only captures the maximum relative age of m after
the first access to m in scope m[L], our scope-aware
update function ÛŜ adds m to ŝout as youngest memory
block with empty younger set.

• If temporal scope m ∈ ŝin, memory block m may have
been accessed in scope m[L]. In scope m[L], for any
memory block ma ∈ Addr(D), the data reference D
may access ma if temporal scopes m and ma overlap
in loop L. Therefore, if exists ma ∈ Addr(D) where
overlap(m, ma, L), data reference D may access ma

and not renew m. Otherwise if m ∈ Addr(D), all data
accesses of D in scope m[L] will definitely access and
renew m. Consequently, we can guarantee that data
reference D will indeed access m in scope m[L] and
renew m to youngest cache line l1.

• Otherwise, in scope m[L], the data reference D may
access any memory block ma (ma 6= m) if temporal
scope ma overlaps with m in loop L. If ma is mapped
to cache set fi (ma ∈ Xfi ), it can be accessed
and become a new younger memory block of m in
scope m[L]. Therefore, our scope-aware update ÛŜ
function adds all those memory blocks to the younger
set YS(ŝout, m) of m, and set its maximal relative age
accordingly.

Figure 7(a) illustrates our scope-aware persistence analy-
sis in loop L2 of the running example in Figure 4. While m4,
m8, and m12 are all mapped to cache set f0, the temporal
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Figure 7. Scope-aware ACS computation for L2 of the motivating example in Figure 4

scopes m4, m8, and m12 do not overlap in loop L2. As a
result, they do not affect the scope-persistence of each other.
On the other hand, in cache set f1, B[i][j] accesses m5 when
i = 1 and j = 8..15, while C[i][j] accesses m13 when i = 1
and j = 0..15. Therefore, the temporal scope m5 overlaps
with m13 in loop L2. Hence m13 will age m5 and become a
younger memory block of m5 in scope m5[L2]. Therefore,
the scope-aware update function adds m13 to the younger
set of m5, as shown in Figure 7(b).

Scope-aware join function:
At any program point p in loop level L, the join function

ĴĈ (line 5 in Algorithm 1) computes an ACS from all the
output ACSs of p’s control flow predecessors. It can be done
by pair-wise joining of two output ACSs ĉ1[L] and ĉ2[L] into
a representative ACS ĉ[L] at p using the the scope-aware
join function JĈ . Formally, our scope-aware join function is
defined as follows.

JĈ(ĉ1, ĉ2) = ĉ[si 7→ JŜ(ĉ1[si], ĉ2[si])]
JŜ(ŝ1, ŝ2) = ŝ with:
ŝ(lx) = {m|m ∈ ŝ1∪ ∈ ŝ2, x = min(|YS(ŝ, m)|+ 1,>)}
where ∀m ∈ ŝ1 ∪ ŝ2

YS(ŝ, m) =



YS(ŝ1, m) ∪ YS(ŝ2, m)
if m ∈ ŝ1 ∧m ∈ ŝ2

YS(ŝ1, m)
if m ∈ ŝ1 ∧m /∈ ŝ2

YS(ŝ2, m)
if m /∈ ŝ1 ∧m ∈ ŝ2

For each temporal scope m, the scope-aware join function
JĈ unionizes the younger set of m in both output ACSs
from the control flow predecessors to form the younger set

YS(ŝ, m) of m in abstract set state ŝ = ĉ[set(m)] at p.
Therefore, YS(ŝ, m) always contains all possible younger
memory blocks of m in scope m at p.

C. ACS computation of the motivating example

Figure 6(b), (c) and (d) shows the fixed-point ACSs
computed by the original persistence analysis (at basic block
B4, exit of L1), our multi-level analysis for L1 (at B4) and
L2 (at basic block B8, exit of L2), respectively. Given 2-way
associative cache with 4 cache sets, no memory block ac-
cessed by B[i][j] and C[i][j] can be categorized as persistent
in the original persistence analysis. On the other hand, our
multi-level scope-aware persistence analysis produces much
tighter estimation results on the worst-case cache behavior.
For example, m4 accessed by B[i][j] is guaranteed to be
scope persistent at both loop levels, resulting in at most 1
cold miss globally. m5 is scope persistent only in L2. Thus,
accesses to m5 in each complete execution of L2 (between
entry to exit) incurs at most 1 cold miss.

IX. SAFETY PROOFS OF SCOPE-AWARE PERSISTENCE
ANALYSIS

In this section, we will prove the safety of our proposed
scope-aware persistence analysis framework.

In a concrete cache state c, for LRU replacement policy,
the relative age of memory block m is determined by the
number of memory blocks more recently used (younger)
than m in the same cache set. Let s = c[set(m)] be the
concrete set state of the cache set where memory block m
is mapped to, and concrete younger set ys(s, m) be the set
of memory blocks more recently used (younger) than m in



set s (as in Definition 2), we have

m ∈ s(ly)→ ys(s, m) = s(l1) ∪ ... ∪ s(ly−1)
∧ y = |ys(s, m)|+ 1

A memory block m is persistent in the scope m[L] (from
iteration m[L].lw to iteration m[L].up of loop L) if once m
has been loaded to the cache the first time in this scope,
it will not be evicted out of the cache in any possible
execution before the program exists the scope (i.e. finishes
iteration m[L].up of loop L). In our ACS semantic, given
ACS ĉ[L] of analysis in loop L and ŝ = ĉ[L][set(m)],
if temporal scope m ∈ ŝ(lx), once loaded to the cache
in scope m[L], memory block m has maximum relative
age x in all possible executions in the scope. Our scope-
aware persistence analysis computes the maximum relative
age x by tracking the younger set YS(ŝ, m), the set all
memory blocks which are possibly younger than m in the
scope m[L] after m is loaded to the cache. As the relative
age of memory block m is determined by the number of
memory blocks more recently used (younger) than m in the
same cache set, the maximum relative age of m in scope
m[L] should greater than the size of younger set YS(ŝ, m),
i.e. x = |YS(ŝ, m)| + 1. If memory block m has less
than A possibly younger memory blocks in scope m[L],
once loaded, it will not be evicted out of the cache and is
persistent in scope m[L].

To prove the safety of our scope-aware persistence analy-
sis, we prove that for any execution path pa that reaches
program point p in the scope m[L] with concrete cache
state c, if path pa has accessed memory block m in this
scope, the younger set YS(ŝ, m) contain all memory blocks
in concrete younger set ys(s, m), the set of memory blocks
younger than m in cache set s = c[set(m)]. Consequently,
the maximum relative age x determined by our analysis
(x = |YS(ŝ, m)|+ 1) will always greater or equal than the
relative age y of memory block m in concrete cache set s
(y = |ys(s, m)|+1). Therefore, our scope-aware persistence
analysis is safe.

Note that our scope-aware persistence analysis computes
the maximum relative age x of memory block m only after
the first time memory block m has been loaded to the
cache in scope m[L]. We do not consider the relative age
of memory block m before its first access in this scope, as
we conservatively assume the first access to m in the scope
m[L] always results in a cache miss.

A. Structure of the proof

We prove by induction that for each temporal scope m
in ACS ĉ[L], the ScopeYS property holds in all possible
execution paths in scope m[L].

Definition 9: (ScopeYS property): Given an arbitrary
path pa from the start of execution to program point p in
scope m[L] of loop L which results in concrete cache state
c, and ĉ[L] be the computed fixed point ACS of loop L

at p. For each memory block m ∈ s = c[set(m)] and its
corresponding temporal scope m ∈ ŝ = ĉ[L][set(m)], if
path pa has accessed memory block m in scope m[L], the
younger set YS(ŝ, m) will contain all memory blocks in
concrete younger set ys(s, m).�

∀m ∈ c, s = c[set(m)], ŝ = ĉ[L][set(m)],
¬Accessed(m, m[L], s) ∨ ys(s, m) ⊆ YS(ŝ, m)

where Accessed(m, m[L], s) indicates if memory block m
has been accessed in scope m[L] for concrete set state s.

We prove by induction that for each memory block m and
its corresponding temporal scope m, the ScopeYS property
holds in all possible execution paths in scope m[L] (from
iteration m[L].lw to iteration m[L].up of loop L)

• If memory block m has not been accessed in scope
m[L] (¬Accessed(m, m[L])), our ScopeYS property is
trivially true. We do not consider the relative age of
memory block m before its first access in scope m[L],
as we conservatively assume the first access to m in
the scope results is a miss.

• At the first access to m in scope m[L], memory block m
is brought to concrete set state s at youngest line s(l1).
Consequently, ys(s, m) = ∅, so ys(s, m) ⊆ YS(ŝ, m).
Therefore the ScopeYS property is true immediately
after the first access to m in scope m[L].

• Assume ScopeYS property holds at pin, before the
program point p. If at p, a data reference D accesses
a set of possible memory blocks {m1...mk} in their
respective temporal scopes {m1...mk}, we prove the
ScopeYS property holds at pout, after program point p
by proving the correctness of our scope-aware update
function (Section IX-B).

• Assume ScopeYS property holds at pout, we prove
ScopeYS property holds at pin

n , before the next program
point pn, by proving the correctness of our scope-aware
join function (Section IX-C).

For each memory block m in scope m[L], we prove that
ScopeYS property holds before and immediately after the
first access to m in scope m[L]. In subsequent executions
within the scope, ScopeYS property holds after each data
access, and from one program point to another. Therefore,
ScopeYS property holds for any arbitrary path pa in the
scope m[L]. Consequently, at any program point p in scope
m[L] with concrete cache state c, the younger set YS(ŝ, m)
contains all memory blocks in concrete younger set ys(s, m)
of m in the set s = c[set(m)]. As a result, the maximum
relative age x of memory block m in scope m[L] determined
by our ACS ĉ[L] (x = |YS(ŝ, m)|+1) is always greater than
or equal to the relative age y of m in set s (y = |ys(s, m)+
1). Therefore, our analysis safely estimates the maximum
relative age and the persistence of m in scope m[L].



B. Safety proof of scope-aware update function

At program point p in loop L, a data reference D accesses
a set of possible memory blocks Addr(D) = {m1...mk}
in their respective temporal scopes {m1...mk}. The scope-
aware update function computes the change in ACS ĉ[L],
and tracks the younger set YS(ŝ, m) of each temporal scope
m after the data access. We prove our scope-aware update
function preserves the ScopeYS property. Assume ScopeYS
property holds at pin, before program point p, we prove
ScopeYS property holds at pout, after program point p.

Given the concrete cache state cin of path pa at pin,
and ĉin[L] is the computed ACS of loop L at pin. Assume
ScopeYS property holds at pin, we have

∀m ∈ cin, sin = cin[set(m)], ŝin = ĉin[set(m)],

¬Accessed(m, m[L], sin)

∨ ys(sin, m) ⊆ YS(ŝin, m) [B.1]

Given concrete cache state cout of path pa at pout, and
ĉout[L] is the computed ACS of loop L at pout. We prove
ScopeYS property holds at pout:

∀m ∈ cout, sout = cout[set(m)], ŝout = ĉout[L][set(m)],
¬Accessed(m, m[L], sout)
∨ ys(sout, m) ⊆ YS(ŝout, m) [B.2]

At program point p in loop L, given a data reference
D and input abstract set state ŝin, our scope-aware update
function ÛŜ computes the output abstract set state ŝout and
the updated younger set YS(ŝout, m) as follow:

ÛŜ(ŝ
in, Xfi , L) = ŝout with :

ŝout(lx) = {m|m ∈ ŝin ∪Xfi
,

x = min(|YS(ŝout, m)|+ 1,>)}
where ∀m ∈ ŝin ∪Xfi

,YS(ŝout, m) =
∅ if m /∈ ŝin

∅ else if m ∈ Xfi
∧ ¬overlap(m, ma, L),

∀ma ∈ TSD

YS(ŝin, m) ∪ {ma|ma ∈ Xfi ∧ overlap(m, ma, L)}
Otherwise.

We prove the correctness of our scope-aware update
function ÛŜ by dividing access scenarios into two cases:

Case 1: m has not been accessed in scope m[L]
• Case 1.1: D does not access m at program point p

As D does not access m at p, m remains not accessed
at pout. Therefore we have

¬Accessed(m, m[L], sin) ∧D does not access m

→ ¬Accessed(m, m[L], sout) ([B.2] proven)

• Case 1.2: D accesses m at program point p

Since data reference D accesses m, m becomes the
most recently used memory block in cache line l1.
Consequently, m has no younger memory block.

ys(sout, m) = ∅
→ ys(sout, m) ⊆ YS(ŝout, m) ([B.2] proven)

Case 2: m has been accessed in scope m[L]
Since memory block m has been accessed in scope m[L]

and ScopeYS holds at pin, we have:

[B.1] ∧Accessed(m, m[L], sin)

→ ys(sin, m) ⊆ YS(ŝin, m) [1]

In scope m[L], D may access memory block ma

only if temporal scope ma overlaps with m in loop L
(overlap(m, ma, L). Moreover, ma will become a younger
memory block of m in sout if ma 6= m and they are mapped
to the same cache set (ma ∈ Xfi

). As a result, we have

[2] ys(sout, m) =


∅ if ma = m
ys(sin, m) ∪ {ma}

if ma 6= m ∧ma ∈ Xfi

ys(sin, m) Otherwise
where ma ∈ Xfi ∧ overlap(m, ma, L)

[3] YS(ŝout, m) =

YS(ŝin, m) ∪ {ma|ma ∈ Xfi
∧ overlap(m, ma, L)}

[1][2][3]→ ys(sout, m) ⊆ YS(ŝout, m) ([B.2] proven)

As a result, in all cases, either memory block m has not
been accessed, or YS(ŝout, m) contains all possible tempo-
ral scopes of memory blocks accessed within scope m[L]
which may be younger than m. Therefore, the ScopeYS
property holds at pout.

C. Safety proof of scope-aware join function

Assume ScopeYS property holds at pout, after program
point p, we prove that ScopeYS property holds at pin

n , before
the next program point pn by proving the correctness of our
scope-aware join function ĴŜ .

Given concrete cache state cout of path pa at pout, and
ĉout[L] is the computed ACS of loop L at pout. Assume
ScopeYS property holds at pout, we have

∀m ∈ cout, sout = cout[set(m)], ŝout = ĉout[L][set(m)],
¬Accessed(m, m[L], sout)
∨ ys(sout, m) ⊆ YS(ŝout, m) [C.1]

Let cin
n be the concrete cache state of path pa at pin

n , and
ĉin
n [L] is the computed ACS of loop L at pin

n . We prove
ScopeYS property holds at pin

n :

∀m ∈ cin
n [L], sin

n = cin
n [set(m)], ŝin

n = ĉin
n [L][set(m)],

¬Accessed(m, m[L], sin
n )

∨ ys(sin
n , m) ⊆ YS(ŝin

n , m) [C.2]



From our proposed scope-aware join function ŝ =
ĴŜ(ŝ1, ŝ2), younger set YS(ŝ, m) of m at pin

n is the union
of all younger sets of incoming edges of pin

n . As pout is one
of the incoming edge of pin

n , we have

YS(ŝout, m) ⊆ YS(ŝin
n , m) [ĴŜ ]

Because pin
n is immediately after pout, no new memory

block is accessed. Therefore the concrete set state sin
n is

exactly the same as concrete set state sout, and the concrete
younger set remains the same:

ys(sin
n , m) = ys(sout, m) [C.3]

If m has not been accessed in scope m[L] at pout, m
remains not accessed at pin

n . The ScopeYS property will
hold at pin

n .
Otherwise, if m has been accessed in scope m[L] at pout,

we have

[C.1] ys(sout, m) ⊆ YS(ŝout, m)

[ĴŜ ] YS(ŝout, m) ⊆ YS(ŝin
n , m)

[C.3] ys(sin
n , m) = ys(sout, m)

→ ys(sin
n , m) ⊆ YS(ŝin

n , m) ([C.2] proven)

The younger set YS(ŝin
n , m) contains all possible memory

blocks younger than m in set(m) of sin
n at pin

n . Therefore
the ScopeYS property holds at pin

n .
According to the proof structure outlined in Section IX-A,

the ScopeYS property holds before and immediately after
memory block m is first accessed in scope m[L]. Then
ScopeYS property holds before and after memory access at
each program point p, and from p to the next program point
pn. As a result, the maximum relative age x of memory
block m in scope m[L] determined by our scope-aware
persistence analysis (i.e. x = |YS(ŝ, m)| + 1) is always
greater or equal to the relative age of m in concrete set
state s = c[set(m)] in arbitrary path pa after the first access
of m in scope m[L]. Therefore, our scope-aware persistence
analysis is safe.

X. CACHE MISS COMPUTATION

In abstract interpretation-based approaches, the cache
analysis results are used to classify the cache behavior of
each data reference D in the program. Typical worst case
categories are (1) All Hit (AH): all data accesses of D
result in cache hit; (2) All Miss (AM): all data accesses
of D result in cache miss; (3) Persistent (PS): all possible
accessed memory blocks of D are persistent (D has at most
one cold miss for each persistent memory block); and (4)
Non Classified (NC): the cache behavior of D could not be
classified (all accesses of D are considered to be misses).

In the presence of data cache, different executions of the
same data reference may access various memory blocks
and result in different cache behavior. In our motivating
example shown in Figure 4, data reference B[i][j] may
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Figure 8. Temporal scopes and loop iterations

access m4, m5, and m6 in the temporal scopes m4, m5,
and m6 respectively. As illustrated in Figure 6(c) and Figure
6(d), memory blocks may have distinct cache behaviors in
different loop nesting levels. Scope persistence of the above-
mentioned memory blocks are shown in Figure 8. In Figure
6, because temporal scope m4 is not aged to evicted line l>
in both L1 and L2, m4 is persistent in both scope m4[L1]
and m4[L2]. Therefore, we annotate the iterations of L1
and L2 bounded by m4 with PS. On the other hand, m5

is not persistent in outer loop L1 (annotated as ¬PS) but
is persistent in inner loop L2, so m5 is persistent in scope
m5[L2] but not m5[L1]. m6 is not persistent in any of the
loop levels. Pessimistically categorizing all data accesses
from B[i][j] as Non Classified (as in the original persistence
analysis) introduces significant over-estimation on the total
number of data misses, which can be avoided in our scope-
aware data cache analysis.

Our multi-level analysis computes a fixed-point abstract
cache states ĉin

n [L] (ĉout
n [L]) for entry (exit) of each CFG

node n in each loop level L. If m is persistent in scope m[L]
(or mD[L]) of loop level L, accesses to m by data reference
D incurs only one cold miss for each complete execution of
L (between entry and exit). Let Lps be the outer-most loop
level where m is persistent. Hence, accesses to m incur 1
cold miss for each execution of Lps (including all its inner
loops). The following function blockMiss(D,m) computes
the maximum number of cache misses D may incur due to
accesses of m during the entire program execution.

blockMiss(D,m) =



∏
(m[Li].up−m[Li].lw + 1)
∀Li ∈ reside(D), if Lps == ∅

1 if outer(Lps) == ∅∏
(m[Li].up−m[Li].lw + 1)
∀Li ∈ outer(Lps), otherwise.

with m = mD

where outer(Lps) is the set of all outer loops of Lps. In
other words, blockMiss(D,m) computes the number of
times Lps executed (in its outer loops) given the temporal
scope where m may get accessed by D. In case m is not
persistent in any loop level (Lps == ∅), each access to m
within its temporal scope results into 1 miss. On the other
hand, if Lps is outer-most loop of the program (globally
persistent), all accesses to m incur only 1 cold miss.

As illustrated in Figure 8, L1 is the outer most loop where
m4 is persistent. Since L1 is the outermost loop, m4 causes
at most one cold miss globally. m5 is only persistent in



Table I
BENCHMARK DESCRIPTIONS AND WCET ESTIMATION RESULT

Benchmark Benchmark description Array Size Simulation
(cycle)

Our Analysis
(cycle)

Analysis
Time

Edn Finite Impulse Response (FIR) filter calculations. 2048 2,542,444 2,628,150 0.28s
Fdct Fast Discrete Cosine Transform. 2048 917,636 926,468 0.92s
Cnt Counts non-negative numbers in a matrix. 32× 32 21,611 22,826 0.02s

Matmult Matrix multiplication. 24× 24 374,887 441,916 0.04s
Bsort100 Bubblesort program. 1024 15,945,200 17,350,300 0.02s
InsertSort Insertion sort on a reversed array. 1024 14,900,732 16,279,600 0.58s
Jfdctint Discrete-cosine transformation of pixel blocks. 256× 64 1,485,075 1,497,910 2.62s

Lms LMS adaptive signal enhancement. 1024 1,425,585 1,580,200 0.04s
Adpcm Adaptive pulse code modulation algorithm. 2048 193,525 298,632 0.14s

L2. Therefore, accesses to m5 from B[i][j] causes one cold
miss for each iteration of L1 in the interval [1, 1] defined by
m5[L1]. m6 is not persistent in any level, so all occurrences
of B[i][j] in the scope result in cache misses. The temporal
scope m6 covers interval [2, 2] of L1 and [0, 7] of L2, so
m6 causes at most 1× 1× 8 = 8 misses to B[i][j].

Finally, the maximal possible cache misses incurred by
D, miss(D), is the summation of blockMiss(D,m) over
all memory blocks in AddrSet(D) which D may access.

miss(D) =
∑

blockMiss(D,m),∀m ∈ AddrSet(D)

In our motivating example, B[i][j] accesses 8 memory
blocks ({m2, . . . ,m9}). According to our scope-aware anal-
ysis results shown in Figure 6, m6 is non-persistent in both
L1 and L2, m5 is persistent only in L2, and other 6 memory
blocks are persistent in both loops. According to our cache
miss estimation, maximal number of cache misses from
B[i][j] is 8 + 1 + 1 × 6 = 15 misses, compared to the
original pessimistic analysis which considers all accesses to
B[i][j] lead to totally 64 cache misses.

XI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our
proposed scope-based persistence analysis using the data-
intensive routines taken from the WCET Benchmarks ([1]).
We assume the benchmarks are executed on a processor
architecture with 5-stage pipeline, in-order execution, perfect
branch prediction, separate L1 instruction cache and data
cache. Both instruction and data caches have cache size 2
KB , block size 32 B, cache associativity 2, and perfect
LRU replacement policy. Cache hit latency is 1 cycle, and
cache miss latency is 6 cycles. We use SimpleScalar tool
([3]) to obtain simulation results. We extend SimpleScalar
simulation to make it consistent with the assumptions made
in our analysis. The cache analysis results on maximum
number of data cache misses for each data reference are
integrated as linear constraints into Chronos ([8]), an ILP-
based WCET analysis tool for static WCET estimation. In
our current implementation, we assume a processor architec-
ture without timing anomalies [6]. However, it is possible
to use our persistence analysis framework in presence of

timing anomalies. For each Non Classified data reference,
we consider both cache hit and miss situations during the
WCET analysis, which gives a latency interval for each Non
Classified data reference. The resulted cache modeling can
be integrated with pipeline analysis as presented in [13] for
architectures with timing anomalies.

Table I shows the set of benchmarks used in our evalu-
ation. We have enlarged the array sizes (and corresponding
loop bounds) to introduce more data cache conflicts and
amplify the effect of data cache performance on overall pro-
gram execution time. Array Size shows the array size used
in our simulation and analysis for each of the benchmarks.
Simulation shows the observed WCET from SimpleScalar
simulation in CPU clock cycles. Note that the simulation
results may be smaller than the actual WCET values for
benchmarks with input-dependent branches/accesses (e.g,
Cnt, Bsort100, InsertSort and Adpcm). Finally, we report
the WCET results obtained with our scope-aware persistence
data cache analysis, as well as the time spent for the analysis
(on a Intel(R) Xeon(TM) 2.20 Ghz with 2.5 GB RAM).

We have implemented the revised persistence analysis
(Section III-C), multi-level persistence framework [2] (using
the revised persistence analysis), and the must analysis with
loop unrolling as proposed in [15] to compare with our
proposed scope-aware analysis. Figure 9 shows the per-
centage of overestimation from various data cache analysis
approaches, compared to the normalized observed WCET
results from SimpleScalar simulation (shown in Table I).
Given the array size in our experiment, since the entire array
does not fit into the data cache for any of the benchmarks,
no memory block can be categorized as persistent in the
persistence analysis. Without the temporal scope informa-
tion, multi-level persistence analysis [2] cannot give tighter
estimation, except for the Lms benchmark, where only
small arrays are accessed in different loop nesting levels.
As a result, the estimated WCET results without temporal
scope are up to 83% higher than the observed WCET (for
InsertSort). We also compare the estimated WCET results
using must analysis with 20% and 50% virtual unrolling
of the loop nest ([15]), where the analysis is repeatedly
performed for each unrolled loop iteration. As shown in
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Figure 9. WCET estimation results from different analyses

Figure 9, even when 50% of the loop nest is unrolled, must
analysis [15] still reports up to 65% higher WCET estimate
compared to the observed simulation time (for Adpcm). In
particular, must analysis requires loop unrolling to bring
memory blocks to the data cache and to capture subsequent
cache reuse. As a result, for the remaining portion of the loop
nest where unrolling is not applied, they can not capture any
cache reuse.

On the other hand, our proposed analysis always obtains
tighter WCET estimates compared to existing approaches.
In most of the benchmarks, our WCET estimates are less
than 10% higher than the simulation results (except for
Matmult and Adpcm). We observe that many data references
in these benchmarks have sequential array access patterns.
They traverse array elements in sequential order, according
to the row-major arrangement of array in the memory. Our
scope-aware approach fully captures the temporal locality
of such data accesses to bound the worst-case data cache
performance. Our proposed analysis achieves 5% to 74%
tighter WCET estimates compared to the original persistence
analysis without temporal scope information, and 5% to 35%
compared to must analysis with 50% unrolling.

Matmult contains a column array access in addition to
sequential array accesses. In our analysis, a temporal scope
captures the lower and upper bound of loop iterations where
a memory block may get accessed. For column array access,
array elements contained in a single memory block are
usually accessed in non-contiguous loop iterations, which
leads to over-estimation in the computed temporal scopes.
However, as shown in Figure 9, our estimated WCET is only
25% higher than the observed WCET, and is 10% to 40%
tighter than other approaches.

Adpcm is a complex benchmark with input-dependent
branches and accesses, so our simulation result may un-
derestimate the real WCET. Due to the presence of input-
dependent branches and accesses, must analysis cannot
guarantee a memory block to be loaded into the cache for
subsequent reuse even with unrolling. In our scope-aware
persistence analysis, by guaranteeing the scope persistence
of memory blocks, we can achieve 30% tighter WCET esti-
mate compared to must analysis (with 50% loop unrolling).

XII. RELATED WORK

Abstract interpretation methods have been successfully
applied to instruction cache analysis for WCET estimation
[17], [2]. A globally defined abstract cache state (ACS) is
calculated via fixed-point computation, which conservatively
captures the worst-case cache behavior at each program
point (e.g., basic block boundary). However, existing ap-
proaches using abstract interpretation for data cache analysis
(e.g., must analysis [15] and persistence analysis [10]) suffer
from significant over-estimation. The major source of the
over-estimation arises from the fact that the definition and
computation of ACS are insensitive to local program behav-
ior. In particular, an array reference may access different
memory blocks in different loop iterations, which must be
captured in the analysis for a tight estimation. To over-
come this problem, Sen and Srikant [15] proposes virtual
loop unrolling, which makes the analysis computationally
expensive. Moreover, in the presence of input-dependent
branches, even with loop unrolling, no memory block can be
guaranteed to be loaded to the cache for later reuse by must
analysis. Lesage, Hardy and Puaut [12] applies persistence
analysis to multi-level data caches.

In many real programs the access pattern of an array
follows an uniform affine pattern. The cache miss equation
(CME) framework [11] and Presburger Arithmetic formula-
tion [4] have been applied to analyze array access patterns
for data cache analysis. The CME framework computes
the reuse vector of affine accesses and generates a set of
Diophantine equations to characterize whether a reuse can
be realized, or interfered with due to cache conflict. The
solutions of this equation set are the possible conflict points.
White et al. [18] proposes a framework to detect loop-affine
array accesses at binary code level. Ramaprasad and Mueller
[14] extends the CME framework to analyze scalar accesses
and more general loop-nest. The data cache analysis with
Presburger Arithmetic framework is exact and can handle
certain non-linear access pattern; however, it has super-
exponential complexity in the worst case. Furthermore, these
approaches cannot handle programs with input-dependent
branches and unpredictable data accesses. It is also hard
to combine such frameworks into a comprehensive WCET



analysis considering other micro-architecture features, such
as instruction cache [17] or unified cache analysis [5].

Staschulat and Ernst [16] identifies single data sequence
(SDS) where both control flow and accessed memory blocks
are input independent. In such cases, cache performance
can be determined by simple simulation and no analysis is
needed. For non-SDS data references, persistence analysis
is used to bound the worst-case cache conflicts. Similar to
[10], the persistence analysis does not capture array access
patterns and leads to very pessimistic analysis results.

XIII. CONCLUSION

In this technical report, we have presented a novel data
cache modeling approach for static WCET analysis. Our
analysis effectively exploits regular data access patterns,
while retaining the strength and applicability of the ab-
stract interpretation approach. We define temporal scopes
to capture the local behavior of memory references (when a
particular memory block is accessed). These temporal scopes
are automatically calculated during address analysis.

Our scope-aware multi-level data cache analysis extends
the cache persistence analysis framework to compute fine-
grained scope-based persistence information, which leads
to substantially tighter worst-case cache miss estimation.
While we have presented our analysis for LRU based cache
replacement policy, it can also be extended to handle other
deterministic cache replacement policies like FIFO and
MRU. In particular, the abstract cache update function has
to be changed to cope with the chosen replacement policy.
Finally, the proposed analysis has been integrated into the
open-source Chronos WCET analyzer ([8] version 4.1).
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