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Implementing bug-free concurrent programs is a challenging task in modern software development. State-of-the-art static analyses
find hundreds of concurrency bugs in production code, scaling to large codebases. Yet, fixing these bugs in constantly changing
codebases represents a daunting effort for programmers, particularly because a fix in the concurrent code can introduce other bugs in
a subtle way.

In this work, we show how to harness compositional static analysis for concurrency bug detection, to enable a new Automated
Program Repair (APR) technique for data races in large concurrent Java codebases. The key innovation of our work is an algorithm
that translates procedure summaries inferred by the analysis tool for the purpose of bug reporting into small local patches that
fix concurrency bugs (without introducing new ones). This synergy makes it possible to extend the virtues of compositional static
concurrency analysis to APR, making our approach effective (it can detect and fix many more bugs than existing tools for data
race repair), scalable (it takes seconds to analyse and suggest fixes for sizeable codebases), and usable (generally, it does not require
annotations from the users and can perform continuous automated repair). Our study conducted on popular open-source projects has
confirmed that our tool automatically produces concurrency fixes similar to those proposed by the developers in the past.

CCS Concepts: • Software and its engineering→ Software defect analysis; Softwaremaintenance tools; •Computingmethodologies

→ Concurrent programming languages.
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1 INTRODUCTION

It is well acknowledged that implementing both correct and efficient concurrent programs is difficult [26]. While
programmers have a robust understanding of sequential programs, their understanding of concurrently interacting
processes is often incomplete, which may lead to subtle bugs. Once introduced, these bugs are hard to identify due to
the inherently non-deterministic nature of concurrent executions. In other words, these issues can only be detected
under selective thread schedulings which are challenging to reproduce during debugging. A number of tools have been

Authors’ addresses: Andreea Costea, National University of Singapore, Singapore, Singapore, andreeac@comp.nus.edu.sg; Abhishek Tiwari, National
University of Singapore, Singapore, Singapore, tiwari@comp.nus.edu.sg; Sigmund Chianasta, National University of Singapore, Singapore, Singapore,
sigmund@u.nus.edu; Kishore R, National University of Singapore, Singapore, Singapore, kishore_r@u.nus.edu; Abhik Roychoudhury, National University
of Singapore, Singapore, Singapore, abhik@comp.nus.edu.sg; Ilya Sergey, National University of Singapore, Singapore, Singapore, ilya@nus.edu.sg.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1



2 Andreea Costea, Abhishek Tiwari, Sigmund Chianasta, Kishore R, Abhik Roychoudhury, and Ilya Sergey

introduced to (semi-) automatically detect concurrency bugs in real-world programs, thus facilitating their discovery
and reproducibility [10, 18–20, 24, 30, 51, 52, 58, 60].

Successfully identifying a concurrency bug, via a tool or by manually examining the code, does not, however,
necessarily mean that a correct fix for it is immediately apparent to the developer. Even worse, by eliminating a data race
between memory accesses to the same location, it is not uncommon to introduce violations of other crucial properties,
such as introducing a potential deadlock between threads.

Automated program repair (APR) [25] is an emerging suite of technologies for automatically fixing bugs via search,
semantic reasoning and learning. In the area of concurrent programs, APR has been employed to address the problem
of maintaining multi-threaded software and reducing the cost of migrating sequential code to a concurrent execution
model [29, 32, 33, 36–38, 42, 43]. Some tools eschew the issue of detecting bugs, focusing exclusively on repair techniques
and assuming that the bug descriptions are already available, e.g., from a bug tracker or in a form of a dynamic execution
trace [32, 33, 41–43]. Other tools rely on their own approaches for bug detection, based on run-time analysis or bounded
model checking, before continuing with the generation of patches in their specific way [29, 35–38]. However, these
tools’ reliance on dynamic analyses or bounded model checking for bug detection poses significant challenges to their
adoption at large. First, it makes it problematic to integrate APR into everyday development process with low friction,
as the developers are required to provide inputs for dynamic executions or structure their tests accordingly, to enable
bug detection in the first place. Second, the lack of modularity prevents them from providing incremental feedback to
the programmers in the style of continuous integration (CI).

In this work, we address these challenges by describing the first approach to perform APR for concurrency using static
program analysis. Studies on static analysis usage at Meta [17] and Google [57] show that a developer is roughly 70%
likely to fix a bug if presented with the issue at compile time, as compared to 0% to 21% fix attempts when bug reports
are provided for checked-in code. The use of static analysis for concurrency bug detection in industry is motivated by
its success in catching bugs at scale while minimising friction (i.e., adoption effort) and providing high signal (i.e., useful
bug reports) [7, 9, 14]. The low false positives rate of such analyses is thanks to the design choice to focus on the most
common, coarse-grained, concurrency (scoped locks and Java’s synchronized blocks). Restricting the class of analysed
concurrent programs this way makes accurate static detection of data races tractable, leading to accurate bug reports on
industrial code. Scalability is achieved by making the analysis compositional [10]: individual program components (e.g.,
classes and methods) are analysed in a bottom-up, divide-and-conquer fashion and abstracted as summaries. Summaries
contain relevant information about the underlying code, which does not have to be re-analysed again. Furthermore,
this design favours modularity: the analysis can be executed incrementally, providing nearly instant feedback on recent
code changes to the developers.

Our novel approach to APR for concurrent programs builds on a compositional static analysis for data race detection.
As the result, our repair tool captures and effectively navigates the fix space for data-race repair. The two main technical
challenges we overcome in this work are (a) enhancing a state-of-the-art static analysis for concurrency to collect
sufficient information to produce correct concurrent patches efficiently and at scale, and (b) devising a family of
algorithms that construct concurrency fixes from the code summaries produced by the augmented analysis. Building on
RacerD, an industry-grade static concurrency analyser by Meta [10], our tool, called Hippodrome,1 implements an
automatic repair procedure for data races in concurrent Java programs.

1Historically, Hippodrome was a place where chariot races were decided.
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1 public void run() {

2 if (getError() == null) {

3 try {

4 // synchronized (this) { -- Second (correct) fix (1/2)

5 if (read) {

6 nBytes = getSocket().read(buffers, ...);

7 updateLastRead();

8 } else {

9 nBytes = getSocket().write(buffers, ...);

10 updateLastWrite();

11 }

12 // } -- Second (correct) fix (2/2)

13 // More code

14 }

// First (faulty) fix and its commit message

- public void run() {

+ public synchronized void run() {

Add sync when processing asyn-

chronous operation in NIO.

The NIO poller seems to create some
unwanted concurrency, causing rare
CI test failures [...] It doesn’t seem
right to me that there is concurrency
here, but it’s not hard to add a sync.

Fig. 1. A data race in Apache Tomcat and its fixes.

The static approach endows our technique with several advantages. First, it often requires no additional input from
the users besides the program itself—enabling smooth integration with the CI workflow. Second, our approach enjoys
the underlying analysis modularity, producing fixes in a matter of seconds, thus, scaling to large real-world codebases, and
allowing for incremental code processing. Finally, the soundness guarantees of the analysis (that hold under certain side
conditions), extend to the produced patches: by re-running the analysis on the repaired code we ensure the correctness
of the suggested fixes: the fixed program satisfies both data-race freedom and deadlock freedom.

To summarise, this work makes the following contributions:

• Concurrency repair from analysis specifications.We present a series of algorithms that take the summaries produced
by a static analysis for concurrent code and turns them into suggestions for possible fixes, thus delivering the first
modular program repair procedure for data races based on a static analysis for concurrency. The design of our
patch-generating algorithms addresses a number of pragmatic concerns, minimising the amount of synchronisation
to be added for eliminating races, while avoiding deadlocks (Sec. 4).
• Data race repair tool.We make the implementation of our approach in a tool called Hippodrome publicly available [4]
for experiments and extensions.
• Extensive evaluation.We evaluateHippodrome on a number of micro-benchmarks used by related tools for concurrent
program repair [38], as well as on two popular large open-source projects (Sec. 5.2).

2 MOTIVATION AND OVERVIEW

In this section, we motivate and outline our approach for concurrency repair based on a compositional static analysis.

2.1 Concurrency Bugs in the Wild

To set the stage for our motivational case study of using a static analysis to detect real concurrency issues, consider the
example in Fig. 1. The figure tells a curious story of a data race in the codebase of the Apache Tomcat project. The bug
in this code snippet originates from the corruption of buffers; two threads may simultaneously read and write into
buffers from the socket. The left-hand side of the figure shows the faulty commit with a non-fix, which has been first
attempted in order to remedy the issue. As the enclosed commit message makes evident, this bug was rarely observed,
and the developer assigned to fix it was unable to understand the exact root cause of the problem. To make the situation
worse, the developer simply made the whole method run synchronised. This “fix” removed all concurrency whatsoever
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as run is the entry method for threads, which all would be forced to run sequentially now. A closer look at the commit
message reveals the lack of awareness regarding the synchronized primitives. A correct fix by the same developer is
shown in the comments.

While this is just one example of a concurrency issue with a wrong human-proposed solution and a simple correct
one, there have been multiple instances in the past where an incorrect fix caused other severe problems, e.g., by
introducing deadlocks. Thus, there is a need for reliable automated fixes that can guide the developers towards the
correct fix. For example, in this bug, an automated fix suggestion (similar to the correct commit) could have helped to
avoid the wrong fix.

What gives us hope that there exists a way to engineer an APR procedure for a large class of real-world concurrency
bugs is the following observation. The valid fix in Fig. 1 is pleasantly simple: it just wraps the subject of the data race
into Java’s synchronized block, thus introducing a necessary mutual exclusion region in the otherwise parallelisable
implementation. In fact, it is so simple that we might hope to discover it automatically.

2.2 Dynamic Analysis-based Bug Detection

To demonstrate why automatically characterising concurrency bugs in a repair-friendly way is technically non-trivial,
consider the example in Fig. 2, taken from a suite of buggy programs [1] used to showcase tools for concurrent bug
detection and APR [27, 38]. Only relevant code parts involved in a data race are shown. In this example, threads may
withdraw or deposit in multiple accounts. However, there is a data race in both methods (between line 22 and 24, line 28
and 30). While one thread may read the balance (line 28), another may modify it (line 30). The data race is present in
both methods, but the testing thread only checks for the deposit method (line 34). Thus, tools relying on test-based
bug detection would miss the race in withdraw. While test harness could be improved, concurrency bugs in large-scale
projects often go undiscovered due to the scheduling problem’s intractability. For instance, PFix [38], a recent tool for
concurrent APR, uses Java PathFinder (JPF) [65] for bug localisation, but unfortunately, JPF fails to detect the bug in
Tomcat (Fig. 1) as it does not scale well to large programs.

2.3 Overview of our Static Approach

We next list the principles that make static analysis suitable for fault detection in large code. First, the class of bugs
should be well-defined on the premise that it is natural to give up on detecting all kinds of concurrency bugs and focus
solely on one, e.g., data races as per the current work. Second, reducing the number of false alarms is crucial even when
this entails giving up on the soundness (or framing soundness wrt. a set of assumptions), a compromise developers
accept. Third, to make an interprocedural analysis scale up, it is important for it to be compositional, where the analysed
units of code (i.e., methods) are ascribed summaries, allowing to re-analyse modified code parts incrementally. For data
race detection, it suffices to summarise the memory accesses and the corresponding locks held at the access sites—thus,
achieving compositionality and, hence, scalability.

Unfortunately, the textual bug reports provided by static analysis are not immediately amenable for program repair
as they contain too little contextual information. To remedy this, we process the internal summaries of the analysis,
extracting the necessary information from them, while solving two key challenges. The first challenge is the selection of

a suitable lock. A data race is avoided by protecting the affected memory access via the same lock object. However,
choosing this lock statically is not trivial: there might be different locks to choose from, or none at all, as is the case in
Fig. 2. Besides, new locks should not introduce deadlocks. Second, handling the scope of the synchronisation is equally
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1 public class CustomerInfo {

2 private Account[] accounts;

// More fields and methods

21 public void withdraw(int accountNumber, int amount) {

22 int temp = accounts[accountNumber].getBalance();

23 temp = temp - amount;

24 accounts[accountNumber].setBalance(temp);

25 }

26

27 public void deposit(int accountNumber, int amount) {

28 int temp = accounts[accountNumber].getBalance();

29 temp = temp + amount;

30 accounts[accountNumber].setBalance(temp);

31 }

32 }

33

34 public void run() { ci.deposit(1, 50); } //Testing Thread

1 public class Account {

2

3 private int balance;

4

5 public int getBalance() {

6 return balance;

7 }

8

9 public void setBalance(int balance) {

10 this.balance = balance;

11 }

12 }

Fig. 2. A data race example from a standard suite [38].

important. Multiple locks may be combined into a single one, producing a concise patch. At the same time, excessive
locking inevitably hurts parallelism.

Fig. 3 offers a bird’s-eye view of Hippodrome, our approach to data race patch generation for Java programs. An
input program is first statically analysed for data races (Fig. 3, top). If the program contains data races, Hippodrome
progressively translates the output of the analysis into a patch by passing it through sequence of Intermediate Repre-
sentations (IRs). First, the access summaries and bugs collected from the analysis are merged into a set of bugs (IR1),
which are then clustered to support fixes across multiple related bugs (IR2). We design a DSL to encode the patches
(IR3) before actually generating and applying them to the input files (IR4). The patches are repeatedly validated by the
analysis (the back-link in Fig. 3) for the absence of deadlocks until no more alarms are raised, in which case the bug is
considered fixed and the patch is applied, if an automated mode is chosen (bottom left). In an interactive mode (bottom
right), the fully validated patches are suggested to the user via an IDE.

We detail our choice of static analysis for fault detection and the algorithmic approach to patch synthesis in the
following sections, highlighting what are the abstractions required to connect these two components.

3 STATIC ANALYSIS PRELIMINARIES

The analysis for fault detection lies on top of RacerD [10], an open-source data race detector developed at Meta.
RacerD abides to the principles described earlier: it is compositional and it has been empirically demonstrated to
provide high signal. The synchronisation primitives are limited to scoped locks and Java’s synchronized blocks (i.e.,
so-called coarse-grained concurrency) ignoring, e.g., atomic Compare-And-Set and any fine-grained synchronisation.
This limitation turned out to be an advantage, since a specialised analysis reduces the number of false positives while
performing well for industrial code where coarse-grained concurrency is the norm [10].

According to textbook definitions, a race is caused by concurrent operations on a shared memory location, of which
at least one is a write [26]. Data races in object-based languages, such as Java, can be described conveniently in a static
sense (i.e., without referring to runtime program state), in terms of the program’s syntax, rather than memory. This can
be achieved via syntactic access paths [34], which serve as program-level “representatives” of dynamic operations with
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Fig. 3. A summary of HIPPODROME workflow.

memory. An access path is a base variable followed by a sequence of fields, i.e. field-dereferencing chains 𝑥 .𝑓1 . . . . .𝑓𝑛 ,
where 𝑥 is either a variable or this. For the example in Fig. 2, Account.this.balance is the syntactic access path to
the common resource that both Account.getBalance and Account.setBalance are accessing. For brevity, henceforth, we
omit the class-name prefix on variables. We can now define a syntactic data race as follows:

Definition 1 (Syntactic data race). Program statements 𝑠1 and 𝑠2 form a data race if two access paths, 𝜋1 and 𝜋2,
pointing to the same memory location, are identified in 𝑠1 and 𝑠2, respectively, such that: (a) executing 𝑠1 and 𝑠2 concurrently,

they perform two concurrent operations on 𝜋1 and 𝜋2, at least one of which is a write, and (b) the sets of locks held by 𝑠1
and 𝑠2 at that execution point are disjoint.

The rest of this section briefly describes the abstract domain on which vanilla RacerD operates (without our enhance-
ments which will be detailed in the next section), and how data races are detected. The analysis first conservatively
detects Java classes that can be used in a concurrent context, by checking for @ThreadSafe annotations, locks, the
synchronized keyword, or if the instances of those classes appear in the scope of a thread’s run() method.2 Subsequent
stages work on the premise that any method of such a class instance may have data races with any other method,
including itself. The main routine operates on individual methods, deriving their summaries—exemplified below. The
analysis is compositional, as those summaries are later used for analysing the code of the caller methods. Finally, the
analysis examines method summaries pair-wise in an attempt to identify data races according to Def. 1.

To identify potential races on access paths within concurrently invoked methods of (the same instance of) a class
𝐶 , the analysis infers those methods’ summaries comprised of access snapshots. An access snapshot contains mutual
exclusion information used for identifying possible data races. Fig. 4 shows the analysis’s abstract domain. An access
snapshot 𝑎 is a tuple ⟨𝜋, 𝑘, 𝐿, 𝑡, 𝑜, 𝜏⟩, where 𝜋 is the access path, 𝑘 is a read/write indicator, 𝐿 abstracts the locks protecting
2If a class intended to be used concurrently does not feature any of those “indicators”, a developer might have to annotate it explicitly as @ThreadSafe to
help the analysis.

Manuscript submitted to ACM



Hippodrome: Data Race Repair using Static Analysis Summaries 7

access paths 𝜋 ∈ Path = (Var ∪ {this}) × Field∗
trace 𝜏 ∈ 𝑇 = (Class ×Meth)∗
locks 𝐿 ∈ L = N

concurrent thds 𝑡 ∈ T = NoThread ⊏ AnyThreadButMain ⊏ AnyThread
ownership value 𝑜 ∈ O = OwnedIf (N) ⊏ Unowned
access type 𝑘 ∈ {rd,wr}
snapshot 𝑎 ∈ A = ⟨𝜋,𝑘, 𝐿, 𝑡, 𝑜, 𝜏 ⟩
summary 𝐴 ⊆ A = {𝑎 | 𝑎 ∈ A}

Fig. 4. Abstract domain for race detection.

this access, 𝑡 and 𝑜 denote the thread kind and ownership, respectively, and 𝜏 is the trace to 𝜋 and is non-empty for
indirect access (i.e., via method calls). For brevity, we refer to elements of this tuple as, e.g., 𝑎.𝜋 for the access path in
snapshot 𝑎. The thread kind 𝑡 may take any of the following three abstract values which form a partial order: NoThread
— to denote that the current access snapshot belongs to a procedure which cannot run concurrently with any other
threads, AnyThreadButMain — when the access snapshot (belonging to the main thread) may be executed in parallel
with background threads, or AnyThread — when the current access snapshot belongs to a procedure running on a
thread that can interleave with any other thread.

A set 𝐴𝑚 of all snapshots collected for a method𝑚 is, therefore, an over-approximation of all runtime heap accesses
reachable from𝑚 via the corresponding syntactic access paths, as well as of the corresponding locking patterns.

For the code in Fig. 2, the snapshots collected by the analysis for the two CustomerInfo methods are as follows (only
showing the problematic access snapshots):

𝐴withdraw =

{
𝑎22 : ⟨this.accounts[].balance, rd, 0,AnyThread,Unowned, {Account.setBalance()}⟩,
𝑎24 : ⟨this.accounts[].balance,wr, 0,AnyThread,Unowned, {Account.getBalance()}⟩, . . .

}

𝐴deposit =

{
𝑎28 : ⟨this.accounts[].balance, rd, 0,AnyThread,Unowned, {Account.getBalance()}⟩,
𝑎30 : ⟨this.accounts[].balance,wr, 0,AnyThread,Unowned, {Account.setBalance()}⟩, . . .

}
𝐴getBalance =

{
𝑎6 : ⟨this.balance, rd, 0,AnyThread,Unowned, {}⟩

}
𝐴setBalance =

{
𝑎10 : ⟨this.balance, rd, 0,AnyThread,Unowned, {}⟩

}
The snapshot for line 22 states that there is a read access to a heap location pointed to by this.accounts[].balance.

Moreover this memory location may be accessed by any other thread (AnyThread) unrestrictedly since there is no lock
protecting it (denoted via 0), and it is not owned by, i.e. not local to, any thread (Unowned). The final element in the
tuple represents the access’s trace call, meaning that it is an indirect access done by calling the method setBalance() of
the class Account.

Conflicts are detected in our running examples by pairwise checking the snapshots in𝐴withdraw and𝐴deposit against
each other. This check concludes that every pair of paths refers to the same heap address and they may be accessed
concurrently. Moreover the snapshot pairs (𝑎22, 𝑎24), (𝑎28, 𝑎30), (𝑎22, 𝑎30) and (𝑎24, 𝑎28) involve at least one write.

The next section shows how to use such summaries for data race detection and, subsequently, for patch inference.
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4 INFERRING AND APPLYING PATCHES

This section describes the enhancements we brought to the static analysis, what is the space of solution, and how we
finally infer and apply the patches.

4.1 Fault Detection

We first motivate and describe the enhancements of the static analysis for fault detection.

4.1.1 Bug reporting strategy. To reduce the number of warnings which may be overwhelming for the developer,
RacerD only reports at most one pair of read-write conflicting snapshots per access location. For instance, it will report
(𝑎22, 𝑎24), (𝑎28, 𝑎30) as potential bugs for the example in Fig. 2, although as mentioned in the previous section there are
two more problematic pairs, namely (𝑎22, 𝑎30) and (𝑎24, 𝑎28). This is a sensible design choice for manual repair where
the developer is directed progressively to new conflicts as she repairs old ones and re-runs the analysis. Automatic
repair on the other hand can be instrumented to process multiple conflicts at once. A complete view of the bugs allows
for a better patch generation strategy, hence we modify the analysis to log all possible bugs.

4.1.2 Enhanced lock domain. A naïve (and wrong) fix for the race in Fig. 2 is to wrap lines 22-24 in synchronized(m1){

. . .}, and lines 28-30 in synchronized(m2){. . .}, where m1 and m2 are freshly created mutexes such that m1 ≠ m2. The access
snapshots would be the same except for the locks component, which would change from 0 to 1 in each of the four
tuples, making RacerD erroneously infer the absence of a race, due to the unsoundness caused by non-conservative
interpretation of its abstract domain L for locking (cf. Fig. 4). This is because its lock domain is defined to only track
the number of locks used to protect an access in the actual code, but not their identity. As a remedy to this unsoundness,
we change the abstract domain of locks L from natural numbers to the powerset of paths (i.e., the new L ≜ ℘(Path)),
where the identity of each involved lock is abstracted by its syntactic access path. The new domain affords better race
detection, while offering crucial information for the repair purposes: which exact locks are taken at the location of a
race. In the remainder of the paper, we will keep referring to the enhanced analysis implementation as RacerD.

4.1.3 Static Race Detection from Summaries. Following the definition of a syntactic data race between two program
statements in Sec. 3, we define a data race between two access snapshots as follows:

let race(𝑎1, 𝑎2) =

𝑎1 .𝜋 = 𝑎2 .𝜋 (same path)

∧ (𝑎1 .𝑘 = wr ∨ 𝑎2 .𝑘 = wr) (at least one write)

∧ 𝑎1 .𝐿 ∩ 𝑎2 .𝐿 = ∅ (disjoint locks)

∧ 𝑎1 .𝑡 ⊔ 𝑎2 .𝑡 = AnyThread (possibly concurrent)

∧ (𝑎1 .𝑜 = Unowned ∧ 𝑎2 .𝑜 = Unowned) (shared memory)

Since a program statement may contain zero, one or more snapshots, it results that if there is a race relation between
two different access snapshots, say 𝑎1 and 𝑎2, each belonging to two different statements, 𝑎1 ∈ 𝑠1 and 𝑎2 ∈ 𝑠2, then
there is a data race between 𝑠1 and 𝑠2 as well. Moreover, two methods,𝑚𝑡ℎ1 and𝑚𝑡ℎ2 manifest a race if there exist
snapshots 𝑎1 ∈ 𝐴𝑚𝑡ℎ1 and 𝑎2 ∈ 𝐴𝑚𝑡ℎ2 such that race(𝑎1, 𝑎2) = True. Two accesses are thus guaranteed to not form a
data race if they are both protected by the same lock or performed by the same thread.
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In addition to the binary data race formulation, we define a unary relation over access snapshots as follows:

let unprotected_write 𝑎 =

𝑎.𝑘 = wr (write operation)

∧ 𝑎.𝐿 = ∅ (unlocked)

∧ 𝑎.𝑡 = AnyThread (possibly concurrent)

∧ 𝑎.𝑜 = Unowned (unowned resource)

A method mth is said to be unsafe when there exists 𝑎 ∈ 𝐴
mth

such that unprotected_write(𝑎) = True. In the next
section, we show how the enhanced domain along with the definition of a data race and unsafe method suffice to derive
a patch, and subsequently a fix for the example from Fig. 2.

4.2 Searching for Repairs

Let us revisit the running example in Fig. 2 with synchronisation missing. In particular, let us focus on the bug described
by the pair (𝑎22, 𝑎24). With no lock whatsoever to protect these accesses we are in the situation where a number of
fixes can be applied in a possibly automated way:
• We can protect both accesses by individually wrapping the affected lines into synchronized(this) statements. While
straightforward, relying solely on the built-in lock, i.e., on this, may introduce unnecessary blocking and synchroni-
sation overheads, particularly when there is no reason to prevent the interleaving of threads which share different
resources. Although commonly used, best practices in concurrent programming recommend using the built-in lock
with care since it "forces JVM implementers to make tradeoffs between object size and locking performance" [23].
• Alternatively, we can create a fresh object to add the two synchronized statements on it, thus avoiding contention
with other synchronized statements in this class. While valid, this approach may generate too many locks, especially
for accesses involved in multiple data races.
• Finally, we can annotate the shared variable as volatile. By declaring a variable as volatile all writes to it will be
written directly into the main memory. Similarly, all reads of the variable will be read directly from main memory. In
other words, all threads can access the shared variable with the newest, up-to-date value. While many developers’
favourite solution, best practices only recommend it when the resource is shared for reading by multiple threads, but
written to by only one [23]—a piece of knowledge beyond the reach of static analysis which detects pairs of program
components that may be executed concurrently but not the number of threads to be spawned for a particular code.
Simply put, volatile is used to ensure the visibility of shared variables in multithreaded environments, and not their
mutual exclusion. Furthermore, this approach is not straightforward to apply for array entries.
This short, informal and non-exhaustive analysis of synchronisation possibilities highlights the challenges in choosing

a strategy for automatic patch generation, with the observation that it is often a compromise between simplicity of
a fix and avoiding over-synchronisation. A resource-aware lock choice heuristic would make minimal system calls,
would avoid frequent context switches, and would aim for reduced memory-synchronization traffic on the shared
memory bus. We believe that designing such heuristics is a challenging problem, worth pursuing as a stand-alone
research topic in future. In this work, whose focus is on the synergy between static analysis and data races repair, we
settle for a perhaps non-ideal, but carefully crafted solution in choosing the lock objects: since over-synchronisation is
probable when using intrinsic locks on programs which manipulate multiple resources, and the deadlocks with such a
strategy would be fatal [23], we instead focus - whenever feasible - on a more prudent choice of external mutexes for
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Access 𝑎1

//synchronized(m1){

// synchronized(m2){

s3 (𝜋 )
//} }

Access 𝑎2

synchronized(m1){
s2 (𝜋 )

}

Access 𝑎3

synchronized(m2){
// synchronized(m1){

s3 (𝜋 )
} //}

(2)

(1)
(3)

Fig. 5. Three data races and their naïve, order-sensitive fixes.

manipulating synchronized blocks. We chose to synchronise on the built-in object only when this has already been
used by the developer to partially protect the access to a resource which may be non-exclusively updated.

Moving further, although the above-mentioned solutions are common in APR or manual repair, none tackles the root
cause of the race, namely that the accesses to this.accounts[].balance are unprotected in the Account class (which is
possibly used somewhere else, too). This observation shows that treating a concurrency bug as a standalone entity
would deprive one from opportunities to produce high-quality fixes for families of related issues. To regain the holistic
view on the origins and the implications of data races, we propose a mechanism to cluster related bugs allowing us to
find a suitable common patch.

4.3 Patch Inference

The main pipeline of Hippodrome transforms summaries and bug reports obtained from the bug analysis (Fig. 3, top) to
a sequence of Intermediate Representations (IRs), eventually obtaining patch candidates for the discovered concurrency
bugs. We proceed to describe the involved IRs and the corresponding algorithms for producing them.

IR1. A bug is reported either as a pair of access snapshots (in the case of Read/Write races) or as a single snapshot
(in the case of unprotected writes):

bug 𝑏 ∈ B = {⟨𝑎⟩ | unprotected_write(𝑎) = True} ∪ {⟨𝑎1, 𝑎2⟩ | race(𝑎1, 𝑎2) = True}

Given a Read/Write bug 𝑏, a straightforward strategy is to pick any one of the locks in 𝑏.𝑎1 .𝐿 ∪𝑏.𝑎2 .𝐿 if any exists,
or create a fresh one otherwise. For instance, for the bug (𝑎22, 𝑎24) in our example (Fig. 2), since 𝑎22 .𝐿 ∪𝑎24 .𝐿 = ∅, we
would create a new object, say m1, and insert the appropriate synchronized blocks. Similarly, we could fix the (𝑎28, 𝑎30)
via a fresh mutex, say m2. For the remaining two bugs which involve inter-method accesses we would create new
mutexes, or choose from the freshly created ones. Either way this solution already creates nested synchronisation
blocks breaking maintainability and increasing the chance of deadlocks.
Example 1. To better highlight these issues consider in Fig. 5 a simplified, yet more general instance of the above
situation depicting three program statements sharing the same resource 𝜋 , where at least two of the statement involve
a write operation on 𝜋 . Initially, s2 and s3 are protected by mutexes m1 and m2, respectively. The analysis would report
(𝑎1, 𝑎2), (𝑎2, 𝑎3) and (𝑎1, 𝑎3) as data races. Zooming individually into each bug could lead to fixes where synchronized

statements are introduced as suggested by the arrows. The arrows are annotated with the order in which the fix is
generated. Clearly this pseudo-fix is problematic, not only due to the clutter of synchronisations but also because it
naïvely introduced a deadlock (dashed arrow). Can we do better?
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IR2. To improve patch quality, instead of deriving patches from individual bugs, we will infer them from bug clusters.
We will do so by analysing sets (instead of pairs) of snapshots, grouping bugs according to their shared access paths.
For a set of bugs 𝐵, a cluster C𝐵 is defined as follows:

C𝐵 ≜ { C𝜋𝐵 | 𝜋 ∈ Π𝐵} where Π𝐵 ≜ { 𝜋 | 𝜋 ∈
⋃

𝑎∈acc (b)
{𝑎.𝜋}, 𝑏 ∈ 𝐵}

C𝜋
𝐵
≜ { 𝑏 ∈ 𝐵 | ∀𝑎 ∈ acc(b) : a.𝜋 = 𝜋}

where the function acc returns the set of snapshots summarising the bug. For the clarity of presentation, we assume
that all the access snapshots in a cluster belong to the same Java class (in practice, we refine the above clustering by
taking classes into the account). We define a function cls(a) to return the class of an access snapshot 𝑎, and generalise it
to indicate the class of a bug cluster (since all its bugs share the same access).

For our running example, a cluster of bugs related by their unprotected access to this.accounts[].balance is the set
{(𝑎22, 𝑎24), (𝑎28, 𝑎30), (𝑎22, 𝑎30) (𝑎24, 𝑎28)}

IR3. Algorithm 1 infers patches from bug clusters. Patches are encoded using the following simple domain-specific
language which supports insertion of synchronized blocks, variable declarations, and volatile annotations:

action act ::= SYNC(𝐴, lock) | DECLARE(class, var) | VOLATILE(class, var) | NIL
composition 𝑝 ::= act | AND(act, act) | OR(act, act)

SYNC(𝐴, lock) indicates that the snapshots in 𝐴 should each be wrapped in a synchronized block on mutex lock.
DECLARE(class, var) suggests that a new variable var (implicitly of type Object) should be declared in class, while
VOLATILE(class, var) introduces an obligation to annotate var with volatile. AND is used to compose patch compo-
nents corresponding to different snapshot accesses of the same bug cluster. OR denotes different patch options for the
same access snapshot. NIL is an intermediary action, solely used to ensure composition’s well-formedness.

Even though seemingly simple, Algorithm 1 has a few subtle points. First, for each bug cluster, the algorithm derives
a patch to ensure that all of its accesses are protected by a common lock. As far as we know, there is no best strategy for
choosing this lock when some access paths are already protected. Of several possible strategies applicable in this case,
we have settled on choosing a lock that protects the most accesses, thus avoiding nested synchronisation. However, the
lock choice strategy can easily be adjusted by choosing how to manipulate the list of locks at line 13. Since a final patch
is a composition of sub-patches (line 23), the algorithm could easily support a more advanced lock choice strategy (if
one would be proposed in the future) which could introduce multiple mutexes for a cluster of bugs as opposed to a
common mutex for all bugs in a cluster as currently proposed.

Another subtle point of the algorithm is protecting the innermost access in the call chain leading to a race, thus
solving the root cause of the bug and reducing the number of locations to be synchronised. An alternative solution is to
synchronise at the call site. We support this option too, though not as a default. The benefit of this alternative is that it
could be tailored to solve simple atomicity violations [47], but those are not our main focus. We discuss in Sec. 4.5 how
to derive patches for simple atomicity violations and what are the challenges for tackling the general case.

The recommended patch for the running example is as follows (written in infix order for readability, and ignoring
the volatile solution for brevity):

DECLARE(Account, v) AND SYNC({𝑎
getBalance

}, v) AND SYNC({𝑎
setBalance

}, v)
where 𝑎

getBalance
and 𝑎

setBalance
are the snapshots corresponding to the accesses to this.accounts[].balance from

Account’s getBalance and setBalance, respectively. In other words, Hippodrome recommends patching a bug at its
source instead of the location of its manifestation.
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Algorithm 1: CreatePatchEncodings
1 Input: a powerset of bugs C
2 Output: a patch set P
3 𝑃C ← ∅
4 for B ∈ C do

5 𝐴← union of acc(b) for all 𝑏 in 𝐵 // snapshots for a cluster 𝐵
6 locks← union of 𝑎.𝐿 for all 𝑎 in 𝐴

7 if locks = ∅ then
8 // if no locks available, create a new mutex
9 var ← fresh variable name

10 act ← DECLARE(cls(𝐵), var)
11 locks← {var}
12 else

13 locks← order locks according to their frequency (descending)
14 act ← NIL
15 fixes← NIL // collects all possible fixes for cluster 𝐵
16 for lock ∈ locks do
17 𝑃 ← ∅ // collects patch components
18 for 𝑎 ∈ 𝐴 do

19 𝑎′ ← find the innermost access snapshot in 𝑎.𝜏 common to all accesses in A
20 // synchronising the statement containing 𝑎′ via lock
21 𝑝 ← SYNC({𝑎′}, lock)
22 𝑃 ← {𝑝} ∪ 𝑃
23 patch← AND(act,AND(𝑃)) // combine patch components
24 fixes← OR(fixes, patch)
25 𝑥 ← a field subject of race in all bugs of 𝐵
26 𝑝𝐵 ← OR(fixes, VOLATILE(cls(𝐵), 𝑥))
27 𝑃C ← {pB} ∪ 𝑃C
28 return 𝑃C

IR4. The final step in theHippodrome pipeline is to translate the encodings from the preceding stage to actual patches.
This process is described by Algorithm 2, which produces patches in the following simple language of AST-manipulating
actions taking tree nodes as their arguments:

action âct ::= REPLACE(from, to, ast)

| INSERT_AFTER(stmt, ins, ast)

| INSERT_BEFORE(stmt, ins, ast)

composition 𝑝 ::= âct | AND(âct, âct) | OR(âct, âct)
The algorithm relies on several auxiliary procedures for declaring variables, adding volatile modifiers, and inserting

locks. We omit the definitions of all but the last one, as the rest are straightforward. We note that the only delicate
matter for DeclareVariable is to identify whether any of the SYNC accompanying the peer DECLAREs belongs to
a static method. If that is the case the declared variable must be annotated as static, too. Algorithm 3 defines the
insertions of synchronized blocks, which might require splitting variable definitions into declarations and initialisations
if there are declarations of variables which outlive the scope of the newly introduced block. Choosing to split the
variable definitions allows patches with less invasive synchronisation, i.e., smaller sized synchronised blocks.
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Algorithm 2: CreatePatch
1 Input: a patch encoding p0 in IR3 format
2 Output: a patch as AST diff p̂

3 p← normalise AND such that any SYNC(A1, lock) and SYNC(A2, lock) are merged into SYNC(A1 ∪ A2, lock) if
all the snapshots in 𝐴1 and 𝐴2 belong to the same method

4 switch p do

5 case AND(act1, act2) do
6 return AND(CreatePatch(act1),CreatePatch(act2))
7 case OR(act1, act2) do
8 return OR(CreatePatch(act1),CreatePatch(act2))
9 case SYNC(A, lock) do
10 return InsertLock(p)
11 case DECLARE(class, x) do
12 return DeclareVariable(class, x)
13 case VOLATILE(class, x) do
14 return MakeVolatile(class, 𝑥)

Algorithm 3: InsertLock
1 Input: a SYNC(𝐴, lock) patch
2 Output: a patch as AST diff p̂

3 class ← retrieve AST of cls(A)
4 from ← the closest parent in class of a node containing all a in 𝐴

5 cond ← true if from has variables that outlive the scope of from
6 if cond then

7 decl, from′ ← move variable declarations out of from
8 // from′ now contains only initialisers of the variables
9 âct𝑑 ← INSERT_BEFORE(from, decl, class)

10 sync ← wrap a synchronized (lock) {} around from
′

11 âct𝑖 ← REPLACE(from, sync, class)
12 return AND(âct

d
, âcti)

13 else

14 sync ← wrap a synchronized (lock) {} around from

15 âct ← REPLACE(from, sync, class)
16 return âct

In our running example, the algorithm inserts a variable declaration, instantiates an object in the Account class,
and replaces in getBalance and setBalance the two unprotected accesses to this.accounts[].balance with their corre-
sponding accesses protected by the freshly created object. For Example 1, the fix produced by Hippodrome avoids the
deadlock by only inserting synchronisations (1) and (2).

The resulting patches are normalised into a “disjunctive normal form”, i.e., a disjunction of conjunctions, where each
disjunct represents a possible multiline, multilocation patch. When Hippodrome is used in an interactive mode, the
user receives a list of complete patches to choose from. When used in auto-repair mode, the tool favours the SYNC
patches with the least number of insertions.
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Patch application and validation. The patch application is straightforward, involving changes in the original file’s
AST. Given a fix OR(âct1, âct2) for a bug cluster 𝐵, the patch application strategy chooses to apply patch âct1, and stores
âct2 for subsequent application should the validation phase fail. Once completed, the files are validated by RacerD
(back-link in Fig. 3). The analysis can detect deadlocks—a feature we actively use to discard patches that might introduce
such issues. Even with no deadlock detected, the program may still contain bugs (e.g., data races on a different access
path), hence we keep the fix and reiterate through the algorithm to fix the remaining issues, doing so until there are
no more bugs left, or the iteration limit (currently 10) is reached. In our case studies, we have never hit that limit.
We guarantee to introduce no new races due to the fact that we never update existing locks, but only introduce more
synchronisation. In Sec. 4.4, we state our correctness claims, enumerating the assumptions under which they hold.

Patch quality. In designing the strategy for generating and automatically choosing patches, we have considered
reducing both (a) context switching as well as (b) over-synchronisation. We optimise for (a) by clustering bugs based on
their shared access path and by merging lock statements on the same mutex located in the same method (the latter
one is optional). We optimise for (b) by avoiding intrinsic locks (i.e., on this), and by optimising each bug cluster to be
served by mutexes not serving to synchronise any other clusters.

4.4 Correctness and Limitations

Measures of Correctness. It is important to understand what aspects of our approach offer confidence thatHippodrome
only catches actual data races, and that the patches produced to repair these bugs are indeed correct. We split this
discussion into three parts, one corresponding to the bug detection phase, one to the patch synthesis phase, and one for
patch validation.

The correctness of the bug detection (i.e., whether it only reports actual data races) relies on the underlying analysis.
Under certain assumptions, RacerD is proven to report no false positives—that is, if it reports a data race, then there exists
a witness execution for an access path that triggers the reported concurrency bug [24]. Specifically, RacerD assumes that
every execution branch may be taken, i.e., the control for conditional statements and while loops is non-deterministic,
and that it operates on the concurrency model restricted to balanced reentrant locks and coarse-grained locking. This
model has been shown to provide high signal in production code [10].

The correctness of the patch synthesis (i.e., the produced patch repairs the reported race) relies on the fact that all
program locations involved in a cluster of bugs are guaranteed to be protected by the same mutex. In other words,
Hippodrome wraps all program locations that may concurrently access the same resource in a synchronized block of
the same object. While our choice to cluster the bugs was instrumental in offering these guarantees and in reducing
the chance of a deadlock, patches that deadlock may still be synthesised. Luckily, the patch validation phase prunes
away such pseudo-patches. The question now is whether there is any guarantee of producing at least one valid patch.
The answer is yes: in the worst-case scenario, when all patches which involve synchronization of existing objects
lead to possible deadlocks, Hippodrome synthesises a patch where it creates a fresh object on which to synchronise
all locations of interest. Furthermore, choosing to insert the synchronized block of the new object as the innermost
wrapper in a structure of nested synchronization blocks ensures that the interference with existing mutexes cannot
produce a deadlock.

The patch validation phase is guaranteed to not miss any deadlock 3 under two crucial, yet reasonable, assumptions:

3The deadlock analysis is proven sound for a language with scoped re-entrant locks, nondeterministic branching, and non-recursive procedure calls [11].
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(a) Locking is balanced, i.e., lock releases follow a LIFO order. This effectively corresponds to the case of Java’s
synchronized, which only allows lexically-scoped locks.

(b) Lock-acquiring code is located within non-anonymous classes since summaries have to be ascribed to methods of
named classes. Therefore, deadlocks may be missed when the locking code is inlined in the spawned threads.

Assumption (b) is satisfied by industrial software, which always implements synchronisation in libraries, while spawning
threads in thread pools. However, micro-benchmarks used to evaluate dynamic analysis-based tools might violate it as
they favour concise and self-contained code for tractable dynamic race detection.

To sum up, if Hippodrome catches a data race, it is guaranteed to synthesise at least one valid patch—one which
fixes the race and introduces no deadlocks.

High Recall. Our approach relies on the guarantees of RacerD to achieve a high recall (i.e., to catch all data races).
The assumptions under which the analysis does not miss races are listed in [10, §8]. Specifically, it assumes that an
owned access and its suffixes remain owned throughout the current procedure. Violating this assumption can lead
to false negatives if a local object is leaked to another thread and if the other thread accesses one of the object’s
fields. RacerD also missed bugs that violate assumption (b) above or races which involve statements in the body of an
exception handler, and that is because the IR on which it operates does not have support for exception handling.

At the time of this submission, the static analysis team at Meta confirmed that both race and deadlock detection
were running in production for more than two years with no false negatives identified [11].

4.5 A Heuristic for Fixing Simple Atomicity Violations

Both data races and atomicity violations are a consequence of violations in the synchronisation. The former refers to
two concurrent accesses on the same memory location causing an inconsistent memory read or update. The latter
refers to a thread’s two consecutive accesses to a shared memory location interleaving with an unserializable access
from another thread. It is important to note that not all program races lead to atomicity violations, and vice-versa,
not all atomicity violations contain data races. RacerD is a data race detector, so it comes natural to conclude that
Hippodrome would only be able to fix data races.

Contrary to the fact that Hippodrome only works over bug reports for data races, it can actually be instructed to fix
a restricted category of atomicity violations too. We identified that atomicity violations which also contain data races,
may be tackled too as long as the problematic accesses are subsumed by the reported data races and if the consecutive
access from a thread to a shared location are performed by the same method. For example, a visual examination of the
example in Fig. 2 reveals both the existence of data races (between the update on the balance field of class Account and
any other direct or indirect access to this field - as detailed in Sec. 4.3), as well as atomicity violations (for the following
interleavings of statement executions: 22 − 30 − 24 or 28 − 24 − 30 ).

Fixing the data race as Hippodrome does, by wrapping the accesses to the balance field of Account class with
synchronized blocks on the same object, although correct for the domain it serves, it does not fix the atomicity violations
in the CustomerInfo class. To detect and fix the atomicity violations, we could inspect again the access summaries of
methods withdraw and deposit of class CustomerInfo, notice that both methods have unprotected accesses to the same
resource, and protect all four statements with the same mutex lock. Wrapping each statement in a synchronized block
would still only protect from data races, but not atomicity violations. To further fix this issue, the synchronized block
protecting the first access in each method should fold over the entire code between the first and the last access to the
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shared resource in the same method. The new patch fixes both the data race (since all the invocations of the methods in
Account are protected in CustomerInfo) as well as the atomicity violations:

1 public class CustomerInfo {

2 private Account[] accounts;

3 Object obj1 = new Object();

// More fields and methods

21 public void withdraw(int accountNumber, int amount) {

22 synchronized{obj1} {

23 int temp = accounts[accountNumber].getBalance();

24 temp = temp - amount;

25 accounts[accountNumber].setBalance(temp);

26 } }

27

28 public void deposit(int accountNumber, int amount) {

29 synchronized{obj1} {

30 int temp = accounts[accountNumber].getBalance();

31 temp = temp + amount;

32 accounts[accountNumber].setBalance(temp);

33 } }

34 }

To support this feature, line 19 in Alg. 1 should be modified to search for the outermost access snapshot in 𝑎.𝜏

common to all accesses in the cluster of bugs (bug manifestation), instead of the default innermost which aims to fix the
data race at its source. Creating the patch as per Alg. 2 is already designed to fold over all the statements in a method,
hence no other modifications need to be made to the existing algorithms.

Since this solution for fixing atomicity violations is formulated as a heuristic, we are not offering any guarantees,
hence we do not claim it as a contribution, and instead leave it as a formal investigation for future work. It is meant to
highlight the importance of having a modular design which allows us to easily replace existing functionality or add
new features in order to improve the quality of the final patches. A general atomicity violation solution would have to
take into account a thread’s consecutive cross-method accesses to shared resources. This entails further knowledge
about the program’s logic and support for more fine-grained synchronization primitives. The latter simply involves
the extension of current DSLs; however, the former is more difficult to tackle and it requires a different kind of static
analysis for atomicity violations—one which can infer inter-procedural atomicity requirements.

5 IMPLEMENTATION AND EVALUATION

5.1 Implementation

As per Fig. 3, our approach is implemented in a framework comprising the following components: bug detector, patch
synthesiser and application, and validator. For bug detection and validation4, we build on RacerD (implemented in OCaml)
extending its lock domain (Sec. 4.1.2) and the bug reporting strategy (Sec. 4.1.1). RacerD already stores concurrency bug
reports in log files, but not the method summaries, for which we had to add support. The interaction withHippodrome’s
core components is achieved via JSON files. Hippodrome’s patch synthesiser and application are implemented in Scala,
comprising about 2.5k lines of code. The synthesiser expects as input a set of bugs and a set of method summaries, and
4While working on the validation phase, we discovered a bug in how the locks were treated in the deadlock detector which we have fixed in our analysis
and responsibly reported it to the RacerD team.
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Fig. 6. Using HIPPODROME in an interactive mode.

then proceeds to construct all the intermediate representations (Sec. 4.3). Although we have only considered patches
which involve inserting synchronized statements or volatile annotations, staging the patch synthesis process into IRs
allows future works to add support for other synchronization primitives by simply extending these IRs correspondingly.
Manipulating the Java files when constructing patches (Sec. 4) is done via ANTLR v4.

When Hippodrome runs in automatic mode, multiple patches may be generated for a single cluster of bugs. To
decide which patch is the best fit, we have added parametrised support for a cost function to choose the fix candidate.
We have implemented a simple cost function which measures the number of statements which need to be updated
for a fix, and choose the least intrusive fix (smallest number of updates). Users of our framework could explore other
application specific cost functions if the default cost function is not satisfactory. Only the best candidate fix is validated
in this mode.

When Hippodrome runs in interactive mode, all possible fixes are validated before being presented to the user which
then chooses the fix it considers as best fit. For a better UX experience, we have integrated Hippodrome into IntelliJ
IDEA as a plug-in. The screenshot in Fig. 6 demonstrates a report produced for a data race in the Account class, as well
as a patch suggested by Hippodrome (bottom left window), which will create a new mutex object objR1 and use it for
synchronising accesses to Account’s field balance.

Since we have kept a clean separation between the bug analysis and the implementation of the patch generation
mechanism, the framework could easily benefit from the advancements in data race detection, e.g. [40], as long as the
artefacts of these new technologies can discharge to JSON files the analysis results in the format described in Fig. 4.

Our tool Hippodrome is publicly available as a Docker image [4], or as an open-source project [5].
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Table 1. Results on subject apps by PFIX and HIPPODROME. All times are given in seconds. Det. means “detection”. # Iter refers
to the number of times RACERD was invoked within a single run of HIPPODROME

Subject Apps PFix RacerD Det.

Hippodrome
Program Name LOC From Benchmark Suites Fix Status Det. Time Fix Time Fix Status Det. Time Fix Time # Iter

account 102 PECAN, JCTB-Toy, PFix Success 22.7 238.75 Fail N/A N/A N/A N/A
accountsubtype 138 PFix Success 29.4 21.4 Fail N/A N/A N/A N/A
airline 51 JCTB-Toy, PFix Success 8.35 16.2 Success Success 1.34 0.71 2
alarmclock 206 JCTB-Toy, PFix Fail 10.75 N/A Success Success 4.51 2.07 4
allocation vector 114 JCTB-Toy Fail N/A N/A Success Success 2.42 0.73 2
atmoerror 48 PFix Success 7.3 5.95 Success Success 1.45 0.43 2
buggyprogram 258 PECAN, PFix Success 9.45 33.55 Partial Partial 1.61 2.87 2
checkfield 41 PFix Success 7.15 9.8 Success Success 1.24 0.8 2
consisitency 28 PFix Success 6.75 9.95 Success Success 2.3 0.87 3
critical 56 PECAN, JCTB-Toy, PFix Success 15.4 14.1 Success Success 5.8 1.15 6
datarace 90 PFix Success 8.1 51.15 Success Success 1.28 0.28 2
even 49 PFix Success 7.25 91.15 Success Success 2.14 0.36 2
hashcodetest 1,258 PFix Success 8.45 7.45 Success Success 4.62 1.65 4
linkedlist 204 PECAN, JCTB-Toy, PFix Success 7.95 35.25 Success Success 0.97 1.11 2
log4j 18,799 JCTB-Toy, PFix Success 22.9 20.35 Success Success 1.49 1.68 2
Manager 130 PECAN Fail N/A N/A Success Success 2.54 1.43 3
mergesort 270 PECAN, PFix Fail 17.95 N/A Success Success 1.07 2.87 3
pingpong 130 PFix Success 25.2 23.05 Success Success 3.67 1.48 4
ProducerConsumer 144 PFix Fail 16.0 N/A Success Success 4.61 1.61 6
reorder2 135 JCTB-Toy, PFix Success 7.7 11.9 Success Success 1.32 0.58 2
store 44 PFix Success 7.2 5.85 Success Success 1.22 0.29 2
stringbuffer 416 PECAN, PFix Success 7.0 22.2 Fail N/A N/A N/A N/A
wrongLock 73 JCTB-Toy, PFix Success 7.15 5.9 Success Success 1.24 0.36 2
wrongLock2 36 PFix Success 7.3 16.4 Success Success 1.39 0.94 2

5.2 Evaluation

We empirically evaluated Hippodrome’s effectiveness in producing high-quality fixes for Java data races. Experiments
were designed to answer the following Research Questions:

RQ1: How does Hippodrome compare to the state-of-the-art repair tools in terms of performance and efficacy?
RQ2: What is Hippodrome’s performance on large projects and how do the patches it produces compare to developers’

manual fixes in those projects in terms of quality?

All our experiments were done on a commodity laptop with 16 GB RAM and an 8-Core Intel 2.3GHz CPU running
macOS.

5.3 RQ1: Comparison to the State of the Art

Multiple tools [12, 32, 33, 38, 42] have been proposed to repair concurrency bugs. Of those, PFix [38] is the most recent
concurrency bug-fixing tool for Java programs, shown to significantly outperform the previous state-of-the-art, namely
Grail [42], in terms of efficiency, correctness and patch quality. Moreover, similar to our approach, PFix also targets
data races (along with atomicity violations). Therefore, we focus on comparing Hippodrome with PFix.

Selection of Subject Applications. We chose 24 unique subject apps from the benchmark suites used by the related
works as a baseline for evaluating tools that fix concurrency bugs [1–3, 28]. Our choice of subjects is dictated by the
following two aims: (a) to evaluate Hippodrome with regard to various data race patterns and (b) to include all subjects
from the PFix suite, thus comparing to it on its home turf.

Tab. 1 contains essential information about the subject apps and provides the evaluation results of PFix and
Hippodrome on them. In the following, we discuss the comparison of the two tools wrt. the following four aspects:

(a) Bug detection efficiency: how many bugs were found.
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(b) Time to find a fix (logarithmic scale)

Fig. 7. HIPPODROME vs. PFIX: run-time comparison.

(b) Performance of both detecting and fixing bugs.
(c) Quality of the produced concurrent patches.
(d) Fundamental limitations of both approaches.

Comparing bug detection efficiency. Hippodrome leverages the enhanced version of RacerD (cf. Sec. 3) for bug
detection and creates repairs for all detected bugs in the selected subject apps. The seventh column in Tab. 1 shows the
detection rate on the subject programs. In particular, Hippodrome failed to fix three programs, all due to missed bugs.
A close inspection revealed that all bug misses correspond to atomicity violations inside an already synchronised block,
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which is consistent with the goal of only detecting races. RacerD detected one of the two atomicity violations [46] in
buggyprogram (manifested as a race); thus, Hippodrome only fixed the detected violation—we mark this as a partial fix.

To fix a data race, PFix requires memory access patterns of passing and failing test executions obtained by running
Java PathFinder (JPF) [65] and Unicorn [55] (both 100 times). The patterns are ranked based on their occurrence in the
test executions. Each run of PFix generates a repair to be validated using 100 test runs. If the bug is still observed, PFix
reruns continuing the process until a failure is not observed for all 100 test runs. PFix failed to fix five programs in our
selection; in two cases, JPF failed to obtain a failing test execution, and in three instances, PFix was unable to create a
successful fix.

Comparing runtime performance. Fig. 7 compares the run-time performance of Hippodrome to PFix. Fig. 7a provides
the detection time and Fig. 7b provides the time taken to fix. The total time (detection and fix) in PFix does not include
the time to validate a fix, whereas the total time of Hippodrome also includes validation. Hippodrome first detects all
the bugs in a program, a process which includes both the compilation and the analysis. In 13 instances, RacerD was
invoked twice (last column in Tab. 1 ), i.e., once to detect the bugs and another to validate the fix. In other cases, it was
invoked multiple times (within a single run of Hippodrome) to validate different repair options. For example, in the
critical program, Hippodrome inferred five patches, thus, RacerD ran six times and took 5.8 seconds. Particularly, a
repair is discarded if the validation run of RacerD detects a deadlock. As per Fig. 7b, Hippodrome outperforms PFix by

several orders of magnitude.

Comparing patch quality. In 14 out of 24 cases, Hippodrome produced repairs equivalent to PFix’s patches. In four
cases, Hippodrome failed to detect bugs or succeeded partially, while in six cases, it created better fixes than PFix: the
latter either missed those bugs or created an incomplete fix. For example, Hippodrome’s repair fixes the data races in
both the withdrawal and deposit methods in Fig. 2 by wrapping them into synchronized blocks on the same lock. The
patch produced by PFix ignores the data race in withdrawal because its input memory access patterns do not contain
the bug path for that method. This example highlights the basic problem with tools relying on dynamic approaches:
identifying a subset of buggy paths might be insufficient for producing a complete fix.

Inherent downsides of PFix and Hippodrome. Apart from the inherited inefficiencies from JPF (e.g., scalability to
large Java programs), PFix’s methodology suffers from randomness in the ranking of failure-inducing memory access
patterns. This results in several incorrect repairs involving thus multiple validations and degrading efficiency. Our
experiments with simple test cases (e.g., Appendix 8) demonstrate major flaws in PFix’s repair process. Besides, PFix
chooses a locking policy dynamically by monitoring the lock acquisition patterns during the shared variable access.
The incomplete nature of this policy makes the suggested repairs deadlock-prone (confirmed in [38, §4.4]). On the
other hand, Hippodrome’s expressivity is limited by the power of the underlying analysis, which makes it applicable
exclusively to repairing data races, but not, e.g., atomicity violations.

We conclude this case study by responding to RQ1:

Hippodrome generates high-quality repairs for 20 out of 24 reported bugs in a benchmark suite of the state-of-the-art

tool PFix. In all successful cases, Hippodrome significantly outperforms PFix in terms of runtime, while its patch quality

is the same or better in the majority of the cases.

Hippodrome results on JaConTeBe subjects. We next measured the rate of producing data race fixes in real-world
Java projects selected from the JaConTeBe benchmark [39]. The JaConTeBe benchmark consists of 47 Java test classes
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Table 2. Detection and fix rate for a subset of JaConTeBe. Average results times are given in seconds

Program ID RacerD Hippodrome
# Det./# Conf. # Fixed/# Det. Avg. Det. Time Avg. Fix Time

dbcp 0/1 0/0 N/A N/A
derby 1/1 1/1 1.69 2.87
groovy 1/5 1/1 1.35 5.39
jdk 3/10 3/3 1.47 1.8
log4j 2/2 2/2 1.45 2.07
pool1 1/1 1/1 1.32 3.6

Table 3. Number of bugs detected by RACERD on large scale projects

Project Name # Confirmed Bugs # Detected by RacerD

Apache Tomcat 43 35
Google Guava 7 4

that demonstrate concurrency faults in both standard Java library classes and in Java libraries obtained from third
parties. We solely focus on the subjects which contain various data race patterns. We summarise our findings in Tab. 2,
highlighting: the detection rate (second column: the number of data races detected by RacerD versus the number of
officially confirmed ones), the fix rate (third column: how many of the detected data races has Hippodrome fixed),
and the average time to report and to fix a bug (column four and five, respectively). A more detailed version of this
experiment indicating the exact version of each selected library can be found in the Appendix, Tab. 6.

RacerD discovered eight of the twenty data races confirmed to manifest in JaConTeBe. Seven of the missed data
races involve shared resource accesses from within exception code blocks—RacerD can not identify such races because
its intermediate representation language, i.e. SmallFoot, does not have support for exception handling reasoning. The
remaining unsuccessful cases include threads spawned from the main method (violates assumption (b) stated in Sec. 4.4)
and code from non-included libraries (for example, in the jdk6_2, mkdir bug). All of the detected bugs were successfully
repaired by Hippodrome. PFix could not execute on any of the twenty subjects, owing mainly to JPF’s inability to
handle these subjects (known limitation on JaConTeBe subjects).

5.4 RQ2: HIPPODROME and Human Fixes

We evaluated Hippodrome’s performance, correctness, and quality of its patches on known concurrency bugs in two
large-scale open-source Java projects, namely Apache Tomcat and Google Guava. We first searched for the occurrences
of the keywords concur, thread, sync, lock, and race in the commit history of Apache Tomcat and Google Guava over the
past five years. Next, we ran RacerD on each version preceding the commit that fixed a bug and manually checked
whether the fixed bug was detected.5 In particular, we analysed 50 concurrency bugs and RacerD successfully reported
39 of those, findings summarised in Tab. 3.

Statistics of developers’ fixes. Tab. 4 summarises different kinds of fixes introduced by developers. In particular, 69
code changes were performed to repair 50 races. Making a shared variable volatile was the most popular approach

5Few cases required a single @ThreadSafe annotation to the buggy class.
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Table 4. Developers’ fix strategy

Project Added Volatile Added sync block Changed Collection Others

Tomcat 32 14 7 7
Guava 3 4 2 0

(35 out of 69) to data race repair, although they could have also been fixed via synchronized. At the same time, the
developer’s input is also needed to validate the addition of volatile, as affected writes may become expensive. Because
of this, Hippodrome suggests adding volatile as a secondary fix option, favouring the use of synchronized as a
primary fix. In few cases, developers changed the type of Java collections to their thread-safe variants, e.g., HashMap
to ConcurrentHashMap. This kind of fix is beyond the scope of this work. The column ’Others’ includes repairs such as
replacing the lock object or the type of lock block and making the shared variable final(#066e25467). For example, in
one case, a synchronized block was replaced with the readLock.lock() (#be19e9b1e). The use of readLock may improve
the performance by allowing read access to multiple threads, while no threads hold the writeLock. This performance
benefit is realized when reads are more frequent. We do not consider readock/writeLock, as counting the frequency of
reads and write is out of scope for this work.

Repair quality. Tab. 5 provides Hippodrome’s results on 39 developers’ commit. Column Commit# describes the
commit under which the developer fixed a particular concurrency bug. Fix status denotes whether Hippodrome
successfully fixed a bug, and Detection/Fix Time shows the time taken to detect/fix a bug. Finally, equivalence shows
the syntactic and semantic equivalence of the repair. A patch is semantically equivalent to the developer’s patch if it
fixes the specific bug similarly to the developer’s patch but does not use the same syntax. For example, both volatile

and synchronized constructs may be used to repair a race and thus provide semantically equivalent results. RacerD
failed to detect 8 bugs in Tomcat (out of 43) and 3 in Guava (out of 7); thus, we ran Hippodrome on 39 remaining bugs.
Hippodrome generated 83% correct fixes for Tomcat (29/35), and 50% for Guava (2/4). In particular, it failed to repair 3
bugs requiring to add interface-level annotations which are beyond the scope of this work. In the remaining 5 fixes,
developers introduced new features, thus we cannot draw a direct comparison to those.

Fig. 8 shows Hippodrome’s performance on the selected 39 bugs. Detection and validation took about one minute,
most of which is attributed to compilation.6 RacerD detection time is usually shared to detect multiple bugs, yet in
this experiment we ran it from a “cold” setup, zooming in on each particular bug. The AST creation for project files
takes most of the time to find a fix; the actual fix generation takes less than a second. Therefore, amortised times for
detecting and fixing several bugs in a batch mode would be much smaller.

Repairs for 18 bugs were syntactically the same as the developers’ fixes. In 2 cases Hippodrome generated better
repairs, introducing less overhead. In one instance, the developer’s repair was better: our repair locked multiple case

clauses in a switch statement, instead of just the race-causing clause. Besides analyzing the RacerD’s signal, the
equivalence was manually validated by at least three authors in our study.

An attempt to run PFix on these large-scale projects produced no fix report irrespectively of the set timeout.7

Hippodrome repairs 31 out of 39 concurrency bugs. 60% of these fixes are syntactically the same as the developer patches.

Hippodrome runtime performance scales well for large-projects with about 80 seconds to fix the first bug.

6In its standard mode, RacerD attaches itself to the compilation process.
7This is due to inherent scalability limitations of JPF, which we explicitly confirmed in our communication with the PFix authors.
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Table 5. HIPPODROME results on Developers’ commits. All times are given in seconds.

Index Tomcat Hippodrome

Commit# Fix Status Detection Time Fix Time Equivalence
1 752f0b9f Fail NA NA NA
2 582cc729 Success 87.92 21.47 Syntactic
3 5e9f6fd6 Success 88.25 15.95 Syntactic
4 066e2546 Fail NA NA NA
5 317480b9 Success 82.29 17.85 Semantic
6 7040497f Success 76.84 19.32 Semantic
7 29f060ad Fail NA NA NA
8 b96f9bec Success 77.94 30.75 Semantic
9 0ca05961 Success 14.75 6.6 Syntactic
10 be19e9b1 Fail NA NA NA
11 4caec93b Fail NA NA NA
12 ed610381 Success 73.84 23.28 Syntactic
13 057de944 Success 71.09 20.6 Semantic
14 518c27c3 Success 72.3 14.65 Semantic
15 227b6093 Success 75.09 7.84 Syntactic
16 fb631d21 Success 74.63 6.34 Semantic
17 50121380 Success 80.46 17.57 Semantic
18 d85c35f Success 77.29 54.6 Semantic
19 3360c3a Success 56.28 42.3 Semantic
20 8cbb9f8 Success 112.61 10.37 Semantic
21 afff25f1c Success 55.84 15.18 Syntactic
22 d4c8da6 Success 55.28 20.67 Syntactic
23 d9b530c Success 55.19 19.15 Syntactic
24 e80797f3 Success 55.34 18.67 Syntactic
25 1484f3ec Success 57.49 7.55 Semantic
26 825c450c Success 55.27 9.38 Semantic
27 02a4bb92 Success 56.99 4.13 Semantic
28 3d6dbd91 Success 55.36 15.36 Syntactic
29 8313fa0f1 Success 52.57 17.4 Syntactic
30 52b29fd2 Success 54.82 21.3 Syntactic
31 ea383db5 Success 55.39 11.46 Syntactic
32 cadbc500 Fail NA NA NA
33 5379ae68 Success 55.4 19.67 Syntactic
34 3078444 Success 52.27 9.86 Syntactic
35 17b6c64f Success 55.17 15.48 Syntactic

Guava

36 0e94fb5b Success 24.74 10.033 syntactic
37 0e94fb5b Success 24.67 80.02 syntactic
38 c15cd804 Fail NA NA NA
39 a43b4aa7 Fail NA NA NA

5.5 Example of the Impact of Bug Clustering on Patch Quality

Although the bug reports generated by RacerD involve at most two insufficiently synchronised accesses to a shared
resource, our bug clustering mechanisms recovers the holistic view of accesses to the shared resource, thus leading to
patches a human is more likely to favour. Fig. 9 presents a simplified data race example to demonstrate the benefits of
bug clustering (please see Fig. 10 and Fig. 11 in the Appendix for full code details). This program creates three threads
(referred to as t1, t2, and t3 for simplicity) with separate entry points at Line 4, Line 20, and Line 33, respectively.
There is a data race among t1 and t2 due to unprotected accesses to global variable sharedString at Line 11 and 26,
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Fig. 8. HIPPODROME run-time on large-scale projects

respectively. t1 protects the access to sharedString via a lock l, while t2 uses the lock p. At the same time, t3 protects
the access to sharedString with three locks in the following order: GlobalLock, p, l.

A correct patch should choose a lock object such that the resulting program cannot lead to a race on sharedString

anymore (on top of making sure that it produces no deadlock with already existing ones). However, as exemplified
by Fig. 9a which depicts in comments a couple of the few repairs produced by PFix, automatically producing such
patches is not always straightforward when each bug is treated as an isolated candidate for repair. We ran PFix ten
times and none of the generated fixes were correct. In contrast, our patch synthesis strategy generates multiple correct
patches—see two of the produced patches in comments in Fig. 9b. One patch simply prevents the data race (Fix-1), and
another more natural patch (Fix-2) takes a synchronising format that seems more similar to what a programmer might
write on top of fixing the data race correctly.

6 THREATS TO VALIDITY

This section discusses the threats to the internal and external validity of our experiments and their mitigation solutions.

Internal Validity. Our approach relies on existing static analysis tools for bug detection. In particular, Hippodrome
employs RacerD for data race detection, hence our experiments are sensitive to the efficiency and correctness of
RacerD. Sec. 4.4 details the analysis’s correctness criteria and the assumptions that need to hold for it to detect all data
races. When known bugs were not detected in our experiments, we manually investigated the underlying reasons and
reported the assumptions which were violated. Future work could investigate how to check whether these assumptions
hold at runtime, e.g. via dynamic monitoring. Furthermore, our approach relies on the availability of the complete
source code pertaining to a data race bug. To mitigate this constraint, library calls whose source code is unavailable can
be ascribed access summaries manually, or modelled accordingly within the detection tool, e.g. we instructed RacerD
with models for the read and write methods of java.net.ServerSocket for one of the data races in Apache Tomcat.

Hippodrome also relies on static analysis tools to check how the synthesised patch interacts with the existing locks,
i.e. whether it can lead to a deadlock. We employed RacerD for this phase, too, since the tool is equipped with deadlock
detection mechanisms. Again, the assumptions under which no deadlock is missed are summarized in Sec. 4.4. We have
found no example in our extensive testing and during the evaluation where Hippodrome introduces buggy patches,
except for testing subjects that violate the correctness assumptions, e.g. subjects manipulating anonymous classes.
Manuscript submitted to ACM



Hippodrome: Data Race Repair using Static Analysis Summaries 25

1 class HelloHelper {

2 private String sharedString = null;
3 // static Object objectFix = new Object(); -- Fix-2 (1/3)

4 public void t1() {

5

6 synchronized(l) {

7 // synchronized (this){ -- Fix-1 (1/4)

8 System.out.println("T1 got lock l");

9 //} -- Fix-1 (2/4)

10 sharedString = "Hello World-1 ";

11 sharedString = sharedString + "from T1";

12 System.out.println(sharedString);

13 // synchronized (this){ -- Fix-1 (3/4)

14 // synchronized (objectFix){ -- Fix-2 (2/3)

15 System.out.println("T1 released lock l");

16 //} -- Fix-1 (4/4)

17 //} -- Fix-2 (3/3)

18 } }

19

20 public void t2() {

21 synchronized(p) {

22

23 sharedString = "Hello World-2 ";

24

25

26 sharedString = sharedString + "from T2";

27

28

29 System.out.println(sharedString);

30

31 } }

32

33 public void t3() {

34 synchronized(GlobalLock) {

35 synchronized(p) {

36 synchronized(l) {

37 sharedString = "Hello World-3 ";

38 sharedString = sharedString + "from T3";

39 System.out.println(sharedString);

40 }

41 }

42 } } }

(a) PFIX Repairs

1 class HelloHelper {

2 private String sharedString = null;
3

4 public void t1() {

5 // synchronized(p) { -- Fix-2 (1/2)

6 synchronized(l) {

7

8 System.out.println("T1 got lock l");

9

10 sharedString = "Hello World-1 ";

11 sharedString = sharedString + "from T1";

12 System.out.println(sharedString);

13

14

15 System.out.println("T1 released lock l");

16 }

17 // } -- Fix-2 (2/2)

18 }

19

20 public void t2() {

21 synchronized(p) {

22 // synchornized(l) { -- Fix-1 (1/6)

23 sharedString = "Hello World-2 ";

24 // } -- Fix-1 (2/6)

25 // synchornized(l) { -- Fix-1 (3/6)

26 sharedString = sharedString + "from T2";

27 // } -- Fix-1 (4/6)

28 // synchornized(l) { -- Fix-1 (5/6)

29 System.out.println(sharedString);

30 // } -- Fix-1 (6/6)

31 } }

32

33 public void t3() {

34 synchronized(GlobalLock) {

35 synchronized(p) {

36 synchronized(l) {

37 sharedString = "Hello World-3 ";

38 sharedString = sharedString + "from T3";

39 System.out.println(sharedString);

40 }

41 }

42 } } }

(b) HIPPODROME Repairs

Fig. 9. A data race example in Java

One final concern is that of the selection of the evaluation subjects, i.e., whether the chosen subjects favour Hippo-
drome. We mitigate this threat by focusing on subjects commonly found in related works. We evaluatedHippodrome on
various data race patterns from benchmarks that serve as a baseline to assess tools for repairing concurrency bugs [1–3],
including those used by PFix.

External Validity. Threats to external validity concern the generalizability of our outcomes, i.e. our findings may
not extend outside the chosen micro-benchmarks. To mitigate this threat, the subjects in our second study have been
drawn from 50 known real-world concurrency bugs in two large-scale Java projects, namely Apache Tomcat and Google
Guava. We chose Apache Tomcat since it is noted for concurrency issues and has been studied in earlier efforts [42].
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We chose Google Guava due to its widespread usage in industry, and because it offers a variety of concurrency features.
To consider the latest developments and scalability, we incorporated concurrency bugs from these projects’ commit
histories over the last five years. Hippodrome performed well on these subjects.

7 RELATED WORK

General Program Repair and Synthesis. Automated program repair (APR) [25] is an emerging technology paradigm
for automatically fixing logical bugs via search [67], semantic reasoning [53] and learning [45]. The recent works on
semantic program repair [49, 53] make use of advances in program synthesis [16, 48, 54, 56] to automatically generate
one-line or multi-line fixes. However, these approaches have been mostly studied for sequential programs.

Program Repair for Concurrency. While PFix [38] is a recent work in this direction, there are other efforts on
concurrency repair, such as [12, 29, 32, 33, 36–38, 41–43] to name a few. Many of these tools use dynamic analysis to
find bugs, while some statically validate fixes [32, 33]. In general, dynamic analysis approaches may miss concurrency
bugs, and the repairs may be incomplete. PFix [38] denotes a somewhat hybrid approach which relies on the JPF model
checker for bug finding. Apart from the scalability limitations of JPF, such an approach requires providing the temporal
properties to the model checker—which PFix provides by exploiting an incomplete set of likely failure inducing memory
access patterns. AlphaFixer [12] is an approach to APR for atomicity violations for C++ programs which analyses
the lock acquisitions in order to reduce the introduction of deadlocks. Close examination revealed that its underlying
repair algorithm is unsound in that it introduces deadlocks in basic examples where atomicity violations manifest as
data races. We refer the reader to Fig. 12 for the C++ counterpart of the example discussed in Sec. 5.5, and a fix which
introduces a deadlock produced by AlphaFixer8. Fig. 11 shows the corresponding Hippodrome deadlock-free fix. The
work on HFix [41] falls into the category of using syntactic or pattern matching-based static analysis, where patterns
of patches are obtained by mining human patches. Such an approach is inherently limited to the data set of human
patches considered, and carry no guarantees of correctness. Grail, also based on static analysis [42], offers patches
which are guaranteed to be deadlock-free, although these guarantees have been shown by [38] to not always hold
in practice. Unlike our work, Grail is not modular; it relies on mixed-integer programming computation and Petri
net models which restrict the fixes to single classes or methods. Bugs spanning multiple classes or methods pose no
problem for Hippodrome as shown by our experiments.

Program Repair with Static Analysis. Logozzo and Ball co-authored an early work using abstract interpretation based
static analysis for sequential program repair [44]. Unlike our work which requires no user annotations, their approach
needs formal safety properties to drive the repair. The work on AFix focuses on atomicity violations [32]. AFix and its
later incarnation CFix [33] represent pattern-based approaches for fixing concurrency bugs; these techniques do not
come with correctness guarantees. AFix is in fact known to introduce deadlocks as pointed out in [42]. Similarly, the
work on Phoenix [8] also patches static analysis warnings via repair strategy examples learnt from big codebases. The
recent work on FootPatch is closer to our theme of analysis-driven correct repairs [64]. FootPatch exploits the locality
in the summaries inferred by a compositional static analysis [13] for efficiently generating sound one-line patches for
imperative programs, fixing memory leaks and null-pointer exceptions. Due to a non-local nature of concurrency issues
(e.g., data races), FootPatch cannot be used directly for fixing concurrency errors, which is achieved in this paper.

8We obtained that fix by running the latest version of AlphaFixer which we obtained directly from its authors.
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Static Analysis for Concurrency Bugs. Statically detecting concurrency bugs is a well researched, yet notoriously
difficult problem. Exhaustive exploration is often infeasible even for medium-sized programs, yielding imprecise results
[21]. To improve precision, effort has been made in adding the user in the process of specifying what properties the
code of interest should have [15, 31, 50, 61]. Such efforts provide high accuracy, but their friction is too high for their
adoption in APR. RacerX [18], an influential automatic static data race detector, also works on building summaries by
approximating the locks held at each program point. However, it has low signal as shown at the experiments done
at Meta [10]. Chord, a more advanced approach with high recall, is shown to be too imprecise and too slow for CI
integration [51]. A number of commercial automated tools exists too [14, 60, 62]. We opted for an open-source one in
order to identify what analysis components can APR leveraged on, e.g. the access summaries. DepCon is a static analysis
building on similar observations as RacerD, namely that only methods that may both interleave and access the same
shared memory locations can lead to data races or atomicity violation [63]. While this tool is tuned for concurrency
tests generation, it would be interesting to investigate its feasibility as a support for program repair in the future.

Works exists also for the static detection of atomicity violations [22, 59, 66], however, since the current goal of
Hippodrome is to fix data races, we leave the investigation of fixing atomicity violations as a future work. Although
numerous works exists for the detection of deadlocks in Java programs [6, 52, 68], our validation phase relies on the
analysis which comes in the same package with RacerD for convenience purposes, but also because it is accompanied
by a formal proof of correctness.

8 CONCLUSION

We have described a static analysis-driven automated program repair technique for concurrent programs which is
scalable, modular, and preserves deadlock-freedom. It can be fitted into a Continuous Integration loop, which can
allow collaboration with developers to gradually improve automatically generated patches. We have shown through
experiments that a synergy between static analysis bug detection and data race repair yields good quality patches
even for large scale code bases, such as Tomcat and Guava. Furthermore, our work also highlights what features and
components a static analysis should have, for it to support the patch synthesis process—an information which could
guide the design of future static analysis tools with repair in mind. For example, the information captured in the access
summaries is useful in deciding the clustering criteria, or in choosing candidates for the lock object.

Our work can be used to further explore related research avenues: richer solution spaces with more synchronization
primitives, application-dependent cost functions for patches, lock choice heuristics. In particular, staging the patch
synthesis processes into Intermediate Representations makes it convenient for future work to extend the lock support to
finer-grained synchronization primitives. Clustering the bugs according to the shared resource allowed us to experiment
with a modest solution for fixing atomicity violations even if the bug detection analysis was only designed for reporting
data races. We believe this opens further research opportunities, by considering more complex atomicity violation. The
bug clustering mechanisms also led to better quality patches by recovering the holistic view on the origins of the data
races while retaining compositionality. This approach produces better quality patches, however we believe there is
space to further explore the granularity and criteria of this clustering so as to design smarter lock choice heuristics and
cost functions. For example, it would be interesting to distinguish between the cases where intrinsic locks would be the
ideal candidate, from those where intrinsic locks would reduce concurrency.

Since our publicly available tool, Hippodrome, can also be used in interactive mode, it can be further enhanced to
create different user studies in order to understand solution comprehension and preference. For example, we could
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create a study to understand whether developers would favour a simple fix which is not syntactically invasive to one
which involves more code changes but results in better overall concurrency.
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Table 6. Results on JaConTeBe apps by HIPPODROME. All times are given in seconds. Det. means “detection”.

Program ID Affected Version RacerD Det. Hippodrome
Fix Status Det. Time Fix Time

dbcp3 1,2 No N/A N/A N/A
derby3 10.5.1.1 Yes Yes 1.69 2.87
groovy1 1.7.9 Yes Yes 1.35 5.39
groovy3 1.7.9 No N/A N/A N/A
groovy4 1.7.9 No N/A N/A N/A
groovy5 1.7.9 No N/A N/A N/A
groovy6 1.7.9 No N/A N/A N/A
jdk6_1 1.6.0 Yes Yes 1.25 0.81
jdk6_2 [1.6.0 - 1.6.0_02) No N/A N/A N/A
jdk6_3 1.6.0 No N/A N/A N/A
jdk6_4 1.6.0 No N/A N/A N/A
jdk6_5 1.6.0 Yes Yes 2.01 2.48
jdk6_13 1.6.0 No N/A N/A N/A
jdk6_14 1.6.0 No N/A N/A N/A
jdk7_1 1.7.0 Yes Yes 1.14 2.1
jdk7_3 [1.7.0 - 1.7.0_40) No N/A N/A N/A
jdk7_6 1.7.0 No No N/A N/A
log4j1 1.2.15 Yes Yes 1.07 2.16
log4j3 1.2.13 Yes Yes 1.83 1.98
pool1 1,4 Yes Yes 1.32 3.6

APPENDIX

Fig. 10 and Fig. 11 are the extended code versions of Fig. 9a and Fig. 9b, respectively. Tab. 6 is the extended version of
Tab. 2.
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Fig. 10. A data race example in Java (PFIX Repairs)

1 class HelloHelper {

2 private String sharedString = null;
3 // static Object objectFix = new Object(); -- PFix Fix-2 (1/3)

4 public void t1() {

5 synchronized(l) {

6 // synchronized (this){ -- PFix Fix-1 (1/4)

7 System.out.println("T1 got lock l");

8 //} -- PFix Fix-1 (2/4)

9 sharedString = "Hello World-1 ";

10 sharedString = sharedString + "from T1";

11 System.out.println(sharedString);

12 // synchronized (this){ -- PFix Fix-1 (3/4)

13 // synchronized (objectFix){ -- PFix Fix-2 (2/3)

14 System.out.println("T1 released lock l");

15 //} -- PFix Fix-1 (4/4)

16 //} -- PFix Fix-2 (3/3)

17 }

18 }

19 public void t2() {

20 synchronized(p) {

21 System.out.println("T2 got lock p");

22

23 sharedString = "Hello World-2 ";

24 sharedString = sharedString + "from T2";

25 System.out.println(sharedString);

26

27 System.out.println("T2 released lock p");

28 } }

29 public void t3() {

30 synchronized(GlobalLock) {

31 System.out.println("T3 got lock G");

32 synchronized(p) {

33 System.out.println("T3 got lock p");

34 synchronized(l) {

35 System.out.println("T3 got lock l");

36

37 sharedString = "Hello World-3 ";

38

39 sharedString = sharedString + "from T3";

40 System.out.println(sharedString);

41 System.out.println("T3 released lock l");

42 }

43 System.out.println("T3 released lock p");

44 }

45 System.out.println("T3 released lock G");

46 } } }

47 public class Hello {

48 public static void main(String[] args){

49 HelloHelper h = new HelloHelper();

50 Thread thread1 = new Thread(){ public void run() { h.t1(); } };

51 Thread thread2 = new Thread(){ public void run() { h.t2(); } };

52 Thread thread3 = new Thread(){ public void run() { h.t3(); } };

53

54 thread1.start();

55 thread2.start();

56 thread3.start();

57 } }
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Fig. 11. A data race example in Java (HIPPODROME Repairs)

1 class HelloHelper {

2 private String sharedString = null;
3

4 public void t1() {

5 // synchronized(p) { -- Hippodrome Fix-2 (1/2)

6 synchronized(l) {

7 System.out.println("T1 got lock l");

8 sharedString = "Hello World-1 ";

9 sharedString = sharedString + "from T1";

10 System.out.println(sharedString);

11 System.out.println("T1 released lock l"); }

12 // } -- Hippodrome Fix-2 (2/2)

13 }

14 public void t2() {

15 synchronized(p) {

16 System.out.println("T2 got lock p");

17 // synchornized(l) { -- Hippodrome Fix-1 (1/6)

18 sharedString = "Hello World-2 ";

19 // } -- Hippodrome Fix-1 (2/6)

20 // synchornized(l) { -- Hippodrome Fix-1 (3/6)

21 sharedString = sharedString + "from T2";

22 // } -- Hippodrome Fix-1 (4/6)

23 // synchornized(l) { -- Hippodrome Fix-1 (5/6)

24 System.out.println(sharedString);

25 // } -- Hippodrome Fix-1 (6/6)

26 System.out.println("T2 released lock p");

27 } }

28 public void t3() {

29 synchronized(GlobalLock) {

30 System.out.println("T3 got lock G");

31 synchronized(p) {

32 System.out.println("T3 got lock p");

33 synchronized(l) {

34 System.out.println("T3 got lock l");

35

36 sharedString = "Hello World-3 ";

37

38 sharedString = sharedString + "from T3";

39 System.out.println(sharedString);

40 System.out.println("T3 released lock l");

41 }

42 System.out.println("T3 released lock p");

43 }

44 System.out.println("T3 released lock G");

45 } } }

46 public class Hello {

47 public static void main(String[] args){

48 HelloHelper h = new HelloHelper();

49 Thread thread1 = new Thread(){ public void run() { h.t1(); } };

50 Thread thread2 = new Thread(){ public void run() { h.t2(); } };

51 Thread thread3 = new Thread(){ public void run() { h.t3(); } };

52

53 thread1.start();

54 thread2.start();

55 thread3.start();

56 } }
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Fig. 12. A data race example in C++ (ALPHAFIXER Repair)

1 struct thread_data {

2 char ★message;

3 }

4 struct thread_data ★my_data = new thread_data;

5 //...

6 void threadA(void arg) {

7 pthread_mutex_lock(&l);

8 cout << "T1 got lock l\n";

9 // pthread_mutex_lock(& my->GateLock); -- AlphaFixer Fix (1/4)

10 my_data->message = "Hello World from T1\n";

11 // pthread_mutex_unlock(& my->GateLock); -- AlphaFixer Fix (2/4)

12 cout << "T1 released lock l\n";

13 pthread_mutex_unlock(&l);

14 pthread_exit(NULL);

15 }

16

17 void threadB(void arg) {

18 pthread_mutex_lock(&p);

19 cout << "T2 got lock p\n";

20 // pthread_mutex_lock(& my->GateLock); -- AlphaFixer Fix (3/4)

21 my_data->message = "Hello World from T2\n";

22 // pthread_mutex_unlock(& my->GateLock); -- AlphaFixer Fix (4/4)

23 cout << my_data->message;

24 pthread_mutex_unlock(&p);

25 pthread_exit(NULL);

26 }

27

28 void threadC(void arg) {

29 pthread_mutex_lock(&my->GateLock);

30 cout << "T3 got lock G\n";

31 pthread_mutex_lock(&l);

32 cout << "T3 got lock l\n";

33 pthread_mutex_lock(&p);

34 cout << "T3 got lock p\n";

35

36 my_data->message = "Hello World from T3\n";

37

38 cout << "T3 released lock p\n";

39 pthread_mutex_unlock(&p);

40 cout << "T3 released lock l\n";

41 pthread_mutex_unlock(&l);

42 cout << "T3 released lock G\n";

43 pthread_mutex_unlock(&my->GateLock);

44 pthread_exit(NULL);

45 }

46

47 int main () {

48 pthread_t threads[3];

49 //... init code

50 pthread_create(&threads[0], NULL, threadA, NULL);

51 pthread_create(&threads[1], NULL, threadB, NULL);

52 pthread_create(&threads[2], NULL, threadC, NULL);

53 //...

54 }
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