
AGENTIC AI FOR
SOFTWARE:
LESSONS IN TRUST

Abhik Roychoudhury
National University of Singapore

新加坡国立大学

NUSRI InnovFest, Suzhou, 2025 1

用于软件的
智能体AI:
关于信任的经验

LOVE FOR
PROGRAMMING
对编程的热爱

(CLAUDE SONNET)
(由CLAUDE SONNET生成)

NUSRI InnovFest, Suzhou, 2025 2

main() {

 extrn a, b, c;

 putchar(a); putchar(b); putchar(c); putchar('!*n');

}

a 'hell';

b 'o, w';

c 'orld';

NUSRI InnovFest, Suzhou, 2025 3

B programming

language

4-character limitation. ☺

B语言

4个字符的限制 ☺

1972-3: “HELLO WORLD” STYLIZATION
“HELLO WORLD”程序风格

programming at scale 大规模编程 programming with trust 可信编程

NUSRI InnovFest, Suzhou, 2025 4

1972

Hello World program in

BCPL/B, before C

Brian Kerninghan

BCPL/B 编写的Hello

World 程序, 早于C语言

Brian Kerninghan

94-2022

Windows / Linux

Software as a Service

Huge Code-base, - software

model checking, Linux is

30M in 2022

Internet -> Software delivery

Windows / Linux

软件即服务

大型代码库 - 软件模型

检查, Linux在2022年含

有3千万行代码

互联网 -> 软件交付

2022

GitHub Copilot

Automatically generated

code integrated - importance

of verification rises.

GitHub Copilot

自动生成的代码被集成 –

程序验证的重要性上升.

2025

Year of LLM Agents

Need for verification of auto

generated code integration

大语言模型智能体的年份

自动生成的代码需要被验证

从而集成

SOFTWARE INDUSTRY OVER 50 YEARS
软件产业的50年历程

NUSRI InnovFest, Suzhou, 2025 5

~1975:
In-house

~2000+:
SaaS
/Cloud

~2025:
Agentic
AI1972-3:

”Hello world”

program in B and C

B和C语言编写的
”Hello world” 程序

Hosting of SW –

Salesforce (CRM) Other app domains

软件托管 – Salesforce

(客户关系管理)其他业务领域

Tech/Horizontal:

Engineering of SW itself !

App/Verticals: the next SalesForce?

技术/水平方向: 软件本身的工程！
应用/垂直方向: 下一个 SalesForce？

内部开发 软件即服务
/云端

智能体AI

THE DAY OF A SOFTWARE ENGINEER
软件工程师的一天

• More of program improvement,

rather than coding

• Come in the morning, and see a host

of “issues”

• An issue can refer to a bug report and

needed fix

• Feature addition

• Even efficiency improvement in a

part of the code?

NUSRI InnovFest, Suzhou, 2025 6

• 更多的是改进程序，而非从头编写代码

• 早晨的工作从许多“issue”开始

• 一个issue可以是一个需要修复的缺陷报告

• 或者新功能开发

• 甚至是一部分代码的性能优化?

UNPACKING “ISSUES”: INTENT
剖析“ISSUES”: 程序意图

SemFix, ICSE 2013

Angelix, ICSE 2016

NUSRI InnovFest, Suzhou, 2025 7

An issue can refer to a bug report and needed fix
一个issue可以是一个需要修复的缺陷报告

Buggy

program

Sample

Tests

“Fixed”

program

Issue

Resolution

缺陷程序

测试样例

“已修复”

程序
Issue

解决

LEARNT AS A SCHOOL-CHILD ☺
小学知识

NUSRI InnovFest, Suzhou, 2025 8

MAY NOT HAVE LEARNT SO FAR?
可能至今还未掌握?

NUSRI InnovFest, Suzhou, 2025 9

Test id a b c oracle Pass

1 -1 -1 -1 INVALID
Yes

2 1 1 1 EQUILATERAL Yes

3 2 2 3 ISOSCELES Yes

4 2 3 2 ISOSCELES Yes

5 3 2 2 ISOSCELES NO

6 2 3 4 SCALANE
NO

Given ”intent” as tests
以测试用例形式给定的“意图”

Buggy Program
缺陷程序

Automatically generate the fix 自动生成修复 (a == b || b == c || c == a)

Test id a b c oracle Pass

1 -1 -1 -1 INVALID
Yes

2 1 1 1 EQUILATERAL Yes

3 2 2 3 ISOSCELES Yes

4 2 3 2 ISOSCELES Yes

5 3 2 2 ISOSCELES NO

6 2 3 4 SCALANE
NO

FROM INTENT TO CODE – RELIABLY !
将意图转化为代码 – 以一种可靠的方式 !

NUSRI InnovFest, Suzhou, 2025 10

(a == b || b == c || c== a)f(2,2,3) and f(2,3,2) and f(3,2,2) and not f(2,3,4)

Given ”intent” as tests
给定“意图”作为测试用例

TRUSTED AUTOMATIC PROGRAMMING
可信自动编程

NUSRI InnovFest, Suzhou, 2025 11

Gaining Trust 增强可信度

INTENT (tests)
意图 (测试用例)

Buggy Code
缺陷代码

Analysis
程序分析

Logical Property
逻辑性质

Improved Code
已改进代码

INTENT FROM TESTS
从测试推断意图

NUSRI InnovFest, Suzhou, 2025 12

Higher order logic

inference from tests.
从测试推断高阶逻辑

Lot of machinery in achieving it

efficiently in a first order logic

framework.
通过许多手段在一阶逻辑框架下高效实现

Need a mechanism for extracting intent

when tests are absent.
需要一种机制在测试缺失时提取意图

NUSRI InnovFest, Suzhou, 2025 13

TRUSTED AUTOMATIC PROGRAMMING
可信自动编程

Gaining Trust 增强可信度

INTENT (tests)
意图 (测试用例)

Buggy Code
缺陷代码

Analysis
程序分析

Logical Property
逻辑性质

Improved Code
已改进代码

THEN AND NOW
从过去到现在，变与不变

SPEC. INFERENCE. - 2013 vs. 2025

17

Program Structure captures intent. Extract coarse specs from structure for autonomous SE

Suggest

Synthesize

Infer

Tests ->
Issues

Symbolic Execution ->LLM agent

Program Synthesis ->LLM

Patches ->
Patch with explanation

NUSRI InnovFest, Suzhou, 2025 14

ISSUE
RESOLUTION
解决 ISSUE

NUSRI InnovFest, Suzhou, 2025 15

Do not see Code as text!
不要将代码看做纯文本！

Software Issue
软件issue

Front end
前端

Back end
wrapper
后端封装

LLM
大语言模型

Program
Representations

& Files
程序表示 & 文件

Project
structure
项目结构

(Analysis)
tools

（程序分析）工具

How to
gain trust?

如何增加可信度？

NUSRI InnovFest, Suzhou, 2025 16

AUTOCODEROVER

https://autocoderover.dev/

IMPLICIT INTENT
隐式意图

Context Ret rieval f rom Program St ructure

LLM agent for decision-making, (lightweight) program analysis for retrieval

Issue
Statement

Search
“I need to

know more
about func A”

Codebase

File

File

File

cls X

cls

func
A

func

STMC

Found 1

function “A”

in class “X”,

implementat ion is

def A (args):

….

Developers do not view a software project as f iles;

they understand it from the code structure!

Search APIs for the agent to choose:

search_func()

search_class()

search_code_snippet()

search_func_in_class()

….

NUSRI InnovFest, Suzhou, 2025 17

We need to understand how the

ModelChoiceField class handle validation

and error messages …

Signature of the ModelChoiceField class:
 def __init__(…):
 def get_limit_choices_to(self):
 def __deepcopy__(self, memo):

 def label_from_instance(self, obj):
 … …
 def prepare_value(self, value):
 def to_python(self, value):
 def validate(self, value):
 def has_changed(self, initial, data):

𝑈0

𝐶𝑜𝑛𝑡𝑒𝑥𝑡1
search_class(“ModelChoiceField”)

Iteratively refine issue understanding based on latest context.
基于最新的上下文，迭代式细化issue理解

NUSRI InnovFest, Suzhou, 2025 18

STRATIFIED SEARCH
分层搜索

• 𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑖 = 𝑆𝑒𝑎𝑟𝑐ℎ_𝐴𝑃𝐼(𝑈𝑖−1)
• 𝑈𝑖 = 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠(𝑈𝑖−1, 𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑖)

We need to understand how the

ModelChoiceField class handle validation

and error messages …

Signature of the ModelChoiceField class:
 def __init__(…):
 def get_limit_choices_to(self):
 def __deepcopy__(self, memo):

 def label_from_instance(self, obj):
 … …
 def prepare_value(self, value):
 def to_python(self, value):
 def validate(self, value):
 def has_changed(self, initial, data):

𝑈0

𝐶𝑜𝑛𝑡𝑒𝑥𝑡1
search_class(“ModelChoiceField”)

Iteratively refine issue understanding based on latest context.
基于最新的上下文，迭代式细化issue理解

NUSRI InnovFest, Suzhou, 2025 19

STRATIFIED SEARCH
分层搜索

ModelChoiceField does not have a

clean method. It likely uses

another method like validate or

to_python to validate inputs.

Next step: Examine the validate

and to_python methods of

ModelChoiceField.

Implementation of validate:

 …

Implementation of to_python:

 …

𝑈1

𝐶𝑜𝑛𝑡𝑒𝑥𝑡2
search_method_in_class(“validate”, “ModelChoiceField”)

search_method_in_class(“to_python”, “ModelChoiceField”)

• 𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑖 = 𝑆𝑒𝑎𝑟𝑐ℎ_𝐴𝑃𝐼(𝑈𝑖−1)
• 𝑈𝑖 = 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠(𝑈𝑖−1, 𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑖)

• 𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑖 = 𝑆𝑒𝑎𝑟𝑐ℎ_𝐴𝑃𝐼(𝑈𝑖−1)
• 𝑈𝑖 = 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠(𝑈𝑖−1, 𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑖)

We need to understand how the

ModelChoiceField class handle validation

and error messages …

Signature of the ModelChoiceField class:
 def __init__(…):
 def get_limit_choices_to(self):
 def __deepcopy__(self, memo):

 def label_from_instance(self, obj):
 … …
 def prepare_value(self, value):
 def to_python(self, value):
 def validate(self, value):
 def has_changed(self, initial, data):

𝑈0

𝐶𝑜𝑛𝑡𝑒𝑥𝑡1
search_class(“ModelChoiceField”)

Iteratively refine issue understanding based on latest context.
基于最新上下文，迭代式细化issue理解

NUSRI InnovFest, Suzhou, 2025 20

STRATIFIED SEARCH
分层搜索

ModelChoiceField does not have a

clean method. It likely uses

another method like validate or

to_python to validate inputs.

Next step: Examine the validate

and to_python methods of

ModelChoiceField.

Implementation of validate:

 …

Implementation of to_python:

 …

𝑈1

𝐶𝑜𝑛𝑡𝑒𝑥𝑡2
search_method_in_class(“validate”, “ModelChoiceField”)

search_method_in_class(“to_python”, “ModelChoiceField”)

Method validate simply calls the

validate method of its parent class.

to_python method is responsible …

Should adjust the error message …

𝑈2

AGENTIC DESIGN
智能体设计

• Analysis embedded inside the agent

• Could invoke tools as part of the analysis

• Cannot be accomplished simply by

mathematical analysis of code

• Cannot be accomplished simply by

natural language analysis of text

• In this example used only program

structure for analysis. More involved

analysis is possible!

NUSRI InnovFest, Suzhou, 2025 21

• 将分析嵌入智能体中

• 分析过程可以调用工具

• 无法仅靠对代码的数学分析达成

• 无法仅靠对文本的自然语言分析达成

• 这个例子仅仅分析了程序结构。更复杂

的分析完全有可能!

EXPLICIT INTENT
显式意图

NUSRI InnovFest, Suzhou, 2025 22

“UPS” AND “DOWNS” IN INNOVATION
创新中的“起”与“落”

All agents using gpt-4o

as the backend LLM.

所有智能体都使用gpt-4o
作为后端大语言模型。

NUSRI InnovFest, Suzhou, 2025 23

(v2)

USER ACCEPTABILITY IN AUTONOMOUS PROGRAM IMPROVEMENT
自主程序改进中的用户可接受性

• Signal-to-noise ratio is
important!

• Does the reviewer agent
improve signal-to-noise ratio?

If an automated tool has efficacy of 20%, does it mean the user needs to manually examine and reject the

wrong patch in the remaining 80% of the cases?
假如一个自动化工具的有效性为20%, 这是否意味着其余80%的情况中，用户需要手动检查并拒绝错误
的补丁？

“patch is accepted” => when reviewer agent

decides both test and patch are correct.

Four categories:

- True positive: accepted and correct.

- True negative: rejected and incorrect.

- False positive: accepted but incorrect.

- False negative: rejected but correct.

In practical deployment, only

send a patch if it is accepted

by reviewer.

 Higher signal-to-noise

ratio

 Greater trust !
Tot = TP+FP+TN=FN

Acc. = TP+TN / Total

Prec. = TP / (TP + FP)

Rec. = TP / (TP + FN)

NUSRI InnovFest, Suzhou, 2025 24

“补丁被接受” => 当reviewer智能体
断定测试用例和补丁均正确时

四个类别:

- 真正例: 被接受，正确
- 真负例: 被拒绝，错误
- 假正例: 被接受，错误
- 假负例: 被拒绝，正确

• 信噪比至关重要！

• Reviewer智能体能否提
高信噪比?

在实际部署中，只提交被
reviewer智能体接受的补丁
 更高的信噪比
 更高的可信度!

Nvidia CEO Jensen Huang Consumer Electronics Show (CES) 2025 unveiled advanced AI for
training agents, robots and cars.

在2025年国际消费电子展上，英伟达首席执行官黄仁勋发布了用于训练智能体、机器人及汽车的先进人工智能
技术。（ Photo by 图片来源：Artur Widak/Anadolu via Getty Images）

2025: “AI agents represent a multi-trillion $ opportunity”

2025: “ AI智能体代表着一次价值数万亿美元的机遇 ”

Integrated inside SonarQube Code Analysis tool SonarQube, which is in use by >100,000

enterprise customers for enhancing code quality and security. Continuing work.

集成到SonarQube代码分析工具 SonarQube， 被超过100,000个企业客户
用于提升代码质量和安全性

NUSRI InnovFest, Suzhou, 2025 25

AGENT: BEYOND PROMPTS: AUTOCODEROVER
智能体: 超越提示词: AUTOCODEROVER

May 18 2023: Most Influential Paper Award Talk for 2013 paper Intl. Conf on SW Engg (ICSE)

Oct 24, 2023: Started solution on Large Language Model agents for SW Engg.

 “Imagine all of the program analysis can be invoked autonomously”

Apr 8, 2024: Public announcement in X, Excitement around AutoCodeRover.

Feb 19, 2025: Acquisition by SonarSource announced, 9 am EST, 10 pm SGT.

Feb 20, 2025: Contacted for a group photo, realized there are no photos at all!!

Feb 21, 2025: Met for the first time outside work as a group, strong in team spirit !!

Crucial time in the

innovation cycle

REAL INCIDENT, ACTUAL TIMING
真实事件回放

26NUSRI InnovFest, Suzhou, 2025

2023年5月18日： 因2013年发表于国际软件工程大会（ICSE）的论文
 荣获“最具影响力论文奖”，并做主题演讲。

2023年10月24日：开始开发用于软件工程的大型语言模型智能体解决方案。
 “设想所有程序分析都能被自动调用”
2024年4月8日： 在X发布公告，AutoCodeRover引发广泛关注。
2025年2月19日： 宣布被SonarSource收购，美东时间上午9点，新加坡时间晚上10点。
2025年2月20日： 收到团体照拍摄通知，才发现根本没有合影！
2025年2月21日： 团队首次在工作以外聚会

创新流程中
的关键时刻

Haifeng AbhikMartinRidwanYuntong

Automatically
generated code
自动生成的代码

REFLECTIONS
反思

“Hello World”

1972

Linux Kernel in 2024

~30M LoC
Linux 内核 2024年约3千万行代码

~50 years 年

Programming at Scale

大规模编程

Programming with Trust

Role for Verification
可信编程

程序验证将发挥重要作用

~X years 年

Cooperative Intelligence
协作式智能

When to trust the agent?
什么时候可以信任智能体？

27NUSRI InnovFest, Suzhou, 2025

FROM CODING TO COMPLIANCE
从编程到合规

• Clarifying requirements stated at high level
(not at the issue/code level)

• Enforce those Requirements

• Show that the requirements are enforced at code level

• Provide Evidence or explanations of meeting requirements

• Security audit - beyond manual audits - related to explanations

• 澄清高层次的要求
(高于 issue / 代码层次)

• 强制执行这些要求

• 表明这些需求在代码层面得到执行

• 提供要求被满足的证据或解释

• 安全审计 – 超越人工审计 – 与解释相关

28

Understanding

Requirement

理解需求

Providing

Explanation

提供解释

Coding

编程

NUSRI InnovFest, Suzhou, 2025

29

Describe policy

描述政策

Understand

codebase

理解代码库

Decompose

requirement

分解需求

Scan & Analyze

Code

扫描 & 分析代码

Flag Violations

in Code

提示代码违规

AI agent AI智能体

Confirm & Fix

确认 & 修复

/
(Fixing can be
done by the

agent as well)

(修复也可以由

智能体完成)

Agent should have capabilities beyond coding!

智能体的能力应该不止于编写代码！

NUSRI InnovFest, Suzhou, 2025

REGULATORY COMPLIANCE
合规检查

“All personal data must be encrypted

before being stored in database.”

“所有个人数据在存储到
数据库前必须加密 ”

30

Unified agent

Handles multiple task

types without manual

configuration

Dynamically deciding

its next action like

human SWE

• Architecture exploration

• Requirements clarification

• 架构探索
• 需求澄清

• Issue resolution

• Regression testing

• Code generation

• Test generation

• Partial fix improvement …

NUSRI InnovFest, Suzhou, 2025

UNIFIED AGENT: BEYOND CODING
统一智能体: 不止于编程

• Issue解决
• 回归测试
• 代码生成
• 测试生成
• 不完全修复的改进…

统一智能体

处理多种任务类型，
无需手动配置

动态决定下一步行动，
如同人类软件工程师

31

Describe policy

描述政策

Understand

codebase

理解代码库

Decompose

requirement

分解需求

Scan & Analyze

Code

扫描 & 分析代码

Flag Violations

in Code

提示代码违规

AI agent AI智能体

Confirm & Fix

确认 & 修复

/ (Fixing can be done
by the agent as well)

(修复可以由

智能体完成)

NUSRI InnovFest, Suzhou, 2025

FROM COMPLIANCE TO SECURITY
从合规到安全

(Security

Vulnerability

CWE Types)

（安全漏洞/

CWE类型）

• Continuous Fuzzing Service:

Initiated by Google to improve the

security and stability of critical open-

source software.

• Detected over 12,000 bugs in more

than 1000+ open-source projects.

• 持续模糊测试服务: 由Google发起，
旨在提升关键开源软件的安全性和稳定性

• 在超过1000个开源软件中发现超过
12,000个缺陷

32 NUSRI InnovFest, Suzhou, 2025

FINDING VULNERABILITIES AS IT IS DONE TODAY
现有漏洞发现方法

Builder

(jenkins.io)

Upstream project
3. Sync and

build from

google/oss-fuzz

Developer

2. Commit build configs

8. Fix bugs

1. Write fuzzers

7. Notify
Issue tracker
(monorail)

GCS bucket

4. Upload

Track deadlines

Sheriffbot

ClusterFuzz

5. Download
and fuzz

6. File bugs,
verify fixes

33

Cannot use AI techniques out of the box

无法直接使用AI技术

NUSRI InnovFest, Suzhou, 2025

END-TO-END SOFTWARE SECURITY
端到端软件安全

DIGITAL INFRA. PROTECTION
数字基础设施保护

NUSRI InnovFest, Suzhou, 2025 34

基于文本的分析
将发挥作用

模糊测试
→

大语言模型引导的
随机/模糊测试

进行深入程序分析的
大语言模型智能体

大语言模型智能体

NUSRI InnovFest, Suzhou, 2025 35

Sample Current Coding agent
示例编程智能体

AI based V&V of AI generated Code
基于 AI 的 AI 生成代码验证与确认

FUTURE CODING
未来编程

Software Issue Front end
Back end
wrapper

LLM

Program
Representations

& Files

Project
structure

(Analysis)
tools

Code changes

New libraries

代码变更/新代码库

Agentic

AI-based

VALIDATION

基于智能体
AI的确认

Explanations

解释
Test

测试
Proofs

证明

How to
gain trust?

Coding Agent
编程智能体

Code Changes
代码变更

Explanations
解释

Proofs证明

Tests 测试

Intent

Generate 生成

Infer 推断

Validation Agent
确认智能体

Trigger 触发

as NL
表示为自然语言

as formal contract
表示为形式化契约

as symbolic constraint
表示为符号约束

Verification
Sub-agent

程序验证子智能体

Testing
Sub-agent

程序测试 子智能体

Decide 选择

C
o

u
n

te
r-

ex
a
m

p
le

 /
 f

ai
lu

re
s

反
例

/
测
试
失
败

(Repair Agent)
(修复智能体)

NUSRI InnovFest, Suzhou, 2025 36

AGENTIC AI-BASED VALIDATION
基于智能体AI的确认

Agentic Symbolic Execution

Input:

- Source Code (e.g. from coding agent)

Output:
- Concrete test cases (e.g. counter-examples)

- Symbolic constraints (i.e. partial intent)

Source Code
源代码

Concrete Tests
具体 测试用例

Refine
细化

Validation Agent
确认智能体

Express 表达

Symbolic Constraints
符号化 约束

Solve 求解

Interact
交互

Execution Trace
执行轨迹

Execute
执行

In any language(s)
以任何 编程语言编写

Analyze
分析

Counter
Example 反例

Crash?
是否崩溃？

(slice, coverage, call chain, …)
(切片, 覆盖率, 调用链, …)

…

NUSRI InnovFest, Suzhou, 2025 37

AGENTIC VALIDATION VIA TESTS
基于智能体通过测试进行确认

基于智能体的符号执行
输入:
- 源代码 (可以来自编程智能体)
输出:
- 具体测试用例 (违反安全要求的反例)
- 符号化约束 (代表部分的意图)
[S & P 2026]

Intent
意图

NUSRI InnovFest, Suzhou, 2025 38

Differences between technology space and commercial space on this matter!

智能体安全在技术上已经有可能，但还未广泛商用

Data Exfiltration (3)
数据外泄 (3)

Memory poisoning(1)
记忆投毒(1)

Remote Code Execution (1)
远程代码执行 (1)

Autonomy and environment interaction

Many security concerns!

许多安全隐患!

Coding Agent

编程智能体

Banking Agent

银行业务智能体

Travel Agent

旅行智能体

FROM SOFTWARE SECURITY TO AGENT SECURITY
从软件安全到智能体安全

• Automated Program Repair ~ extracting specifications

• AGENTIC AI TECH

- Re-imagining software and workflows

- Re-thinking software design, testing, coding tasks

- Software as a field of study, and as an industry !!

- Agents for trading, healthcare, CRM !

• 自动程序修复 ~ 提取规约

• 智能体AI技术
- 重新构想软件和工作流

- 重新思考软件的设计、测试和编码

- 软件作为一个研究领域，以及一个产业 !!

- 用于交易、医疗保健、客户关系管理的智能体 !

~1975:
In-house
内部开发

~2000:

SaaS

软件即服务

~2025:
Agentic AI
智能体AI

NUSRI InnovFest, Suzhou, 2025 39

TRANSFORMING INDUSTRIES
革新软件产业

Application domains

e.g. CRM 应用领域，
如客户关系管理

Software project as a
whole

将软件项目看做整体

Single software

component
单一软件组件

IVADO LLM Agent Capability workshop 40

abhik@nus.edu.sg

POINTERS TO SHARE
更多相关信息

Abhik Roychoudhury

National University of Singapore

新加坡国立大学

Opinion piece 评论文章

Agentic AI Software Engineers:

Programming with Trust

智能体AI软件工程师: 可信编程
Roychoudury et al. (2025), Communications of the ACM

	Slide 1: Agentic Ai for software: lessons in trust
	Slide 2: Love for programming 对编程的热爱 (Claude sonnet) (由claude sonnet生成)
	Slide 3
	Slide 4
	Slide 5: software industry over 50 YEARS 软件产业的50年历程
	Slide 6: The DaY of a software Engineer 软件工程师的一天
	Slide 7: Unpacking “issues”: intent 剖析“issues”: 程序意图
	Slide 8: Learnt as a School-child  小学知识
	Slide 9: May not have Learnt so far? 可能至今还未掌握?
	Slide 10: From intent to codE – reliably ! 将意图转化为代码 – 以一种可靠的方式 !
	Slide 11: TRUSTED AUTOMATIC PROGRAMMING 可信自动编程
	Slide 12: Intent from tests 从测试推断意图
	Slide 13: TRUSTED AUTOMATIC PROGRAMMING 可信自动编程
	Slide 14
	Slide 15: Issue Resolution 解决 ISSUE
	Slide 16: AutocodeRover
	Slide 17: Implicit intent 隐式意图
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Agentic design 智能体设计
	Slide 22: Explicit intent 显式意图
	Slide 23: “Ups” and “Downs” in innovation 创新中的“起”与“落”
	Slide 24: User acceptability in autonomous program improvement 自主程序改进中的用户可接受性
	Slide 25
	Slide 26
	Slide 27: Reflections 反思
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Digital Infra. Protection 数字基础设施保护
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

