
Concept-Based Automated Grading of CS-1 Programming
Assignments

Zhiyu Fan
National University of Singapore

Singapore
zhiyufan@comp.nus.edu.sg

Shin Hwei Tan
Concordia University

Canada
shinhwei.tan@concordia.ca

Abhik Roychoudhury
National University of Singapore

Singapore
abhik@comp.nus.edu.sg

ABSTRACT

Due to the increasing enrolments in Computer Science programs,

teaching of introductory programming needs to be scaled up. This

places signi�cant strain on teaching resources for programming

courses for tasks such as grading of submitted programming as-

signments. Conventional attempts at automated grading of pro-

gramming assignment rely on test-based grading which assigns

scores based on the number of passing tests in a given test-suite.

Since test-based grading may not adequately capture the student’s

understanding of the programming concepts needed to solve a pro-

gramming task, we propose the notion of a concept graph which

is essentially an abstracted control �ow graph. Given the concept

graphs extracted from a student’s solution and a reference solu-

tion, we de�ne concept graph matching and comparing of di�ering

concepts. Our experiments on 1540 student submissions from a pub-

licly available dataset show the e�cacy of concept-based grading

vis-a-vis test-based grading. Speci�cally, the concept based grad-

ing is (experimentally) shown to be closer to the grade manually

assigned by the tutor. Apart from grading, the concept graph used

by our approach is also useful for providing feedback to struggling

students, as con�rmed by our user study among tutors.

CCS CONCEPTS

•Applied computing→Computer-assisted instruction; • Soft-

ware and its engineering→ Software testing and debugging.

KEYWORDS

automated grading, programming education, concept graph

ACM Reference Format:

Zhiyu Fan, Shin Hwei Tan, and Abhik Roychoudhury. 2023. Concept-Based

Automated Grading of CS-1 Programming Assignments. In Proceedings of

the 32nd ACM SIGSOFT International Symposium on Software Testing and

Analysis (ISSTA ’23), July 17–21, 2023, Seattle, WA, USA. ACM, New York,

NY, USA, 12 pages. https://doi.org/10.1145/3597926.3598049

1 INTRODUCTION

There has been a growing interest in computer science education

in recent years. Several education initiatives (e.g., Coursera, EdX,

and Udacity) provide online courses that are taken by thousands

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0221-1/23/07.
https://doi.org/10.1145/3597926.3598049

of students all around the world. These online courses are known

as Massive Open Online Courses (MOOC), which include many

computer science courses that use programming assignments for as-

sessing students’ learning outcomes. With the increasing number of

student enrollments, the number of submitted programming assign-

ments also grows extensively throughout the year. This motivates

the need for an automated grading system that can save the time and

e�ort spent in grading these assignments. In this paper, we study

the problem of automated grading of introductory programming

assignments, which is common in �rst-year programming courses.

There exist certain inherent di�culties in grading introductory

programming assignments written by a novice programmer. Part of

the di�culty comes from the fact that these programming attempts

are signi�cantly incorrect, often barely passing any tests [31]. Yet

manual inspection of the code can reveal some degree of under-

standing of the problem by the student which should ideally be

taken into account. Overall, the test-based automated grading may

be too harsh for introductory programming assignments. In the

K-12 computing education domain, promising results have been

shown by using rubrics for grading assignments written in a vi-

sual programming environment to evaluate whether assignments

produced by students demonstrate that they have learned certain

algorithms and programming concepts [4]. Although grading based

on rubrics provides a reliable way of assessing students’ learning,

the current rubric-based grading approach in most universities still

relies either on manual grading or semi-automated grading [2],

which may be too labor intensive for the instructors and tutors.

Existing approaches in automated programming assignment

grading [14, 20, 27, 28] have several limitations. These approaches

either (1) generate a patch for the incorrect student’s submission

as feedback or (2) produce binary (Correct/Incorrect) results via

test-based grading, (3) only compare syntactic di�erences between

instructors’ reference solution and student solution (CFG-based

grading). Although feedback in the form of patches can be useful for

experienced developers or graders, prior studies show that novice

students may not know how to e�ectively utilize the generated

patches as hints, causing the increase of problem-solving time when

patches are given [31]. Meanwhile, despite the widespread adop-

tion of test-based grading approaches for online judges, the binary

results provided by the test-based grading approaches may be too

coarse-grained and may underestimate students’ e�ort. CFG-based

grading approach cannot distinguish the syntactically di�erent but

semantic equivalent implementation, which gives inaccurate results

if the student’s solution is syntactically di�erent from instructors’

reference solution. In education literature, convergent formative as-

sessment (this kind of assessment “determines if the learners knew,

understood or could do a predetermined thing”) has been shown to

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

199

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3597926.3598049
https://doi.org/10.1145/3597926.3598049

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Zhiyu Fan, Shin Hwei Tan, and Abhik Roychoudhury

1 def remove_extras(lst):

2 newlist = []

3 for i in lst:

4 if i not in newlist:

5 newlist.append(i)

6
7
8 return newlist

(a) A reference program

1 def remove_extras(lst):

2 new_lst = [lst[0]]

3 for i in lst:

4 if i in new_lst:

5 continue

6 else:

7 new_lst += [i]

8 return new_lst

(b) An incorrect student program

Test Inputs Expected Outputs Actual Outputs

[1, 1, 1, 2, 3] [1, 2, 3] [1, 2] ✗

[1, 5, 1, 1, 3, 2] [1, 5, 3, 2] [1, 5] ✗

[] [] IndexError ✗

[3, 4, 5, 1, 3]) [3, 4, 5, 1] [3, 4] ✗

(c) Test cases and actual output of incorrect student program

Figure 1: Examples from the Duplicate Elimination assign-

ment

enhance student learning by evaluating if a student knows a con-

cept [5, 23]. In contrast to formative assessment, current test-based

grading approaches may be more suitable for summative assessment

(aims to evaluate student learning) instead of improving learning.

In this paper, we present ConceptGrader, a novel automated grad-

ing approach that evaluates the correctness of students’ conceptual

understanding in their programming assignments to support con-

vergent formative assessment.

Our key insight is that introductory programming courses usually

teach only a few concepts, and these concepts map well to the topics

taught in the course syllabi. To support convergent formative assess-

ment, we introduce concept graph, a form of abstracted control-�ow

graph (CFG) where we (1) select some important (those that corre-

spond to topics covered in the introductory programming course

syllabi) nodes and edges of a CFG, and (2) translate the selected

nodes/edges into natural-language like expressions (e.g., “insert 8

to =4F;8BC” in Figure 1 denotes the statement “newlist.append(i)”).

ConceptGrader also introduces the idea of automated folding/un-

folding of concept nodes for a more abstract level matching of

concept graphs (Detail in Section ??). The proposed concept graph

can be used for automated grading by calculating a score based

on the di�erences between the concept graph for the reference

solution and that for the incorrect solution. Such abstraction al-

lows us to evaluate students’ e�orts from their comprehension to

programming concepts.

Overall, our contributions can be summarized as follows:

• We propose concept graph, an abstracted CFG that highlights pro-

gramming concepts in submissions of introductory programming

assignments. The concept graph contains expressions translated

into natural language to enhance readability, and make it more

suitable as hints to provide feedback to students. To allow more

abstract matching of programs, we introduce concept node fold-

ing where we temporarily hide complex expressions in concept

nodes for a fuzzy concept matching, and unfold (unhide) the

expressions for precise concept matching whenever we detect

a likely programming mistake within the folded concept node.

Moreover, it can be used for automated grading to provide more

accurate scores (with scores close to those given by manual grad-

ing) for introductory programming assignments.

• We present and implement ConceptGrader, a new automated

grading approach that uses the di�erences between the student

concept graph and reference concept graph to generate a score

for a given incorrect student submission. The implementation is

publicly available at https://github.com/zhiyufan/conceptgrader .

• We evaluate the e�ectiveness of ConceptGrader on 1540 student

submissions from a publicly available dataset [16]. Our experi-

ments show that compared to baselines (i.e. test-based approach

and CFG-based approach), ConceptGrader performs better in

terms of cosine similarity, root means squared error (RMSE), and

mean absolute error (MAE) score.

• We also conduct a user study to assess the usefulness of the

feedback produced by ConceptGrader. Our user study shows that

ConceptGrader outperforms existing approaches by providing

more useful feedback.

2 OVERVIEW

We give an overview of our concept-based automated grading ap-

proach by presenting a Python programming assignment for re-

moving repeated elements in a list (Duplicate Elimination). Figure 1

shows the reference solution provided by the instructor, an incor-

rect solution submitted by a student, and a set of (input, output)

pairs used to verify the correctness of each submission.

In the example in Figure 1, the student made two mistakes. First,

instead of initializing an empty list, the student assumed that the

input lst is not empty and initialized the new list with the given

value at line 2. This incorrect assumption causes the third test case in

Figure 1(c) to fail. Second, the student has an incorrect indentation

of the return statement at line 8, which causes early termination of

the program at the end of the second iteration and fails the other

three test cases. As all test cases fail, a test-based grading approach

will give the student a zero score for the submission. Compared to

the tutor’s manual inspection which gives 80% scores, the test-based

grading approach underestimates the student’s e�ort.

We now describe how we address the problem of inaccurate

grading with a concept-based approach.

Concept Graph Abstraction. Given the reference and incorrect

student program in Figure 1, we construct the control �ow graph

(CFG) for each program. For each CFG, we follow concept abstrac-

tion rules described in Section 3 to extract the programming con-

cept represented by each basic block. Figure 2 shows the CFG and

concept graph of the student program. The student program �rst

declares a new list in block 1, we abstract it as declare new_lst. Then

in block 2, the student uses a for-loop to iterate through elements

in the input list lst in block 2, we use a concept iterate i through

lst to show his/her understanding. In block 3, the reference pro-

gram and student program use reverse conditions to check whether

i exists in the previously declared new_lst. Although the opera-

tor is di�erent and the exit edges point to the reverse direction,

the two if-conditions represent the common idea of checking for

an element in a list (represented by containment relation of i and

new_list). At a high level, block 4 aims to insert an element into a

list. One can perform the insertion in many ways, including invoke

200

https://github.com/zhiyufan/conceptgrader

Concept-Based Automated Grading of CS-1 Programming Assignments ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Func Entry

newlist = []

if i not in
newlist

for i in lst

newlist.append(i)

False
return

newlist
True

1

2

3

4

Func Entry

new_lst = [lst[0]]

if i in
new_lst

for i in lst

new_lst+= [i]

False
return

new_lst

True

1

2

3

4

Func Entry

declare newlist

iterate i
through lst

insert i to newlist

return
newlist

1

2

3

4

Func Entry

declare new_lst

check containment
relation of i and new_lst

iterate i
through lst

insert i to new_lst return
new_lst

1

2

3

4

declare newlist

iterate i
through lst check containment

relation of i and newlist

iterate i
through lst

return
newlist

check containment
relation of i and newlist

insert i to newlist

iterate i
through lst

insert i to newlist

declare newlist

check containment
relation of i and newlist

iterate i
through lst

insert i to newlist

return
newlist

CFG of reference program in Fig 1(a) CFG of incorrect program in Fig 1(b)

Concept Graphs

Common Concept Subgraphs

5 5

1

2

2

2

3

3

4 4

5

1

2

3

4

5

5

5
check containment

relation of i and newlist

(a) CFGs versus concept graphs (CGs) of the reference program and incorrect program listed in Fig 1.

(b) Score and feedback given by the three approaches for the incorrect solution in Fig 1.

Approach Score Feedback

Test-based 0/100 The solution passes 0/4 test cases

CFG-based 20/100 The solution makes mistakes in “new_lst =[lst[0]]”, “i in new_lst”, new_lst += [i]”

Concept-based 87/100 The solution makes mistakes in “declare new_lst” and “return new_lst”

Figure 2: Examples from the Duplicate Elimination assignment

built-in functions such as append, extend, and insert with di�erent

arguments, or directly use the list concatenation operator “+” to

insert elements to end of a list. The student program in Figure 1

concatenates new_lst with i, while we abstract the statement as

insert i into new_list. We construct the reference concept graph

using a similar strategy. Compared to the student solution that uses

list concatenation with augmented assignment “+=” at line 7, the

reference program invokes the append method at line 5.

Concept Graph Matching and Grading. Before matching student

concept graph and reference concept graph, we build a bijective

variable naming relation of the two programs to avoid mismatch

caused by di�erent variable names (e.g., {=4F;8BC : =4F_;BC, 8 :

8, ;BC : ;BC}) using dynamic execution approach proposed in [1, 16,

28]. Given reference concept graph ��A4 5 and student concept

graph��BCD , ConceptGrader searches for their common subgraphs.

We �rst �nd a mapping for concept nodes in ��A4 5 and ��BCD

if they represent the same concept. In the motivating example,

the concept node matching result is {1 → 1, 2 → 2, 3 → 3, 4 →

4, 5 → 5}. If there exists an edge 4A4 5 = (=8 , = 9) in ��A4 5 , and

4BCD = (=: , =;) in ��BCD , where =8 matches =: and = 9 matches =; ,

we consider 4A4 5 and 4BCD as common edges. We derive all common

edges in ��A4 5 and ��BCD , and construct common subgraphs.

The bottom sub�gure in Figure 2 shows the common subgraphs

of the reference program and the incorrect student program. To im-

prove the accuracy of auto-grading based on concept graph match-

ing, we employ an auto-folding and unfolding mechanism of con-

cept graph to detect the di�erences between the reference program

and the incorrect student program. As seen in Figure 2, although

the student implements the declaration concept correctly, the way

of new_lst initialization in concept node 1 is incorrect. Refer to

Section 4.2 where we describe how we penalize this mistake via

automated concept unfolding.

The concept node 5 in Figure 2 is disconnected from the com-

mon concept subgraph because the reference concept graph does

not contain any edge from node 4 to node 5. The di�erence be-

tween the two concept graphs (the top sub�gure in Figure 2) in

the corresponding edges of concept node 5 helps ConceptGrader

to identify the mistake at line 8 of Figure 1(b). Considering the

mismatched edges of concept node 5 and the incorrect initialization

of concept node 1 (we consider this as a partially matched node),

ConceptGrader assigns 45 points for the matching concept nodes

(4.5 nodes are matched out of 5 concept nodes in total), and 42

points for the matching concept edge (5 edges are matched out of

6 concept edges in total), leading to a total score of 87. Compared

to the CFG-based approach where only the CFG nodes 2 and 5 are

matched, ConceptGrader’s score is more accurate.

3 PROGRAMMING CONCEPT ABSTRACTION

Programming topics and mini-Python. Our main insight to model

the input Python programs is that although di�erent institutions

and online learning platforms o�er a great variety of CS-1 introduc-

tory programming courses [8, 9, 22, 25], the programming topics

taught in these courses are often the same. Speci�cally, the common

topics covered in these courses include Expressions (e.g., arithmetic

expressions), Variables, Simple statement (e.g., assignment), Con-

ditional (if -statement), Loops (for-statement and while-statement),

201

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Zhiyu Fan, Shin Hwei Tan, and Abhik Roychoudhury

Functions, Lists, and Tuples. Our goal is to design a concise represen-

tation of a Python program that models these programming topics.

Our design is mainly based on: (1) the o�cial Python 3 Abstract

Syntax Grammar [11] that serves as a basis for our syntax rules,

and (2) the key CS-1 programming topics that should be included

in our concise representation. We select syntactic elements from

the reference grammar that are also included in the common topics

(i.e., we exclude advanced syntactic features such as lambda, yield,

async and await expressions). Figure 3 shows the syntax for our

Mini-Python grammar that supports programming topics studied

in introductory Python courses. The grammar includes basic AST

node types: Expression, Operators, and Statement. Each node type

consists of multiple programming concepts.

Abstraction rules. Based on the mini-Python grammar in Fig-

ure 3, we derive a set of abstraction rules to translate the syntactic

elements in the grammar. Table 1 shows our set of abstraction rules.

We follow two design principles for designing abstraction rules:

Human readable: We translate each syntactic element to natural

language to generate human-readable feedback that can be used

for explaining incorrect programming concepts. Figure 2(b) shows

an example feedback generated by ConceptGrader.

Mitigating the program aliasing problem: Wemitigate the pro-

gram aliasing problem (i.e., semantically equivalent programs hav-

ing several syntactically di�erent forms [32]) by mapping several

semantically equivalent syntactic elements to the same translation.

For example, we translate G = G + [8] and G+ = [8] into “insert i to

x”. Mitigating the program aliasing problem helps in increasing the

accuracy in matching two semantically equivalent concept nodes.

�G?A4BB8>= 4 :: = 4 1>>;>? 4 | 4 >? 4 | D>? 4 | 4 2>? 4

| 4 (4, ..., 4) | 2>=BC | 83

| {4 : 4, ..., 4 : 4 } | {4, ..., 4 } | [4, ..., 4] | (4, ..., 4)

| 4 [4] | 4 : 4 : 4

(C0C4<4=C B :: = 4 | B ; B | 4 = 4 | 4 >? = 4

| for 4 in 4 : B | while 4 : B | if 4 : else : B

| continue | break | return 4

�>>;$? 1>>;>? :: = and | or

�8=0A~$? >? :: = + | - | * | / | % | **

*=0A~$? D>? :: = ~ | not | UAdd | USub

�><?0A4$? 2>? :: = == | != | < | <= | > | >=

| is | is not | in | not in

Figure 3: Syntax ofmini-Python based on the abstract Python

grammar [11]

Concept graph construction. We �rst de�ne the notion of a con-

cept graph for a program. The nodes of the concept graph are called

concept nodes which are de�ned as follows:

De�nition 1 (Concept Node). A concept node 2==(21, 22, . . . , 28)

in a program ? is a set of programming concepts, where each concept

node 2= is abstracted from a basic block 1 = (B1, B2, . . . , B 9) in control-

�ow graph of ? that ∀2 ∈ 2=, ∃B ∈ 1 (2 ≡ 5 (B)), where 5 is one of the

abstraction rules in Table 1.

De�nition 2 (Concept Edge). A concept edge 24=(2=1, 2=2) in a

program ? is a transfer of control �ow from a concept node 2=1 to 2=2.

Table 1: Human-Readable Abstraction Rules

Rule CategorySub-categoryExample

Expression

BoolOp G and ~ → logical relation of x and y

BinOp G + ~ → arithmetic relation of x and y

UnaryOp not G → not x

Compare

G == ~ → equivalence relation of x and y

G > ~ → relational relation of x and y

G in ~ → containment relation of x and y

Call
;4=(8) → call of len

G .0??4=3 (8) → insert i to x

Subscript G [2] → element of x

Slice G [1 : 3] → subrange of x

Simple

Statement
Assign

G = ~ → declare x

G = [] → reset x

G = G + 2 → add x with constant

G = ~ + I → update x

G = G + [8] → insert i to x

AugAssign
G+ = 2 → add x with constant

G+ = [8] → insert i to x

Return A4CDA= expr → return abstract(expr)

Control
Statement

If 8 5 expr → check abstract(expr)

For 5 >A i 8= lst → iterate i through lst

While Fℎ8;4 x < y → iterate compare relation

Each concept edge 24 is abstracted from the corresponding edge 4 in

the control-�ow graph of ? . Speci�cally, our abstraction preserves the

control �ow transitions of 4 but removes the true/false label from the

conditional edges of 4 .

De�nition 3 (Concept Graph). Let�� (?) = (#, �) be the concept

graph of p, �� (?) is an abstracted graph of ��� (?), where each

node = ∈ # represents a concept node, and each concept edge 4 =

(=8 , = 9) ∈ � corresponds to a possible transfer of control from concept

=8 to concept = 9 .

Given a control-�ow graph ��� of program ? , we construct a

concept graph �� of ? by following Algorithm 1. For each edge

4 = (1BA2 , 1C6C) ∈ ��� , we abstract the source and target basic

blocks separately, and re-construct a concept edge 24 = (2BA2 , 2C6C).

Given a basic block 1 as input, the abstract(1) procedure produces

the concept node for 1 by traversing the AST of each statement

to convert each statement to a programming concept. Starting

from the parent node of each leaf node, ConceptGrader uses the

corresponding abstraction rules fromTable 1 (line 19 in Algorithm 1)

for all non-leaf nodes via a bottom-up traversal until the AST node

is the root node or it has been previously abstracted.

Abstracting concept edges. For each edge 4 = (1BA2 , 1C6C) ∈ ��� ,

we abstract the source and target basic blocks separately, and re-

construct a concept edge 24 = (2BA2 , 2C6C). In a traditional control

�ow graph, the edges are usually annotated with a label represent-

ing the conditional branches (e.g., “True” and “False” in the CFGs in

Figure 2). In contrast, in a concept graph �� , we abstract away the

true/false label but we still keep the actual predicates in a control

�ow edge 4 if the source node of 4 includes a conditional statement.

This abstraction is based on our observation that students often

implement conditional statements in various syntactically di�erent

but semantically equivalent ways.

202

Concept-Based Automated Grading of CS-1 Programming Assignments ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Algorithm 1 Concept Graph Construction

Input: Control-�ow graph of program ? ���

Output: Concept graph of program ? ��

1: procedure ConstructConceptGraph(CFG)

2: Let�� be the concept graph

3: for basic blocks (1BA2 , 1C6C) in���.4364B () do

4: 2BA2 = abstract(1BA2)

5: 2C6C = abstract(1C6C)

6: ��.033�364 (2BA2 , 2C6C)

7: return��

8: procedure abstract(1)

9: Let 2= be a concept node, E8B8C43 be a list of abstracted AST nodes

10: for BC<C in basic block 1 do

11: for ; in getLeafASTNodes(BC<C) do

⊲ abstract non-leaf node

12: ?=>34 = getParent(;)

13: 2 = abstractNode(?=>34, E8B8C43)

14: E8B8C43.033 (?=>34)

15: 2=.033�>=24?C (2)

16: return 2=

17: procedure abstractNode(n, visited)

18: Let 2 be a programming concept

19: 2 = abstractRules(=) ⊲ abstract using rules in Table 1

20: if foldable(2) then

21: 2 = fold(2) ⊲ fold by hiding the content of node

22: if isRootNode(=) or = ∈ E8B8C43 then

23: return 2

24: return abstractNode(getParent(=),visited)

Concept node folding. Automated source code folding is a tech-

nique that automatically creates a code summary by hiding unim-

portant code elements in a program that are not useful and helps

developers to get an overview idea of the program on �rst viewing.

It has shown promising results in the context of source code summa-

rization to optimize the similarity between the code summary and

the source code [12]. Inspired by the idea of source code folding in

code summarization, we introduce the idea of concept node folding

where we temporarily ignore part of the complex expressions in

a concept node. The folded concept nodes are unfolded until an

automated repair engine detects that patches exist for the folded

nodes when matching reference and student concept graphs (refer

to Section 4.2 for the details). Given the AST of the expressions in

a statement, we de�ne concept depth as the number of times that

abstraction rules are applied such that the AST tree depth is com-

pressed to 1. Given a�� (?), we say a concept node to be foldable if

the concept node it represents has concept node depth>2. Speci�cally,

ConceptGrader hides the content of a node if it is foldable (lines

20–21 in Algorithm 1). By hiding the content of a concept node with

complex expressions, our approach is essentially excluding parts of

a complex expression during concept graph matching. In this case,

concept folding helps us to abstract away the irrelevant di�erences

(i.e., di�erent but correct implementation) between the reference

program and the student program. The folded concept node will

be unfolded only when our approach detects that a di�erence in

the reference program and student program is related to a �x in

the corresponding concept node in the student program (the �x is

generated by an automated program repair engine [16]).

Algorithm 2 Concept Graph Matching

Input: Reference concept graph�A , Student concept graph�B , Variable

mapping of reference program and student program E"

Output: The matched subgraphs BD16A0?ℎB

1: procedure GraphMatching(�A ,�B , E")

⊲ dict of matched concept nodes and list of edges

2: =>34�82C, 4364B = {}, []

3: for =B in�B .=>34B () do

4: =A = �ndNodeInGraph(�A , =B , E")

⊲ update dictionary for newly matched nodes

5: if =A ∉ =>34�82C .E0; () then

6: =>34�82C [=B] = =A

7: for (=B , =A) in =>34�82C do

8: #B , #A = listOfNeighbors(=B), listOfNeighbors(=A)

9: #
′
= �ndMatchedNodes(#B , #A , =>34�82C)

10: 4364B.033�364B (=B , #
′
)

11: BD16A0?ℎB = merge(4364B)

12: return BD16A0?ℎB

4 GRAPH MATCHING AND GRADING

Given concept graphs of reference solution and student solution

��A4 5 and ��BCD , we perform graph matching to assess how the

intention of a student solution matches the reference solution at the

concept level. Finding the maximum common subgraphs between

two graphs is a NP-complete problem [6]. However, students’ pro-

grams in CS-1 education context are often small. We �nd common

subgraphs by iterating all common edges and then connect edges

together via connected components to get all subgraphs. The graph

matching algorithm consists of two phases. First, we construct a

set of subgraphs to represent the common concepts of ��A4 5 and

��BCD based on their common concept nodes and edges. Second,

we introduce the idea of an automated concept unfolding approach

to distinguish the minor di�erence between two matched concept

nodes to improve match accuracy further.

4.1 Concept Graph Matching

The goal of concept graph matching phase is to �nd an initial

concept-matching relation of reference and student solution at a

high level. For each concept node in the student concept graph, we

�nd a concept node from the reference concept graph that (1) rep-

resents the same programming concepts category and (2) involves

mapped variables of the student concept node in the abstraction.

Then, ConceptGrader identi�es the neighbor nodes #B and #A

for matched concept node pairs (=B : =A) in nodeDict and �nds

matched nodes of #B and #A by checking nodes =
′

B ∈ #B , whether

=>34�82C [=
′

B] == =
′

A and =
′

A ∈ #A . For all nodes =
′

B ∈ #B that satisfy

the condition, we consider 4 = (=B , =
′

B) as a matched edge and add

it into list of matched edges edges (lines 7–10 in Algorithm 2). For

each pair of edges (i.e., 41=(BA21, 3BC1) and 42=(BA22, 3BC2)) in edges,

ConceptGrader then merges 41 and 42 into a subgraph if BA21 ==

3BC2 or 3BC1 == BA22 (line 11 in Algorithm 2). Note that standalone

concept nodes (e.g., concept node 5 in Figure 2) and edges might

exist, which eventually lead to a set of subgraphs.

203

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Zhiyu Fan, Shin Hwei Tan, and Abhik Roychoudhury

4.2 Automated Concept Unfolding

As mentioned in Algorithm 1, we construct the concept graph at a

high level of abstraction and fold concept nodes to avoid exposing

details, which allows more �exible matching. However, when we

match the student concept graph with the reference concept graph,

we may need to unfold certain concept nodes on-the-�y during

the matching. This is because for the concept nodes in student

program which contain mistakes, the folding process may mask

those mistakes by showing only high-level concept.

In the example of Figure 2, the reference and incorrect student

programs have the same programming concept declare newlist in

folded student concept node 2=B1, but the speci�c values assigned

to the two newlist variables are di�erent. In this case, the folded

concept node fails to capture the di�erences in terms of the declared

values, so ConceptGrader assigns an overestimated score to the

student program.

To assess student programs more precisely, the details of concept

nodes with mistakes need to be explored by unfolding. We leverage

program repair engine to get patches for each incorrect student

program. Our intuition is that if a patch of the incorrect student

program exists within a folded concept node 2=, then this indicates

that 2= contains a programming mistake that needs to be �xed, but

the mistake was hidden because of folding.

When a program repair engine detects a patch exists for a student

concept node, the unfolding mechanism is triggered to expand the

previously folded content of both the student concept node and the

matching reference concept node. Then, ConceptGrader deducts

scores by performing detailed matching of each mistake made in

the student concept node.

Consider the example in Figure 1 where the program repair en-

gine generates a patch =4F_;BC = [;BC [0]] → =4F_;BC = [] for the

concept node declare new_list. As a patch exists within the concept

node of the incorrect student program, ConceptGrader unfolds the

concept node of incorrect program into {“declare new_list”, “ele-

ment of lst”}, while the corresponding concept node of the reference

program still remains unchanged. Consider another example with

incorrect control-�ow transition in our motivating example (Line 8

in Figure 1(b)). Unfolding is not triggered in this example because

the patch is meant for �xing a concept edge, and our approach

in Algorithm 2 is able to detect this discrepancy by producing a

separate concept subgraph with only one concept node ("return

newlist" in Figure 2).

4.3 Concept Based Grading

Our goal is to compute score for each matching graph �<0C2ℎ43

between the student concept graph �B and the reference concept

graph �A , so as to compute the total score for the student program.

We calculate the score of a matching graph�<0C2ℎ43 by comparing

the concept node similarity and concept edge similarity between

�B and �A . Algorithm 3 shows the overall grading work�ow. Con-

ceptGrader �rst constructs concept graphs �B for student program

%B and�A for reference program %A , then it matches�B and�A with

the help of a variable mapping relation of %B and %A to get the list of

matched subgraphs<0C2ℎ43!8BC by following Section 4.1 (Lines 2–

5). runAPR invokes program repair engines to generate ?0C2ℎ4B for

the incorrect student program, which involves automated concept

unfolding as described in Section 4.2.

For each�<0C2ℎ43 in<0C2ℎ43!8BC , we traverse all concept node

2= and extract the folded concept node pair (2=B , 2=A) representing

student concept node 2=B and reference concept node 2=A . Then,

ConceptGrader unfolds 2=B , 2=A to get detailed content if the auto-

mated program repair engine has produced patches for the corre-

sponding 2=B (Lines 13–15). By comparing all concepts in 2=B and

2=A , we collect a list of concepts<0C2ℎ� that exist both in 2=B and

2=A , and C>C0;� that represents a list of all concepts in 2=A (Line 16).

Speci�cally, the score of a matching graph �<0C2ℎ43 consists

of two parts: (1) average concept node similarity and (2) average

concept edge similarity. Given�<0C2ℎ43 , we de�ne average concept

node similarity of �<0C2ℎ43 as the average number of matching

concept nodes in the reference concept graph �A , calculated using

the equation below:

2>=24?C#>34(8<(�<0C2ℎ43) =
1

=>34(8I4 (�A)

=
∑

8=1

<0C2ℎ� (2=8)

C>C0;� (2=8)

where= denotes the number ofmatching concept nodes in�<0C2ℎ43 ,

<0C2ℎ� represents concepts that exist in student concept node 2=B
and reference concept node 2=A , C>C0;� denotes all concepts in 2=A ,

and nodeSize(�A) denotes the number of nodes in �A .

We de�ne average concept edge similarity of �<0C2ℎ43 as the

number of matching concept edge in the reference concept graph

�A , calculated using the equation below:

2>=24?C�364(8<(�<0C2ℎ43) =
4364(8I4 (�<0C2ℎ43)

4364(8I4 (�A)

where 4364(8I4 (�) returns the number of edges in a graph � (e.g.,

edgeSize(�<0C2ℎ43) denotes the number of edges in �<0C2ℎ43).

Finally, we compute the �nal score of the student program %B as

the sum of scores for all matched concept subgraphs �<0C2ℎ43 in

between �A and �B . The equation is shown below:

B2>A4 (%B) =
U

2
×

<
∑

8=1

(2>=24?C#>34(8<(�8)+2>=24?C�364(8<(�8))

In this equation, U represents the total score of the programming

problem (usually determined by the instructor),< is the number

of graphs in the list of matched subgraphs<0C2ℎ43!8BC and �8 is a

matched concept subgraph in<0C2ℎ43!8BC .

Feedback generation. ConceptGrader generates feedback by point-

ing out (1) missing concepts, and (2) problematic concepts (“...makes

mistakes...” in Figure 2). Speci�cally, ConceptGrader identi�es miss-

ing concepts by checking if (1) the concept nodes exist in reference

concept graph, but (2) a matching node cannot be found in stu-

dent concept graph. ConceptGrader considers the matched student

concept nodes as problematic concepts if (1) concept nodes exist

in reference concept graph and have matching concept nodes in

student concept graph, but the unfolding mechanism indicates

that a programming mistake exists, or the transfer relations of the

matched concept nodes are di�erent (e.g., concept node 5 in Fig-

ure 2 is shown as a mistake in the generated feedback). Instead

of providing feedback via patches (prior study show that novice

students may not know how to e�ectively utilize the generated

patches as hints [31]), our feedback highlights the wrong concepts

204

Concept-Based Automated Grading of CS-1 Programming Assignments ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

to promote active learning by asking “how can you �x the code

here?”.

Algorithm 3 Overall Grading Work�ow

Input: Student program %B , Reference program %A , Test suite) ,

Total score U

Output: The �nal B2>A4

1: procedure Grade(%B , %A ,) , U)

2: �B = constructConceptGraph(%B) ⊲ Algorithm 1

3: �A = constructConceptGraph(%A) ⊲ Algorithm 1

4: E" = variableMapping(%B , %A ,))

5: <0C2ℎ43!8BC = graphMatching(�A , �B , E") ⊲ Algorithm 2

6: ?0C2ℎ4B = runAPR(%B , %A ,))

7: B2>A4 = 0

8: for �<0C2ℎ43 in<0C2ℎ43!8BC do

9: B2>A4 += computeScore(�<0C2ℎ43 ,�A)

10: return U × B2>A4

11: procedure computeScore(�<0C2ℎ43 ,�A)

12: for concept node 2= in �<0C2ℎ43 .=>34B do

13: 2=B , 2=A = �ndConceptNode(2=)

14: if hasPatches(?0C2ℎ4B , 2=B) then

⊲ unfold by expanding the content of node

15: 2=B = unfold(2=B)

16: 2=A = unfold(2=A)

17: <0C2ℎ� , C>C0;� = compareConceptNode(2=B , 2=A)

18: 2>=24?C#>34(8< += <0C2ℎ�
=>34(8I4 (�A)×C>C0;�

19: 2>=24?C�364(8< = 4364(8I4 (�<0C2ℎ43)/4364(8I4 (�A)

20: return (2>=24?C#>34(8< + 2>=24?C�364(8<) / 2

5 EVALUATION

We evaluate ConceptGrader by addressing the following research

questions:

RQ1: How does ConceptGrader perform in terms of grading accu-

racy, as compared to baseline approaches?

RQ2: How does test failure rate a�ect performance of Concept-

Grader and baseline tools?

RQ3: What are the reasons for ConceptGrader’s incorrect grading?

Implementation. We implemented the proposed approach in the

tool ConceptGrader. We choose Refactory [16] as the automated

program repair tool invoked during unfolding because it has shown

promising results in �xing introductory assignments written in

Python, particularly with respect to a reference correct solution.

Similar to prior evaluations of approaches designed for program-

ming assignments that sample additional reference solutions from

correct students’ submissions [1, 14, 16, 28], ConceptGrader fol-

lows the procedure of prior work [28] that selects �ve programs

from correct students’ submissions as additional reference solu-

tions to mitigate the problem when students’ implementation and

reference’s implementation use a di�erent solving approach. To

select �ve additional reference programs as representatives of most

student programs, we (1) run Clara [14] to cluster correct student

submissions, and (2) select one representative program from the

top-5 clusters with most student programs. If an instructor’s ref-

erence solution is the same as one of the �ve additional reference

solutions, we select the instructor’s reference solution and four

other reference solutions. Then, ConceptGrader compares a stu-

dent program against all reference solutions and selects the highest

score as the �nal score. ConceptGrader currently supports pro-

grams with Python 3.10. We construct CFG using staticfg [7] and

further customize it to build a concept graph.

Dataset. We evaluate ConceptGrader on �ve assignments from

a CS-1 Python dataset used in the prior evaluation of introductory

programming assignment [16]. For each programming assignment,

the instructor prepared a reference solution and a test suite that

evaluates students’ correctness. Other datasets used in previous

work [14, 28, 31] are either not publicly available or use di�erent

programming languages (e.g., C). Our concept abstraction rules

currently do not support all programming language constructs (e.g.,

lambda expression). We exclude submissions with unsupported

features, and trivial student programs without any real implemen-

tation (i.e., programs with less than three lines of code) from our

evaluation. In total, we have 1540 incorrect submissions remaining.

Ground truth construction. The Refactory dataset [16] uses ex-

ecution results of tests as feedback to students, and it does not

have the ground truth score (the correct score to be assigned for an

assignment) for each submission. We invited eight senior Computer

Science undergraduate students who have experience working as

teaching assistants to be the annotators for grading those incorrect

submissions. We provide the annotator with the problem descrip-

tion, instructors’ reference solution, and instructors’ test suite. We

asked annotators to run test cases and grade the submissions by

functionality. To provide freedom in grading, we did not mention

any other steps (e.g., using the execution results of tests).

To mitigate potential grading bias, annotators are unaware of the

existence of ConceptGrader, and each submission is graded by two

annotators, and we asked each annotator to grade each submission

out of the same total score of 100 (U=100 in the last equation in

Section 4.3). If the scores given by the two annotators di�er less

than 10, we take their average as the ground truth score. Otherwise,

a third annotator participates in the discussion until they reach a

consensus. We use the same ground truth for evaluating RQ1–RQ3.

Baselines. We compare ConceptGrader against two baselines:

(1) test-based approach [10, 15, 17, 18, 26, 29], and (2) CFG-based

approach [27]. We compare with the test-based approach because

it is the most widely used approach. To ensure fair comparison,

we provide the same set of test cases to the test-based approach

and the program repair engine used in our unfolding (described

in Section 4.2). We do not compare ConceptGrader against the

recent CFG-based automated grading technique [27] because (1)

its implementation targets C programming assignments where

ConceptGrader focuses and is evaluated on Python programming

assignments, and (2) their approach can only be used to grade cor-

rect programs (passing all tests) as we con�rmed with the authors,

where ConceptGrader focuses more on evaluating incorrect pro-

grams. To ensure a fair comparison, we implemented a CFG-based

baseline by removing concept abstraction, concept graph construc-

tion, and concept folding/unfolding from ConceptGrader (i.e., we

205

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Zhiyu Fan, Shin Hwei Tan, and Abhik Roychoudhury

keep the variable mapping to allow CFG-based baseline to handle

di�erent naming styles). Moreover, we do not compare with Auto-

Grader because it only returns a binary correct/incorrect based on

path deviation [20].

The goal of automated grading is to automatically assign a score

for a student program such that tutors can directly accept it or

minimally adjust it. We use three metrics: (1) Cos-sim (cosine simi-

larity), (2) RMSE (root means squared error), and (3) MAE (mean

absolute error) to evaluate the distance between auto-generated

scores and tutors’ ground truth scores. Given the auto-generated

and ground-truth scores for all incorrect student programs, Cos-sim

evaluates their cosine similarity in the normalized vector space.

Given the ground truth score~8 , the auto-generated score ~̂8 , and

N samples, their equations are:�>B−B8<(~, ~̂) =
~ ·~̂
|~ | | ~̂ |

,'"(� (~, ~̂) =
√

1
#

∑#
8=1 (~̂8 − ~8)2, and"�� (~, ~̂) =

∑#
8=1 |~8 − ~̂8 |

RMSE and MAE are often used to evaluate the di�erences be-

tween values predicted by a model [30]. They represent the absolute

closeness of auto-generated scores and ground-truth scores by com-

puting their standard deviation and absolute distance. Lower RMSE

and MAE values indicate better performance.

5.1 RQ1: Overall Grading Accuracy

Table 2 shows the results of all incorrect student programs from the

�ve selected assignments [16]. On average, ConceptGrader outper-

forms all baseline approaches by achieving Cos-sim at 0.92, whereas

test-based approach and CFG-based approach achieve 0.81 and 0.79

for Cos-sim, respectively. Compared to the two baseline approaches,

ConceptGrader produces the lowest RMSE (30.41) and MAE (22.93)

values, which improves the result of test-based approach by 30%

and 29% and the result of CFG-based approach by 41% and 49%, in

terms of RMSE and MAE. The low average RMSE and MAE values

indicate that ConceptGrader is e�ective in predicting the ground

truth scores for programming assignments.

It is worthwhile to mention that the grading accuracy of test-

based approach in Sequential search is better than the other four

assignments. We analyzed the reason for the higher accuracy of

test-based approach in “Sequential search” task. Table 3 shows that

around 59.3% (323/544) student programs pass more than 75% of

test cases in “Sequential search”, whereas the ratio on the other

four assignments is 19.0% on average. Passing more test cases of-

ten indicates better quality of a program. When a program passes

majority of test cases, tutors also tend to assign relatively high

scores. However, if a program fails majority of test cases, it does

not necessarily mean the program is completely incorrect because

even a subtle mistake can cause di�erent behavior.

Average time taken. In terms of the average time taken to gener-

ate a score for a student program, test-based grading is the fastest as

it only requires running the student program against all test cases.

ConceptGrader is slower than other approaches because it may

need to invoke program repair engine several times to generate

patches for concept unfolding in the �nal grading process. Overall,

the average time taken 35.49s is acceptable as prior study shows

that human tutors often take 100 seconds to grade one student

submission [31].

E�ectiveness of concept abstraction and concept unfolding. Al-

though ConceptGrader shows better grading accuracy compared to

the two baseline approaches, it is worthwhile to investigate the ef-

fectiveness of each component in ConceptGrader. We implemented

another version of ConceptGrader denoted as CG-wo-f by remov-

ing concepts unfolding (described in Section 4.2). We �rst compare

CFG and CG-wo-f to show the impact of automated concept ab-

straction. The di�erence between CFG and CG-wo-f is that CFG

matches CFG of student’s program and CFG of reference program

by comparing the source code in basic blocks, whereas CG-wo-f

�rst applies the abstraction rules in Table 1 for basic blocks in CFG

of student’s program and CFG of reference program to construct

corresponding concept graphs, then matches nodes in student con-

cept graph and reference concept graph. Table 2 shows that with

concept abstraction and concept graphs, CG-wo-f improves Cos-

sim over CFG-based approach by 0.12, and reduces RMSE and MAE

over CFG-based approach by 19.59 (38.9%) and 18.96 (42.3%) respec-

tively. In addition, CG-wo-f has almost no overhead regarding time

taken to grade a student program (average time taken is 5.94s).

Based on CG-wo-f, CG takes advantage of patches generated by

automated program repair engine (Refactory) as hints to identify

students’ mistakes that have been abstracted in automated concept

folding process, and unfolds those students’ concepts to compare

in detail to capture those minor mistakes. The comparison between

CG and CG-wo-f shows the impact of automated concept unfold-

ing. Overall, the result of Cos-sim does not change much. This is

because ConceptGrader with folding and unfolding is a �ne-tuning

procedure. When a folded concept node in student concept graph

�nds a matching in reference concept graph but Refactory reveals

that a patch is required for the concept node, ConceptGrader still

assigns partial scores based on the coverage of matching unfolded

concepts in the concept node. The usefulness of folding and unfold-

ing is shown by the lower RMSE and MAE values (i.e., the values

improved by 5.4% and 11.3%, respectively). This means that CG’s

grading has less discrepancy with respect to the tutors’ ground

truth compared to CG-wo-f.

5.2 RQ2: Relation with Test Failure Rate

Our intuition of designing ConceptGrader is that in introductory

programming assignments, even a simple mistake could fail many

tests within the test suite, which leads to a test-based grading ap-

proach that may underestimate students’ understanding and e�ort.

As Table 2 shows the overall grading accuracy of each approach on

all incorrect student programs, we are also interested in investigat-

ing the e�ect of test failure rate (percentage of failing tests in the

entire test suite for an assignment) on grading accuracy. We divide

all incorrect student submissions (we consider a student submission

as incorrect if test failure rate > 0) into four groups based on their

test failure rate (0%–25%, 25%–50%, 50%–75%, and 75%–100%). Fig-

ure 4 shows the grading accuracy of all four approaches regarding

di�erent test failure rates.

For all the evaluated metrics (Figures 4(a), 4(b), and 4(c)), our

results show that when test failure rate is low (0–50%), test-based

grading tends to be more e�ective. However, as test failure rate

increases, the performance of test-based grading downgrades. In

contrast, the performance of ConceptGrader tends to be stable as the

206

Concept-Based Automated Grading of CS-1 Programming Assignments ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Table 2: Automated grading results of four approaches for incorrect student submissions on �ve assignments from the

Refactory dataset[16]. The columns Test and CFG denote test-based grading and CFG-based grading, and CG and CG-wo-f show

ConceptGrader and ConceptGrader without concept unfolding. The column “# of Inc. Sub.” shows the number of incorrect

submissions for each assignment, whereas the column “# of TC” denotes the number of test cases for each assignment, the

column LoC represents the line of code. The columns “Cos-sim”, “RMSE”, and “MAE” represent the cosine similarity, root

means squared error, and mean absolute error between automatically generated and ground truth scores. The columns “Average

Time Taken (s)” denotes the average time taken in seconds to produce the score and feedback for a student submission in each

assignment. We highlight the best result in bold.

Assignment # of Inc. # of TC LoC Cos-sim RMSE MAE Average Time Taken (s)
Sub. Test CFG CG-wo-f CG Test CFG CG-wo-f CG Test CFG CG-wo-f CG Test CFG CG-wo-f CG

Sequential search 544 11 10 0.95 0.79 0.93 0.94 26.70 56.91 32.19 30.26 17.41 51.03 25.03 23.62 4.18 1.22 1.23 24.84
Unique dates/months 353 17 28 0.84 0.80 0.85 0.87 25.21 27.54 23.25 22.53 17.59 21.91 18.59 16.84 6.91 8.37 9.28 35.19
Duplicate elimination 272 4 7 0.69 0.80 0.85 0.88 64.41 50.91 38.73 35.18 60.39 43.33 30.97 28.05 4.07 7.85 7.87 37.52
Sorting tuples 263 6 9 0.68 0.81 0.92 0.93 49.58 41.00 26.38 23.12 43.77 34.62 20.82 18.35 3.97 10.35 9.00 44.28
Top-k elements 108 5 11 0.62 0.74 0.90 0.90 63.41 53.69 34.92 32.31 58.70 46.66 28.96 26.11 5.07 18.58 17.69 63.70
Total/Average 1540 9 14 0.81 0.79 0.91 0.92 42.96 51.73 32.14 30.41 32.56 44.82 25.86 22.93 4.89 6.31 5.94 35.49

(a) Average Cos-sim (b) Average RMSE (c) Average MAE

Figure 4: Average grading performance of all incorrect student submissions across di�erent test failure rates.

Table 3: The test failure rate distribution for evaluated sub-

missions.

Assignment # Incorrect # of TC Test failure rate (%)

Submissions 0–25 25–50 50–75 75–100

Sequential search 544 11 323 91 59 71

Unique dates/months 353 17 159 54 29 111

Duplicate elimination 272 4 14 9 29 220

Sorting tuples 263 6 10 23 82 148

Top-k elements 108 5 6 3 6 93

Total/Average 1540 9 512 180 205 643

test failure rate increase. This result indicates that ConceptGrader

preserves the ability to capture students’ misunderstanding, not

a�ected by the changes in test failure rate. Considering the fact

that most students’ programs fail half of test cases, it illustrates the

importance of a concept-based grading approach.

5.3 RQ3: Limitations of ConceptGrader

To understand the limitations of ConceptGrader, we manually an-

alyzed (1) the cases where ConceptGrader performs worse than

test-based approach, (2) the quality of reference solutions to Con-

ceptGrader.

Analyzing Unreasonable Scores: To reduce the manual e�ort

in analyzing cases where the di�erences between the scores given

by a test-based BC4BC and those assigned by ConceptGrader B2>=24?C

are minor, we only analyze cases where the scores given by Con-

ceptGrader is unreasonable (i.e., the di�erence between B2>=24?C
and BC4BC is greater than 5 points). In total, we observed 565/1540

(36.7%) scores to be unreasonable.

Our manual analysis of the 565 unreasonable scores shows that

unreasonable scores occur due to: (1) syntactically di�erent student

implementations, and (2) inaccurate variable mapping. Speci�cally,

although we design the abstraction rules to mitigate the program

aliasing problem by translating di�erent programs to the same rep-

resentation, our rules are not exhaustive so ConceptGrader fails

to match correctly when the incorrect student programs are sub-

stantially di�erent from the reference solutions, especially for cases

where the test failure rate is low. When the students’ programs

use sub-optimal algorithms or syntactically di�erent implemen-

tations, ConceptGrader could not match the concept nodes and

edges accurately, resulting in a lower score assigned to the incor-

rect student programs. Meanwhile, as ConceptGrader relies on the

variable mapping mechanism of Refactory [16], we observe that

ConceptGrader may produce inaccurate scores when the student

programs use too many temporary variables which increase the

number of un-mapped variables in the variable mapping.

In the future, a hybrid automated grading tool that combines

ConceptGrader and test-based approach may be interesting to be

explored. Using the AST edit distance between student program and

reference program as estimator of the quality of student program,

ConceptGrader suggests scores when AST edit distance is small but

207

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Zhiyu Fan, Shin Hwei Tan, and Abhik Roychoudhury

test failure rate is high, while test-based approach can still be used

when test failure rate is low, but AST edit distance is high (indicating

there is no good reference solution for the student program).

Impact of Di�erent Numbers of Reference Solutions: In previ-

ous sections, we conducted experiments for ConceptGrader using

multiple reference solutions. Although using multiple reference

solutions from correct student solutions is a recent trend in other

relevant work [1, 14, 16, 28], there may not be su�cient high-quality

reference solutions available for each programming assignment in

practice. To address this concern, we analyze the impact of di�erent

numbers of reference solutions to ConceptGrader by grading with

fewer reference solutions. Given the �ve reference solutions crafted

in Section 5, we gradually remove the reference solutions being

used by ConceptGrader, starting from the most less popular refer-

ence solution, until there is only instructors’ provided reference

solution. Table 4 shows the average results for the �ve program-

ming assignments as we reduce the number of reference solutions

used in ConceptGrader. From Table 2 and Table 4, we can observe

that using only two reference solutions, ConceptGrader already

performs better than test-based approach. Compared to only one

reference solution, the performance of ConceptGrader with three

reference solutions increases by 7% for Cos-sim, 21.1% for RMSE,

and 23.6% for MAE, which reaches a comparative level of the default

con�guration, using all reference solutions (# of Ref. Solutions=5).

Table 4: The impact of di�erent number of reference solu-

tions in ConceptGrader (CG) and ConceptGrader without

unfolding (CG-wo-f).

of Ref. Cos-sim RMSE MAE

Solutions CG CG-wo-f CG CG-wo-f CG CG-wo-f

5 0.92 0.91 30.41 32.14 22.93 25.86

4 0.91 0.90 32.05 33.82 23.76 27.05

3 0.91 0.88 33.28 34.97 26.82 28.53

2 0.89 0.85 36.42 37.51 30.46 31.68

1 0.85 0.82 42.23 45.83 35.11 37.32

6 USER SURVEY

User Survey Setup. To obtain qualitative data for demonstrating

the e�ectiveness of ConceptGrader, we conducted a survey among

29 tutors from two semesters of a large CS-1 introductory program-

ming course. The tutors include both lab instructors who taught

lab sessions and graders who grade programming assignments. All

tutors are undergraduates who have taken the course in previous

semesters from the Computer Science department. Among the 29

tutors with whomwe have shared the survey, we received 16 replies.

Participation in the survey is voluntary, and the authors do not

have any personal connection with the participants. To reduce

bias due to personal preference towards a particular approach, we

anonymize the name of each approach. The survey aims to col-

lect tutors’ opinions on the grade and feedback generated by three

automated approaches. In total, it contains ten incorrect student

submissions drawn from �ve assignments.

User Study Questions. Each tutor answers a question about prior

teaching experience. On average, the 16 tutors have served as tutors

2.1 times. We randomly sampled two incorrect submissions for

each assignment from the evaluated dataset (in Section 5). For

each incorrect submission, we provide (1) the instructor’s reference

solution, (2) an assignment description, (3) test cases, and (4) the

questions below:

Q1. Rate the quality of the automated mark in terms of assessing

students’ understanding and e�ort.

Q2. Rate the usefulness of automated feedback to students in

terms of improving their learning outcome, based on your

previous learning experience.

Q3. To what extent will the automated feedback be preferable or

as good as the feedback that you would manually give?

The �rst question (Q1) aims to assess the quality of the generated

score, whereas Q2 and Q3 are designed to assess the quality of the

generated feedback (Figure 2(b) shows an example of the generated

feedback). For each incorrect student submission, participants need

to rate each item based on a �ve-point Likert scale (with 1 being

very low and 5 being very high). We allocate 30 minutes for each

tutor to complete the survey.

User Study Results. Figure 5 presents the results of the 16 tutors’

ratings for all user study questions. Overall, we observe that the

tutors show a positive attitude of ConceptGrader for all questions

(Q1 – Q3) with a mean rating of 3.8. Tutors rate highest (average

rating of 3.7) for the quality of ConceptGrader’s generated scores

(Q1), compared to test-based and CFG-based approaches (average

rating of 1.3 and 3.2, respectively). As those who are invited for the

ground truth constructions are di�erent from tutors for the user

study, this further con�rms our grading accuracy experiment in

Section 5. For the usefulness of automated feedback in terms of

improving students’ learning outcomes (Q2), tutors think that Con-

ceptGrader is the most useful among all approaches (average rating

of 3.9). This indicates that our approach provides better support

for convergent formative assessment. Compared to the baseline

approaches, tutors prefer the quality of the feedback generated by

ConceptGrader (average rating for Q3 is 3.8). This shows that the

feedback constructed via our human-readable abstraction rules may

bene�t tutors in designing personalized feedback for students.

Signi�cance of study result. To validate the signi�cance of our

study result, we performed a two-tailed T-test for the di�erence

between the results for CFG-based approach and ConceptGrader.

The result shows that our study has a p-value < 0.001 for Q1 to Q3,

indicating that the di�erence between CFG-based approach and

ConceptGrader in Figure 5 is statistically signi�cant. Moreover, the

standard deviation of CFG-based approach and ConceptGrader for

Q1 to Q3 is (0.84, 0.77, 0.89) and (0.93, 0.76, 0.86) respectively.

7 RELATED WORK

Automated Grading. Many approaches have been proposed for

automatic assessment of programming assignments [10, 15, 18, 20,

26, 29]. These systems rely either on (1) test cases [10, 15, 17, 18,

26, 29], (2) formal semantics [20], or (3) syntactic di�erences (e.g.,

in the form of CFG) between reference solution and student solu-

tion [3, 21, 27] to grade introductory programming assignments.

Test-based grading approaches (e.g., AutoGrader [10]) assign scores

to programming assignments by relying on program’s outputs on

208

Concept-Based Automated Grading of CS-1 Programming Assignments ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Figure 5: The boxplot of average rating of all user study questions. Green triangle represents the mean value. The whiskers

denote the minimum/maximum value, and the rectangle denotes the �rst/third quartile.

a set of test inputs [18, 26, 29]. These test inputs can either be

manually designed by course instructors or automatically gener-

ated [13, 20]. These test-based approaches have several limitations,

including: (1) they cannot re�ect the students’ e�ort and mastery

of knowledge because a minor mistake could fail many test cases

which lead to a large portion of marks being deducted, (2) stu-

dents may struggle to identify their mistake using only the failing

test cases as feedback. Di�erent from these approaches, Concept-

Grader grades a student’s submission using programming concepts,

and generate intuitive feedback which points out the missing or

wrongly used programming concepts. Another popular approach

to automated grading is calculating the similarity between di�erent

program representations (e.g., control �ow graph) of a student’s

submission and corresponding reference implementation [3, 21, 27].

However, these approaches do not support convergent formative

assessment as they only grade student’s submissions without pro-

viding feedback. Liu et al. [20] proposed an approach based on for-

mal semantics for automated grading of programming assignments.

They use symbolic execution techniques to explore the semantic

di�erence between instructor’s reference solution and students so-

lution in the form of path deviations. However, their approach only

produces a binary correct or incorrect result, while our approach

gives a quantitative evaluation of student submissions.

Repair of Introductory Programming Assignments. Prior work fo-

cuses on �xing introductory programming assignments using auto-

mated program repair techniques, and providing the automatically

patches as feedback [14, 16, 19, 24, 28, 31]. Although ConceptGrader

uses patches generated by a program repair engine (Refactory [16])

to trigger the unfolding mechanism to improve the accuracy of the

score calculation for incorrect student submissions, ConceptGrader

does not use the automatically generated patches directly as feed-

back. As we design the abstraction rules to be human readable, the

feedback generated by ConceptGrader can provide explanation of

student mistakes to support convergent formative assessment. Dif-

ferent from existing repair approaches, ConceptGrader is designed

for automated grading of introductory programming assignments.

8 THREATS TO VALIDITY

External. Our �ndings of programming concepts focus on Python

introductory programming courses. Hence, our experiments may

not be exhaustive and generalize to other languages. We evaluate

and implement ConceptGrader within the scope of mini-python,

ConceptGrader may produce inaccurate scores if programming as-

signments include language features beyond mini-python. We left

the extension of more advanced programming features in Python

as future work. (i.e., it does not currently support advanced pro-

gramming topics such as lambda expression). ConceptGrader may

produce inaccurate concept matching if the student program and

reference solution solve a programming problem with di�erent al-

gorithms.Wemitigate this by following previous work [1, 14, 16, 28]

to include correct students’ programs (i.e., student submissions that

pass all test cases) as additional reference solutions.

Internal. Our code and automated scripts may have bugs that

can a�ect our reported results. To mitigate this threat, we have

made our tool and data publicly available. Our implementation of

the CFG-based approach [27] may not be as e�ective as the original

implementation for C programs. Nevertheless, as our concept graph

uses the same CFG as basis for abstraction, our evaluation that

compares the CFG approach and the abstracted CFG (our concept

graph) ensures fair comparison of the two approaches.

9 CONCLUSION

We propose ConceptGrader, an automated grading approach for

programming assignments to assess students’ understanding via

programming concepts. We derive programming concepts from

common programming topics in �rst-year programming courses,

and design a concept graph that abstracts incorrect student program

and reference solution. Such an abstract representation allows us

to identify students’ misunderstanding of a speci�c problem, so

as to generate reasonable scores to reduce tutors’ workload and

improve students’ learning outcomes through convergent formative

assessment. Compared to test-based automated grading and CFG-

based automated grading, our evaluation shows that the scores

generated by ConceptGrader are more accurate in terms of cosine

similarity, RMSE, andMAE. Our user study among tutors also shows

that the automated generated scores and feedback can help tutors in

constructing their manual feedback that eventually assists students

in rectifying their mistakes. In the future, we plan to extend extend

ConceptGrader to handle more advanced programming features.

We also plan to integrate ConceptGrader into an intelligent tutoring

system and deploy it for live interactive programming teaching.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their suggestions. This work

was partially supported by a Singapore Ministry of Education (MoE)

Tier 3 grant "Automated Program Repair", MOE-MOET32021-0001.

209

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Zhiyu Fan, Shin Hwei Tan, and Abhik Roychoudhury

REFERENCES
[1] Umair Z Ahmed, Zhiyu Fan, Jooyong Yi, Omar I Al-Bataineh, and Abhik Roy-

choudhury. 2022. Veri�x: Veri�ed repair of programming assignments. ACM
Transactions on Software Engineering and Methodology (2022).

[2] Tuukka Ahoniemi and Tommi Reinikainen. 2006. ALOHA-a grading tool for semi-
automatic assessment of mass programming courses. In Proceedings of the 6th
Baltic Sea conference on Computing education research: Koli Calling 2006. 139–140.

[3] Kirsti Ala-Mutka, Toni Uimonen, and Hannu-Matti Jarvinen. 2004. Supporting
students in C++ programming courses with automatic program style assessment.
Journal of Information Technology Education: Research 3, 1 (2004), 245–262.

[4] Nathalia da Cruz Alves, Christiane Gresse von Wangenheim, Jean Carlo Rossa
Hauck, and Adriano Ferreti Borgatto. 2020. A large-scale evaluation of a rubric
for the automatic assessment of algorithms and programming concepts. In Pro-
ceedings of the 51st ACM technical symposium on computer science education.
556–562.

[5] Beverley Bell, Nigel Bell, and B Cowie. 2001. Formative assessment and science
education. Vol. 12. Springer Science & Business Media.

[6] Horst Bunke, Pasquale Foggia, Corrado Guidobaldi, Carlo Sansone, and Mario
Vento. 2002. A comparison of algorithms for maximum common subgraph on
randomly connected graphs. In Joint IAPR International Workshops on Statisti-
cal Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern
Recognition (SSPR). Springer, 123–132.

[7] coetaur0. 2019. Python3 control �ow graph generator. https://github.com/
coetaur0/staticfg. Accessed: 2022-10-09.

[8] Berkeley EECS. [n. d.]. CS 9H: Python for Programmers. https://selfpaced.
bitbucket.io/#/python/calendar.

[9] Stanford Engineering. [n. d.]. CS106A - Programming Methodology. https:
//web.stanford.edu/class/archive/cs/cs106a/cs106a.1206/schedule.html.

[10] Computer Science for ALL Students. 2022. AutoGradr. https://www.csforall.org/
members/autogradr_automated_grading_for_programming_assignments/. Ac-
cessed: 2020-10-06.

[11] Python Software Foundation. 2022. Abstract Syntax Trees. https://docs.python.
org/3/library/ast.html.

[12] Jaroslav Fowkes, Pankajan Chanthirasegaran, Razvan Ranca, Miltiadis Allamanis,
Mirella Lapata, and Charles Sutton. 2017. Autofolding for source code summa-
rization. IEEE Transactions on Software Engineering 43, 12 (2017), 1095–1109.

[13] Liang Gong. 2014. Auto-grading dynamic programming language assignments.
University of California, Berkeley, Tech. Rep (2014).

[14] Sumit Gulwani, Ivan Radiček, and Florian Zuleger. 2018. Automated clustering
and program repair for introductory programming assignments. ACM SIGPLAN
Notices 53, 4 (2018), 465–480.

[15] Jan B Hext and JW Winings. 1969. An automatic grading scheme for simple
programming exercises. Commun. ACM 12, 5 (1969), 272–275.

[16] Yang Hu, Umair Z. Ahmed, Sergey Mechtaev, Ben Leong, and Abhik Roychoud-
hury. 2019. Re-factoring based Program Repair applied to Programming Assign-
ments. In 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE/ACM, 388–398.

[17] Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppälä. 2010. Review
of recent systems for automatic assessment of programming assignments. In
Proceedings of the 10th Koli calling international conference on computing education
research. 86–93.

[18] Mike Joy, Nathan Gri�ths, and Russell Boyatt. 2005. The boss online submission
and assessment system. Journal on Educational Resources in Computing (JERIC)
5, 3 (2005), 2–es.

[19] Shalini Kaleeswaran, Anirudh Santhiar, Aditya Kanade, and Sumit Gulwani. 2016.
Semi-supervised veri�ed feedback generation. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering.
739–750.

[20] Xiao Liu, Shuai Wang, Pei Wang, and Dinghao Wu. 2019. Automatic grading
of programming assignments: an approach based on formal semantics. In 2019
IEEE/ACM 41st International Conference on Software Engineering: Software Engi-
neering Education and Training (ICSE-SEET). IEEE, 126–137.

[21] Greg Michaelson. 1996. Automatic analysis of functional program style. In
Software Engineering Conference, Australian. IEEE Computer Society, 38–38.

[22] MIT OpenCourseWare. [n. d.]. 6.0001 Introduction to Computer Science and
Programming in Python. https://ocw.mit.edu/courses/.

[23] John Pryor and Barbara Crossouard. 2008. A socio-cultural theorisation of for-
mative assessment. Oxford review of Education 34, 1 (2008), 1–20.

[24] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013. Automated
feedback generation for introductory programming assignments. In Proceed-
ings of the 34th ACM SIGPLAN conference on Programming language design and
implementation. 15–26.

[25] Carnegie Mellon University. [n. d.]. CMU 15-122 Fundamentals of Programming
and Computer Science. https://www.cs.cmu.edu/~112/schedule.html.

[26] Urs Von Matt. 1994. Kassandra: the automatic grading system. ACM SIGCUE
Outlook 22, 1 (1994), 26–40.

[27] Milena Vujošević-Janičić, Mladen Nikolić, Dušan Tošić, and Viktor Kuncak. 2013.
Software veri�cation and graph similarity for automated evaluation of students’
assignments. Information and Software Technology 55, 6 (2013), 1004–1016.

[28] Ke Wang, Rishabh Singh, and Zhendong Su. 2018. Search, align, and repair:
data-driven feedback generation for introductory programming exercises. In
Proceedings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation. 481–495.

[29] Michael Wick, Daniel Stevenson, and Paul Wagner. 2005. Using testing and JUnit
across the curriculum. ACM SIGCSE Bulletin 37, 1 (2005), 236–240.

[30] Wikipedia contributors. 2022. Root-mean-square deviation — Wikipedia, The
Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Root-mean-
square_deviation&oldid=1117272661 [Online; accessed 10-November-2022].

[31] Jooyong Yi, Umair Z Ahmed, Amey Karkare, Shin Hwei Tan, and Abhik Roy-
choudhury. 2017. A feasibility study of using automated program repair for
introductory programming assignments. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering. 740–751.

[32] Zexuan Zhong, Jiaqi Guo, Wei Yang, Jian Peng, Tao Xie, Jian-Guang Lou, Ting
Liu, and Dongmei Zhang. 2018. SemRegex: A semantics-based approach for gen-
erating regular expressions from natural language speci�cations. In Proceedings
of the 2018 conference on empirical methods in natural language processing.

Received 2023-02-16; accepted 2023-05-03

210

https://github.com/coetaur0/staticfg
https://github.com/coetaur0/staticfg
https://selfpaced.bitbucket.io/#/python/calendar
https://selfpaced.bitbucket.io/#/python/calendar
https://web.stanford.edu/class/archive/cs/cs106a/cs106a.1206/schedule.html
https://web.stanford.edu/class/archive/cs/cs106a/cs106a.1206/schedule.html
https://www.csforall.org/members/autogradr_automated_grading_for_programming_assignments/
https://www.csforall.org/members/autogradr_automated_grading_for_programming_assignments/
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
https://ocw.mit.edu/courses/
https://www.cs.cmu.edu/~112/schedule.html
https://en.wikipedia.org/w/index.php?title=Root-mean-square_deviation&oldid=1117272661
https://en.wikipedia.org/w/index.php?title=Root-mean-square_deviation&oldid=1117272661

	Abstract
	1 Introduction
	2 Overview
	3 Programming Concept Abstraction
	4 Graph Matching and Grading
	4.1 Concept Graph Matching
	4.2 Automated Concept Unfolding
	4.3 Concept Based Grading

	5 Evaluation
	5.1 RQ1: Overall Grading Accuracy
	5.2 RQ2: Relation with Test Failure Rate
	5.3 RQ3: Limitations of ConceptGrader

	6 User Survey
	7 Related Work
	8 Threats to Validity
	9 Conclusion
	Acknowledgments
	References

