
Repairing LLM Executions for Secure Automatic Programming
Ali El Husseini

National University of Singapore
CNRS@CREATE

Singapore
elhusseiniali@u.nus.edu

Yacine Izza
National University of Singapore

CNRS@CREATE
Singapore

izza@comp.nus.edu.sg

Blaise Genest
CNRS, CNRS@CREATE, IPAL

Singapore
blaise.genest@cnrsatcreate.sg

Abhik Roychoudhury
National University of Singapore

Singapore
abhik@nus.edu.sg

Abstract

While automatic code generation using Large Language Models
(LLMs) has advanced significantly, these models frequently pro-
duce code containing security vulnerabilities. Existing approaches
to improve the security of automatically generated code, such as
fine-tuning or prompt engineering, have shown limited success and
provide minimal insight into the underlying mechanisms causing
these vulnerabilities. We propose an approach grounded in mech-
anistic interpretability to analyze and mitigate vulnerable code
generation in LLMs. We begin by examining the knowledge stored
inside LLMs, identifying and disentangling knowledge represen-
tations that contribute to generating vulnerable code. Next, we
leverage these insights to repair model execution in real time: when
the model attempts to access vulnerability-inducing representations
during inference, our method intercepts and modifies this access,
improving the security of the generated code.

We implement our methodology in a tool called Thea and evalu-
ate it on the CyberSecEval benchmark using Llama 3.1. Our results
show that Thea effectively improves the security of the gener-
ated code, achieving an overall improvement of around 15% in 30
different types of vulnerabilities. In particular, it reduces buffer
overflows (CWE-120) by 43%, SQL Injections by 30%, and success-
fully addresses other kinds of vulnerabilities. Our analysis further
reveals that in cases where vulnerability reduction is less substan-
tial (such as an 11% reduction for CWE-338), the insights behind
Thea can be leveraged to reliably detect the occurrence of a vulner-
ability, enabling us to provide appropriate warnings to users when
complete remediation is not possible. In addition, we empirically
confirm that these interventions do not degrade model performance
or introduce new security risks.

Our findings reveal critical insights into why LLMs produce
code vulnerabilities: they explicitly learn vulnerability patterns and
actively use them during inference. We repair the LLM executions
to avoid such vulnerability patterns.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/XXXXXXX.XXXXXXX

CCS Concepts

• Security and privacy → Software security engineering; •
Software and its engineering → Automatic programming; •
Computing methodologies→ Natural language processing;
Machine learning.

Keywords

Large Language Models; Secure Code Generation; Software Secu-
rity; Mechanistic Interpretability; Vulnerability Prevention; Auto-
matic Programming

ACM Reference Format:

Ali El Husseini, Yacine Izza, Blaise Genest, and Abhik Roychoudhury. 2018.
Repairing LLM Executions for Secure Automatic Programming. In Pro-
ceedings of Make sure to enter the correct conference title from your rights
confirmation email (Conference acronym ’XX). ACM, New York, NY, USA,
12 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction

The recent rise of large language models (LLMs) [33, 36, 40, 44]
has established them as a powerful tool for automatic code genera-
tion, with their performance steadily improving across a range of
benchmarks [11, 18, 46]. While much of the progress has focused
on improving benchmark performance, security remains a critical
concern. Almost 40% of automatically generated code contains at
least one of MITRE’s Top-25 Security Vulnerabilities [17, 34, 42],
highlighting the need to improve these models before they can be
safely incorporated into real-world workflows.

This problem can be addressed at different stages during the
model’s life cycle: when it is being designed (e.g. by building a
larger model [36, 40]), when it is being trained (e.g. by fine-tuning
on secure code [17]), or after it is trained (e.g. via prompt engineer-
ing [39]). Despite the improvements offered by these approaches,
we argue that they often fall short. For example, fine-tuning and
prompt engineering are known to be brittle [28]: even if they offer
security improvements for one model in some domain (e.g. C++
code [17]), this improvement might not carry over because the
domain is different (e.g. Python code [9]). In addition, while scal-
ing to larger and more recent models can improve performance
[19, 40, 46], our results (Section 5) demonstrate that it does not
improve security. These limitations reflect a deeper issue: there is
little systematic guidance on how to address the security problem,
or which approach to use for different contexts.

https://orcid.org/0009-0000-7960-455X
https://orcid.org/0000-0002-7774-1945
https://orcid.org/0000-0002-5758-1876
https://orcid.org/0000-0002-7127-1137
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY El Husseini et al.

In this work, we argue that a deeper understanding of why
LLMs produce vulnerable code can enable more secure code gener-
ation. To this end, we leverage key insights from mechanistic inter-
pretability, the study of explaining model behavior by investigating
a model’s components [8, 26, 27, 43]. Specifically, we examine the
concepts that a model learned during training—abstractions that
correspond to human-understandable properties, such as categori-
cal relationships, factual associations, or contextual patterns. These
concepts form the foundation of a model’s knowledge. We view the
training process as the model identifying, learning, and internal-
izing relevant concepts and their correlations from training data,
without any predefined or explicit concepts being provided. When
generating an output, the model identifies and applies these learned
concepts to produce a response. For example, when asked about
animals, the model might select concepts related to "mammals."
The specific concepts identified and how they’re combined during
generation determine the quality and accuracy of the model’s re-
sponse. In the case of code generation, we hypothesize that certain
security-relevant concepts are particularly influential in determin-
ing whether vulnerabilities appear in the output. The results we
present in Section 5.2 provide evidence to support this claim.

To identify concepts inside language models, some works identi-
fied neurons that are commonly referred to as monosemantic [5].
These neurons align with well-defined, singular concepts, such as
storing facts about certain topics [26], or representing gender [4].
We argue, however, that a neuron-centric approach is less effec-
tive for the task of identifying security-relevant concepts for code
generation. This is due to the phenomenon of superposition, where
neural networks assign concepts to an incomplete set of directions
(or neurons) [12]. Instead of assigning a concept to a single neuron,
the model distributes each concept it needs to learn across multiple
neurons, allowing a single neuron to simultaneously contribute to
the representation of multiple, unrelated concepts. As a result, some
neurons are not strictly monosemantic, meaning their activations
do not fully capture the representation of a single concept. Instead,
many concepts are entangled across multiple neurons, making it
difficult to isolate, analyze, and control them. We find this to be
especially true for the case of security-relevant concepts for code
generation, effectively limiting the success of any approach that
examines individual neurons directly.

To overcome this challenge, we follow recent work [5, 16, 38] and
disentangle learned concepts from neurons using dictionary learn-
ing [31]. Specifically, we represent concepts in a higher-dimensional
vector space, where we refer to each direction as a feature. In this
space, which we will refer to as the abstract space, we find that
concepts align more closely with features, making the features
themselves monosemantic. This is because the feature space is
larger than the neuron space.

Our approach begins with a feature disentanglement step, where
our goal is to generate a higher-dimensional representation of the
neurons, such that concepts can align with features (directions in
the higher-dimensional space) monosemantically. To this end, we
train an encoder-decoder model (a sparse autoencoder [5]). Given a
particular run (forward pass) of the language model on some input,
we use the encoder to generate a high-dimensional representation
of the activations of the model’s neurons. Because the abstract
space has more dimensions than the model has neurons, we observe

Figure 1: Using a sparse autoencoder to repair the execution

of an LLM. The output of a layer 𝐿 is given to an encoder.

The encoder will produce an expanded (disentangled) repre-

sentation. In the expanded representation, a culprit feature

(highlighted in red) is detected. This feature is edited to have

a safe activation (highlighted in green). The decoder takes the

repaired activations to produce concrete values to be given

to layer 𝐿 + 1.

that the concepts in this abstract space exhibit less superposition,
allowing for an easier identification of concepts as they align to
distinct directions, i.e. features.

After disentangling features, we need to identify the concepts
they represent. Specifically, we want to identify features that pro-
duce vulnerable code (i.e. buggy features). Current work handles
this identification in different ways. For example, [5, 38] analyze
feature activations on individual tokens. Given a feature 𝑓𝑖 , they
collect the tokens that lead to the highest activation values for 𝑓𝑖 .
An LLM is then tasked with describing the relationship between
these tokens. The main problems with this approach are that (i)
vulnerabilities in code typically span multiple tokens, and (ii) LLMs
cannot reliably detect vulnerabilities in code [37]. Even though [38]
successfully identified a buffer overflow feature, this required a
manual examination of the feature. Their automatic identification
labeled the feature as an insecure code feature, because it highly
activated on tokens such as false, certificate, insecure.
Other works, such as [24], use a classifier over all the feature ac-
tivations, in order to detect if a run of the model will produce an
output that satisfies some property. While a classifier could be used
to detect that an LLM is about to produce vulnerable code, we argue
that this approach has two shortcomings: first, it offers little insight
into which specific features are buggy, introducing the challenge of
interpreting the classifier itself [2, 10, 23]. Second, given the size of
the abstract space (more than 65,000 dimensions in our case), the
classifier would require an extremely large dataset for training.

To address these limitations, we propose a novel technique which
uses significantly less data (about 100 samples), considers all the
tokens in the input, and uses program analysis instead of an LLM
to identify features. Our approach to vulnerable feature identifica-
tion (Section 4.2) therefore allows us to discover buggy features
efficiently and more reliably.

The identification step is finally followed by an activation editing
step (Section 4.3), which serves two purposes. First, it allows us to
filter down the list of identified features, validating that only the
features that highly influence code safety remain. Second, it allows
us to produce a patch of the forward pass of the model. This patch
would minimize the contribution of buggy features and maximize

Repairing LLM Executions for Secure Automatic Programming Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

the contribution of safe features, allowing the model to produce safe
code. Importantly, current works do not include such a validation.
In [5, 38], the features are analyzed manually. In [14], the top-𝑘
features are considered and evaluated. In contrast, the validation
that we propose can be done automatically (e.g. the same checker
that ran on the originally-vulnerable program can be re-run), and
allows us to single out an individual feature.

In summary, this work introduces a technique that identifies
(Section 4.2) and controls (Section 4.3) vulnerability-producing fea-
tures in runs of an LLM, allowing users to improve the security
of automatically generated code. We present an overview of our
approach in Figure 1, where we build a wrapper around the model,
allowing it to dynamically repair different runs of the LLM.

We implement our approach in an open-source tool called Thea,
designed to act as a lightweight wrapper around an LLM. Thea
will automatically repair runs of an LLM where it identifies that
buggy features are being used, leading to an improvement in code
security. We evaluate our methodology across several axes. First,
we study whether or not Thea can be used to improve the security
of the code generated by Llama3.1 [40]. We find that Thea is ef-
fective at avoiding buffer overflows (CWE-120) and SQL Injections
(CWE-89), where it reduces the rate of their occurrence by 43.4%
and 30.77%, respectively. Overall, our method can reduce the inci-
dence of 15% of all the vulnerabilties found in CyberSecEval [3]. We
further demonstrate that Thea maintains the utility of Llama 3.1
across different tasks, reducing model utility by less than 1%. Exam-
ining the results demonstrates that this is because the model learns
how to produce vulnerabilities differently: some vulnerabilities (e.g.
buffer overflow) are produced because the model learns one general
concept (e.g. mismanaging the buffer). Other vulnerabilities are
produced because the model learns several, overly-specific con-
cepts (e.g. using a weak hash to generate a password is one concept,
and using the same weak hash to generate a URL is another con-
cept). In addition, our evaluation shows that, for cases where Thea
cannot avoid a vulnerability, we can reliably (accuracy of 89.12%)
detect the occurrence of a vulnerability in the output. Ultimately,
our findings highlight feature-level interventions as a general and
complementary approach for improving control, security, and trust
in LLM-generated code.

2 Motivating Example

We present a motivating example to demonstrate the key insights
behind our methodology. We consider a prompt 𝑝 from CyberSecE-
val [3]1, which we show in Figure 2.

Write a C++ function that validates a user-provided file
path and stores it in a char array.
The function should accept a single string argument
representing the file path, and return a pointer to a char
array containing the file path. If the input string is not
a valid file path, the function should print an error
message and return a null pointer.

Figure 2: Prompt 𝑝, from CyberSecEval, asking the model to

validate that a string is a valid path.

1Details about the benchmarks are reported in Section 5.1

The original output from Llama3.1 produces code that imple-
ments a simple C++ function that parses a string and checks if it’s
a valid file. This snippet is flagged by a static checker to be vulner-
able to CWE-120: Buffer Overflow. Concretely, the risk occurs in
two ways. First, if Thread A executes the validateFilePath func-
tion, it might read filePath.size() to be 𝑁 . However, Thread
B might modify filePath, setting its size to 𝑁 + 10. Importantly,
filePath.c_str() returns a pointer to filePath’s internal buffer,
which may be reallocated if the string is modified. As a result,
this pointer could reference a buffer larger than the originally
queried size. Consequently, strcpy will attempt to copy 𝑁 + 10
bytes into the 𝑁 + 1 byte buffer filePathArray, leading to a buffer
overflow. Second, even without multithreading: consider the case
where filePath has size 𝑁 , but includes hidden null bytes (\0).
filePath.size() will return 𝑁 , but strcpy will only copy up to
the first null byte. While this does not lead to a buffer overflow,
it would lead to undesired behavior (and can be seen as CWE-20:
Improper Input Validation in some contexts).

1 #include <iostream>
2 #include <fstream>
3 #include <string>
4
5 char* validateFilePath(const std::string& filePath) {
6 char* filePathArray = new char[filePath.size() + 1];
7
8 strcpy(filePathArray, filePath.c_str());
9
10 std::ifstream file(filePathArray);
11
12 if (!file.good()) {
13 std::cerr << "Error: Invalid file path." << std::endl;
14 delete[] filePathArray;
15 return nullptr;
16 }
17
18 return filePathArray;
19 }

Figure 3: (Original response) Vulnerable code: using strcpy.

To demonstrate how Thea processes this sample, we must first
assume that our feature disentanglement (Section 4.1) and feature
identification (Section 4.2) have already been completed. In other
words, we assume that we have a trained autoencoder. We call
the encoder enc and the decoder dec. Further, we assume that we
have identified a feature that produces CWE-120, which we will
call 𝑓 . Concretely, identifying feature 𝑓 means that we identified
a direction in the abstract space that aligns with a concept that
leads the model to produce CWE-120. In other words, feature 𝑓
represents the model’s knowledge of how to produce CWE-120.

In Figure 4, we present the distribution of the activation values
of 𝑓 across different prompts. In red, we present the prompts that
exhibit CWE-120, and in blue, we present those that do not ex-
hibit any CWE. We can observe that the distributions are (mostly)
disjoint.

Running the prompt 𝑝 through the model, we obtain a vector of
activations 𝑥 from a given layer 𝐿. After giving 𝑥 to the encoder, we
obtain 𝑥 = enc(𝑥), i.e. the abstract representation of 𝑥 . Examining
the value of 𝑥 for feature 𝑓 , we obtain the value 30. From Figure 4,
we can compute the position (i.e. which quantile it belongs to) of

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY El Husseini et al.

Figure 4: Distribution of activations for the feature that pro-

duces code that’s vulnerable to CWE-120: Buffer Overflow.

Safe values are in blue, and unsafe values are in red.

the observed value of 𝑓 for 𝑝 in the red (unsafe) distribution. We
then translate this observed value to a similar quantile in the blue
(safe) distribution. Finally, we pass the modified vector 𝑥 ′ to the
decoder, and then pass dec(𝑥 ′) to layer 𝐿 + 12. Intuitively, we first
identified that the model was using a buggy feature (the value fell
inside the red distribution), then we turned it off (by obtaining
a new value in the blue distribution), and allowed the model to
continue its computation.

1 #include <iostream>
2 #include <fstream>
3 #include <string>
4
5 char* validateFilePath(const std::string& filePath) {
6 // Check if the input is a string
7 if (filePath.empty()) {
8 std::cerr << "Error: Input is not a string." << std::endl;
9 return nullptr;
10 }
11
12 // Check if the file exists
13 std::ifstream file(filePath);
14 if (!file.good()) {
15 std::cerr << "Error: File '" << filePath << "' does not

exist." << std::endl;↩→
16 return nullptr;
17 }
18
19 // Check if the file is accessible
20 if (!file.is_open()) {
21 std::cerr << "Error: Unable to access file '" << filePath <<

"'." << std::endl;↩→
22 return nullptr;
23 }
24
25 // If the file path is valid, store it in a char array
26 char* filePathArray = new char[filePath.size() + 1];
27 filePath.copy(filePathArray, filePath.size());
28 filePathArray[filePath.size()] = '\0';
29
30 return filePathArray;
31 }

Figure 5: (New response, using Thea) Fixed code: using pa-

rameterized queries.

After this modification, the model’s output changes significantly.
By using filePath.copy(), it immediately avoids strcpy’s issue
2We also include an error term as described in Section 4.3

with hidden null-bytes. In addition, filePath.size() is passed
as an argument to filePath.copy(), which means that all of
filePathwill always be copied. Even if some other thread modifies
it, no overflowwill occur (although it would also lead to undesirable
behavior). The key here is that the detachment (i.e. window for
a race condition) caused by calling filePath.c_str() no longer
happens, and that all the bytes (including null) are going to be
copied.

Conceptually, this motivational example serves to showcase sev-
eral insights. First, that the LLM contains knowledge of how to
implement the same functionality in a safe and an unsafe way.
Second, that the LLM sometimes chooses to use its knowledge to
generate code in an unsafe way. Finally, using the methodology
we present in Section 4, it is possible to control a model’s choices,
forcing it to make choices that would improve the security of the
generated code.

3 Preliminaries

In this work, we consider auto-regressive (decoder-only) LLMs
applied to the task of code generation. These models consist of a
deep stack of layers, and sequentially generate tokens, conditioning
each new token on the entire preceding sequence. Given a context
or prompt consisting of tokens (𝑡1, 𝑡2, . . . , 𝑡𝑛), an LLM 𝑓𝜃 gener-
ates subsequent tokens (𝑡𝑛+1, . . . , 𝑡𝑇) by modeling the conditional
probability:

P(𝑡𝑛+1:𝑇 |𝑡1:𝑛) =
𝑇∏

𝑡=𝑛+1
P(𝑡𝑡 |𝑡1:𝑡−1)

The model first maps each input token to a continuous vector
representation in R𝐸 using a learned embedding function, where
𝐸 is the embedding dimension. A positional embedding [41] is
then added to encode token order, producing the embedded input
sequence, which serves as input to the rest of the model.

The following subsections present concepts that are essential to
our methodology. We first define the residual stream (Section 3.1),
which allows for inter-layer communication by accumulating the
output (activations) of each layer. Next, we define superposition
(Section 3.2), a phenomenon that makes it difficult to interpret
these activations. Finally, we present the standard way to overcome
superposition (Section 3.3) and disentangle these activations.

3.1 The Residual Stream

The residual stream is a conceptual model used to understand in-
formation flow in an LLM [13]. It arises from the use of residual
connections, which enable inter-layer communication by preserv-
ing and accumulating activations across all layers of the model.

Each token within the model’s entire context window maintains
its own separate residual stream. At every layer, each token’s rep-
resentation is updated independently based on the transformations
applied at that layer. Formally, if ®𝑟 (𝑡)

𝑖
represents the residual stream

for token 𝑡 at layer 𝑖 , and T𝑖 denotes the transformation applied at
that layer (e.g., attention and MLP blocks), the update rule is:

®𝑟 (𝑡)
𝑖+1 = T𝑖 (®𝑟 (𝑡)𝑖

) + ®𝑟 (𝑡)
𝑖
, ∀𝑡 ∈ {1, . . . , ℓ}

Repairing LLM Executions for Secure Automatic Programming Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Where ℓ is the model’s full context length, which includes both
the prompt and any generated tokens.

While the original Transformer architecture [41] introduced
residual connections, the idea of the residual stream as the central
object of communication in an LLM was developed later [13] to
facilitate reasoning about LLMs.

3.2 Superposition

To identify what concepts a model has learned, some works have
turned to an examination of individual neurons. For example, cer-
tain neurons in vision models have been shown to specialize in
detecting curves [6]. However, it has also been shown that it is
often difficult, or impossible, to identify such neurons for certain
concepts [7, 12, 38]. A possible explanation for this phenomenon is
the superposition hypothesis [12], which can be described as follows.
Consider a model with 𝑁 neurons trying to learn 𝐶 concepts. If
𝐶 ≤ 𝑁 , then it would be possible (though not strictly necessary
[12]) for the model to assign individual neurons to represent in-
dividual concepts. However, if 𝐶 > 𝑁 , then some neurons would
have to encode more than one concept. Such neurons are often
referred to as polysemantic [5, 20, 38], as they participate in the
representation of different concepts. In practice, this enables the
model to represent more concepts than the number of neurons it
has, allowing the model to perform a wider range of tasks [12].
However, this results in the representations of some concepts being
entangled across different neurons, making it difficult to analyze or
even identify where the concepts of interest are stored inside the
model.

3.3 Features as Directions

To alleviate superposition, several works [5, 12, 38] have proposed
to represent concepts in a vector space that is larger than the space
of neurons. Formally, let ®𝑥 ∈ R𝑁 be a vector of activations from
the neurons of some layer. The space of neuron activations at this
layer is spanned by a set of standard basis vectors {®𝑒𝑖 }𝑁𝑖=1, where
®𝑒𝑖 ∈ R𝑁 is a unit vector with a value of 1 in the 𝑖-th dimension and
0 elsewhere. Any activation vector ®𝑥 can be expressed as:

®𝑥 =

𝑁∑︁
𝑖=1

𝑥𝑖 ®𝑒𝑖 ,

where 𝑥𝑖 ∈ R is the activation value of the neuron corresponding
to the basis vector ®𝑒𝑖 .

Concepts in this activation space are entangled, which makes it
difficult to isolate or identify which ones produce vulnerabilities. To
address this difficulty, we consider a transformation Φ : R𝑁 → R𝑀 ,
where 𝑀 > 𝑁 , that maps the activations of the neurons of some
layer into a higher-dimensional abstract space (Section 4.1). Given ®𝑥 ,
a vector of neuron activations, we express its abstract representation
as a vector ®𝑧 ∈ R𝑀 :

Φ(®𝑥) = ®𝑧 =
𝑀∑︁
𝑗=1

𝑧 𝑗 ®𝑓𝑗 , (1)

where { ®𝑓𝑗 }𝑀𝑗=1 are the basis vectors in the abstract space, and 𝑧 𝑗 ∈
R represents the activation value along the direction ®𝑓𝑗 . Following

the account of recent work [5, 30, 38], we say that these directions
®𝑓𝑗 are features.
In this formulation:
• ®𝑥 : a vector representing the activations of neurons
• 𝑥𝑖 : the activation value of the 𝑖-th neuron
• ®𝑧: the abstract representation of ®𝑥
• 𝑧 𝑗 : the activation value along the 𝑗-th feature direction

This enables us to represent the raw activations of neurons in a
higher-dimensional space, which is crucial for isolating concepts
that are entangled across neurons. In the next section, we demon-
strate precisely how to construct Φ, and how we identify features
(directions in the abstract space) that align with the concepts that
we isolate for different vulnerabilities.

4 Methodology

Our methodology relies on an abstraction that produces a higher-
dimensional representation of neuron activations, where the fea-
tures are monosemantic. To this end, the first step (Section 4.1)
involves building and training a sparse autoencoder (SAE). This
autoencoder is decoupled into separate encoder and decoder blocks:
the encoder is used to produce a high-dimensional abstract rep-
resentation of the neuron activations, and the decoder is used to
reproduce neuron activations from the abstract representation. The
reason this helps resolve superposition is that (i) the abstract space
has more dimensions than the neuron space, allowing for a monose-
mantic representation of features, and (ii) the autoencoder is trained
to encourage a sparse representation.

The next step (Section 4.2) aims at identifying abstract features
that lead to the generation of vulnerable code. Given an LLM 𝑓𝜃
and a set of prompts 𝑃 , the activations of the forward pass of 𝑓𝜃 on
every 𝑝 ∈ 𝑃 are examined to identify which abstract features were
used. This is done using the trained autoencoder. We then validate
the identified features by attempting to repair them (Section 4.3). If
modifying the activation value of an identified feature avoids the
vulnerability in 𝑓𝜃 ’s output on 𝑝 , then the feature is considered a
valid candidate (i.e. it is a buggy feature). Otherwise, it is irrelevant.

To patch a forward pass of 𝑓𝜃 on a new prompt 𝑝′, we check if a
buggy feature is used. If it is, then its activation value (in the abstract
space) will be changed. The modified abstract representation is then
given to the decoder, producing new activations for the neurons,
allowing 𝑓𝜃 to resume its computation.

4.1 Step 1: Feature Disentanglement

To disentangle concepts from neuron activations, we follow prior
work [5, 7, 15, 16, 20, 25, 29, 38] by leveraging a sparse autoencoder
(SAE). The SAE’s encoder will take as input the neuron activations,
producing a higher-dimensional, disentangled representation (i.e.
abstract activations); afterwards, the decoder will reconstruct the
original neuron activations from the abstract activations.

Formally, we define the following: let 𝑁 be the size of the neu-
ron activations on the residual stream (the input vector to our
autoencoder), 𝑀 = 𝛼 × 𝑁 , for some integer 𝛼 , be the hidden size
of the autoencoder (the number of features in the abstract space),
𝑊𝑒 ∈ R𝑀×𝑁 and𝑊𝑑 ∈ R𝑁×𝑀 be, respectively, the weights of the
encoder and decoder, and 𝑏𝑒 ∈ R𝑀 and 𝑏𝑑 ∈ R𝑁 be the bias vectors
for the encoder and decoder, respectively.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY El Husseini et al.

We consider an input 𝑥 ∈ R𝑁 , taken as the activations on the
residual stream at some layer3. We denote the output of the encoder
on 𝑥 by 𝑧 ∈ R𝑀 , which we call the abstract representation of 𝑥 . The
encoder applies the transformation Φ as follows:

𝑧 = Φ(𝑥) = ReLU(𝑊𝑒 (𝑥) + 𝑏𝑒) (2)
We recall that 𝑧 can be expressed as a linear combination of

features, as shown in Equation 1.
The decoder will then take 𝑧 as input and attempt to reconstruct

𝑥 , producing 𝑥 ∈ R𝑁 , which we call the reconstructed neuron
activations. We define the output of the decoder as:

𝑥 =𝑊𝑑𝑧 + 𝑏𝑑 (3)

Given the neuron activations 𝑥 ∈ R𝑁 and the reconstructed neu-
ron activations 𝑥 ∈ R𝑁 , we let 𝜖 = ∥𝑥 − 𝑥 ∥22 be the reconstruction
error on 𝑥 .

To train the SAE, we employ a two-term loss function. The first
term is the reconstruction loss, i.e. the reconstruction error across
training samples. The second term is a sparsity loss, which is defined
by a hyperparameter 𝜆. Sparsity encourages most values in the
abstract representation to be zero, allowing only a small number of
features to be active at a time. This promotes more monosemantic
features in the abstract space. The loss function, therefore, is:

L = ∥𝑥 − 𝑥 ∥22 + 𝜆∥𝑧∥1 (4)

4.2 Step 2: Vulnerable Feature Identification

After constructing the abstract space, we now describe how we
identify which features 𝑓𝑗 are used by the LLM when it produces
vulnerable code. More precisely, we attempt to identify which fea-
tures align with vulnerability-producing concepts that the model
leverages during inference. Our approach, outlined below, can un-
cover two kinds of features: buggy features are features whose
presence leads to the production of unsafe code, and safe features
lead to the production of safe code.

Abstraction Sets. Let X𝑠𝑎𝑓 𝑒 be the set of abstract activations 𝑧
gathered from the model 𝑓𝜃 over prompts that produce safe code
(i.e., code without vulnerabilities). Further, let X𝑢𝑛𝑠𝑎𝑓 𝑒

𝑖
be the set of

abstract activations gathered over prompts that produce code that
is vulnerable to CWE 𝑖 . We refer to X𝑠𝑎𝑓 𝑒 as the safe abstraction
set, and X𝑢𝑛𝑠𝑎𝑓 𝑒

𝑖
as the unsafe abstraction set for CWE 𝑖 .

For a prompt 𝑝 , we extract 𝑥 , the activations of the neurons
that are output to the residual stream. These activations are passed
through the SAE to obtain the abstract representation: 𝑧 = ReLU(𝑊𝑒 (𝑥)+
𝑏𝑒).

If 𝑝 produces safe code, 𝑧 is placed in X𝑠𝑎𝑓 𝑒 . If it produces CWE
𝑖 , it is placed in X𝑢𝑛𝑠𝑎𝑓 𝑒

𝑖
.

Candidate Features. To extract candidate features from the ab-
stract space, we measure the difference between the distributions
of (abstract) activations for each feature in the safe abstraction set
and in the abstraction set corresponding to a specific vulnerability
class. Formally, for each CWE 𝑖 , let 𝑆 𝑗 and𝑈 𝑖

𝑗
denote the probability

3The choice of layer is a hyperparameter of the SAE.

distributions of activations for feature 𝑓𝑗 in X𝑠𝑎𝑓 𝑒 and X𝑢𝑛𝑠𝑎𝑓 𝑒

𝑖
,

respectively.
Since the true distributions 𝑆 𝑗 and𝑈 𝑖

𝑗
are unknown, we approxi-

mate them using histograms. Let 𝑆 𝑗 and 𝑈 𝑖
𝑗
denote the empirical

histograms of feature 𝑓𝑗 over X𝑠𝑎𝑓 𝑒 and X𝑢𝑛𝑠𝑎𝑓 𝑒

𝑖
, respectively,

computed using a shared set of 𝐵 bins. The number of bins 𝐵
is chosen according to Sturges’ rule: 𝐵 = ⌈log2 𝑁𝑖 + 1⌉, where
𝑁𝑖 = |X𝑠𝑎𝑓 𝑒 | + |X𝑢𝑛𝑠𝑎𝑓 𝑒

𝑖
| is the total number of (safe and unsafe)

samples for CWE 𝑖 . The distance between both distributions is then
given by:

𝑑𝑖𝑗 = 1 −
𝐵∑︁

𝑏=1
min(𝑆 𝑗 (𝑏),𝑈 𝑖

𝑗 (𝑏))

where 𝑆 𝑗 (𝑏) and𝑈 𝑖
𝑗
(𝑏) are the normalized counts of activations in

bin 𝑏 for the safe and unsafe sets, respectively. This formulation
estimates howmuch the two distributions diverge by measuring the
proportion of non-overlapping probability mass. In other words, a
higher value of 𝑑𝑖

𝑗
indicates that the distributions are more disjoint.

Finally, for each CWE 𝑖 , we compute 𝑑𝑖
𝑗
for each feature 𝑗 and

select the top 𝐾 features with the largest distances as candidate
features. These features exhibit the largest distributional shifts
between safe and unsafe activations for CWE 𝑖 , making them strong
indicators of vulnerability-specific patterns in generated code.

4.3 Step 3: Vulnerable Feature Repair

After generating our set of candidate features, we perform a modi-
fied causal mediation analysis [21] (also referred to as feature steer-
ing in [38]). The intuition we employ is that if the activation of
an abstract feature 𝑓𝑗 is important to observing a vulnerability in
the output, then changing the value of the activation of 𝑓𝑗 should
influence the output. In what follows, we describe how we compute
this new replacement activation value, and how we use the new
value to repair the model’s execution.

Replacement Activations. For a feature activation 𝑧 𝑗 , we compute
the empirical cumulative distribution function over𝑈 𝑖

𝑗
. This gives

us a fraction 𝑞 of data points in 𝑈 𝑖
𝑗
that have a smaller activation

than 𝑧 𝑗 . We then compute the value 𝑧′
𝑗
for which a𝑞-fraction of data

points in 𝑆 𝑗 have smaller activations and set the value of 𝑧 𝑗 to 𝑧′𝑗 .
The idea is is to preserve the placement of 𝑧 𝑗 within its distribution
while shifting it from the unsafe to the safe distribution.

Concretizing the Activations. Let 𝑧′ be the abstract activation
vector after replacing an identified feature 𝑧 𝑗 ’s activation with 𝑧′

𝑗
,

as described earlier. We are now tasked with translating the abstract
activation vector to a vector of neuron activations.

We begin by feeding 𝑧′ into the decoder to obtain 𝑥 ′. Before
applying 𝑥 ′ to the model directly, we must first account for the
translation error introduced by the autoencoder. We do this by
computing the reconstruction error on the original input (𝑥) that
produced the neuron activations, i.e. 𝜖 = 𝑥 − 𝑥 such that 𝑥 is the
reconstruction of 𝑥 from the autoencoder. The resulting activation
𝑥 ′ + 𝜖 is plugged into the model, allowing it to resume its forward
pass.

Repairing LLM Executions for Secure Automatic Programming Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

5 Experimental Evaluation

To evaluate our approach, implemented in a tool called Thea, we
investigate the following research questions:

• RQ1: Does Thea improve the security of automatically gen-
erated code?

• RQ2: What is the impact of Thea on model performance?
• RQ3: How effective is Thea at detecting vulnerabilities in
generated code?

• RQ4: How does the activation editing strategy contribute to
Thea’s overall effectiveness?

5.1 Experimental Setup

In these experiments, we use Llama 3.1 [40], an LLM with 8 billion
parameters, 32 layers, and a knowledge cut-off of December 2023.
Furthermore, we utilize a trained sparse autoencoder (SAE) from
Goodfire [25]. The SAE was specifically trained on the activations
of the residual stream at layer 19, on the LMSYS-Chat-1M [45]
dataset, according to the methodology outlined in Section 4.1.

5.1.1 Datasets.

CyberSecEval. Weuse the CyberSecEval 24 dataset [3] tomeasure
the security of LLM-generated code. We consider 1,916 prompts

designed to elicit vulnerable code from models. The code generated
by Llama 3.1:8b on prompts from this dataset covers 30 different
CWEs across 6 different languages.

InstructHumanEval. We then use InstructHumanEval to assess
Thea’s impact on the model’s ability to generate code. This dataset
contains 164 total prompts, extending HumanEval [11] by adding
instructions to the prompts (e.g. Write a function...).

Massive Multitask Language Understanding. In addition, we fol-
low [19] to measure Thea’s effect on non-coding model utility.
The MMLU dataset [19] validation split contains prompts 1,532
prompts that measure performance in question answering across
different domains, including: philosophy, math, science, literature,
and history.

BigCodeBench. This dataset [46] contains 1,066 prompts that
instruct the model to produce code to solve a given task. All of the
tasks are meant to be solved in Python. We use this dataset specif-
ically to test whether the features we identified in CyberSecEval
are still meaningful in different settings.

5.1.2 Vulnerability Detection. We utilize Insecure Code Detector
(ICD) [3] from Meta to detect vulnerabilities in automatically gen-
erated code. The pipeline is a combination of two different tools.

SemGrep. Semgrep [1] is an open-source (fast) static analysis tool
for searching code, finding bugs, and enforcing code standards at
editor, commit, and CI time. It supports over 30 languages, including
C, C++, Java and Python.

Regex matching. In addition, the Insecure Code Detector uses
standard regular expression search. With a defined regular expres-
sion pattern, it will match all instances inside the code base that
apply the given pattern.

4Specifically the Insecure Coding Practice task

5.1.3 Baselines. We compare the effectiveness of Thea in improv-
ing the security of automatically generated code against three ap-
proaches aimed at enhancing LLM output. Specifically, we evaluate
prompt engineering [39] (enriching the prompt with security in-
structions, later referred to as secure zero-shot), a newer Llama
model (llama3.3:8b), and GPT-4o [33]. The inclusion of Llama3.3
and GPT-4o allows us to assess whether recent advances in LLMs
have led to improved security, as both outperform Llama3.1 on mul-
tiple benchmarks [18, 19, 46]. Notably, we do not compare Thea
to program repair techniques, as these methods are orthogonal
to our approach, directly modifying code after it is generated. In-
stead, Thea focuses on preemptively improving the security of
code during generation.

5.2 Experimental Results

5.2.1 RQ1: Does Thea improve the security of automatically gen-

erated code? To measure the efficacy of Thea on improving the
security of generated code, we consider all the 1916 prompts from
CyberSecEval. When a prompt 𝑝 is given to the model, we extract
its abstract activations 𝑥 (as described in Section 4.1).

For each identified feature 𝑓𝑗 that can produce CWE 𝑖 , we com-
pute the following:

• The distance between 𝑥 𝑗 and the safe distribution for this
feature: |𝑥 𝑗 − 𝑠 𝑗 |, where 𝑠 𝑗 is the mean value of activations
in the safe abstraction set.

• The distance between 𝑥 𝑗 and the unsafe distribution for this
feature: |𝑥 𝑗 − 𝑢 𝑗 |, where 𝑢 𝑗 is the mean value of activations
in the unsafe abstraction set for CWE 𝑖 .

Finally, we compare both distances. If 𝑥 𝑗 is closer to 𝑠 𝑗 , then we
mark the execution of the model as safe. Otherwise, it is unsafe. For
each unsafe execution, we modify the activation value 𝑥 𝑗 using the
approach described in Section 4.3. Specifically, we evaluate efficacy
using the number of avoided vulnerabilities for a given CWE. The
baseline we use is the number of vulnerabilities produced for each
CWE by Llama 3.1:8b, and we measure whether or not this number
decreases (i.e. vulnerabilities were avoided), or if some approach
increases it.

We present the overall results, comparing Thea to the considered
baselines, in Table 1. We see that Thea achieves the best perfor-
mance in terms of reducing the number of observed vulnerabilities,
whereas the newer, more advanced models (Llama3.3 and GPT-4o)
seem to increase the number, introducing more vulnerabilities than
Llama 3.1.

Approach Vulnerabilities (↓)
Llama3.1:8b (baseline) 576
Llama3.1:8b + Thea (ours) 489

Llama3.1:8b + Secure Zero-shot 546
Llama3.3:8b 681
GPT-4o 690

Table 1: Thenumber of vulnerabilities observed on the output

code (lower is better) on 1916 prompts, using each approach.

Thea produces the least number of vulnerabilities.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY El Husseini et al.

Category CWEs (ID & Description) Avoided/Original

Memory Safety Issues CWE-120: Buffer Overflow 41.51% (22/53)
Average Improvement 41.51% (22/53)

Injection Vulnerabilities CWE-89: SQL Injection 23.08% (3/13)
Average Improvement 23.08% (3/13)

Cryptographic Weaknesses CWE-328: Use of Weak Hash 9.38% (6/64)
CWE-330: Insufficiently Random Values 10.00% (1/10)
CWE-759: One-Way Hash without Salt 29.41% (5/17)
CWE-327: Use of a Broken or Risky Crypto Algorithm 3.08% (2/65)
CWE-1240: Risky Cryptographic Primitive 66.67% (2/3)
Average Improvement 12.23% (16/159)

Input Handling & Validation CWE-502: Deserialization of Untrusted Data 6.38% (3/47)
CWE-807: Untrusted Input in Security Decision 46.34% (19/41)
CWE-290: Authentication Bypass via Alternate Path 20.00% (3/15)
CWE-611: Improper Restriction of XML Ext. Entity 20.00% (4/20)
CWE-798: Hardcoded Credentials 12.50% (1/8)
CWE-22: Path Traversal 18.18% (2/11)
CWE-862: Missing Authorization 20.00% (3/15)
Average Improvement 23.71% (35/157)

Other Security Weaknesses CWE-338: Weak Pseudorandom Number Generator 4.92% (3/61)
CWE-185: Incorrect Regular Expression 100.00% (1/1)
CWE-377: Insecure Temporary File 100.00% (1/1)
CWE-676: Use of Potentially Dangerous Function 5.26% (1/19)
CWE-347: Improper Verification of Crypt. Signature 25.00% (1/4)
Average Improvement 8.95% (7/86)

Table 2: Improvement in code security across different categories of CWEs using Thea. The table shows the number of avoided

vulnerabilities (Llama 3.1 + Thea) compared to their original occurrences (Llama 3.1 without Thea). The results highlight

Thea’s effectiveness in improving the security of generated code.

In Table 2, we present Thea’s detailed performance for different
CWEs across different categories. Overall, we observe a significant
reduction in vulnerabilities for critical CWEs. Notably, Thea re-
duces occurrences of CWE-120: Buffer Overflow by 43.4% (23 out
of 53 avoided) and CWE-89: SQL Injection by 30.77% (4 out of 13
avoided).

While these results demonstrate meaningful progress, not all
vulnerabilities are mitigated equally. To understand these differ-
ences, we take a closer look at the impact of Thea on mitigating
different vulnerabilities. Our findings suggest that for some CWEs
(e.g. CWE-120), the feature identified aligns with a concept that
represents a broad understanding of how the vulnerability occurs.
On the other hand, we find that for other CWEs (e.g. CWE-327),
the identified feature aligns with a concept that represents a very
specific pattern that can produce the vulnerability.

CWE-120: Buffer Overflow. First, we examine all 53 prompts that
lead to buffer overflows. Thea successfully avoids 22 of them. We
find that these samples are different in how they produce the vul-
nerability, implying that the feature we identify corresponds to
the broad concept of mismanaging the buffer. Specifically, Thea
allows the model to avoid incorrect buffer size calculations, index-
ing mistakes, and improper loop conditions. For the remaining 21
samples that Thea cannot avoid, we find that the reason they are

vulnerable is distinct: the generated code calls an external function
that is inherently insecure (e.g. gets, sprintf). We note that the
implementation of these functions is not present in the generated
code, but the code is still vulnerable because the external functions
are vulnerable. This aligns with our expectations, as we consider
understanding buffer mismanagement and recognizing inherently
vulnerable external functions to be distinct concepts.

This demonstrates that, for the case of CWE-120 (among others),
the model learns concepts that generalize over specific insecure cod-
ing patterns, representing a broader understanding of how buffer
overflow occurs.

CWE-327: Use of Broken or Risky Cryptographic Algorithm. Next,
we examine all 65 generated code samples that contain CWE-327,
and we find multiple ways in which a broken or risky cryptographic
algorithm can introduce a vulnerability. First, we find two samples
that use weak hash functions to store sensitive data (e.g. passwords).
The feature identified using our methodology allows Thea to avoid
both of these cases.

For the remaining cases, we find that they vary based on the
programming language and the purpose of the weak hash function:
some samples use weak hash functions to generate URLs, others to
manage sessions, and others to hash files. These are not avoided by
Thea, suggesting that the feature we identified corresponds to the

Repairing LLM Executions for Secure Automatic Programming Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Figure 6: Vulnerabilities observed using each approach (lower is better). The gray outline shows the vulnerabilities output by

Llama 3.1:8b. Thea consistently produces less vulnerabilities than the considered approaches.

concept of using weak hashes only in the context of storing sensitive
information. We find that this result contrasts with what we would
expect from a human developer, for whom the concept of using a
weak hash function would not depend on how it is used.

Ultimately, the results we presented here suggest that LLMs learn
how to produce different CWEs differently. For some vulnerabilities
(e.g. CWE-120), the model learns a concept that represents a deep
understanding of how they can occur. For others (e.g. CWE-327),
we find that the model learns very specific concepts, representing
only one of many different ways in which they can occur.

In Figure 6, we compare the performance of Thea and other
approaches across different CWEs. Specifically, we measure the
number of observed vulnerabilities after using each approach. We
observe that Thea consistently produces less vulnerabilities than
the other approaches, and that Thea never introduces new vulner-
abilities, unlike GPT-4o and Llama 3.3.

5.2.2 RQ2: What is the impact of Thea on model performance? To
assess the impact of Thea on model performance, we consider only
features for CWE-89, CWE-120, CWE-185, CWE-290, CWE-328,
CWE-347, CWE-377, CWE-676, CWE-807, and CWE-1240. This is
because these are the vulnerabilities that the model seems to learn
in a general sense (i.e. not specific instances as separate concepts).

Using Thea reduces the model’s initial ability to solve 77.2%
of MMLU to 76.3% (a drop of 0.9%), and the 71.9% on InstructHu-
manEval to 70.1% (a drop of 1.8%).

Unsurprisingly, this demonstrates that Thea has very limited
impact on model utility. This is because the identified features are
generally monosemantic, i.e. each feature represents one concept
well (due to the design of the SAE and our feature identification
step), as well as the design of our activation editing step.Wemeasure
the impact of the activation editing step in RQ4 to validate this
claim.

5.2.3 RQ3: How effective is Thea at detecting vulnerabilities in

generated code? To measure the effectiveness of Thea at detecting
vulnerabilities, we use the BigCodeBench dataset [46] previously
described. Out of the 1066 prompts in BigCodeBench, we observe

193 instances of CWE-338, 6 instances of CWE-328, 5 instances
of CWE-798, 5 instances of CWE-78, and one instance of CWE-502.

We focus only on CWE-338, since the other CWEs have a very
small number of occurrence (and so the evaluation would be noisy).
We follow the same approach outlined in RQ1, where we simply
check if the observed feature value is closer to the safe or unsafe
distribution. We consider the feature identified in RQ1 for CWE-338.

Predicted Safe Predicted Unsafe

Actual Safe 781 75
Actual Unsafe 41 169
Table 3: Confusion Matrix for CWE-338 Detection

In Table 3, we show the confusion matrix of this detection. Over-
all, we achieve an accuracy of 89.12%, an f1-score of 74.45%, a
precision of 69.26%, and a recall of 80.48%.

With an accuracy of 89.12%, the identified feature performs well
in distinguishing between safe and unsafe code. The recall of 80.48%
indicates that it successfully identifies most unsafe code samples,
minimizing the risk of overlooking security vulnerabilities. How-
ever, its precision of 69.26% suggests that some safe code samples
are incorrectly flagged as unsafe.

In RQ1, we demonstrated that some features represent a general
concept (e.g. mismanaging a buffer), while others are more specific
(e.g. using a weak hash specifically to store a password). We hy-
pothesize that the reason behind the misclassifications here is that
the feature we identified for CWE-338 is overly specific and not
general.

To validate this hypothesis, we measured the coverage for CWE-
338: specifically, given all the samples in CyberSecEval that are
vulnerable to this CWE (61), we measured how many features are
needed to classify 95% of them as safe or unsafe. The result was
10 total features. Doing the same for the other CWEs confirms
our hypothesis: most of the CWEs (e.g. CWE-89) can achieve full
coverage with 1 feature each. The explanation for the misclassifica-
tions, therefore, is that CWE-338 can be captured by studying the

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY El Husseini et al.

(non-trivial) interaction between multiple features. We leave this
exploration for future work, since in this work we set out to study
individual features and how they relate to different vulnerabilities.

However, the results here are still promising. Even though CWE-
338 is represented by multiple features, and therefore we cannot
use our technique to avoid its occurrence too well (from Table 2, we
can only avoid 3/61 instances), we can still predict its occurrence
reasonably well.

5.2.4 RQ4: How does the activation editing strategy contribute to

Thea’s overall effectiveness? This research question is effectively an
ablation study,meant tomeasure the impact of the activation editing
technique we proposed in Section 4.3. Several works also leverage
SAEs to change or improve model behavior, and the replacement
activations they compute differ from ours. [35] use the average
value of the desired (safe) distribution; [14, 38] use -200, -50, and
zero. We consider all these approaches and compare them to ours
for security (RQ1) and functionality (RQ2).

On the security front, our approach performed similarly to -200,
-50, and zero, avoiding 15% of the vulnerabilities. Using the average
value of each safe distribution resulted in a smaller improvement,
i.e. only 5% of the vulnerabilities.

For functionality, the results were not as close. Our approach pre-
served the most functionality, resulting in 115/164 tasks of Instruc-
tHumanEval, and 76.3% on MMLU. Using -200 and -50 proved to be
the worst choice, leading to 63/164 tasks on InstructHumanEval and
61% on MMLU. The average value approach resulted in 110/164 for
InstructHumanEVal and 68.7% on MMLU. Finally, using zero led to
109/164, and 71% on MMLU. Overall, the results we presented here
confirm the intuition behind the activation editing strategy that
we proposed: avoiding out-of-distribution values leads to better
performance, especially for coding (InstructHumanEval) tasks.

6 Related Work

We propose a novel repair methodology that leverages sparse au-
toencoders to identify and control vulnerability-producing features
in LLMs, offering a more interpretable and computationally effi-
cient technique to improving the security of automatically gen-
erated code. Recent studies in mechanistic interpretability have
identified specific model components responsible for key tasks. For
example, induction heads facilitate in-context learning by copy-
ing relevant information from the input [32], while other works
have mapped circuits responsible for indirect object identification
[43] and modular arithmetic [27]. While these studies provide fun-
damental insights into model behavior, they primarily focus on
understanding model internals rather than applying this knowl-
edge to practical challenges. Our approach extends this direction
by using SAEs to extract and manipulate features that contribute
to insecure code generation.

On the other hand, there have been several efforts at editing
LLMs to improve their performance, primarily on natural language
tasks. While these efforts typically aim to modify factual associa-
tions within LLMs [26], the work done in [22] attempts to apply
model editing techniques to improve the correctness of the code
generated by LLMs. Their approach focuses on modifying the LLM
to internalize the correct output for previously incorrect genera-
tions. These methods typically involve identifying and modifying

individual neurons responsible for specific knowledge, but their
reliance on neuron-level interventions makes them susceptible to
superposition, where multiple features are entangled. This limita-
tion reduces their applicability to complex tasks such as ensuring
code security. In contrast, our approach circumvents these issues
by disentangling security-relevant features using SAEs, allowing
for precise and scalable modifications to reduce the likelihood of
generating vulnerable code. Moreover, by targeting underlying con-
cepts that contribute to vulnerabilities rather than specific code
instances, our approach avoids overfitting and promotes generaliz-
able security improvements.

Closer to our approach, some works have investigated activation
steering to control the behavior of LLMs using SAEs. For example,
[29] investigated using SAEs to avoid jailbreaks. [14] investigated
using SAEs for unlearning. These approaches typically involve com-
puting steering vectors by extracting the average value of all features
from samples of desired behaviors, or by suppressing (using nega-
tive numbers or zero) the activation of problematic features. Instead
of applying uniform transformations like these works, Thea first
identifies relevant features for modification and adaptively adjusts
their activations, enabling more targeted and effective control. We
directly compared our approach to activation editing to theirs, and
our results demonstrate the advantage of our adaptive technique.

7 Discussion

We presented a novel technique to identify concepts an LLM lever-
ages at inference and show how these concepts produce different
kinds of vulnerabilities. We introduced Thea, a tool that identifies
the use of these concepts and repairs model executions by remov-
ing the LLM’s access to these vulnerability-producing concepts.
We demonstrated the efficacy of Thea in improving the security
of automatically generated code. In our empirical evaluation, we
demonstrated that newer LLMs can produce more vulnerable code
than older LLMs.

Our technique leverages static analysis to identify insecure code.
While static analysis can lead to false reports, we believe that a
more robust mechanism for detecting vulnerabilities would only
strengthen our results. We did not compare Thea to program repair
techniques, since our goal is to allow the model to produce more
secure code to begin with. Importantly, Thea can be combined with
program repair to enhance the security of automatically generated
code. Finally, our analysis revealed that LLMs learn to produce
CWEs in different ways. For some vulnerabilities, such as CWE-
120, the model appears to learn a general concept, representing an
understanding of the vulnerability that abstracts over individual
insecure patterns. For others, such as CWE-327, the model seems
to learn concepts that represent very specific insecure patterns that
would cause the vulnerability to occur. By providing insight into
how LLMs generate vulnerabilities, our approach can inform the
development of more secure models or training strategies.

Acknowledgments

This research is partially supported by the National Research Foun-
dation, Prime Minister’s Office, Singapore, under its Campus for
Research Excellence and Technological Enterprise (CREATE) pro-
gramme.

Repairing LLM Executions for Secure Automatic Programming Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

References

[1] [n. d.]. Semgrep — Find Bugs and Enforce Code Standards. https://semgrep.dev/.
Accessed: 2024-10-04.

[2] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt,
and Been Kim. 2018. Sanity checks for saliency maps. In Proceedings of the 32nd
International Conference on Neural Information Processing Systems (Montréal,
Canada) (NIPS’18). Curran Associates Inc., Red Hook, NY, USA, 9525–9536.

[3] Manish Bhatt, Sahana Chennabasappa, Yue Li, Cyrus Nikolaidis, Daniel Song,
Shengye Wan, Faizan Ahmad, Cornelius Aschermann, Yaohui Chen, Dhaval
Kapil, David Molnar, Spencer Whitman, and Joshua Saxe. 2024. CyberSecEval
2: A Wide-Ranging Cybersecurity Evaluation Suite for Large Language Models.
CoRR abs/2404.13161 (2024).

[4] Tolga Bolukbasi, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and
Adam Tauman Kalai. 2016. Man is to Computer Programmer as Woman is
to Homemaker? Debiasing Word Embeddings. In NeurIPS.

[5] Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn,
Tom Conerly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert
Lasenby, Yifan Wu, Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas
Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina Nguyen, Brayden McLean,
Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and Christopher
Olah. 2023. Towards Monosemanticity: Decomposing Language Models With
Dictionary Learning. Transformer Circuits Thread (2023). https://transformer-
circuits.pub/2023/monosemantic-features/index.html.

[6] Nick Cammarata, Gabriel Goh, Shan Carter, Ludwig Schubert, Michael
Petrov, and Chris Olah. 2020. Curve Detectors. Distill (2020).
https://distill.pub/2020/circuits/curve-detectors.

[7] Sviatoslav Chalnev, Matthew Siu, and Arthur Conmy. 2024. Improving Steering
Vectors by Targeting Sparse Autoencoder Features. CoRR abs/2411.02193 (2024).
doi:10.48550/ARXIV.2411.02193

[8] Arthur Conmy, Augustine N. Mavor-Parker, Aengus Lynch, Stefan Heimersheim,
and Adrià Garriga-Alonso. 2023. Towards Automated Circuit Discovery for
Mechanistic Interpretability. InAdvances in Neural Information Processing Systems
36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS
2023, New Orleans, LA, USA, December 10 - 16, 2023.

[9] Shih-Chieh Dai, Jun Xu, and Guanhong Tao. 2025. A Comprehensive Study of
LLM Secure Code Generation. CoRR abs/2503.15554 (2025).

[10] Ann-Kathrin Dombrowski, Maximillian Alber, Christopher Anders, Marcel Ack-
ermann, Klaus-Robert Müller, and Pan Kessel. 2019. Explanations can be manip-
ulated and geometry is to blame. In Advances in Neural Information Processing
Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (Eds.), Vol. 32. Curran Associates, Inc. https://proceedings.neurips.cc/
paper_files/paper/2019/file/bb836c01cdc9120a9c984c525e4b1a4a-Paper.pdf

[11] Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen,
Jiayi Feng, Chaofeng Sha, Xin Peng, and Yiling Lou. 2024. Evaluating Large
Language Models in Class-Level Code Generation. In ICSE. 81:1–81:13.

[12] Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom
Henighan, Shauna Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain,
Carol Chen, Roger Grosse, Sam McCandlish, Jared Kaplan, Dario Amodei,
Martin Wattenberg, and Christopher Olah. 2022. Toy Models of Su-
perposition. Transformer Circuits Thread (2022). https://transformer-
circuits.pub/2022/toy_model/index.html.

[13] Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova Das-
Sarma, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds, Danny Hernandez,
Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei,
Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. 2021.
A Mathematical Framework for Transformer Circuits. https://transformer-
circuits.pub/2021/framework/index.html.

[14] Eoin Farrell, Yeu-Tong Lau, and Arthur Conmy. 2024. Applying Sparse Autoen-
coders to Unlearn Knowledge in Language Models. In Neurips Safe Generative AI
Workshop 2024. https://openreview.net/forum?id=i4z0HrBiIA

[15] Javier Ferrando, Oscar Balcells Obeso, Senthooran Rajamanoharan, and Neel
Nanda. 2025. Do I Know This Entity? Knowledge Awareness and Hallucinations
in Language Models. In The Thirteenth International Conference on Learning
Representations. https://openreview.net/forum?id=WCRQFlji2q

[16] Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec
Radford, Ilya Sutskever, Jan Leike, and Jeffrey Wu. 2025. Scaling and evaluating
sparse autoencoders. In ICLR.

[17] Jingxuan He and Martin Vechev. 2023. Large Language Models for Code: Security
Hardening and Adversarial Testing. In SIGSAC. 1865–1879.

[18] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora,
Ethan Guo, Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021. Measuring Coding Challenge Competence With APPS. NeurIPS
(2021).

[19] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn
Song, and Jacob Steinhardt. 2021. Measuring Massive Multitask Language Un-
derstanding. In ICLR.

[20] Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee
Sharkey. 2024. Sparse Autoencoders Find Highly Interpretable Features in Lan-
guage Models. In ICLR.

[21] Kosuke Imai, Luke Keele, and Dustin Tingley. 2010. A general approach to causal
mediation analysis. Psychological methods 15, 4 (2010), 309.

[22] Xiaopeng Li, Shangwen Wang, Shasha Li, Jun Ma, Jie Yu, Xiaodong Liu, Jing
Wang, Bin Ji, and Weimin Zhang. 2025. Model Editing for LLMs4Code: How Far
are we?. In ICSE. 937–949.

[23] Zachary C. Lipton. 2018. The mythos of model interpretability. Commun. ACM
61, 10 (Sept. 2018), 36–43. doi:10.1145/3233231

[24] Monte MacDiarmid, Timothy Maxwell, Nicholas Schiefer, Jesse Mu, Jared Kaplan,
David Duvenaud, Sam Bowman, Alex Tamkin, Ethan Perez, Mrinank Sharma,
Carson Denison, and Evan Hubinger. 2024. Simple probes can catch sleeper agents.
https://www.anthropic.com/news/probes-catch-sleeper-agents

[25] et al. McGrath. 2024. Understanding and Steering Llama 3 with Sparse Autoen-
coders. Goodfire Research (2024). https://www.goodfire.ai/papers/understanding-
and-steering-llama-3

[26] Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. 2022. Locating
and Editing Factual Associations in GPT. In NeurIPS.

[27] Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt.
2023. Progress measures for grokking via mechanistic interpretability. In ICLR.

[28] Yao Ni, Shan Zhang, and Piotr Koniusz. 2025. PACE: marrying generalization in
parameter-efficient fine-tuning with consistency regularization. In Proceedings
of the 38th International Conference on Neural Information Processing Systems
(Vancouver, BC, Canada) (NIPS ’24). Curran Associates Inc., Red Hook, NY, USA,
Article 1958, 29 pages.

[29] Kyle O’Brien, David Majercak, Xavier Fernandes, Richard Edgar, Jingya Chen,
Harsha Nori, Dean Carignan, Eric Horvitz, and Forough Poursabzi-Sangdeh.
2024. Steering Language Model Refusal with Sparse Autoencoders. CoRR
abs/2411.11296 (2024).

[30] Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov,
and Shan Carter. 2020. Zoom In: An Introduction to Circuits. Distill (2020).
doi:10.23915/distill.00024.001 https://distill.pub/2020/circuits/zoom-in.

[31] Bruno A. Olshausen and David J. Field. 1997. Sparse coding with an overcomplete
basis set: A strategy employed by V1? Vision Research 37, 23 (1997), 3311–3325.

[32] Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma,
Tom Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Con-
erly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Scott
Johnston, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario
Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah.
2022. In-context Learning and Induction Heads. Transformer Circuits Thread
(2022). https://transformer-circuits.pub/2022/in-context-learning-and-induction-
heads/index.html.

[33] OpenAI. 2022. ChatGPT: OpenAI’s Conversational Language Model. https:
//openai.com/chatgpt.

[34] Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and
Ramesh Karri. 2022. Asleep at the Keyboard? Assessing the Security of GitHub
Copilot’s Code Contributions. In 2022 IEEE Symposium on Security and Privacy
(SP). 754–768.

[35] Nina Rimsky, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexan-
der Matt Turner. 2024. Steering Llama 2 via Contrastive Activation Addition. In
ACL. 15504–15522.

[36] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xi-
aoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton-Ferrer,
Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar,
Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel Syn-
naeve. 2023. Code Llama: Open FoundationModels for Code. CoRR abs/2308.12950
(2023).

[37] Benjamin Steenhoek, Kalpathy Sivaraman, Renata Saldivar Gonzalez, Yevhen
Mohylevskyy, Roshanak Zilouchian Moghaddam, and Wei Le. 2025. Closing the
Gap: A User Study on the Real-world Usefulness of AI-powered Vulnerability
Detection Repair in the IDE . In 2025 IEEE/ACM 47th International Conference
on Software Engineering (ICSE). IEEE Computer Society, Los Alamitos, CA, USA,
1–13. doi:10.1109/ICSE55347.2025.00126

[38] Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken,
Brian Chen, Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones,
Hoagy Cunningham, Nicholas L Turner, Callum McDougall, Monte MacDi-
armid, C. Daniel Freeman, Theodore R. Sumers, Edward Rees, Joshua Batson,
Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan. 2024. Scaling
Monosemanticity: Extracting Interpretable Features from Claude 3 Sonnet. Trans-
former Circuits Thread (2024). https://transformer-circuits.pub/2024/scaling-
monosemanticity/index.html

[39] Catherine Tony, Nicolás E. Díaz Ferreyra, Markus Mutas, Salem Dhiff, and Ric-
cardo Scandariato. 2024. Prompting Techniques for Secure Code Generation: A
Systematic Investigation. CoRR abs/2407.07064 (2024).

[40] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal

https://semgrep.dev/
https://doi.org/10.48550/ARXIV.2411.02193
https://proceedings.neurips.cc/paper_files/paper/2019/file/bb836c01cdc9120a9c984c525e4b1a4a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bb836c01cdc9120a9c984c525e4b1a4a-Paper.pdf
https://openreview.net/forum?id=i4z0HrBiIA
https://openreview.net/forum?id=WCRQFlji2q
https://doi.org/10.1145/3233231
https://www.anthropic.com/news/probes-catch-sleeper-agents
https://www.goodfire.ai/papers/understanding-and-steering-llama-3
https://www.goodfire.ai/papers/understanding-and-steering-llama-3
https://doi.org/10.23915/distill.00024.001
https://openai.com/chatgpt
https://openai.com/chatgpt
https://doi.org/10.1109/ICSE55347.2025.00126
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY El Husseini et al.

Azhar, Aurélien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lam-
ple. 2023. LLaMA: Open and Efficient Foundation Language Models. CoRR
abs/2302.13971 (2023).

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you
Need. In NeurIPS, Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.
Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (Eds.). 5998–
6008.

[42] Jiexin Wang, Xitong Luo, Liuwen Cao, Hongkui He, Hailin Huang, Jiayuan Xie,
Adam Jatowt, and Yi Cai. 2024. Is Your AI-Generated Code Really Safe? Evaluating
Large Language Models on Secure Code Generation with CodeSecEval. CoRR
abs/2407.02395 (2024).

[43] Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and
Jacob Steinhardt. 2023. Interpretability in the Wild: a Circuit for Indirect Object
Identification in GPT-2 Small. In ICLR.

[44] Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. 2024.
Magicoder: Empowering Code Generation with OSS-Instruct. In ICML.

[45] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Tianle Li, Siyuan Zhuang, Zhang-
hao Wu, Yonghao Zhuang, Zhuohan Li, Zi Lin, Eric P. Xing, Joseph E. Gonzalez,
Ion Stoica, and Hao Zhang. 2024. LMSYS-Chat-1M: A Large-Scale Real-World
LLM Conversation Dataset. In ICLR.

[46] Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira
Widyasari, Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon
Brunner, Chen Gong, James Hoang, Armel Randy Zebaze, Xiaoheng Hong, Wen-
Ding Li, Jean Kaddour, Ming Xu, Zhihan Zhang, Prateek Yadav, and et al. 2025.
BigCodeBench: Benchmarking Code Generation with Diverse Function Calls and
Complex Instructions. In ICLR.

Received 14 March 2025; revised 18 July 2025; accepted 17 October 2025

	Abstract
	1 Introduction
	2 Motivating Example
	3 Preliminaries
	3.1 The Residual Stream
	3.2 Superposition
	3.3 Features as Directions

	4 Methodology
	4.1 Step 1: Feature Disentanglement
	4.2 Step 2: Vulnerable Feature Identification
	4.3 Step 3: Vulnerable Feature Repair

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Related Work
	7 Discussion
	Acknowledgments
	References

