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ABSTRACT

Deep neural networks (DNN) have been shown to be notoriously
brittle to small perturbations in their input data. This problem is
analogous to the over-fitting problem in test-based program syn-
thesis and automatic program repair, which is a consequence of
the incomplete specification, i.e., the limited tests or training exam-
ples, that the program synthesis or repair algorithm has to learn
from. Recently, test generation techniques have been successfully
employed to augment existing specifications of intended program
behavior, to improve the generalizability of program synthesis and
repair. Inspired by these approaches, in this paper, we propose a
technique that re-purposes software testing methods, specifically
mutation-based fuzzing, to augment the training data of DNNs, with
the objective of enhancing their robustness. Our technique casts
the DNN data augmentation problem as an optimization problem. It
uses genetic search to generate the most suitable variant of an input
data to use for training the DNN, while simultaneously identifying
opportunities to accelerate training by skipping augmentation in
many instances. We instantiate this technique in two tools, SENSEI
and SENSEI-SA, and evaluate them on 15 DNN models spanning
5 popular image data-sets. Our evaluation shows that SENSEI can
improve the robust accuracy of the DNN, compared to the state of
the art, on each of the 15 models, by upto 11.9% and 5.5% on average.
Further, SENSEI-SA can reduce the average DNN training time by
25%, while still improving robust accuracy.
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1 INTRODUCTION

Programming by examples (PBE) such as test-based program synthe-
sis and automated program repair [1, 18], automatically generates
programs that conform to the specification indicated by the given
examples. Since the given examples usually constitute an incom-
plete specification of intended behavior, the generated program
may over-fit the given examples and thereby not exhibit intended
behaviors on the un-seen part of the input space. Over-fitting is a
common problem in test-based program synthesis [1, 9] and auto-
mated program repair [18, 25]. Similarly, machine/deep learning [7]
also faces the over-fitting problem. In machine learning, a model is
usually learned from a training set (of inputs), and then deployed
on a testing set. Over-fitting in machine learning systems impacts
two related but distinct properties of such systems: (1) inadequate
standard generalization, where the trained model shows high accu-
racy on the training set, but cannot be generalized to data points
outside the training set, e.g., the testing set, and (2) inadequate
robust generalization, where the model show high accuracy on both
training and testing sets, but cannot be generalized to inputs that
are small perturbations of training/testing inputs; these small per-
turbations may still constitute legal inputs, but the learned model
often mis-classifies such inputs. Robust generalization renders the
learned models resilient against such small perturbations.
Standard generalization does not imply robustness generaliza-
tion. For instance, a model, even with 99% accuracy on its testing
dataset, could misclassify the input variations generated by sim-
ple spatial transformation (e.g., rotation) with high confidence [8].
Figure 1 presents an example from the GTSRB dataset. Robust gen-
eralization itself can be of two types, depending on the operation
context. In a security setting, robust generalization against adver-
sarial inputs aims to protect a model against a powerful adversary,
that can modify the input in sophisticated and targeted ways (i.e.,
an attack), such as obscuring a few specific pixels in an image, to
make the model mis-predict. This scenario has been popularized by
the work on adversarial testing [11, 12, 23, 29] and more recently,
adversarial robust generalization [4, 14, 17, 21, 31, 45]. A second
scenario, however, is perturbations due to natural variations in
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(a) Original image is cor-|{(b) Incorrect classification
rectly classified after one degree rotation

Figure 1: A motivating example from the GTSRB dataset

environmental conditions when capturing input data. Examples
of this are variations due to weather conditions (e.g., snow, fog)
or the illumination (e.g., day or night) for the same location, for a
self-driving car, or variations in the position, angle, or exposure
settings for a camera capturing the same subject. Recent work
has highlighted the poor robustness of Deep Learning models to
such variations [19, 24, 30, 47]. In this work, we focus on the latter
scenario and investigate how software testing techniques can be ap-
plied for the robust generalization of Deep Neural Networks (DNNs)
to natural environmental variations. Although we present our ap-
proach in the context of DNNs, the core ideas are more broadly
applicable to learning systems.

In the field of test driven program synthesis and program repair, a
prominent class of recent techniques improves the generalization of
generated programs by augmenting existing test suites [9, 40, 41, 43].
Test case generation techniques (such as random testing, search-
based evolutionary testing, symbolic execution, grey-box fuzzing)
have been used to augment existing specifications of intended pro-
gram behavior [40, 41, 43]. In particular, coverage-based grey-box
fuzzing approaches, such as AFL [32], have shown utility in aug-
menting existing test suites for program repair [10]. In grey-box
fuzzing algorithms, i[1]nputs are randomly mutated to generate
new inputs and higher priority is assigned to inputs that exercise
new and interesting paths. The intuition behind these techniques is
that covering more program paths enables us to find representative
tests and covers more program functionality.

At a conceptual level, training Al models is analogous to program
synthesis [1]. A learning system generates a model that can clearly
classify a given input to its corresponding label. Specifically, neural
network models can be considered as layers of program statements
connected by a parameter matrix. Given a set of training data (in-
puts) with labels (outputs), the knowledge acquired during training
is encoded into parameters that connect layers. Thus, it is natural
to ask if software test generation based augmentation techniques,
which have been successfully applied to improve generalization of
program synthesis and repair, can be re-purposed for robust gen-
eralization of DNNs. This paper develops this idea, by employing
mutation-based fuzzing for data augmentation of DNNs.

It is a common practice to boost the standard generalization
of DNNS, using basic data augmentation, where, during the initial
training, each training input is substituted by a (single) randomly-
generated, label-preserving variant [16, 27]. A more sophisticated
version of this is done in mixup [46], a recently proposed state-of-
the-art data augmentation technique, that trains a DNN on convex
combinations of pairs of data and their labels. However, as shown
in Section 5, while this boosts the standard generalization and the
robust generalization to adversarial examples, it has limited impact
on the robust generalization to natural variations. Further, the space
of potential label-preserving transformations and their parameter
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(a) Standard model  (b) State-of-the-art (c) SENSEI
Figure 2: The loss for various transformations of the moti-
vating example after augmented training.

values is very rich [8, 24, 30]. Thus, naive augmentation with all or
several variants is not viable either — it would significantly increase
the size of the training set and training time. In the past, robust op-
timization [2], based on gradient descent, has been used to defend
DNNs against adversarial examples [8, 21]; these techniques try to
generate the worst variant, based on a loss function, and add it to
the training set. However, as shown in Figure 2(a), the input space
of spatial transformations, which are prominently represented in
natural environmental variations (for vision applications), is highly
non-convex. The gradient descent techniques perform rather poorly
in such scenarios [8], and therefore not applicable for our problem.
Even a state-of-the-art augmentation approach [8] performs poorly
for such non-convex space as shown in Figure 2(b). It is important
to note that while our data augmentation technique generates and
uses the generated data during initial training, almost all techniques
to improve robustness [14, 15, 17, 24, 30, 31] generate adversarial
examples by analyzing a trained model and subsequently re-train
the model on this new data. Our evaluation (Section 5) demonstrates
that our technique provides better robust generalization than the
latter approach. Concurrent with our work, Yang et al. have pro-
posed an orthogonal approach to improving DNN robustness to
spatial variations [42]. Their approach modifies the loss function
of the DNN by adding an invariant-inducing regularization term to
the standard empirical loss. This is complementary to our proposed
data augmentation based mechanism of improving robustness. Ex-
ploring the combination of these two approaches could present an
interesting opportunity for future work.

Proposed technique. In this paper, we propose a new algorithm
that uses guided test generation techniques to address the data aug-
mentation problem for robust generalization of DNNs under natural
environmental variations. Specifically, we cast data augmentation
problem as an optimization problem, and use genetic search on a
space of the natural environmental variants of each training input
data, to identify the worst variant for augmentation. The iterative
nature of the genetic algorithm (GA) is naturally overlaid on the
multi-epoch training schedule of the DNN, where in each iteration,
for each training data, the GA explores a small population of vari-
ants and selects the worst, for augmentation, and further uses it as
the seed for the search in the next epoch, gradually approaching the
worst variant, without explicitly evaluating all possible variants.
Further, we propose a novel heuristic technique, called selective
augmentation which allows skipping augmentation completely for
a training data point in certain epochs based on an analysis of the
DNN'’s current robustness around that point. This allows a substan-
tial reduction in the DNN’s training time under augmentation. The
contributions of this paper include:
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o We formalize the data augmentation for robust generalization of
DNNS, under natural environmental variations, as a search prob-
lem and solve the search problem using fuzz testing approaches,
specifically using genetic search.

o To reduce the overhead caused by data augmentation, we propose
a selective data augmentation strategy, where only part of data
points are selected to be augmented.

o As a practical realization of the proposed technique, we imple-
ment two prototype tools SENSEI and SENSEI-SA.

o We evaluate the proposed approach on 15 DNN models, spanning
5 popular image data-sets. The results show that the SENSEI can
improve the robust accuracy of all the models, compared to the
state of the art, by upto 11.9% and 5.5% on average. SENSEI-SA can
reduce DNN average training time by 25%, while still improving
robust accuracy. Currently, our approach has only been evaluated
on image classification datasets. However, conceptually, it may
have wider applicability.

2 BACKGROUND
2.1 Fuzz Testing

Fuzz testing is a common and practical approach to find software
bugs or vulnerabilities, where new tests are generated by mutating
existing seeds (inputs). By selecting the seeds to mutate and con-
trolling the number of generated mutations, we can effectively and
efficiently achieve a certain testing goal (e.g. high code coverage).
Algorithm 1 briefly describes how greybox fuzzing (e.g. AFL [32])
works. Given a set of initial seed inputs S, the fuzzer chooses s
from S in a continuous loop. For each s, the fuzzer determines the
number of tests, which is called the energy of s, to be generated by
mutating s. Then, we execute program P with the newly generated
test s’ (line 6) and monitor the run-time behavior. Whether s’ is
added to the seed queue is determined by a fitness function (line 7),
which defines how good test s is to achieve a certain testing goal.

Algorithm 1: Test generation via greybox fuzzing

Input: seed inputs S; program P
1 while timeout is not reached do

2 s := chooseNext(S);

3 energy := assignEnergy(s);

4 for i from 1 to energy do

5 s’ ;= mutate(s);

6 execute (P, s');

7 if fitness(s’) > threshold then
8 ‘ S:==SuUs’;

9 end

10 end

2.2 Training Deep Neural Networks

Given a DNN model M with a set of parameters (or weights) 6 €
RP being trained on a training dataset D that consists of pairs of
examples x € R? (drawn from a representative distribution) and
corresponding labels y € [k], the objective of training M is to infer
optimal values of 8 such that the aggregated loss over D computed
by M is minimum. Following the treatment in [21], this can be
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expressed as the following minimization problem:
min Ex, y)~plL(0.x,y)] (1)

where L(0, x, y) is a suitable cross-entropy loss function for M and
E(x,y)~D() is a risk function that (inversely) measures the accuracy
of M over its training population. In practice, the solution to this
problem is approximated in a series of iterative refinements to the
values of 0, called epochs. In each epoch, 6 is updated with the
objective of minimizing the loss of training data.

2.3 Robustness of DNNs

DNNs have demonstrated impressive success in a wide range of ap-
plications [3, 48]. However, DNNs have also been shown to be quite
brittle, i.e., not robust, to small changes in their input. Specifically,
a DNN M may correctly classify an input x with its corresponding
label [, but incorrectly classify an input x + § that is similar to x,
with label I, where [ # I’. Although our ideas are broadly applica-
ble, the sequel assumes a DNN performing an image classification
task. In this context, x is an image, and x + § a perceptually similar
(to the human user) variant of x.

As discussed earlier, this work targets robustness issues arising
from natural, environmental perturbations § in the input data and
not perturbations § constructed adversarially, in a security context.
The allowed perturbations § can be represented as a neighborhood
S around input x, such that V§ € S, x + § constitutes legal input
for M and is perceptually similar to x and hence carries the same
label . S can be simulated through a set of parameterized trans-
formations T(p, x) = {t1(p1,x), t2(p2, x), - . ., tx(pg, x)} (Where g =
{p1,p2; - - -» Pi)), including common image transformations such as
rotation, translation, brightness or contrast changes, etc., as done by
recent work on robustness testing of DNNs [8, 24, 30]. Alternatively,
S can be synthesized using generative models such Generative Ad-
versarial Neural Networks (GANSs) [20, 47]. We employ the former
approach. Specifically, a variant x’ of image x can be computed

by applying the composition of transformations t1,t2, ..., t in
sequence (denoted by t) on x, as:
x" = t(p,x) = t(pk, - . - t2(p2. i(p1. %)) . .) )

2.4 Data Augmentation for DNNs

Since DNNss self-learn the relevant features from the training data
they may learn irrelevant features of the specific data (i.e., over-
fitting) and generalize poorly to other data [16]. To improve (stan-
dard) generalization of DNNss it is common practice to perform a
basic form of data augmentation where, during training, in each
epoch, each training data is replaced by a variant created by ran-
domly applying some sources of variation or noise (for example
the transformations T above). As shown in Section 5, this basic
strategy also boosts robust generalization but with significant room
for improvement. Data augmentation can be performed in mainly
two ways from the training perspective: i) during initial training:
synthetic data is generated on-the-fly based on some heuristics and
then augmented with the training data during the training of the
original model, ii) retraining: in a two-staged fashion where in
the first step, additional data are selected based on the feedback
on the original model, and then in the second step, the model is
retrained with the augmented data.
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3 SENSEI: AN AUTOMATIC DATA
AUGMENTATION FRAMEWORK FOR DNNS

SENSEI targets improving the robust generalization of a DNN in-
training, under natural environmental variations, by effectively
augmenting the training data. In general, data augmentation could
involve adding, removing, or replacing an arbitrary number of
training data inputs. However, SENSEL, like several augmentation
approaches [8, 21], implements a strategy of either replacing each
data with a suitable variant or leaving it unchanged. Thus, the
total size of the training dataset is also unchanged. Thus, the key
contribution of SENSEI is to identify the optimal replacement for
each training data. In addition, we introduce an optimized version of
SENSEI called SENSEI-SA to optimize the training time by potentially
skipping augmentation for some data inputs.

3.1 Problem Formulation

The task of training a DNN under robust generalization can be cast
as modified version of Equation 1, where, in addition to optimizing
for parameters 6 we also need to select, for each training data input
X, a suitable variant x” = x + §, where § € S. Following [21] this
can be cast as the following saddle-point optimization problem:

min E(y,y)~plmax L(0.x +6.9)] 3

SENSEI approximates the solution of this optimization problem
by decoupling the inner maximization problem (which solves for §)
from the outer minimization problem (which optimizes ). This is
done by allowing the usual iterative epoch-based training schedule
to optimize for, but in each epoch, for each training data x, solving
the inner maximization problem to find the optimal variant x+4§.
Specifically, given the set of transformations T(p, x) defining neigh-
borhood S and using an overloaded definition of S in terms of the
parameter vector p, SENSEI solves following optimization problem:

DEFINITION 1 (AUGMENTATION TARGET). Given a seed training
data input x and transformation function t(p, x) defining neighbor-
hood S of x, find p yielding the optimal variant x’ (per Equation 2)
to optimize:
ax L(0, t(, x).y) 4)
€S

p

3.2 An Overview

In order to solve the optimization problem defined in Equation 4
effectively and efficiently, our proposed approach includes two
novel insights. Our first insight is that although traditional data
augmentation techniques improve the robust generalization by
training the DNN with some random variations of the data-points,
a fuzz testing based approach such as guided search may be more
effective to find optimal variants of data points to train the DNN,
and hence, to improve the robust generalization. Our second insight
is that not all data points in the training dataset are difficult to learn.
Some data points represent ideal examples in the training set while
some are confusing. Therefore, treating all the points similarly
regardless of their difficulties levels may result in waste of valuable
training time. We may save a significant amount of training time
by spending the augmentation effort on only the challenging data-
points while skipping augmenting for ideal or near-ideal examples.
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Figure 3: An overview of SENSEI for one seed image in one
epoch. Given images are only for illustration purposes with-
out proper scaling.

Algorithm 2: Overall algorithm

Input: Training set (X, Y), number of training epochs nE, population
size popSize, crossover probability p

Output: Model M

epoch:=1;

2 M:=train(X,Y); // train M with original data in first epoch

3 for i inrange(0, | X |) do

-

4 Pop; := randomInitPopulation(X[i]);

5 isPWRobust; := False;

¢ end

7 while epoch <nE do

8 epoch:= epoch +1;

9 for i inrange(0, | X |) do

10 if isPWRobust; then

1 isPWRobust; := isRobust (X[i]);

12 continue; // selective augmentation

13 children := genPop (Pop;, p, popSize); // Alg.3

14 f = fitness(M, children); // Equation 5
// replace original data with child with highest fitness

15 X[i] := selectBest(children, f);

16 Pop; := select(children, f); // new population

17 isPWRobust; := pointWiseRobust (X[i], Pop;);

18 end

19 M :=train (X, Y);

20 end

Figure 3 presents an overview of the proposed framework, SEN-
skl for one seed image and for one epoch. There are two main
components in SENSEI: i) optimal augmentation and ii) selective
augmentation, which basically realize the two aforementioned in-
sights. Algorithm 2 provides even further detail on how the overall
approach is overlaid on the multi-epoch training schedule of M.
SENSEI starts training M with the original data point in the first
epoch (line 2). However, from the second epoch, the optimal aug-
mentation module efficiently finds the most potential variation (x’)
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that challenges M the most, replace x with x” and use x’ for train-
ing (line 13-16). The selective augmentation module is intended to
optimize the training time. When it is enabled, SENSEI does not
augment every data-point (x) right away. Rather, the selective aug-
mentation module first determines whether the current state of M
is robust around x. If so, SENSEI-SA keeps skipping the augmenta-
tion of x (line 10-12, 17) until M becomes unrobust around x. Note
that, SENSEI is in-training data augmentation approach, i.e., data
generation and augmentation happen on-the-fly during training.

3.3 Optimal Augmentation

Theoretically, a DNN could be trained with infinite number of real-
istic variants (x”) to increase the robust generalization. However, it
is impractical to explore many variations of original data-points in
a brute-force fashion. Therefore, the main challenge in automatic
data augmentation is identifying the optimal variations of data-
points efficiently that would force the model to learn the correct
feature of the representing class. In SENSEI, our key insight is that
since the genetic algorithm is well-known to explore a large search
space efficiently to find optimal solutions by mimicking evolution
and natural selection, we can effectively employ it to find an op-
timal variant for each data-point in each epoch to improve the
robust generalization. Furthermore, the iterative nature of genetic
algorithms naturally gets overlaid on the multi-epoch training of
the DNN, which makes the search very efficient.

Adapting genetic algorithms (GA) to any problem involves de-
sign of three main steps: (i) representation of chromosomes, (ii)
generation of population using genetic operators, and iii) mathemat-
ical formulation of a fitness function.

3.3.1 Representation of Chromosome. In genetic algorithms(GA),
a chromosome consists of a set of genes that defines a proposed
solution that the GA is trying to solve. In SENSEI, we represent
a chromosome as a set of operations that would be applied on a
given input to get the realistic variations, which is basically the
transformation vector p = {p1, p2, . . . , px) described in Section ??.
For instance, we can derive a realistic variation (x’) of image (x)
by rotating x by one degree and then translating it by one pixel,
simulating the angle and movement of camera in real life.

3.3.2  Generation of population. In GA, a population is a set of
chromosomes that represents a subset of solutions in the current
generation. In SENSEI, the initial population, which is the population
in the first epoch, are created randomly. In subsequent generations
(epochs), the population is constituted through two genetic opera-
tors: mutation and crossover and then through a selection technique.

Given the current population, a crossover probability and
population size, SENSEI applies mutation and crossover opera-
tions on the chromosomes in the current population to gen-
erate a new population, as presented in Algorithm 3. Muta-
tion is performed by randomly changing a single operation
(change parameter) in the chromosome. Crossover is done to
create a new chromosome by merging two randomly selected
existing chromosomes. Specifically, given two random chromo-
somes: ¢; = {rotation: 1, translation: 2, shear: —0.15} and ¢ =
{rotation: —1, translation: —3, shear: 0.1}, the crossover operator
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Algorithm 3: Generation of population

Input: Current Population Pop, crossover probability p, population
size popSize
Output: OffSpring children
1 children := {};
2 while size(children) < popSize do

3 r:=U(0, 1);

4 if r<p then // use crossover
5 X1, X2 := selectParents(Pop);

6 X1, X3 := crossover (xi, x2);

7 else // use mutate
8 x := selectParent (Pop);

9 op := randomSelectOp(Operations);

10 x7 = mutate(x, op);

1 end

12 if isValid(x]) then

13 ‘ children = children U x|

14 end

15 end

6 return children;

-

first generates a random number, r between 1 and the chromo-
some length (I) and merges c; and ¢z by taking 1 to r transfor-
mations from c¢; and r + 1 to [ transformations from c2 to form
a new chromosome cp,. For the given example, r = 2 produces
cn = {rotation: 1, translation: —3, shear: 0.1}. SENSEI applies either
mutation or crossover operation based on the given crossover prob-
ability. It should be noted that once a new chromosome is generated
through the mutation or crossover, it is validated to make sure that
it is within the range of each transformation that we set globally
(line 12). Furthermore, SENSEI always applies the resulting transfor-
mation vector (chromosome) on the original image (as opposed to
applying on an already transformed data) to prevent the resulting
data from being unrealistic. Once the new population is generated,
they are evaluated and only best set is passed as a current popula-
tion for the next generation (line 17 in Algorithm 2). The best set is
selected through a fitness function.

3.3.3  Fitness function. In GA, a fitness function evaluates how
close a proposed solution (chromosome) is compared to an optimal
solution. The design of a fitness function plays an important role
in GA since if the fitness function becomes the bottleneck of the
system, the entire system would be inefficient. Furthermore, the
fitness function should be intuitive and clearly defined to measure
the quality of a given solution. In SENSEI, we define the fitness
function based on the empirical loss of the DNN. More specifically,
since the training of DNN focuses on minimizing loss across the
entire training data-set, the variant that suffers in more loss by the
DNN should be used in the augmented training to make the DNN
more robust. Formally:

Jr0ss(x") = L(0,x",y) ®)

Other metrics as fitness function. Any metric that quantifies
the quality of a DNN with respect to a test input may be used as
a fitness function. Some of the concrete examples include neuron
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Table 1: Short data-set descriptions and statistics

Data-set #Train = #Test #CL #MD Description
GTSRB 38047 12632 43 4 German Traffic
Sign Benchmark
FM 60000 10000 10 3 Zalando’s article
CFR 50000 10000 10 Object recognition
SVHN 73257 26032 10 2 Digit recognition
IMDB 345693 115231 5 p Facedatassetwith

gender & age labels

CFR: CIFAR-10 #CL: #Classes #MD: # DNN Models

coverage [24] and surprise adequacy [15]. Nevertheless, the com-
putation of the fitness function should be reasonably fast so that it
does not become the bottleneck of the system.

3.4 Selective Augmentation

Unlike traditional techniques that augment all the data-point in the
training set irrespective their nature, SENSEI-SA skips data-points
that are already classified by M robustly. Therefore, the selective-
augmentation technique is solely based on the robustness analysis
of M w.r.t. a data-point x. We formalize the robustness w.r.t. a data-
point as point-wise robustness which could be determined based on
the following two kinds metrics:

Classification-based robustness. A model is point-wise robust
w.r.t. a data-point x if and only if it classifies x and all the label
preserving realistic variations (x”) correctly.

Loss-based robustness. A model is point-wise robust w.r.t. a
data-point x if and only if the prediction loss of x or any label pre-
serving realistic variations (x”) is not greater than a loss threshold.

For selective-augmentation, SENSEI-SA first determines whether
M is point-wise robust w.r.t. the seed. If the seed is robust, SENSEI-
SA does not augment it until the seed is incorrectly classified by M
in subsequent epochs or the prediction loss by M is less than loss
threshold. At any point, M is unrobust w.r.t. the seed, SENSEI-SA
uses the optimal augmentation module to augment the seed.

4 EXPERIMENTAL SETUP
We evaluate SENSEI with respect to three research questions:

RQ1 How effectively does SENSEI improve the robustness of DNN
models compared to state-of-the-art approaches?

RQ2 How effective the “selective augmentation” module in reduc-
ing the training time?

RQ3 How does the value of hyper-parameters affect the effective-
ness and efficiency of SENSEI?

4.1 Dataset and Models

Since computer vision is one of the most popular applications of
deep learning, to evaluate our approach, we selected a wide range
of image classification datasets described in Table 1. These datasets
cover various applications such as traffic sign classification, object
recognition, and age/gender prediction. Furthermore, all of these
datasets have been widely used to evaluate training algorithms,
adversarial attack and adversarial defense techniques. For each

Xiang Gao, Ripon K. Saha, Mukul R. Prasad, and Abhik Roychoudhury

dataset, columns #Train, #Test, and #CL in Table 1 show the number
of training, testing images, and the number of classes, respectively.

For each dataset, we collected multiple models (Column #MD)
from open-source repositories. More specifically, we selected four
models for GTSRB from [28, 38, 39], three models from [28, 36, 37]
for Fashion-MNIST (FM). The models for CIFAR-10 include Wide-
Resnet[44] and three Resnet[13] models with 20, 32, 50 layers, re-
spectively, which are collected from [33]. For SVHN, we used a
VGG model[28] and a model from [34]. As for IMDB, we consider
two models: VGG16 and VGG19 [28] [35]. Except augmenting the
training data, we do not change the original model architectures.

All the detailed parameters can be found in repository of SENsEI L.

4.2 Generation of Realistic Variations

SENSEI focuses on improving the robustness of DNN models by aug-
menting training data with natural environmental variations. Since,
we focus on the applications with image, we choose two major
kinds of image operations: i) geometric operations ii) color opera-
tions to simulate the camera movements and lighting conditions in
real life. To make sure the translated images are visually similar to
natural ones, we restrict the space of allowed perturbations follow-
ing [8] where it is applicable. The operations and corresponding
restrictions with respect to an image x are as follows:

e rotation(x,d): rotate x by d degree within a range [-30, 30].

o translation(x, d): horizontally or vertically translate x by d pixels
within a range of [-10%, 10%] of image size.

e shear(x,d): horizontally shear x with a shear factor d within a

range of [-0.1, 0.1].

zoom(x,d): zoom in/out x with a zoom factor d ranging [0.9,1.1]

brightness(x,d ): uniformly add or subtract a value d for each pixel

of x within a range of [-32, 32]

contrast(x,d): scale the RGB value of each pixel of x by a factor

d within range of [0.8, 1.2]

These image operations preserve the content of original image.
Since images in these datasets do not have any information about
the pixels outside their boundary, the space beyond the boundary
is assumed to be constant 0 (black) at every point.

4.3 Evaluation Metric

Since SENSEI is focused on improving the robustness of DNN mod-
els, following Engstrom et al. [8], we compute robust accuracy of
SENSEI to answer each research question. More specifically, robust
accuracy is the proportion of images in the testing dataset where
the prediction of a DNN does not fluctuate with any small realistic
perturbations. Formally, let us assume that there is an image x in
the testing dataset that belongs to a class c. TS is a set of paramet-
ric transformations with a size of m. Applying a transformation
ts € TS on x gives us a transformed image x’. X’ is the set of all
transformed images resulting from TS. So TS| = |X’|. A DNN is
robust around x if and only if M(x”) = ¢ for all x’ € X’. Finally, let
us assume that nInstances is the number of images in the testing
dataset, and among them nRobustInstances is the number of images
where M is robust. Then the robust accuracy of M for the dataset
is:

!https://sensei-2020.github.io
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nRobustInstances

(6)

robust accuracy =
nlnstances

5 EXPERIMENTAL RESULTS

5.1 Implementation

We implement SENSEI on top of Keras version 2.2.4 (https://keras.io),
which is a widely used platform that provides reliable APIs for train-
ing and testing DNNs. More specifically, we implement a new data
generator that augments the training data during training. Our
data generator takes as inputs the current model and original train-
ing set, augments the original data and then feeds the augmented
data to the training process at each step. The augmented data is
generated and selected using the approach described in Section 3.

5.2 Experimental Configurations

We conducted all the experiments on a machine equipped with two
Titan V GPUs and Xeon Silver 4108 CPU 128G memory and 16.04
Ubuntu. All the experiment specific configurations are described in
the respective answers. Since genetic algorithm in SENSEI involves
random initialization and decision, we ran each experiment five
times independently and reported the arithmetic average results.

5.3 RQ1: Effectiveness of SENSEI

We perform a comprehensive set of experiments to evaluate the
effectiveness of SENSEI compared to the state-of-the-art data aug-
mentation approaches from various perspectives.

5.3.1 Exp-1: Does SENSEI solve the saddle point problem effectively?
As we explained in Section 3.1, the effectiveness of a data augmenta-
tion technique lies in how effectively it solves the inner maximiza-
tion of the saddle point problem in Equation 4. Therefore, in our
first experiment, we check whether SENsEI is indeed effective in
finding the most lossy variants effectively than the state-of-the-art
techniques. To this end, we trained each model following three data
augmentation strategies:

(1) Random augmentation. This is one of the most frequently
used data augmentation strategies in practice since it is a
built-in feature in the Keras framework. In this approach,
given a set of perturbations, a random perturbation is per-
formed for each image at each step (epoch). However, to
make the comparison fair we customize the approach to give
it the same combination of transformations as in SENSEL

(2) W-10. The most recent data augmentation approach for nat-
ural variants, which is called Worst-of-10 [8]. W-10 generates
ten perturbations randomly for each image at each step, and
replaces the original image with the one on which the model
performs worst [8] (e.g. highest loss).

(3) SENSEI To make the comparison fair with W-10, the results
of SENSEI are generated using a population size of 10.

Results. Figure 4 presents the logarithmic training loss for two
models: GTSRB-1 and CIFAR-10-1. The results show that although
SENSEI starts with very similar performance in the initial epochs,
due to the systematic nature of SENSEIL, soon it outperforms W-
10 for every model and dataset. Therefore, the genetic algorithm
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Figure 4: Effectiveness in identifying most lossy variants in
two models GTSRB-1 and CIFAR-10-1 (under T3)

based data selection in SENSEI is more effective to solve the inner
maximization problem than Random and W-10 based techniques.

5.3.2  Exp-2: Does SENSEI perform better than the state-of-the-art
data augmentation techniques in any number of transformations? It
is harder to achieve robust accuracy as the number of transforma-
tion operators increases since there are just more options to fool the
model. Therefore, we further investigate how the effectiveness of
SENSEI vary as the number of transformations increases. We calcu-
late robust accuracy under three (T3) and six image transformation
operators (T6) separately. T3 experimentation includes the rotation,
translation, and shear image operations as defined in Section 4.2.

Results. Table 2 presents core results of the paper, which shows
the robust accuracy of all the models trained using the Standard,
Random, W-10 and SENSEI strategy using three and six transforma-
tion operators. From the results using T3, we see that even though
the Standard training achieves over 91% average standard accu-
racy (shown in column TestAcc), the robust accuracy sharply drops
to 5% on average (Column 4). Random augmentation and W-10
based training significantly improve the robust accuracy for each
dataset. However, SENSEI achieves the highest robust accuracy for
all models of all data-sets (highlighted). SENSEI improved the robust
accuracy from 8.2% to 18.7% w.r.t. random augmentation and from
1.7% to 6.1% w.r.t. state-of-the-art W-10. When we increased the
number of transformation operators from three (T3) to six (T6),
we see that the robust accuracy for all augmentation strategies
decreased significantly. This is expected due to two facts: i) under
Té6, the generated variants are less similar with original images and
ii) under T6, a larger number of perturbations are generated for
each image, and an image is more likely to be considered as misclas-
sified, since an image will be regarded as misclassified if one of its
perturbation is misclassified. However, in this harder problem, the
improvement by SENSEI compared to both random augmentation
and W-10 is greater than that of T3. On average, SENSEI achieves
22.2% higher robust accuracy than Random, and 6.6% than W-10.
This also demonstrates that SENSEI performs better in larger search
space. Please note that we do not evaluate the models designed
for IMDB with six transformation operators, because face image is
very sensitive to the change of color palette.

5.3.3 Exp-3: Does SENsEl perform better than the adversarial
example-based retraining approaches? In Section 2.4, we briefly
described how data augmentation can be performed during ini-
tial training vs. adversarial retraining. The effectiveness of SENSEI
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Table 2: The robust accuracy for Random, W-10 and SENSEI. SENSEI uses loss-based fitness function.

. Robust accuracy under 3 trans. op. (T3) | Robust accuracy under 6 trans. op.(76)
Model Size(MB)  TestAce Standard Random W-10 SENSEI | Standard Random W-10  SENSEI
GTSRB-1 16 98.00 3.20 77.60  85.80 90.80 2.10 49.90 64.00 67.90
GTSRB-2 258 95.40 2.40 70.80 84.60 86.30 1.60 4470  57.30 62.10
GTSRB-3 11 97.92 0.70 72.10 83.30 88.70 0.60 4240 56.70 64.40
GTSRB-4 114 95.31 1.60 72.80 82.40 86.90 1.10 35.10 58.10 65.40
FM-1 305 92.80 0.20 65.70  79.20 83.60 0.00 39.90 64.20 70.50
FM-2 21 92.70 0.30 60.20 72.20 78.00 0.00 39.70  61.90 68.80
FM-3 6 92.79 0.20 63.10 73.90 77.40 0.00 38.20 57.60 65.40
CIFAR-10-1 7 88.32 1.30 52.20 61.80 67.20 0.10 33.10 47.10 55.20
CIFAR-10-2 279 88.54 1.40 56.70  64.90 67.90 0.10 35.30 48.80 56.20
CIFAR-10-3 5 88.01 1.80 73.30  76.50 81.50 0.40 57.40 70.60 72.50
CIFAR-10-4 3 87.09 1.10 47.50 60.10 66.20 0.04 28.20 44.30 54.70
IMDB-1 88 85.81 28.00 69.00 71.90 79.60 - - - -
IMDB-2 126 84.97 29.30 74.10 81.90 83.90 - - - -
SVHN-1 7 94.01 0.40 75.20  83.60 85.50 0.20 7290 82.40 84.00
SVHN-2 29 92.82 0.70 56.00 67.80 74.90 0.40 52.10 58.90 70.80
AVG - 91.63 4.84 65.75 75.33 79.89 0.51 43.76  59.38 65.99

lies in that it effectively selects the optimal variation of the seed
data, epoch by epoch. In contrast, in retraining based approach,
once the adversarial examples are selected, they are fixed across
epochs. In this experiment, we compare these two approaches. To
this end, following the popular retraining approaches [15, 24], we
replicated the adversarial training in a benign setting. The step
includes: i) training the model using the original training data, ii)
generating the adversarial examples by our transformations, i.e.,
the variants that fool the DNN, iii) selecting the best adversarial
examples, adding in the training data, and retraining the model
for 5 additional epochs. To make the comparison fair, we generate
the equal number of variants in Step-2 as of SENSEI For example,
if SENSEI generates 10 variants per data-point in one epoch and
runs 100 epochs, we generate 1,000 adversarial examples for a given
data-point, and choose the best variant of each data by the loss
function. We still use the attack model and evaluation metric shown
in Section 4.3.

Table 3: Average robust accuracy by SENSEI vs. Retraining

Approach ~ GTSRB FM CIFAR-10 IMDB SVHN
Retraining 78.26  68.24 43.72  70.21 68.30
SENSEI 88.18  79.67 70.70  81.75 80.20

Results. Table 3 presents the average robust accuracy of all
models for SENSEI and the retraining based approach. The results
show that SENSEI improves the robust accuracy from 10% to 27%
compared to adversarial retraining, and the results are consistent
across all datasets. Therefore, although adversarial retraining is
very effective in a security-aware setting, SENSEI is more effective
in improving robust generalization in a benign setting.

5.3.4 Exp-4: Can SENSEI preserve the standard accuracy while im-
proving robust generalization? Improving the robust accuracy would
only add value if SENSEI can retain the standard accuracy. Therefore,
we investigate how SENSEI performs in terms of standard accuracy.

Results. Table 4 presents the average standard accuracy of the
experimented models without data augmentation (2nd column)
and trained by SENSEI (4th column). Results show that the orig-
inal (Standard) models are highly accurate. After we augmented
each model by SENSEI to increase their robust generalization, the
standard accuracy increased even further for four out five datasets.

5.3.5 Exp-5: How does SENSEI perform compared to other state-
of-the-art generalization techniques? mixup [46] is a recent data
augmentation approach that improves standard generalization and
also guards against pixel-level perturbations in security-aware set-
tings. mixup trains a neural network on convex combinations of
pairs of examples and their labels to favor simple linear behavior
in-between training examples. mixup’s source-code to replicate the
results for CIFAR-10 is available online [46]. We adapted mixup
in our setting, verified with CIFAR-10 that our result is consistent
with [46], and ran it for all the models and dataset in our study.

Table 4: Average accuracy of mixup vs. SENSEI

Standard accuracy Robust accuracy

Models - p

Stand. mixup SENSEI | Stand. mixup SENSEI
GTSRB 96.65 97.24  97.43 1.98 1.72 88.18
FM 92.77  92.95 89.53 0.23 1.69 79.67
CIFAR-10 8798 9245 90.93 1.40 1.69 70.70
IMDB 85.40  89.51 88.30 | 28.65 30.23  81.75
SVHN 93.40 95.94 94.60 0.55 0.25 80.20

Results. Table 4 compares the average robust accuracy achieved
by mixup and SENSEI both for standard generalization and ro-
bust generalization across all models. The results show that mixup
and SENSEI both overall improved standard generalization. In fact,
mixup is a little better than SENSEI for standard generalization.
However, mixup performed poorly in improving robust general-
ization for real-world naturally occurring variants. It performed
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marginally better than no-augmentation. In contrast, SENSEI clearly
outperformed mixup for every dataset for robust generalization.

Comparison with Yang et al. [42]. Very recently, Yang et al.
have proposed an approach to increase DNN robustness to spa-
tial transformations, by modifying the loss function of the DNN.
Specifically, they retain the random W-10 augmentation strategy [8]
but add an invariant-inducing regularization term to the standard
empirical loss, to boost robustness. However, their technique is
implemented in a different framework (TensorFlow, versus Keras
for SENsEI) and their experiments are performed on significantly
different DNN models and with different transformations (only 2
versus up to 6 used by SENSEI) and evaluation metrics. This makes
a fair, head-to-head quantitative comparison infeasible at present.
However, for an initial assessment of relative performance, we ran
SENSEI on CIFAR-10, with a model substantially similar to one used
in [42], and using the same two transformations. The results show
that SENSEI reduces the error (the evaluation metric used in [42])
by 23.5% over W-10 while their technique reduced it by 21.9%, as
reported in [42]. Thus, SENSEI can match or surpass their technique
in this case.

Conceptually, SEnser and [42] improve DNN robustness
through fundamentally different mechanisms. SENSEI uses a data-
augmentation approach — a black-box technique, while Yang et
al. use a re-designed loss function — a white-box approach. These
techniques are thus complementary and combining them for even
greater robustness improvement could be interesting future work.

SENSEI solves the inner maximization problem more effec-
tively than the state of the art. It is able to improve the robust
accuracy of the DNN, compared to the state of the art, on each
of the 15 models, by upto 11.9%, while retaining standard test
accuracy. Furthermore, for benign variations, SENSEI outper-
forms data augmentation approaches both that are based on
adversarial retraining or that target standard generalization.

5.4 RQ2: Effect of Selective Data Augmentation

We analyze the performance of SENSEI-SA in terms of (i) train-
ing time and (ii) robust accuracy compared to SENSEI and W-10.
Note that the standard training requires only one forward propa-
gation for calculating the loss and one backward propagation for
calculating gradients to update the weights per data-point at each
epoch. However, the training time with data augmentation includes
the additional time for optimal selection. Specifically, SENSEI re-
quires N additional forward propagation to calculate the fitness of
N newly generated population (same for W-10 to find the worst
case). Following the standard protocol [16], we do not count the
image transformation time because these tasks are completed on
CPU, which is executed in parallel with the training task processed
on GPU. For this experiment, we set loss threshold in SENSEI-SA to
le—3 (described in Section 3.4).

Table 5 summarizes the robust accuracy and training time for
all the dataset. Column Improvement represents the improvement
achieved by SENSEI-SA compared to W-10 and the last column
presents Cohen’s D values [5] to show the effect size of improve-
ments over the five runs. The evaluation results indicate that SEN-
SEI-SA significantly improve robust accuracy over W-10. From the
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Table 5: SENSEI-SA vs. W-10 and SENSEI

Robust accuracy / Training time(min)

Models W-10 [ Senser | SEnser-SA| Improve[D-value
GTSRB |84.03/18.4/88.18 / 18.8|86.13 / 11.9]2.10 / 36% 6.3
FM 75.10 / 28.2|79.67 / 29.3|78.63 / 20.9|3.53 / 21% 25.6

CIFAR-10{65.83 /192 70.70 / 158 | 69.40 / 120|3.57 / 34% 35.0
IMDB 76.90 / 946 | 81.75 / 962 | 81.09 / 952|4.19 / (1%) 22.3
SVHN 75.70 / 58.8|80.20 / 58.9|79.65 / 51.5(3.95 / 13% 42.5

results, we can also see that with the help of selective augmentation,
SENSEI-SA reduced the training time by 25% on average. The train-
ing time of models for IMDB is not significantly reduced, because
predicting the age of a person is very hard even for human, and
only very few data points are robust enough to be excluded from
augmentation. It should be noted that although SENSEI-SA selec-
tively augmented the data points, on average, the robust accuracy
achieved by SENSEI-SA is 3% higher than that of W-10. However,
compared to SENSEI, SENSEI-SA reduced the robust accuracy by
0.5-1.5% for most of the models.

On average, SENSEI-SA reduces the training time by 25%,
while it improves robust accuracy by 3% compared to W-10.

5.5 RQ3: Sensitivity of Hyper-Parameters

In this section, we evaluate how the choice of different hyper-
parameters influence the performance of SENSEIL
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Figure 5: Robust accuracy and normalized training time for
one model in (a) GTSRB (b) CIFAR-10 and (c) FM by SENSEI

5.5.1 Population size. Since population size is an important param-
eter in any genetic search [26], we evaluate SENSEI using different
population size. Figure 5 presents the robust accuracy and training
time of three models trained by SENsEI with population size rang-
ing (3, 30). The training time in the graph is normalized compared
to the training time of population size of 3. The results show that
the robust accuracy in each model increases with the increase of
population size. However, a high population size also impacts the
training time negatively. Results show that SENSEI works efficiently
when the population size is between 10 and 15. Further increase of
the population size does not improve the robust accuracy a lot.

SENSEI works efficiently between the population size 10
and 15 for both robust accuracy and training time.
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Table 6: The robust accuracy of SENSEI with loss-based and
coverage-based fitness function

Fitness GTSRB FM CIFAR-10 IMDB SVHN
Loss-based 88.18 79.67 70.70 81.75 80.20
Neuron Coverage  85.17 79.32 69.90 81.40 80.43

5.5.2  Fitness function. The efficiency of a genetic search depends a
lot on the fitness function. Although we evaluated SENSEI rigorously
using loss-based fitness function, as we discussed in Section 3.3.3,
other metrics such as neuron coverage-based [24] or surprise ade-
quacy [15] can be also used as a fitness function. Table 6 presents
the robust accuracy of SENSEI for neuron coverage based fitness
function. The results show that both loss-based and coverage-based
fitness functions achieve very similar robust accuracy. Since sur-
prise adequacy is correlated to neuron coverage [15], we expect a
similar performance also using surprise adequacy. However, loss
based fitness function may be a better choice since neuron coverage
based fitness function increases the training time by 50% than that
of loss-based fitness function. The reason is that computation of
neuron coverage is more expensive than training loss.

The state-of-the-art DNN quality metrics such as neuron
coverage show similar performances in terms of robust ac-
curacy and thus, can be used as a fitness function in SENSEI
for robust generalization. However, loss-based fitness function
may be a better choice due to shorter training time.

Table 7: Effect of selection metric in SENSEI-SA in terms of
average robust accuracy (loss threshold: 1e-3)

Metrics GTSRB FM CIFAR-10 IMDB SVHN
Loss-based 86.13 78.63 69.40 81.09 79.65
Classification-based  79.08 64.33 49.35 63.00 63.42

5.5.3 Selection metrics. The performance of SENSEI-SA in terms of
both robust accuracy and training time depends on the effectiveness
of the point-wise robustness metric (defined in Section 3.4). The
evaluation results in Table 7 show that the loss-based selection
outperforms the classification-based selection for all the models.
The reason is that the loss-based selection is more conservative
than the classification-based selection. Still, loss-based selection is
good enough to skip sufficient number of data-points to achieve
25% training time reduction, on average.

Loss-based robustness is better than classification-based ro-
bustness in selective augmentation.

5.5.4 Loss threshold. In loss-based selection, the loss threshold is
one of the important factors that may affect the effectiveness of
SENSEI-SA. Figure 6 shows robust accuracy and normalized training
time of SENSEI-SA with loss threshold in range (0, 1e—1). The train-
ing time is normalized to Standard training time. From the results,
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Figure 6: The robust accuracy and normalized training time
of one model from (a) GTSRB (b) CIFAR-10 (c) FM trained by
SENSEI-SE with various loss thresholds in range (0, 1e—1).

as expected we observe that both the robust accuracy and training
time decrease with the increase of loss threshold. However, some
datasets are more sensitive to the loss threshold than the others in
terms of robust accuracy. For instance, the robust accuracy for the
CIFAR-10 model is very sensitive to the loss threshold. However,
robust accuracy of GTSRB and FM models did not decrease a lot
when we changed the loss threshold from 1e-5 to 1le-3.

The effect of loss threshold in selective augmentation is
dataset specific. However, a value of 1e-3 showed a balanced
performance across datasets in terms of robust accuracy.

5.6 Threats to Validity

Internal validity: We have tried to be consistent with established
practice in the choice and application of image transformations,
and training schedule for DNNs. For parameters specific to our
technique, including population size and fitness function for GA,
selection function and loss threshold for selective augmentation
we have performed a sensitivity analysis to justify the claims.

External validity: Although we used 5 popular image datasets,
and several DNN models per dataset in our evaluation, our results
may not generalize to other datasets, or models, or for other ap-
plications. Further, our experiments employ six commonly used
image transformations, to model natural variations. However, our
results may not generalize to other sources of variations.

6 RELATED WORK

A DNN can be viewed as a special kind of program. Software en-
gineering techniques for automated test generation, as well for
as test-driven program synthesis and repair, have either directly
inspired or have natural analogs in the area of DNN testing and
training. The contributions of these techniques relative to ours can
be compared in terms of the following four facets.

Test adequacy metrics. Inspired by structural code coverage
criteria, Pei et al. [24] proposed Neuron Coverage to measure the
quality of a DNN’s test suite. DeepGauge [19] built upon this work
and introduced a number of finer-grained adequacy criteria, in-
cluding k-Multisection Neuron Coverage and Neuron Boundary
Coverage. Kim et al. [15] also proposed a metric called surprise ad-
equacy to select adversarial test inputs. MODE [20] performs state
differential analysis to identify the buggy features of the model and
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then performs training input selection on this basis. Our contribu-
tion is orthogonal to these test selection criteria. We demonstrate
how to instantiate our technique with either standard model loss
or neuron coverage. In principle, SENSEI could be adapted to use
other criteria as well.

Test generation technique. The earliest techniques proposed
for DNN testing were in a security setting, as adversarial testing,
initially for computer vision applications. Given an image, the aim
is to generate a variant, with a few pixels selectively modified —
an adversarial instance — on which the DNN mis-predicts. Such
techniques include [29], FGSM [12], JSMA [23] and so on. At a
high level, these approaches model the generation of adversarial
examples as an optimization problem and solve the optimization
problem using first-order methods (gradient ascent). Generative
machine learning, such as GAN [11], can also be used to generate
adversarial inputs. In contrast to the above techniques, our focus is
the space of benign natural variations, such as rotation and trans-
lation. Engstrom et al. showed that such transformations yield a
non-convex landscape not conducive to first-order methods [8].
Thus, our test generation technique uses fuzzing, based on genetic
search. Recently, Odena and Goodfellow proposed TensorFuzz [22]
that combines coverage-guided fuzzing with property-based testing
to expose implementation errors in DNNs. However, their coverage
metric, property oracles, and fuzzing strategies are all designed
around this specific objective and not suitable for our objective of
data augmentation driven robustness training. DeepXplore [24]
generates test inputs that lead to exhibit different behaviors by
different models for the same task. Our approach does not require
multiple models. DeepTest [30] and DeepRoad [47] use metamor-
phic testing to generate tests exposing DNN bugs in the context of
an autonomous driving application. While SENSEI’s search space
is also defined using metamorphic relation, the mode of explor-
ing the search space (genetic search) and incorporating them (data
augmentation) is fundamentally different from these techniques.

Test incorporation strategy. The vast majority of DNN test
generation techniques [14, 15, 17, 24, 30, 31] first use a trained DNN
to generate the tests (or adversarial instances) and then use them to
re-train the DNN, to improve its accuracy or robustness. By contrast,
SENsEI falls in the category of data augmentation approaches where
new test data is generated and used during the initial DNN training.
As shown in our evaluation our data augmentation yields better
robustness compared to the former generate and re-train approach.

Data augmentation can be performed with different objectives.
AutoAugment [6] uses reinforcement learning to find the best aug-
mentation policies in a search space such that the neural network
achieves the highest (standard) accuracy. Mixup [46] is a recently
proposed state-of-the-art data augmentation technique that trains a
neural network on convex combinations of pairs of examples (such
as images) and their labels. Our evaluation (Section 5) confirms that
mixup improves both standard accuracy and robust accuracy in a
security setting but performs poorly in terms of robust accuracy in
a benign setting. By contrast, SENSEI, with a completely different
search space and search strategy excels in this area.

Our work is inspired by the theoretical work of Madry et al. [21]
who formulated the general data augmentation problem as a sad-
dle point optimization problem. Our work instantiates a practical
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solution for that problem in the context robustness training for be-
nign natural variations by using a genetic search naturally overlaid
on the iterative training procedure for a DNN. The work closest
to ours is the one by Engstrom et al. [8] who were the first to
show that benign natural image perturbations, notably rotation
and translation, can easily fool a DNN. They proposed a simple
data augmentation approach randomly sampling N perturbations
and replacing the training example with the one with the worst
loss. Our approach improves on both the robust accuracy as well
as the training time of Engstrom’s approach, by using a systematic
genetic search to iteratively find the worst variant to augment and
using a local robustness calculation to save the augmentation and
training time.

Robust models. Recently, Yang et al. [42] proposed an orthogo-
nal approach to improve the robustness deep neural network mod-
els by modifying the DNN loss function and adding an invariant-
inducing regularization term to the standard empirical loss. Con-
ceptually, this regularization based white-box approach is comple-
mentary to our black-box approach of data augmentation. Combin-
ing the two approaches, for even greater robustness improvement,
could be interesting future work.

7 CONCLUSION

Recent research has exposed the poor robustness of DNNs to small
perturbations to their input. A similar lack of generalizability mani-
fests, as the over-fitting problem, in the case of test-based program
synthesis and repair techniques where test generation techniques
have recently been successfully employed to augment existing
specifications of intended program behavior. Inspired by these ap-
proaches, in this paper, we proposed SENSEL, a technique and tool
that adapts software testing methods for data augmentation of
DNNs, to enhance their robustness. Our technique uses genetic
search to generate the most suitable variant of an input data to use
for training the DNN, while simultaneously identifying opportuni-
ties to accelerate training by skipping augmentation, with minimal
loss of robustness. Our evaluation of SENSEI on 15 DNN models
spanning 5 popular image datasets shows that, compared to the
state of the art, SENSEI is able to improve the robust accuracy of
the DNNs by upto 11.9% and on average 5.5%, while also reducing
the DNN’s training time by 25%.

Since significant amount of decision making in public-facing
software systems are being accomplished via deep neural networks,
reasoning about neural networks has gained prominence. Instead of
developing verification or certification approaches, this paper has
espoused the approach of data augmentation via test generation to
improve or repair hyper-properties of deep neural networks. In a
broader sense, this work also serves as an example of harnessing
the rich body of work on testing, maintenance, and evolution for
traditional software, for developing Al-based software systems.
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