
Shifting Fuzzing Left in Software Workflows

Dylan J. Wolff 1*, Ridwan Shariffdeen 1, Yannic Noller 2,
Abhik Roychoudhury 1

1National University of Singapore, Singapore.
2Ruhr University Bochum, Germany.

*Corresponding author(s). E-mail(s): wolffd@comp.nus.edu.sg;
Contributing authors: ridwan@comp.nus.edu.sg; yannic.noller@acm.org;

abhik@nus.edu.sg;

Abstract

Fuzzing has proven to be an effective tool for finding bugs in software, with
Google’s OSSFuzz alone being responsible for finding thousands of critical secu-
rity vulnerabilities in open source projects. As software development practices
evolve, there is a growing recognition of the need to integrate security testing
earlier in the development process. Yet in our survey of software practitioners,
only 20% used fuzzing as part of their development workflow. In this paper, we
explore how fuzzing can fit into the software development life cycle. We do so
with two empirical studies, including perspectives from over 40 industry prac-
titioners. First, in a survey of software professionals, we identify several gaps
between current state-of-the-art fuzzers’ capabilities and engineers’ expectations.
In particular, we find that most developers are willing to use fuzzers, but prefer
shorter, more frequent fuzzing runs as part of a continuous integration/continuous
deployment (CI/CD) workflow. Next, based on results of this survey, we assess
state-of-the-art fuzzers’ capabilities in the context of CI/CD and local develop-
ment workflows. We observe that existing fuzzers can find up to 50% of bugs
within 5 minutes of fuzzing, meeting developer expectations from our survey, but
that further research is needed to uncover more difficult bugs within tolerable time
limits. Additionally, we see that the initial corpus and time needed to build and
analyze a project for a particular fuzzer both have a significant effect on fuzzer
effectiveness in this context. We hope that our work will help the community to
drive wider adoption of fuzzing in the software development lifecycle.

Keywords: fuzzing, empirical study, program repair, software security

1

https://orcid.org/0000-0002-6958-7159
https://orcid.org/0000-0001-5409-4864
https://orcid.org/0000-0002-9318-8027
https://orcid.org/0000-0002-7127-1137

1 Introduction

Software bugs introduced during the development process can have catastrophic con-
sequences if they are not uncovered and fixed before reaching production (Goodin
(2023); Newman (2021)). In 2017, exploitation of a single vulnerability1 in Apache
Struts cost US credit agency Equifax an estimated 1.7 billion USD (Lane (2020)). To
mitigate the impact of such critical bugs, one approach that has seen increasing atten-
tion (Winters et al (2020)) is to push validation activities towards earlier phases of
development, sometimes referred to as a “shift left” (Smith (2001)).

Unit testing (Daka and Fraser (2014)), for example, has become emblematic of this
effort, with developers manually writing tests for smaller units of functionality along
with or even before (Beck (2002)) writing the application code itself. Increasingly,
these unit tests are run as part of Continuous Integration and Continuous Deployment
(CI/CD) workflows to ensure that code that is committed or deployed has always
passed these checks. Still, in our surveyed users, many found that such tests can be
onerous to write (31/44 participants) and difficult to maintain as software evolves
(34/44). Moreover, unit testing (for testing functionality) has been widely employed
by practitioners for roughly two decades (Runeson (2006); Micco (2018)), but security
and reliability issues continue to plague the software industry today. Static analy-
sis (Calcagno and Distefano (2011)) has also been leveraged to detect bugs earlier in
development cycles (Churchill (2018); Distefano et al (2019); Jin et al (2023)). How-
ever, static analyses typically generate large numbers of false positives, resulting in
trust issues among the developer community (Phan et al (2023)).

Recently, fuzzing (Miller et al (1990)) has emerged as another effective technique
for finding security vulnerabilities and other classes of critical bugs (Liang et al (2018);
Mansur et al (2020)). Unlike static analysis, it has higher precision, providing a repro-
ducing test case for each bug found. Unlike unit testing, it is highly automated,
generating test cases without human intervention. However, while much research has
been dedicated to improve the bug detection capabilities of fuzzers (Meng et al (2022);
Menendez and Clark (2022); Pham et al (2020)), even expert users face many chal-
lenges in using existing fuzzers (Nourry et al (2023)). Furthermore, little or no research
has been conducted on user needs for fuzzers in left-shifted software development
workflows such as automated CI/CD pipelines.

In this paper, we investigate what would be needed to make fuzzers useful at ear-
lier stages of development for a software practitioner who is not necessarily a fuzzing
expert. What are the gaps between these sofware professionals’ expectations and exist-
ing fuzzing tools or workflows? What changes would drive broader adoption of fuzzing
at early stages in the development process? How do these changes impact the way
researchers design and evaluate fuzzers? We examine industry practitioner perspec-
tives on development workflows that utilize fuzzing to provide early assurance during
development . We hope these user insights will open new research directions in which
fuzzing can be a pathway for shifting automated validation to the left in software
development.

1https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5638

2

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5638

Concretely, we first examine user expectations in fuzzing through a survey, aiming
to answer the following research questions:

RQ1 What workflows and use cases do practitioners have for fuzzing?
RQ2 What kinds of inputs and setup will users undertake for fuzzers?
RQ3 What kinds of outputs and artifacts do users expect from fuzzers?
RQ4 How do users evaluate the effectiveness of fuzzing tools?

We surveyed 44 industry practitioners with 1-10 years of experience and asked
how they envision a fuzzer’s role in the development process. Most of our survey
participants are highly technical developers who are not necessarily fuzzing experts,
with half of them having more than five years of experience in software development.

From the results of our survey, we formulate and answer two additional questions
to examine the feasibility of one highly desired development workflow with existing
fuzzing tools, namely:

RQ5 How effective are existing fuzzers at testing code-changes in a software project?
RQ6 How do additional variables affect fuzzer effectiveness in this scenario?

For these questions, we analyze the current capabilities of state-of-the-art fuzzers’
in continuous testing. We compare the efficacy of these tools with respect to devel-
oper expectations and desired workflows. In total, we evaluate two general purpose
fuzzers (AFL2 and AFL++ by Fioraldi et al (2020)), two commit/regression fuzzers
(AFLChurn by Zhu and Böhme (2021), and CIDFuzz by Zhang et al (2023)) and
two directed fuzzers (AFLGo by Böhme et al (2017) and SelectFuzz by Luo et al
(2023)). Our results indicate that state-of-the-art fuzzers can find rougly 50%-60% of
the regression bugs in our data set within a time period desired for local development
or CI/CD workflows, respectively. Additionally, we find that the context of the fuzzing
campaign: how long a fuzzer takes to instrument and analyze the code of a target pro-
gram, and the initial test cases given to the fuzzer both have a significant impact on
fuzzer effectiveness in this scenario. These results show that, while existing tools can
already provide a substantial benefit in this context, more research is needed to find
all bugs within the shorter time frames desired by developers.

2 Background

In this section we first provide a background on software testing and software fuzzing.
To explain the challenges faced by industry practitioners in using fuzzing, we also
provide background on regression testing, directed fuzzing and commit fuzzing.

2.1 Software Testing

Regression Testing

Regression testing is a technique designed to ensure that existing features continue
to function as expected after a code change. It leverages a previously executed test
suite to identify any new defects introduced by the recent modifications that were not
present before the changes.

2https://github.com/google/AFL

3

https://github.com/google/AFL

Test Cases and Inputs

In this paper, we use test cases and inputs interchangeably to refer to data that is
passed to the program under test during execution. For example, a test case for a PDF
reader like OpenPDF3 would be a PDF file.

2.2 Software Fuzzing

Fuzzing

Fuzzing (Miller et al (1990)) is broadly defined as passing randomized inputs to a
target program and observing whether or not the program crashes. In the context of
this paper, when we mention fuzzing we always refer specifically to mutational grey-
box fuzzing. This class of fuzzer has been widely successful in research and industry,
and has been deployed at scale across hundreds of open-source projects within the
OSS-Fuzz framework (Serebryany (2017)).

Mutational Grey-Box Fuzzing

In grey-box fuzzing, the program is instrumented to provide a signal to the fuzzer
when new behavior is observed. This allows the fuzzer to bias the randomized search
towards (or away from) particular behaviors. Typically, grey-box fuzzers use some
form of code-coverage (e.g. branch coverage) as feedback to bias the search. Mutational
fuzzers generate new random inputs by mutating existing inputs, rather than sampling
from the space of all possible inputs.

Initial Corpus

As mutational fuzzers generate random inputs from existing inputs, they are usually
provided with a set of inputs that explore some basic program behaviors to expedite
the search, called an initial corpus. These are often either hand-crafted by developers,
downloaded from an online repository of inputs with a common format (e.g. PNG
files), or generated by a prior run of a fuzzing tool.

Fuzz Campaign

A set period of time during with a fuzzer is applied to a target program with a given
initial corpus in the hopes of finding bugs.

Directed Fuzzing

Directed fuzzing is a class of grey-box fuzzing in which the fuzzer prioritizes exploring
behaviors of specific code regions of interest (Böhme et al (2017)). These areas of
interest can vary based on the testing requirements, and could be provided by a human
auditor, static analysis tool, or other source. This approach is in contrast to general
purpose fuzzers, which are designed to explore any new (hopefully buggy) behaviors
in the program, regardless of location. In the context of this work, directed fuzzers can
be set to target the behavior of changed lines of code, similar to commit and regression
fuzzing (defined below).

3https://github.com/LibrePDF/OpenPDF

4

https://github.com/LibrePDF/OpenPDF

Commit Fuzzing

Commit fuzzing targets behaviors in locations affected by individual commits. When a
new commit is made, inputs are generated specifically to exercise the program locations
impacted by the code changes introduced in that commit (Zhang et al (2023)).

Regression Fuzzing

Regression fuzzing is a specialized process aimed at targeting code that has been
recently and frequently modified. It focuses on directing the input generation towards
these frequently changed code regions (Zhu and Böhme (2021)). Unlike commit
fuzzing, which targets specific program locations affected by individual commits,
regression fuzzing focuses on code regions that are frequently modified across multiple
commits.

Code Coverage

Code coverage is a measure of what parts of the program were executed during one or
more executions. This can be measured a number of different ways at different levels
of abstraction set of source lines, paths, branches, basic blocks. In this work, when
we discuss code coverage or coverage, we refer to control-flow graph edge coverage of
a program, which is commonly used by fuzzers like AFL and AFL++ (Fioraldi et al
(2020)). This property measures whether or not a transition between two basic blocks
was observed in one or more executions of the program.

Sanitizers

Fuzzing is typically used to detect crashes, but not all bugs will necessarily crash the
program. As such, several tools have been developed to serve as test oracles for fuzzing,
exiting the program with a crash signal when buggy behavior is observed. The LLVM
sanitizers are some commonly used examples4, identifying memory safety, undefined
behavior and other issues visible to a fuzzer at runtime in a target program, even if
they would otherwise not crash the program.

Cumulative and Continuous Fuzzing

Cumulative fuzzing is when fuzzers are used on the same program over a long period
of time (often multiple years), frequently as the program itself is undergoing active
development. The version of the program being fuzzed is updated automatically as
the program evolves. The most prominent example of this is OSS-Fuzz (Serebryany
(2017)), where hundreds of open-source projects are fuzzed in the cloud.

3 Survey Methodology

To address the RQ1-4, we designed an online survey, which we distributed in March
2023 via invitations to contacts from global companies, using the “snowball” method
(Kitchenham and Pfleeger (2008)). The participants did not receive any compensation;

4https://compiler-rt.llvm.org/

5

https://compiler-rt.llvm.org/

6

2

8

3
2

1

3

7

0

3

9

0

2

4

6

8

10

≤1 2 3 4 5 6 7 8 9 10 >10

Fig. 1: Participant’s years of experience in their current role.

however, for each participant, we donated $5 SGD to Doctors Without Border-
s/Médecins Sans Frontières (MSF). Note that before the study, we received the
corresponding approval from our organization’s Institutional Review Board (IRB).

Survey Overview

In total, we asked 47 questions about the goals and usage scenarios of fuzzing, as
well as the relevant inputs, setups, interactions and outputs. Prior to the survey ques-
tions, all participants were presented with a brief textual definition and description
of fuzzing, as well as a link to a short 4-minute video introduction to fuzzing pro-
duced by the Communications of the Association for Computing Machinery (CACM)
(Godefroid (2020)). The survey includes open-ended questions like “If you use fuzzers
regularly, please describe your step-by-step workflow(s) when using these tools.” and
close-ended questions like “At what scale would you conduct fuzzing campaigns?” with
Multiple Choice, a 5-point Likert scale, or ranking options. The survey was created
and deployed with Microsoft Forms. Our artifact (Section 8) contains a complete list
of our questions.

Participants

In total, we received 51 survey responses from over eleven countries in a wide range
of industries, e.g., technology (11), software services and consulting (7), general soft-
ware development (5), and software security (4). Of the 51 total participants, seven
identified themselves as academics or students. To accurately capture the opinions
and experiences from software practitioners, rather than those of academics, we omit
these seven responses from our analysis. Of the remaining participants, 61% (27/44)
identified themselves as software developers. 78% (21/27) of these software developers
have not used a fuzzer in their professional work setup. Other participants identified
themselves as technical leads (6), managers (2) or in other roles like security archi-
tect, security engineer, or technical consultant. Figure 1 and 2 show the practical
experience and familiarity with fuzzing of our participants. Across all participants,
52% (23/44) have not used a fuzzer yet. From the remaining participants, only 27%
(12/44) indicated that they are expert users of automated software testing tools.
However, 77% (34/44) of the participants are at least familiar with the concept of

6

27%

5%

16%

30%

23%

0% 5% 10% 15% 20% 25% 30% 35%

Expert

Regular Usage

Non-regular Usage

Familiar with Concepts

Unfamiliar inexperienced users of
fuzzing tools (23/44, 52%)

experienced users of
fuzzing tools (21/44, 48%)

Fig. 2: Participant’s familiarity with fuzzing/testing tools.

fuzz testing. Most of our participants are not experts in fuzzing, but typically had a
large amount of technical experience (7.2 years mean, 6.5 years median). While only
12 participants considered themselves fuzzing experts, 34/44 were at least familiar
with fuzzing concepts. The 10 remaining participants who are not at all familiar with
fuzzers have a mean of 5.3 years technical experience. Therefore, we believe we have
reached an interesting set of participants who can provide insights into expectations
and current obstacles for the integration of fuzzing in broader software development
workflows. We used the data shown in Figure 2 to separate the participants into two
groups: experienced (21/44, 48%) who reported at least non-regular usage of fuzzers
and inexperienced (23/44, 52%) practitioners. In our discussion, we highlight differ-
ences between these two groups, if they exist. For the remainder of this paper, when
we say “experienced” or “inexperienced” developers, we refer to their experience with
fuzzing/testing tools.

Analysis

For all questions with a 5-point Likert scale, we analyzed the distribution of nega-
tive/disagreement (1 and 2), neutral (3), and positive/agreement (4 and 5) responses.
For the ranking questions, we analyzed which answers have been ranked highest. For
the Multiple Choice questions, we analyzed which choices were selected most; fur-
ther, we analyzed the open-ended “Other” choices and mapped them to the existing
options or treated them as new ones if necessary. For all other open-ended questions,
we performed a qualitative content analysis coding (Schreier (2012)) to summarize
the themes and opinions. The first iteration of the analysis and coding was done by
one author, followed by the other authors’ review. The following sections summarize
and discuss the most mentioned responses indicating their frequency in brackets. To
compare the two groups of experienced and inexperienced developers in the context of
fuzzing, we use the chi-square test of independence (Pearson (1900)) (α = 0.01). The
chi-square test of independence tests whether the two categorical variables are related.
For example, a) the experience of developers in using fuzzing and b) their preferred
(local/CI/on-demand) fuzzing campaign length. In particular, we test whether there
is any statistically significant difference in their general preferences. We also test the
significance of the obtained trends/majorities with the Binomial Test (Dodge (2008))
(α = 0.05), e.g., is an observed majority of preferred usage actually significant in rela-
tion to the total number of participants. We present the corresponding P values. Our
research artifact includes all data, statistics, and codes.

7

4 Survey Results

4.1 Workflows and Use Cases (RQ1)

The first section of our survey focused on high-level goals and workflows, to understand
how developers envision using fuzzing in their day-to-day development process.

Testing Goals

To determine which kinds of bugs and test-oracles fuzzing researchers and practi-
tioners should focus on, we asked our participants “What properties are important
to test your software for?” (Figure 3). Classes of bugs commonly targeted by exist-
ing fuzzers and sanitizers, such as memory safety bugs, are deemed important by a
strong majority of experienced and inexperienced developers. Functional correctness,
however, was the most important property identified by nearly all of our participants
(39/44, 89%, P < .001). Participants mentioned memory safety as the second most
important property, followed by concurrency safety. Many other non-functional prop-
erties, such as execution speed, memory consumption and side-channel vulnerabilities
were also deemed important by more than one-third of our participants. Contrary to
the goals of our participants, in general, fuzzer and sanitizer support for finding non-
crashing bugs is often limited, if it exists at all. The commonly used LLVM sanitizers,
for example, can not identify liveness, performance, or side-channel vulnerabilities at
all, and only find a subset of concurrency bugs (data-races and deadlocks) at the cost
of extremely high memory and execution time overhead (often over 10x).

Many diverse fuzz-testing oracles, especially for functional correctness, are consid-
ered important by developers; better support for detecting these bug types may
boost adoption of fuzzing tools.

We also asked developers “What is important to gain from a fuzzing campaign
(i.e. fuzzing a software application)?” We did not observe any significant difference
between the importance of the three possible outcomes we included in this question:
obtaining a regression test suite, bug discovery, or exercising a particular code loca-
tion. Additionally, we did not see a significant difference between the experienced and
inexperienced participants in this case. Nevertheless, the majority of the participants
indicated that all three of these three goals are important (31/44, 70%, P < .01).
However, most state-of-the-art fuzzers do not provide any tools for understanding and
maintaining such automatically generated test suites over time, other than test suite
minimization tools.

Automated regression test suite generation is as important as bug discovery
and directed testing to software practitioners.

Concrete Workflows

CI/CD has emerged as a key process in modern software development. We asked our
participants whether they would include fuzzing in their CI/CD system and also “How
frequently would you run a fuzzer as part of your build integration or deployment

8

4%

17%

30%

43%

61%

57%

61%

61%

96%

5%

5%

5%

5%

38%

43%

29%

43%

67%

76%

81%

2%

2%

2%

2%

11%

34%

43%

45%

50%

64%

68%

89%

0% 20% 40% 60% 80% 100%

Known Issues

Crashes

Web Security

Functional Safety

Power Consumption

Side Channel Vulnerabilities

Memory Consumption

Liveness

Execution Speed / Latency

Concurrency safety

Memory Safety

Functionality

Total Experienced Inexperienced

Fig. 3: Participants’ opinions about the most important testing properties.

system?” to understand how fuzzing can be used in this context. We found that a large
majority of our participants (33/44, 75%, P <.001) would add fuzzing to their CI/CD
pipelines, predominantly as either per commit or in nightly administered fuzzing runs.
We could not determine any significant difference between the responses of experienced
and inexperienced participants for this topic.

We also queried about integrating fuzzing into the participants’ local development
workflows. Perhaps surprisingly, most participants (28/44, 64%, P <.05) would include
fuzzing in their local development workflow. These practitioners would mostly run a
fuzzer only as a local pre-commit or pre-merge step (19/28, 68%, P <.05), rather than
more frequently (e.g., on each file-edit). Some experienced practitioners indicated that
they would also periodically run a fuzzer multiple times before committing to the CI
pipeline, while no inexperienced developers indicated they would do so (experienced:
5/21, 24%; inexperienced: 0/23, 0%; P = .013>.01).

A majority of developers want to be able to run fuzzers as part of their local
development workflow.

9

5%

5%

24%

14%

38%

57%

43%

52%

33%

14%

29%

29%

19%

24%

5%

5%

5%

0% 25% 50% 75% 100%

They can't easily detect the kinds of bugs I care about
(e.g. complex assertions)

They can't reach deep behavior and code paths in my
program

They don't model environmental changes accurately
(e.g. simulating errors from the operating system)

They are difficult to set up or use

Strongly Agree Agree Neither Agree nor Disagree Disagree Strongly Disagree

Fig. 4: Experienced participants’ choices for reasons that prevent them from using
fuzzing.

Infrastructure

We also asked practitioners “At what scale would you conduct fuzzing campaigns?”. A
large number of our participants (36/44, 57%, P = .146>.05), with a stronger major-
ity of experienced practitioners (14/21, 67%, P <.05), would deploy fuzzers on a single
machine with one or a small number of cores. This indicates that fuzzing research’s
emphasis on single or few-core performance is well-justified. Of the remaining partici-
pants, roughly an equal number indicated that they would use vertically (many core,
single machine) or horizontally scaled (many machines) hardware for their fuzzing
campaigns.

Obstacles in Fuzzing

While fuzzing has grown in prominence in recent years, the majority of our participants
do not yet use them regularly in their development workflows. To understand why,
we asked “What prevents you from using fuzzers?”. Most inexperienced participants
(14/23, 61%) gave no indication for one or more parts of this question, and we saw no
significant trend among the remaining few responses from this group. Therefore, we
only discuss the responses from the experienced participants (Figure 4). In agreement
with prior research (Nourry et al (2023)), one of the leading barriers to adoption
of fuzzing among our experienced participants was usability (14/21, 67%, P < .05),
Interestingly, modeling environmental changes was seen equally problematic (14/21,
67%, P <.05). Further, a large minority of our experienced participants saw reaching
deep behavior and code paths as key obstacles as well.

4.2 Fuzzer Setup and Inputs (RQ2)

The next section of our survey investigated developers’ tolerance for manual steps to
start using a fuzzer, to better establish which steps should be automated or otherwise
avoided in fuzzing workflows.

10

77%

50%

43%

39%

39%

20%

81%

33%

38%

48%

52%

29%

74%

65%

48%

30%

26%

13%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Nearly entirely automated

Modify the build process for the program under test to
use a special compiler to instrument the program

Write some customized code using a fuzzer library on
individual functions or function sequences in the program

Provide "hints" to the tool before the campaign in the
form of existing tests or well-formed inputs

Provide an input specification in the form of a grammar

Customize the code of the fuzzer itself for the target

Total Experienced Inexperienced

Fig. 5: Participants’ willingness to configure and setup the fuzzer.

7%

7%

9%

39%

27%

34%

27%

41%

32%

18%

20%

16%

9%

5%

9%

0% 25% 50% 75% 100%

Constraints on event orderings or state transitions
during the program execution

Invariants on classes or data structures in the
program

Preconditions or postconditions for individual
functions in the program

Very Willing Willing Neither reluctant nor willing Somewhat reluctant Very reluctant

Fig. 6: Participants’ willingness to write/provide additional specifications as inputs
to fuzzer.

Fuzzer Setup

To understand users’ tolerances to various common set-up tasks for fuzzing, we asked
our participants “What level of setup are you willing to do (if any) to configure a fuzzer
on a given target?” (Figure 5). While a small number of participants would only use
a nearly completely automated, “push-button” fuzzer, most (38/44, P < .001) would
be willing to do some amount of manual configuration. For the various tasks asso-
ciated with the program under test –modifying the build-process, writing a fuzzing
harness, providing initial test cases, or specifying an input grammar– a similar propor-
tion of roughly 40% of users are willing to undertake them. Far fewer would consider
modifying the fuzzer to conform to a particular target program. We note that this
dichotomy may contrast with the fuzzing research community, who are likely more
familiar with the fuzzing tools than the programs being tested. While, in general, we
could not determine a statistically significant difference between the experienced and
inexperienced participants for this topic, we still would like to highlight two aspects:
Firstly, while most inexperienced practitioners (15/23, 65%, P <.05) would be willing
to modify the build process, only a few experienced practitioners (7/21, 33%) would

11

do the same (difference across groups: P = .035>α = .01). Secondly, most inexperi-
enced participants (17/23, 74%, P < .01) would not be willing to provide any input
specification; however, the experienced participants were more divided on this ques-
tion, with 11/21 being positive and 10/21 being negative about providing an input
specification (difference across groups: P = .074>.alpha = 01).

Interacting with the Fuzzer

A majority of our participants (25/44, 57%) want to interactively guide a fuzzer
towards particular code locations. More interestingly, the same number of users would
also like to interactively patch roadblocks that hinder the fuzzer from making progress.
This could be facilitated by a visualization of roadblocks faced during a campaign, as
recently proposed by (Yan et al (2023)).

Specifications

While the complete specifications needed for verification are often considered too
heavy-weight for most developers, in the context of fuzzing, incomplete specifica-
tions can still be useful as test oracles. We asked our participants “How willing are
you to write the following kinds of specifications for a program to detect bugs while
fuzzing?” (Figure 6). To ensure participants who are not familiar with specifications
were able to give accurate responses, we provided concrete example specifications
for context. Of the three possible modes of specifications we included in our survey
–temporal properties, data invariants, and pre/post-conditions– none would be will-
ingly written by a majority of developers. Thus, to target the majority, fuzzer authors
should continue to focus on using lightweight, implicit oracles (such as Address Sani-
tizer) rather than requiring users to manually write specifications. There is, however,
a substantial portion of developers (> 1

3) who would be willing to write specifications
of all three possible modes of specifications we asked about.

The majority of software professionals would not provide even partial specifications
to enhance fuzzing. However, there may still be opportunities to cater fuzzers to
the 1

3 minority who are willing to write pre/post-conditions, data invariants, and
temporal properties.

4.3 Fuzzer Outputs and Artifacts (RQ3)

This section of our survey examined developer expectations for the outputs of a fuzzing
campaign, which can help tool builders understand which output artifacts are most
useful for their users.

Bug Relevance

Most of the inexperienced participants (17/23, 74%, P <.01) indicated that they can-
not comment on the relevance of fuzzer-generated bug reports, so we only discuss
responses from the experienced participants, who mostly (19/21, 90%, P <.01) com-
mented on this question. In general, a reduction of false alarms in bug reports relative
to static analysis tools is often mentioned as one of the primary strengths of fuzzing

12

36%

14%

7%

36%

39%

50%

23%

34%

20%

36%

32%

32%

36%

48%

36%

20%

23%

14%

5%

2%

32%

5%

5%

5%

2%

5%

2%

2%

0% 25% 50% 75% 100%

A single, reproducing test case

A small number (< 10) of notably diverse reproducing test cases

Many (> 10) different reproducing test cases

A suggestion of the fault and fix locations in the source code

A proposed patch for the bug

The assertion violation or crash message (including a stack trace)

Extremely useful Very useful Somewhat useful Not very useful Not at all useful

Fig. 7: Participants opinions about features in fuzzer-generated bug reports.

and other dynamic analysis techniques. However, a large group of our experienced
respondents familiar with such reports (10/19, 53%) indicated that fuzzer-generated
bug reports are either mostly irrelevant or at least contain a mix of irrelevant and rel-
evant findings. Thus, while better positioned than static-analysis, fuzzing-generated
reports still require triage in most cases. Automatically identifying false alarms in
fuzzer-generated bug reports could be an impactful direction for future research.

Usefulness of Bug Reports

Figure 7 shows user opinions on the difficulty of fixing fuzzer-reported bugs relative
to user-reported bugs. Overall, we cannot say that users find bugs reported by fuzzers
are any easier or harder to fix than user-reported bugs. The majority of the inexperi-
enced participants did not know (13/23, 57%), and the experienced participants had
no clear trend towards a specific direction. After showing participants examples of
fuzzer-generated bug reports, we also asked “How useful do you think each feature of a
fuzzer-generated bug report would be?”. Unsurprisingly, most participants (36/44, 82%,
P < .001) mention it is very useful to have the identified assertion violation or crash
message, including a stack trace. A large majority also indicated that suggested fault
and fix locations (32/44, 73%, P <.001) or a proposed patch (31/44, 70%, P <.01) for
the bug would be beneficial. Interestingly, the responses from experienced and inexpe-
rienced practitioners were mainly consistent, indicating the relevance of the obtained
feedback about fuzzer-generated bug reports for general software development.

Additional artifacts such as suggested fix locations or proposed patches are more
desirable than a reproducing test case for automated bug reports.

Outputs

Participants mentioned the integration of fuzzers into their existing development envi-
ronments, pipelines, and tools. For example, automated issue reporting with tools like
Sonarqube and Jira. Others mentioned ideas to further improve the information in
bug reports by adding the execution trace with the state values of the reproducing
test case, the relevant bytes in the crashing input that differentiate (w.r.t. the execu-
tion behavior) from other similar but non-crashing inputs, runtime profiling (memory

13

64%

48%

20% 20%
5% 5%

36%

73%
64%

48% 43%

16% 14%
7% 5% 2%

27%

95% 93%
80% 80%

59% 59%

39%

18%
7% 5%

0%

20%

40%

60%

80%

100%

a few
seconds

(< 30)

a few
minutes

(< 5)

up to 30
min

up to an
hour

up to 6
hours

up to 12
hours

up to 24
hours

up to 48
hours

> 2 days no
answer /
depends

Local CI On-Demand

Fig. 8: Cumulative presentation of the expected fuzzing campaign lengths for the
different workflow types.

usage and timing information) of each function that is executed along with the repro-
ducing test case, and any additional information the system under test produced as
part of the execution (logs, error messages, etc.).

Generated Test Cases

The readability and interpretability of fuzzer-generated test cases was regarded as
very important by most participants (38/44, 86%, P < .001). Yet there are few tools
available for understanding generated tests. Additionally, while most existing auto-
mated debugging techniques focus on minimization5, minimality only ranked third in
importance among our respondents.

Our participants (consistently across the two groups) prefer automatically gener-
ated test cases which have more human readable characters (20/44), followed by test
cases which are similar to user-provided “well-formed” inputs (15/44). Future research
can focus on maximizing the interpretability of generated test cases.

Interpretability is more important than minimality for fuzzer-generated test
cases.

4.4 Fuzzer Evaluations (RQ4)

Developer expectations also provide important to establish evaluation criteria for
fuzzing research, which is of great interest to the fuzzing research community (Böhme
et al (2020); Liang et al (2018)).

Evaluation Configurations

Generally, fuzzer evaluation configurations should mirror real-world use cases, such
as those identified in Section 4.1. We queried participants about the expected fuzz
campaign lengths for three fuzzing workflows: on-demand audits, CI/CD fuzzing, and

5https://github.com/google/AFL/blob/master/afl-tmin.c

14

https://github.com/google/AFL/blob/master/afl-tmin.c

fuzzing in the local development cycle. Figure 8 shows their aggregate responses. While
we observed that experienced practitioners could be willing to wait a bit longer, our
analysis could not determine a significant difference between the two groups. There-
fore Figure 8 shows the responses over all 44 participants. For an on-demand fuzzing
campaign, 39% (17/44) of all participants would wait up to 24 hours, with a sharp
drop to only 18% of participants willing to wait 48 hours or more. There are simi-
larly sharp declines from 1 hour to 6 hours, and between 12 and 24 hours. Still, the
general recommendation of 24 hours for fuzzing campaigns appears to be in-line with
developer expectation for on-demand fuzzing campaigns.

In contrast, participants prefer shorter time bounds for CI fuzzing. Only a few of
the participants (7/44, 16%) were willing to run a CI fuzzing job for more than one
hour. During local development, even fewer of the participants would wait longer than
an hour for a fuzzing run, while most would not wait more than five minutes.

For the strongly desired local and CI/CD fuzzing, the expected timeouts are
substantially shorter than the usual evaluation timeouts suggested in the fuzzing lit-
erature (Klees et al (2018)). This inspired us to perform follow-up experimentation to
assess current state-of-the-art fuzzers under these new expectations (see Section 5).

To meet developer expectations, evaluations of fuzzers should timeout at:
– 5 minutes, for local development
– 1 hour, for CI/CD fuzzing
– 24 hours, for on-demand audits

Evaluation Metrics

While bug-finding ability is a primary goal of any fuzzer, there are many ways in
which this effectiveness can be measured. To understand which of these measures are
preferred by practitioners, we asked “When evaluating fuzzers on a benchmark suite,
which metric is most important?”. A strong plurality of our respondents (20/44, 45%)
indicated that the number of exploitable bugs is the most important evaluation metric.
32% (14/44) of our participants indicated that the quantity of bugs found was most
important, with relatively few remaining participants selecting other options. This top-
2 ranking of the most important ranking for fuzzing evaluation was indeed consistent
across experienced and inexperienced participants.

For our participants, the severity –followed by quantity– of bugs found are more
important metrics than difficult-to-discover or rare bugs.

While users indicated that bug-finding ability, particularly for exploitable bugs is
an important metric for fuzzers, ground-truth evaluations can be difficult to conduct
due to the relative sparsity of bugs. To generate benchmarks for these evaluations,
our participants mostly would trust artificial bugs that are automatically backported
from a different version of the program under test (29/44, 66%, P <.05). Overall, our
hypothesis testing did not conclude any significant difference between the two groups;
however, we would still want to highlight the following observations: The majority
of the experienced participants (15/21, 71%, P < .05) follow the trend of trusting
automatically backported bugs most, followed by bugs generated based on known bug

15

patterns (9/21) and transplanted bugs from similar software (9/21). The inexperienced
participants are less clear in their decision and equally often (14/23, 61%) mentioned
backported bugs, bugs generated based on known bug patterns, and manually crafted
bugs. Somewhat fewer would trust evaluations on bugs generated by simple random
mutations, indicating that researchers may need to work to increase practitioner trust
in techniques such as mutation testing (Just et al (2014)).

When ground-truth bugs are not available, several alternatives are trusted by a
majority of participants, though bugs generated by random program mutations may
need to bridge a larger trust gap with practitioners.

4.5 Summary

We summarize our findings from this user survey in the table below:

4.1: Workflows and Use Cases
Types of Bugs Diverse fuzz-testing oracles are desired
Testing Goals Regression-test generation, bug discovery, and directed testing are equally important
Deployment Scenarios Typical deployments of fuzzers are on a single-machine, with low parallelism
Workflows Local Development and CI/CD workflows are desired for fuzzing
Obstacles UI/UX is the greatest obstacle to adoption of fuzzing

4.2: Setup and Inputs
Setup Developers are somewhat willing to tolerate setup costs for fuzzing
Interaction Users desire interactive workflows with fuzzers that can take guidance from a human
Specifications Developers are mixed on writing specifications, but the majority are unwilling to do so

4.3: Outputs and Artifacts
Bug Relevance False positives and noise are still problematic for the deployment of fuzzers
Usefulness of Reports Fuzzer-generated bug reports are about as useful as other bugs
Report Artifacts Fault localization and proposed patches are more important than a reproducing test case
Other Outputs Developers mentioned integrations with issue-tracking platforms as desired
Generated Test-cases Interpretability of fuzzer-generated test cases is highly important

4.4: Evaluations
Evaluation Configurations We identify empirical thresholds for fuzzing cutoff times that meet developer expectations
Bug-Finding Evaluations Severity of bugs found is the most important criteria for fuzzer evaluation
Alternative Metrics Alternatives to ground truth bugs are generally trusted by developers

5 Evaluation of Fuzzers in a Commit Fuzzing
Scenario

As continuous local and CI/CD fuzzing were both strongly desired workflows for
our survey participants, we conducted an additional quantitative analysis to assess
the capabilities of fuzzing tools in this context. We evaluate how commit, regression,
directed, and general purpose fuzzers can find existing regression bugs in previous ver-
sions of real open-source software projects. We explore whether state-of-the-art fuzzing
techniques can detect regression errors under strict configurations that match devel-
oper expectations and requirements. Specifically, we provide answers to the research
question RQ5.

16

Program → yara libtiff proj4 zstd libxml2 file haproxy libvpx usrsctp openvswitch
Issue # → 48329 58729 49256 57086 57469 59438 52049 48816 47712 47112

Fuzzer ↓

AFL tbuild (s) 18.65 42.50 110.36 107.21 22.12 28.35 84.19 7.48 12.36 31.36
P5m-sat. 0.00 1.00 0.00 0.00 0.00 1.00 0.95 0.00 1.00 0.60
P1h-sat. 0.00 1.00 0.00 0.25 0.00 1.00 1.00 0.00 1.00 1.00
P5m-static 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.05
P1h-static 0.00 1.00 0.00 0.05 0.00 1.00 1.00 0.00 1.00 0.55

AFLchurn tbuild (s) 36.86 58.72 119.25 142.16 53.50 73.73 1168.09 12.03 - 150.93
P5m-sat. 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 - 0.90
P1h-sat. 0.00 1.00 0.00 0.20 0.00 1.00 1.00 0.00 - 1.00
P5m-static 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 - 0.05
P1h-static 0.00 1.00 0.00 0.00 0.00 1.00 1.00 0.00 - 0.40

AFLgo tbuild (s) 80.97 127.14 487.35 - 73.07 57.35 198.41 34.98 - 108.66
P5m-sat. 0.00 1.00 0.00 - 0.00 1.00 0.85 0.00 - 0.90
P1h-sat. 0.00 1.00 0.00 - 0.00 1.00 1.00 0.00 - 1.00
P5m-static 0.00 1.00 0.00 - 0.00 1.00 0.00 0.00 - 0.00
P1h-static 0.00 1.00 0.00 - 0.00 1.00 1.00 0.00 - 0.45

AFL++ tbuild (s) 101.20 104.93 241.39 216.15 53.33 65.95 194.88 15.46 30.67 70.17
P5m-sat. 0.00 1.00 0.00 0.00 0.00 1.00 0.25 0.00 1.00 0.40
P1h-sat. 0.00 1.00 0.00 0.05 0.00 1.00 1.00 0.00 1.00 1.00
P5m-static 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.05
P1h-static 0.00 1.00 0.00 0.05 0.00 1.00 1.00 0.00 1.00 0.35

CIDfuzz tbuild (s) - - - - 923.58 80.65 - - - -
P5m-sat. - - - - 0.00 1.00 - - - -
P1h-sat. - - - - 0.00 1.00 - - - -
P5m-static - - - - 0.00 1.00 - - - -
P1h-static - - - - 0.00 1.00 - - - -

Selectfuzz tbuild (s) 107.06 952.77 2670.94 - 133.40 67.30 219.56 102.30 - 207.92
P5m-sat. 0.00 0.00 0.00 - 0.00 1.00 0.10 0.00 - 0.55
P1h-sat. 0.00 1.00 0.00 - 0.00 1.00 1.00 0.00 - 1.00
P5m-static 0.00 0.00 0.00 - 0.00 1.00 0.00 0.00 - 0.05
P1h-static 0.00 1.00 0.00 - 0.00 1.00 1.00 0.00 - 0.30

Table 1: Probability of Bug Discovery for Commit-level Fuzzing of Open Source
Programs with Time Limit including build times of 5 minutes (P5m) and 1 hour (P1h).
Results shown for using a saturated (-sat.) or static (-static) corpus.

5.1 Experiment Setup

Fuzzers

For our evaluation, after a literature review in total we select six state-of-the-art
fuzzers that met our criteria representing three different avenues explored in the lit-
erature, namely commit fuzzing (CIDFuzz by Zhang et al (2023)), regression fuzzing
(AFLChurn by Zhu and Böhme (2021)), directed fuzzing (AFLGo by Böhme et al
(2017) and SelectFuzz by Luo et al (2023)), and general fuzzing (AFL and AFL++
by Fioraldi et al (2020)). Our selection criteria for directed, commit and regression
fuzzers was that they (1) were compatible and able to run in Fuzzbench (Metzman
et al (2021)) infrastructure (2) that the code for the fuzzer was openly available and (3)
that it was compatible with both C and C++ programs. We included all such fuzzers
we identified that met this criteria. We selected AFL and AFL++ as the baseline
comparisons for our evaluation as state-of-the-art general-purpose fuzzers because all
fuzzers in our evaluation are based on the AFL fuzzing algorithm and implementa-
tion. We compare against AFLGo and SelectFuzz, which attempt to generate test
inputs that reach target locations in a program. For the program locations, we use
the changed lines in the buggy commit as targets. Finally, we choose AFLChurn and
CIDFuzz as regression fuzzers specifically designed to detect bugs in a commit of a

17

https://issues.oss-fuzz.com/issues/42512561
https://issues.oss-fuzz.com/issues/42524111
https://issues.oss-fuzz.com/issues/42513591
https://issues.oss-fuzz.com/issues/42522287
https://issues.oss-fuzz.com/issues/42522712
https://issues.oss-fuzz.com/issues/42524899
https://issues.oss-fuzz.com/issues/42516694
https://issues.oss-fuzz.com/issues/42513102
https://issues.oss-fuzz.com/issues/42511876
https://issues.oss-fuzz.com/issues/42511210

software program. We configured each fuzzer to use default parameters in our bench-
marking setup according to its respective documentation or openly available example
configurations in a best-effort manner. Based on our survey results in Sections 4.1
and 4.2, fuzzer usability is the number one obstacle for software professionals to use
fuzzers and the majority of developers are not willing to extensively customize fuzzer
configurations to their systems; thus we believe this setup reflects how practitioners
would utilize these tools in their own workflows.

Subject Programs

We randomly selected 10 bugs from OSS-Fuzz (Serebryany (2017)) that are (1) labeled
as reproducible, (2) were able to be built and run in the FuzzBench infrastructure, and
(3) where we were manually able to reproduce the bug and identify the bug-introducing
commit. We sampled bugs starting from the front page of the bug tracker6 at the time
of experimentation, up to one regression bug per program that met criteria (1), (2), and
(3), moving to the subsequent page if no bugs met our criteria. We sampled up to 10
bugs, with no more than one bug per project. As a result, all our subjects are C/C++
programs from open source projects integrated with the OSS-Fuzz infrastructure.

Fuzzing Setup

For our evaluation setup, we seek to emulate frequent, cumulative fuzzing on a given
target in response to code changes, as in a CI/CD pipeline or in a local development
workflow. Thus, we create a fuzzer-generated corpus on the program under test before
the bug-introducing commit which we call the saturated corpus. This saturated corpus
emulates a fuzzer-created test suite built up over many iterations of successive, change-
based fuzzing campaigns during the lifetime of a project. To generate the saturated
corpus, we fuzzed the pre-bug commit version of each program continuously for two
weeks each with AFL and AFL++. We then aggregated all test cases saved by
the two-week campaigns and used afl-cmin7 to minimize them with respect to edge
coverage. afl-cmin is a utility program that greedily constructs a subset of test cases
to achieve the total coverage of all test cases. In our evaluation of fuzzers, we use this
minimized corpus as the initial seeds for each program.

As an additional baseline, we also evaluated each fuzzer with a corpus comprised
only of test cases provided in the project source repository. For each project, we
used the OSS-fuzz configuration and project documentation to locate these test cases,
taking only the test cases which were available prior to the bug introducing commit.
We call this the static corpus.

Hardware

All experiments were conducted using the standard benchmarking service
FuzzBench (Metzman et al (2021)) via Docker containers on a 112-core 2.70GHz 191G
RAM Intel Xeon (Gold) machine.

6https://issues.oss-fuzz.com/issues
7https://github.com/google/AFL/blob/master/afl-cmin

18

https://issues.oss-fuzz.com/issues
https://github.com/google/AFL/blob/master/afl-cmin

Evaluation Metrics

We assess both the efficacy and efficiency of the fuzzers in finding regression errors.
We manually analyzed the crash signatures recorded by Fuzzbench and determined
if they corresponded to the vulnerability in question. Three of the authors indepen-
dently checked the crash signatures to determine whether they corresponded to the
vulnerability in question.

To analyze the results we use survival analysis because our bug-finding trials are
right-censored data. Specifically, we use the Kaplan and Meier (1958) method. For
some additional claims of statistical significance, we use Wald’s t-test (Wald (1943)) on
the bootstrapped Restricted Mean Survival Time (RMST) of the fitted Kaplan-Meier
models. The RMST captures the area under the curve of a survival plot, thus a higher
RMST indicates that a fuzzer is less effective because the bug “survives” longer.

Results Table Description

We collect results for each of the fuzzers over 20 repetitions and analyzed the efficacy
of finding the target regression error. Table 1 summarizes the efficacy of each fuzzer
for timeouts of 5 and 60 minutes (see Section 4.4) and the build time for each project.
For each sub-column, P5m and P1h represent the probability of the fuzzer detecting
the target regression errors in twenty trials for time duration of 5 minutes and 60 min-
utes, respectively. Px-static represents these probabilities when using the static corpus,
rather than the saturated corpus (Px-sat.). Sub-column tbuild depicts the average time
in seconds needed for building the subject for each fuzzer over 20 repetitions. Note
that tbuild –which captures the time taken for each fuzzer’s instrumentation and/or
other inital program analyses– is included in the computation of P5m and P1h. In oth-
erwords, a trial is considered successful if the fuzzer can both build, instrument and
analyze the project and find the bug within the target timeframe.

5.2 (RQ5) Effectiveness of Existing Fuzzers

Of the ten bugs in our evaluation, four bugs –in libvpx, proj4, yara and libxml2–
were not found by any of our evaluated fuzzers in the one-hour time limit.8 However,
out of the remaining six programs, we find that the static corpora or a saturated corpus
of test cases generated by fuzzing earlier versions of the program was able to trigger
the bug in three programs: file, usrsctp and libtiff. These bugs were triggered by
existing inputs without any additional fuzzing on the bug-introducing commit itself.

With respect to our identified thresholds of 5 minutes for local fuzzing and 1 hour
for CI/CD fuzzing, we see mixed results when using a saturated corpus. Table 1 shows
the discovery rates for each fuzzer on each bug at each duration. Here, we observe
that two of the bugs are discovered at least once within the first five minutes. Mostly,
the probability of finding these bugs within 5 minutes is relatively high as well (e.g.,
geomean of 0.75 for AFL). At an hour, prospects improve somewhat for finding the
bug in zstd, but still, no fuzzer can find the bug in the majority of trials. For the
other programs in which bugs can be found, increasing the fuzzing campaign up to
one hour nearly ensures the bug will be discovered.

8In preliminary testing, some fuzzers were able to find the bugs in libxml2 and yara within one hour with
very low probability using the saturated corpus, but this did not occur in our final evaluation with 20 trials.

19

Existing fuzzers can already have a substantial impact if integrated into change-
based developer workflows, finding half of all bugs at least once within expected
time frames for local development (5/10) and CI/CD fuzzing (6/10). Future research
in will be needed to find the remaining bugs within these shorter time limits more
consistently.

Comparison of Fuzzers

We show the Kaplan and Meier (1958) fitted survival plot for all programs where
there are differences in effectiveness across fuzzers in Figure 10.(middle). The sur-
vival plots show the probability that a bug has not been found by the corresponding
fuzzer over time. Across these programs, we don’t see any trend in terms of fuzzer
superiority; no one fuzzer appears to be significantly better or worse than the others
at finding this regression bug. We do observe that AFL consistently beats AFL++,
despite the latter being a re-implementation of the former with additional features
(RMST5m : 226.85 AFL++ → 208.34 AFL, p < 0.001 and RMST1h : 2099.02
AFL++ → 2026.42AFL, p < 0.001). This is unusual, as AFL++ is generally meant to
be an improved implementation of AFL, but not unheard of; AFL also beats AFL++
occasionally in public benchmarking results9. We could not determine clearly that
directed or commit/regression fuzzers perform better in this context relative to the
general-purpose fuzzers. This result is surprising, as directed and commit/regression
fuzzers are optimized for reaching particular code target locations quickly. Unfortu-
nately, all of the directed and regression fuzzers are incompatible with one or more
of the programs in our evaluation set, especially in the case of CIDFuzz.10 However,
despite CIDFuzz compatibility issues, it does attain the statistically significant highest
code coverage for the two programs it can successfully fuzz.

5.3 (RQ6) Impact of Additional Variables on Fuzzer
Effectiveness

Comparison of Corpora

For this experiment we used two different starting corpora. One of which is saturated
in that it is distilled from the historical corpus of OSS-Fuzz runs and thus is expected
to be high coverage. In contrast, the static corpus consisted of existing test cases
extracted from each target program’s repository. Figure 9.(left) shows the LLVM
edge coverage of each corpus, normalized to the maximum coverage observed during
fuzzing.11 Here we can see that the saturated corpus is indeed, very high coverage in
all cases. However, the static corpus coverage varies widely, with some examples less
than 10% of the maximum observed coverage and other examples having nearly the
same coverage as the saturated corpus. Figure 9.(right), we can see the distribution of
corpus sizes across programs. Here again, we see a wide variance across projects, with

9https://www.fuzzbench.com/reports/2021-06-02/index.html#mbedtls fuzz dtlsclient-summary
10CIDFuzz’s LLVM instrumentation pass causes segmentation faults on most programs. The build process

for zstd is complex, and would need to be heavily modified to incorporate most AFLGo-based fuzzers’
instrumentation steps. Similarly, usrsctp has a library versioning conflict with several AFLGo-based fuzzers,
which results in a linker error on instrumentation.

11Note that for zstd the LLVM coverage calculator failed to generate a coverage report, likely due to its
excessively large size. Thus we are missing the initial coverage for the static corpus of this target program.

20

https://www.fuzzbench.com/reports/2021-06-02/index.html#mbedtls_fuzz_dtlsclient-summary

Program
Test Cases

Saturated Static

file 386 74
grok 442 36
haproxy 87 40
libtiff 940 7367
libvpx 155 161
libxml2 377 40
openvswitch 2249 24
proj4 1555 133
usrsctp 25 24
yara 121 7
zstd 782 24223

Fig. 9: (Left) Initial Corpus Coverage Normalized to Maximum Observed Coverage
per Program and (Right) Initial Corpus Size (Number of Test Cases)

some projects like libvpx having more test cases than the saturated corpus, despite
having lower initial coverage.

Looking at Figure 10.(top) and .(middle), we can compare the bug-finding effi-
ciency of our fuzzers when using each corpora. Here we see that fuzzers using either
corpus are able to find all three bugs in at least some cases, but, generally, the
bugs are found more quickly and reliably with the saturated corpus. For example, on
openvswitch, all fuzzers find the bug within one hour when using the saturated cor-
pus, but none of the fuzzers can find the bug in the majority of trials when the static
corpus is used instead. Similarly, both AFL and AFLGo are able to find the bug in
haproxy within 5 minutes in the majority of trials with the saturated corpus, but never
find the bug in less than 5 minutes using the saturated corpus. Across all benchmarks,
there is a significant decrease in effectiveness when the static corpus is used instead
of the saturated corpus (RMST5m : 239.13 static → 206.80 saturated, p < 0.001 and
RMST1h : 2324.71 static → 1940.65 saturated, p < 0.001).

A high coverage corpus generated from cumulative fuzzing is generally more effective
at finding new bugs that the static test cases included within source repositories
for OSS-Fuzz. Practitioners should consider using an updated, cumulative corpus
for CI/CD fuzzing. Future research in test case selection for local development and
CI/CD fuzzing, such as (Canakci et al (2022)), could improve fuzzer efficacy.

Build Times

An often overlooked aspect in research papers is the build time overhead of a given
tool. This number includes the time it takes a fuzzer to analyze and instrument a
target program before it starts fuzzing. In the context of 24-hour fuzzing campaigns,
this additional instrumentation and analysis time may be negligible. However, for
local development or CI/CD fuzzing, with the total campaign length being only a few
minutes to an hour, the additional build times can be substantial. Indeed, looking at

21

the columns tbuild in Table 1, we can see a large difference between fuzzers. Selectfuzz
takes ten times the build time of AFL on average! Even AFL++ or AFLGo takes 80
to 90 seconds longer than AFL to instrument programs on average; in the context of
a local development fuzz campaign, this is equivalent to more than 20% of the total
time budget.

We can see the impact on fuzzer effectiveness for our identified timing thresholds
of 5 minutes and 1 hour in Figure 10. Comparing the (middle) and (bottom) rows,
we can see the difference in survival plots for the saturated corpus are included and
excluded, respectively. Here we can see a significant visual difference for some fuzzers:
AFLchurn goes from being being among the worst fuzzers on the haproxy bench-
mark program with build times included (middle), to being among the best if we
ignore build times (bottom). Indeed overall, we see a statistically significant drop
in effectiveness across all fuzzers and benchmarks (RMST5m : 234.31 excluded →
200.12 included, p < 0.001 and RMST1h : 2154.33 included → 2076.55 excluded, p <
0.001).

Fig. 10: Probability that the regression bug is not found by each fuzzer over time
(lower is better). (top) using static corpus; (middle) using saturated corpus; (bot-
tom) using the saturated corpus excluding build times

22

Build-time overhead introduced by fuzzers can have a significant impact in shorter
campaigns; regression fuzzer developers should emphasize approaches which do not
drastically increase build times for real-world software projects.

6 Threats to Validity

6.1 Developer Survey

Construct

Experimenter bias is always a threat to the validity of personal opinion surveys. We
attempted to phrase all of our questions in neutral language, but it is possible that
aspects of our survey instrument may have biased the results. To avoid observer bias,
we designed the survey to collect no personally identifying information, giving our
participants a trusted platform.

Internal

To ensure the clarity of our questions and the form’s structure, we performed small-
scale test runs with researchers who were not involved in the study.

The overarching goal of our study was to assess the expectations of software profes-
sionals for a usable fuzzing workflow; to ensure our conclusions reflect this, we blocked
our data on fuzzing experience and discarded responses from academic researchers. We
choose to include responses from those unfamiliar with fuzzing because we are explic-
itly interested in how these users see themselves using a fuzzing tool. While there is a
risk that this population are not able to accurately answer questions, our target popu-
lation is nonetheless highly technical (Section 3) and we provided a general summary
of fuzzing concepts at the beginning of our survey form to ensure our participants had
the requisite background information.

Conclusion

To reliably interpret all responses, particularly the open-text responses, we applied
qualitative analysis coding with an agreement of at least two authors on all codes. For
questions measuring agreement, we used the chi-square test of independence (Pearson
(1900)) and the binomial test (Dodge (2008)), both well-established statistical tests in
the realm of user surveys (Hilton et al (2017); Gorski et al (2018); Javed et al (2019);
Votipka et al (2020); van der Linden et al (2020); Noller et al (2022)).

External

A potential threat to external validity is the limited sample size and scope of par-
ticipants in our survey. By collecting responses using the snowball method (see
Kitchenham and Pfleeger (2008)) from 44 participants across 23 companies and 11
countries, which we see as a sufficiently diverse set of participants, but we cannot
guarantee the generalization of our results. We believe that we were able to reach an
important sample cohort because they mostly identify as highly technical software
developers who have only limited experience with fuzzing while being familiar with
the concept (Section 3).

23

6.2 Commit Fuzzing

Construct

To ensure construct validity, we directly measure our criteria for fuzzer effectiveness
–ability to find bugs associated with a code change– rather than using a proxy metric,
such as code coverage. Because crashes from different bugs can look similar, three of
the authors examined the crash signatures for each crash detected during fuzzing to
determine whether they corresponded to the targeted bug.

Internal

To avoid selection bias in our choice of benchmarks, we chose them randomly from
real-world bugs in the OSS-Fuzz (Serebryany (2017)) bug tracker. More specifically,
we sampled randomly from the front page of the OSS-Fuzz bug tracker at the date of
experimentation, filtering for confirmed and reproducible bugs. It is possible that there
is a temporal bias, as our bugs all come from a similar timeframe, but we sampled
only up to one bug per project to minimize this effect.

We attempted to avoid selection bias in our choice of fuzzers by using all openly
available directed, commit and regression fuzzers that we were able to make compatible
with the Fuzzbench benchmark suite. To identify these fuzzers, we searched for these
keywords (along with fuzzing/fuzzer) in research databases such as Google Scholar
and DBLP. We used all fuzzers we identified that met our criteria. We chose AFL and
AFL++ as baselines to reduce the risk of cross-implementation differences in fuzzers,
rather than fundamental algorithmic differences (e.g. directed vs. undirected fuzzing);
all of the evaluated fuzzers’ implementations are modifications or extensions of the
AFL fuzzer.

Another possible threat to internal threat to validity is three of the bugs were
originally discovered by AFL, which might give AFL an advantage in our experiment.
However, for two of these three bugs (yara and file) we see no difference in fuzzer
effectiveness. For the last bug found by AFL, haproxy, there are differences in perfor-
mance, but all fuzzers except for one (Selectfuzz) find the bug in 5 minutes excluding
build times. Additionally, because we evaluated only fuzzers based on the AFL fuzzer
implementation, we believe this effect to be minimal. We leave a larger follow up study
with additional bugs found by both AFL and LibFuzzer which could isolate this effect
to future work.

Conclusion

In general, we believe our experimental setup is in accordance with the latest standards
for fuzzer evaluations (Klees et al (2018); Kim et al (2024)).

To avoid issues with misinterpreting our results, we use statistical techniques that
are well-established across multiple fields of research. As bug-finding benchmarks are
right-censored data, we use survival analysis (Kaplan and Meier (1958)). To determine
statistical significance between fuzzers on individual benchmarks for a single configu-
ration, we use the confidence intervals given by our survival analysis (Kalbfleisch and
Prentice (2002)), which can be seen in Figure 10. When comparing across benchmarks
and fuzzers, we use the bootstrapped Restricted Mean Survival Time (Royston and

24

Parmar (2013)) and Wald’s t-test (Wald (1943)). For bootstrapping, we use 100 iter-
ations of case-resampling the individual trials of each experiment. For other claims of
significance, we compare build times with Wald’s t-test and code coverage for CID-
Fuzz with Fuzzbench’s built in Mann-Whitney U test (Mann and Whitney (1947);
Wilcoxon (1945)).

To validate model assumptions, we check for normality visually using a QQ plot
before applying Wald’s t-test, available in our artifact (Section 8).

Notably, we choose not to use two common analyses for censored data –the log-
rank test and Cox-regression– because our data appears to violate the proportional
hazards assumption (Figure 10).

External

We follow the recommendation of Klees et al (2018) that ≥ 10 benchmark programs
should be used for fuzzer evaluations. As with any empirical study, more subject pro-
grams and fuzzers would improve the generalizability of our results. However, verifying
each bug’s reproducibility, the introducing commit, integrating OSS-Fuzz benchmark
programs, and generating a large initial corpus all take significant manual effort. Dur-
ing the course of this experiment, we attempted to set up a total of 25 OSS-fuzz
programs using Fuzzbench’s integration with OSS-Fuzz. However, of these programs
and bugs, most could not be used: seven resulted in build errors that we were not able
to debug, three had errors related to fuzzer instrumentation passes, three we could not
reproduce reported bugs at the commits indicated in the bug report, and the remain-
ing two had issues with several dependent libraries which also needed to be built as
specific commits to reproduce past bugs. We believe that this study is still valuable at
its current size, especially when viewed with complementary works such as Zhu and
Böhme (2021); Zhang et al (2023); Kim et al (2024); Klooster et al (2023) and we
ensured that each of our configurations had sufficient trials (n = 20) to generalize for
the bugs and subject programs we evaluated.

7 Related Work

Fuzzing User Surveys

Böhme et al (2020) discuss the challenges in fuzzing identified by expert researchers
and users at a recent Shonan meeting. Similarly, Nourry et al (2023) constructed an
extensive taxonomy on the specific challenges faced by fuzzing experts. In this work,
we identify some key challenges in fuzzing which largely agree with some findings in
these prior publications. Namely, (1) that usability issues are the largest impediment
to adoption among developers (Nourry et al (2023); Böhme et al (2020)) (2) that users
of fuzzers prefer shorter time budgets than those typically seen in academic literature
(Nourry et al (2023)), that (3) these users also want to be able to detect classes of
bugs not easily detectable by existing fuzzers and sanitizers (Böhme et al (2020)), and
that (4) most developers want human-in-the-loop, interactive features in their fuzzers
(Böhme et al (2020)). However, we also provide several novel findings not found in
these prior studies, specifically that a majority of software professionals want to run
fuzzers as part of their local development workflow, that software professionals are

25

more amenable to modifying their systems to be fuzzed rather than adapting an exist-
ing fuzzer for their system, that interpretability is more important than minimality
for generated test inputs, that many alternatives to ground-truth bugs are trusted by
software professionals, that bug severity is more important than bug-quantity in fuzzer
evaluations and additionally we establish novel, user-expectation based timing bounds
for fuzzers in different workflows. For a comprehensive list, see Section 4.5. More gen-
erally, the questions from our study are not focused on challenges in existing fuzzer
workflows, but rather on desired use cases to bring fuzzing to new users. Nearly all
participants from Nourry et al (2023) and Böhme et al (2020) are deeply ingrained in
existing workflows, having either attended a small conference for fuzzing researchers
or participated in online discussions about OSS-Fuzz, whereas our users bring a fresh
perspective on adaptations needed to drive adoption in fuzzing. Also, unlike these two
works, we conduct a follow up study based on key outcomes from our survey results.

Empirical User Studies of Automated Test Generation Techniques

Other researchers have conducted fuzzer usability studies with students (Plöger et al
(2021); Plöger et al (2023)) and in industrial contexts (Liang et al (2018)). We
identified usability as the largest obstacle to fuzzer adoption. These studies are comple-
mentary to our survey in that they provide insights into the specific usability challenges
that users encounter with fuzzers. Indeed, while a substantial portion of developers
in our study (43%) indicated that they are willing to write a custom fuzzing harness,
in practice, many users struggle with this task using existing fuzzing tools (Plöger
et al (2021); Plöger et al (2023); Liang et al (2018)). Future research in automatic
fuzz-harness generation (Kelly et al (2019); Babić et al (2019)) could mitigate these
issues in practice. Likely a combination of improving these usability issues identified
by other work and meeting expectations of software professionals will be needed to
shift fuzzers left in development workflows.

Fraser et al (2015) conducted a user study for the closely related technique of
automated unit test generation with EvoSuite (Fraser and Arcuri (2011)). They found
that bug detection was not easier for developers using automatically generated unit
tests, despite a significant increase in code coverage from these tests. Our survey has
a similar goal, in that we are attempting to identify how to make automated testing
tools (in this case, fuzzers) a useful component of the sofware lifecycle. We conduct
an empirical evaluation as a follow up (Section 5). However, we did not evaluate the
usability of fuzzers for developers (as has been discussed in aforementioned prior work),
but rather the efficacy of available fuzzers for a novel application, namely commit
fuzzing in CI/CD systems.

Regression and Unit Fuzzing

Dynamic analysis has emerged as one of the primary ways of combating regression
bugs (Braz et al (2022); Memon et al (2017)), which may comprise as much as 77%
of vulnerabilities in open source projects (Zhu and Böhme (2021)). As a result, many
researchers and industry leaders have begun to investigate and use fuzzers in local and
CI/CD settings. Google has created CIFuzz12 for continuous integration fuzzing for

12https://google.github.io/oss-fuzz/getting-started/continuous-integration/

26

https://google.github.io/oss-fuzz/getting-started/continuous-integration/

OSSFuzz and other projects. Other companies like Gitlab13 and CodeIntelligence14

have similar offerings. A case study of CI fuzzing in the Linux kernel has even been
recently conducted (Shi et al (2019)). From academic research, regression fuzzers tar-
get recently changed code with modified basic-block distance-to-change based power
schedules (Zhu and Böhme (2021); Zhang et al (2023)) or in combination with shadow
symbolic execution (Noller et al (2020)). These tools are similar in concept and design
to directed fuzzers (Böhme et al (2017); Luo et al (2023); Marinescu and Cadar (2013)),
which target one or more code locations. Our follow-up study evaluates the current
abilities of general purpose, directed and regression fuzzers, for commit-level fuzzing.

Fuzzer Evaluation Configurations

Past recommendations for evaluation configurations have primarily been derived from
observations of existing fuzzer capabilities (Klees et al (2018); Herrera et al (2021)).
In contrast, we ask developers a priori how much time they would be willing to allo-
cate to fuzzing tools in various contexts. We believe that these user expectations can
be combined with practical limitations to provide more representative guidelines for
evaluations in the future. Several other evaluations of fuzzers in the context of regres-
sion or directed fuzzing have been conducted in parallel with this work. Kim and
Hong (2023) curated a benchmark of OSS Fuzz reported bugs for evaluating regression
fuzzers. However, they omit bugs that are found in less than three minutes. This choice
is appropriate for determining which fuzzers are best at finding challenging regression
bugs, but diminishes the ability of fuzzers of finding regression bugs quickly in general.
Additionally, Kim and Hong use the seed corpus present in the version control history
for the bug-inducing commit of the given program. We use this setup as our baseline
static corpus, but also compare results to a saturated corpus up to the bug-inducing
commit. Indeed, our results indicate that the setup used by Kim et al (2024) is not
optimal for change-based fuzzing. Klooster et al (2023) also conduct an evaluation
of fuzzers in the CI/CD context, similarly finding that many regression bugs can be
found relatively quickly by existing fuzzers (< 15 minutes). However, unlike our follow-
up study, their research focuses only on the capabilities of general-purpose grey-box
fuzzers, omitting regression and directed fuzzers. Instead of using a saturated corpus
on a single commit, they simulate a sequence of commits starting from the corpus of
the first bug-inducing commit and augmenting it cumulatively. As neither approach is
an exact replication of long-term continuous fuzzing, we believe that results from both
works can be informative and complementary. Kim et al (2024) assessed the state of
directed fuzzer evaluations, excluding general purpose and regression fuzzers, and do
so in a more conventional context with 24 hour timeouts rather than CI/CD or local
development workflows.

8 Perspectives

Fuzz testing has conventionally been used for finding security vulnerabilities in exist-
ing software systems. As such, it has been primarily employed on mature software

13https://docs.gitlab.com/ee/user/application security/coverage fuzzing
14https://www.code-intelligence.com/cli-tool

27

https://docs.gitlab.com/ee/user/application_security/coverage_fuzzing
https://www.code-intelligence.com/cli-tool

systems or even vendor-provided code upon acquisition. The role of fuzz testing in soft-
ware development has been relatively less examined. This is the outlook we examine
in this paper. Our follow up study shows that, to some extent, developer expecta-
tions from our survey can already be met by existing technology; if left-shifted into
development workflows, fuzzers can effectively find many regression errors within tol-
erable time limits. Beyond change-based fuzzing, the user survey we present in this
paper is of general relevance. Our participants’ answers provide many insights on the
usage of fuzzing, whether conducted as part of the software development process or
for hardening a mature or acquired software system.

The findings from our work indicate the need to connect fuzzers with new develop-
ment tools. For the software engineering community, our work promotes the need to
integrate fuzzing into future development environments and build workflows, with the
goal of writing a functionally correct program. This would truly amount to a shift-left
of fuzzing in software engineering workflows.

Declarations

Funding and/or Conflicts of interests/Competing interests. The authors
declare that they have no conflict of interest. This research is supported by the National
Research Foundation, Singapore, and Cyber Security Agency of Singapore under its
National Cybersecurity R&D Programme (Fuzz Testing <NRF-NCR25-Fuzz-0001>).
Any opinions, findings and conclusions, or recommendations expressed in this mate-
rial are those of the author(s) and do not reflect the views of National Research
Foundation, Singapore, and Cyber Security Agency of Singapore.

Compliance with Ethical Standards. We obtained approval from the Institu-
tional Review Board (IRB) of the National University of Singapore before executing
our developer survey.

Data Availability. Our research artifact includes all data, statistics, and codes for
our user study, as well as the data for our fuzzing experiments:

10.6084/m9.figshare.24769719.

References

Babić D, Bucur S, Chen Y, et al (2019) Fudge: Fuzz driver generation at scale. In: Pro-
ceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. Associa-
tion for Computing Machinery, New York, NY, USA, ESEC/FSE 2019, p 975–985,
https://doi.org/10.1145/3338906.3340456

Beck (2002) Test Driven Development: By Example. Addison-Wesley Longman
Publishing Co., Inc., USA

Böhme M, Pham VT, Nguyen MD, et al (2017) Directed greybox fuzzing. In: Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications

28

https://figshare.com/articles/conference_contribution/Shifting_Fuzzing_Left_in_Software_Workflows_Artifact_/24769719
https://doi.org/10.1145/3338906.3340456

Security. Association for Computing Machinery, New York, NY, USA, CCS ’17, p
2329–2344, https://doi.org/10.1145/3133956.3134020

Böhme M, Cadar C, Roychoudhury A (2020) Fuzzing: Challenges and reflections.
IEEE Software 38(3):79–86. https://doi.org/10.1109/MS.2020.3016773

Braz L, Fregnan E, Arora V, et al (2022) An exploratory study on regression vul-
nerabilities. In: Proceedings of the 16th ACM / IEEE International Symposium
on Empirical Software Engineering and Measurement. Association for Computing
Machinery, New York, NY, USA, ESEM ’22, p 12–22, https://doi.org/10.1145/
3544902.3546250

Calcagno C, Distefano D (2011) Infer: An automatic program verifier for memory
safety of c programs. In: Bobaru M, Havelund K, Holzmann GJ, et al (eds) NASA
Formal Methods. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 459–465, https:
//doi.org/10.1007/978-3-642-20398-5 33

Canakci S, Matyunin N, Graffi K, et al (2022) Targetfuzz: Using darts to guide directed
greybox fuzzers. In: Proceedings of the 2022 ACM on Asia conference on com-
puter and communications security, pp 561–573, https://doi.org/10.1145/3488932.
3501276

Churchill D (2018) Keynotes. In: 2018 IEEE 11th International Conference on Software
Testing, Verification and Validation (ICST), pp 23–25, https://doi.org/10.1109/
ICST.2018.00010

Daka E, Fraser G (2014) A survey on unit testing practices and problems. In: 2014
IEEE 25th International Symposium on Software Reliability Engineering, IEEE, pp
201–211, https://doi.org/https://doi.org/10.1109/ISSRE.2014.11

Distefano D, Fähndrich M, Logozzo F, et al (2019) Scaling static analyses at facebook.
Commun ACM 62(8):62–70. https://doi.org/10.1145/3338112

Dodge Y (2008) Binomial Test, Springer New York, New York, NY, pp 47–49. https:
//doi.org/10.1007/978-0-387-32833-1 36

Fioraldi A, Maier D, Eißfeldt H, et al (2020) Afl++: Combining incremental steps
of fuzzing research. In: Proceedings of the 14th USENIX Conference on Offensive
Technologies. USENIX Association, USA, WOOT’20, URL https://www.usenix.
org/conference/woot20/presentation/fioraldi

Fraser G, Arcuri A (2011) Evosuite: automatic test suite generation for object-oriented
software. In: Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering, pp 416–419, https:
//doi.org/10.1145/2025113.2025179

29

https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1109/MS.2020.3016773
https://doi.org/10.1145/3544902.3546250
https://doi.org/10.1145/3544902.3546250
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1145/3488932.3501276
https://doi.org/10.1145/3488932.3501276
https://doi.org/10.1109/ICST.2018.00010
https://doi.org/10.1109/ICST.2018.00010
https://doi.org/https://doi.org/10.1109/ISSRE.2014.11
https://doi.org/10.1145/3338112
https://doi.org/10.1007/978-0-387-32833-1_36
https://doi.org/10.1007/978-0-387-32833-1_36
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179

Fraser G, Staats M, McMinn P, et al (2015) Does automated unit test generation really
help software testers? a controlled empirical study. ACM Transactions on Software
Engineering and Methodology (TOSEM) 24(4):1–49. https://doi.org/https://doi.
org/10.1145/2699688

Godefroid P (2020) Fuzzing: hack, art, and science. Commun ACM 63(2):70–76. https:
//doi.org/10.1145/3363824, URL https://doi.org/10.1145/3363824

Goodin D (2023) “Cisco buried the lede.” <10,000 network devices back-
doored through unpatched 0-day. https://arstechnica.com/security/2023/10/
actively-exploited-cisco-0-day-with-maximum-10-severity-gives-full-network-control/,
[Accessed 27-10-2023]

Gorski PL, Iacono LL, Wermke D, et al (2018) Developers deserve security warnings,
too: On the effect of integrated security advice on cryptographic API misuse. In:
Fourteenth Symposium on Usable Privacy and Security (SOUPS 2018). USENIX
Association, Baltimore, MD, pp 265–281, URL https://www.usenix.org/conference/
soups2018/presentation/gorski

Herrera A, Gunadi H, Magrath S, et al (2021) Seed selection for successful fuzzing.
In: Proceedings of the 30th ACM SIGSOFT International Symposium on Software
Testing and Analysis. Association for Computing Machinery, New York, NY, USA,
ISSTA 2021, p 230–243, https://doi.org/10.1145/3460319.3464795

Hilton M, Nelson N, Tunnell T, et al (2017) Trade-offs in continuous integration:
assurance, security, and flexibility. In: Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering. Association for Computing Machinery, New
York, NY, USA, ESEC/FSE 2017, p 197–207, https://doi.org/10.1145/3106237.
3106270

Javed Y, Sethi S, Jadoun A (2019) Alexa’s voice recording behavior: A survey of user
understanding and awareness. In: Proceedings of the 14th International Conference
on Availability, Reliability and Security. Association for Computing Machinery, New
York, NY, USA, ARES ’19, https://doi.org/10.1145/3339252.3340330

Jin M, Shahriar S, Tufano M, et al (2023) Inferfix: End-to-end program repair with
llms. In: Proceedings of the 31st ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering. Association
for Computing Machinery, New York, NY, USA, ESEC/FSE 2023, p 1646–1656,
https://doi.org/10.1145/3611643.3613892

Just R, Jalali D, Inozemtseva L, et al (2014) Are mutants a valid substitute for real
faults in software testing? In: Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. Association for Computing
Machinery, New York, NY, USA, FSE 2014, p 654–665, https://doi.org/10.1145/
2635868.2635929

30

https://doi.org/https://doi.org/10.1145/2699688
https://doi.org/https://doi.org/10.1145/2699688
https://doi.org/10.1145/3363824
https://doi.org/10.1145/3363824
https://doi.org/10.1145/3363824
 https://arstechnica.com/security/2023/10/actively-exploited-cisco-0-day-with-maximum-10-severity-gives-full-network-control/
 https://arstechnica.com/security/2023/10/actively-exploited-cisco-0-day-with-maximum-10-severity-gives-full-network-control/
https://www.usenix.org/conference/soups2018/presentation/gorski
https://www.usenix.org/conference/soups2018/presentation/gorski
https://doi.org/10.1145/3460319.3464795
https://doi.org/10.1145/3106237.3106270
https://doi.org/10.1145/3106237.3106270
https://doi.org/10.1145/3339252.3340330
https://doi.org/10.1145/3611643.3613892
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/2635868.2635929

Kalbfleisch JD, Prentice RL (2002) The statistical analysis of failure time data. John
Wiley & Sons

Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations.
Journal of the American statistical association 53(282):457–481

Kelly M, Treude C, Murray A (2019) A case study on automated fuzz target generation
for large codebases. In: 2019 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), pp 1–6, https://doi.org/10.1109/
ESEM.2019.8870150

Kim J, Hong S (2023) Poster: Bugoss: A regression bug benchmark for empirical study
of regression fuzzing techniques. In: 2023 IEEE Conference on Software Testing, Ver-
ification and Validation (ICST), pp 470–473, https://doi.org/10.1109/ICST57152.
2023.00053

Kim TE, Choi J, Im S, et al (2024) Evaluating directed fuzzers: Are we heading in the
right direction? Proc ACM Softw Eng 1(FSE). https://doi.org/10.1145/3643741

Kitchenham BA, Pfleeger SL (2008) Personal Opinion Surveys, Springer London,
London, pp 63–92. https://doi.org/10.1007/978-1-84800-044-5 3

Klees G, Ruef A, Cooper B, et al (2018) Evaluating fuzz testing. In: Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security.
Association for Computing Machinery, New York, NY, USA, CCS ’18, p 2123–2138,
https://doi.org/10.1145/3243734.3243804

Klooster T, Turkmen F, Broenink G, et al (2023) Continuous fuzzing: A study of
the effectiveness and scalability of fuzzing in ci/cd pipelines. In: 2023 IEEE/ACM
International Workshop on Search-Based and Fuzz Testing (SBFT), pp 25–32, https:
//doi.org/10.1109/SBFT59156.2023.00015

Lane B (2020) Equifax expects to pay out another 100 mil-
lion for data breach. URL https://www.housingwire.com/articles/
equifax-expects-to-pay-out-another-100-million-for-data-breach/

Liang J, Wang M, Chen Y, et al (2018) Fuzz testing in practice: Obstacles and solu-
tions. In: 2018 IEEE 25th International Conference on Software Analysis, Evolution
and Reengineering (SANER), pp 562–566, https://doi.org/10.1109/SANER.2018.
8330260

van der Linden D, Anthonysamy P, Nuseibeh B, et al (2020) Schrödinger’s secu-
rity: opening the box on app developers’ security rationale. In: Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering. Association
for Computing Machinery, New York, NY, USA, ICSE ’20, p 149–160, https://doi.
org/10.1145/3377811.3380394, URL https://doi.org/10.1145/3377811.3380394

31

https://doi.org/10.1109/ESEM.2019.8870150
https://doi.org/10.1109/ESEM.2019.8870150
https://doi.org/10.1109/ICST57152.2023.00053
https://doi.org/10.1109/ICST57152.2023.00053
https://doi.org/10.1145/3643741
https://doi.org/10.1007/978-1-84800-044-5_3
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1109/SBFT59156.2023.00015
https://doi.org/10.1109/SBFT59156.2023.00015
https://www.housingwire.com/articles/equifax-expects-to-pay-out-another-100-million-for-data-breach/
https://www.housingwire.com/articles/equifax-expects-to-pay-out-another-100-million-for-data-breach/
https://doi.org/10.1109/SANER.2018.8330260
https://doi.org/10.1109/SANER.2018.8330260
https://doi.org/10.1145/3377811.3380394
https://doi.org/10.1145/3377811.3380394
https://doi.org/10.1145/3377811.3380394

Luo C, Meng W, Li P (2023) Selectfuzz: Efficient directed fuzzing with selective path
exploration. In: 2023 IEEE Symposium on Security and Privacy (SP), pp 2693–2707,
https://doi.org/10.1109/SP46215.2023.10179296

Mann HB, Whitney DR (1947) On a test of whether one of two random variables
is stochastically larger than the other. The Annals of Mathematical Statistics
18(1):50–60. URL http://www.jstor.org/stable/2236101

Mansur MN, Christakis M, Wüstholz V, et al (2020) Detecting critical bugs in smt
solvers using blackbox mutational fuzzing. In: Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. Association for Computing Machinery, New
York, NY, USA, ESEC/FSE 2020, p 701–712, https://doi.org/10.1145/3368089.
3409763

Marinescu PD, Cadar C (2013) Katch: High-coverage testing of software patches. In:
Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering.
Association for Computing Machinery, New York, NY, USA, ESEC/FSE 2013, p
235–245, https://doi.org/10.1145/2491411.2491438

Memon A, Gao Z, Nguyen B, et al (2017) Taming google-scale continuous testing. In:
2017 IEEE/ACM 39th International Conference on Software Engineering: Software
Engineering in Practice Track (ICSE-SEIP), pp 233–242, https://doi.org/10.1109/
ICSE-SEIP.2017.16

Menendez HD, Clark D (2022) Hashing fuzzing: Introducing input diversity to improve
crash detection. IEEE Transactions on Software Engineering 48(9):3540–3553. https:
//doi.org/10.1109/TSE.2021.3100858

Meng R, Dong Z, Li J, et al (2022) Linear-time temporal logic guided greybox fuzzing.
In: Proceedings of the 44th International Conference on Software Engineering. Asso-
ciation for Computing Machinery, New York, NY, USA, ICSE ’22, p 1343–1355,
https://doi.org/10.1145/3510003.3510082

Metzman J, Szekeres L, Simon L, et al (2021) Fuzzbench: An open fuzzer bench-
marking platform and service. In: Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. Association for Computing Machinery, New York, NY, USA,
ESEC/FSE 2021, p 1393–1403, https://doi.org/10.1145/3468264.3473932

Micco J (2018) Advances in continuous integration testing at google. URL https:
//research.google/pubs/pub46593

Miller BP, Fredriksen L, So B (1990) An empirical study of the reliability of unix
utilities. Commun ACM 33(12):32–44. https://doi.org/10.1145/96267.96279

32

https://doi.org/10.1109/SP46215.2023.10179296
http://www.jstor.org/stable/2236101
https://doi.org/10.1145/3368089.3409763
https://doi.org/10.1145/3368089.3409763
https://doi.org/10.1145/2491411.2491438
https://doi.org/10.1109/ICSE-SEIP.2017.16
https://doi.org/10.1109/ICSE-SEIP.2017.16
https://doi.org/10.1109/TSE.2021.3100858
https://doi.org/10.1109/TSE.2021.3100858
https://doi.org/10.1145/3510003.3510082
https://doi.org/10.1145/3468264.3473932
https://research.google/pubs/pub46593
https://research.google/pubs/pub46593
https://doi.org/10.1145/96267.96279

Newman LH (2021) ’the internet is on fire’. URL https://www.wired.com/story/
log4j-flaw-hacking-internet/

Noller Y, Pasareanu C, Böhme M, et al (2020) Hydiff: Hybrid differential software anal-
ysis. In: Proceedings of the 42nd ACM/IEEE International Conference on Software
Engineering, ICSE 2020, pp 1273–1285, https://doi.org/10.1145/3377811.3380363

Noller Y, Shariffdeen R, Gao X, et al (2022) Trust enhancement issues in program
repair. In: Proceedings of the 44th International Conference on Software Engi-
neering. Association for Computing Machinery, New York, NY, USA, ICSE ’22, p
2228–2240, https://doi.org/10.1145/3510003.3510040

Nourry O, Kashiwa Y, Lin B, et al (2023) The human side of fuzzing: Challenges faced
by developers during fuzzing activities. ACM Trans Softw Eng Methodol 33(1).
https://doi.org/10.1145/3611668

Pearson K (1900) X. on the criterion that a given system of deviations from the
probable in the case of a correlated system of variables is such that it can be
reasonably supposed to have arisen from random sampling. The London, Edin-
burgh, and Dublin Philosophical Magazine and Journal of Science 50(302):157–175.
https://doi.org/10.1080/14786440009463897

Pham VT, Böhme M, Roychoudhury A (2020) Aflnet: A greybox fuzzer for network
protocols. In: 2020 IEEE 13th International Conference on Software Testing, Val-
idation and Verification (ICST), pp 460–465, https://doi.org/10.1109/ICST46399.
2020.00062

Phan QS, Nguyen KH, Nguyen T (2023) The challenges of shift left static analysis.
In: 2023 IEEE/ACM 45th International Conference on Software Engineering: Soft-
ware Engineering in Practice (ICSE-SEIP), pp 340–342, https://doi.org/10.1109/
ICSE-SEIP58684.2023.00036

Plöger S, Meier M, Smith M (2021) A qualitative usability evaluation of the clang static
analyzer and libFuzzer with CS students and CTF players. In: Seventeenth Sym-
posium on Usable Privacy and Security (SOUPS 2021). USENIX Association, pp
553–572, URL https://www.usenix.org/conference/soups2021/presentation/ploger

Plöger S, Meier M, Smith M (2023) A usability evaluation of afl and libfuzzer with
cs students. In: Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems. Association for Computing Machinery, New York, NY, USA,
CHI ’23, https://doi.org/10.1145/3544548.3581178

Royston P, Parmar MK (2013) Restricted mean survival time: an alternative to the
hazard ratio for the design and analysis of randomized trials with a time-to-event
outcome. BMC medical research methodology 13:1–15. https://doi.org/https://doi.
org/10.1186/1471-2288-13-152

33

https://www.wired.com/story/log4j-flaw-hacking-internet/
https://www.wired.com/story/log4j-flaw-hacking-internet/
https://doi.org/10.1145/3377811.3380363
https://doi.org/10.1145/3510003.3510040
https://doi.org/10.1145/3611668
https://doi.org/10.1080/14786440009463897
https://doi.org/10.1109/ICST46399.2020.00062
https://doi.org/10.1109/ICST46399.2020.00062
https://doi.org/10.1109/ICSE-SEIP58684.2023.00036
https://doi.org/10.1109/ICSE-SEIP58684.2023.00036
https://www.usenix.org/conference/soups2021/presentation/ploger
https://doi.org/10.1145/3544548.3581178
https://doi.org/https://doi.org/10.1186/1471-2288-13-152
https://doi.org/https://doi.org/10.1186/1471-2288-13-152

Runeson P (2006) A survey of unit testing practices. IEEE Software 23(4):22–29.
https://doi.org/10.1109/MS.2006.91

Schreier M (2012) Qualitative content analysis in practice. Sage publications

Serebryany K (2017) OSS-Fuzz - google’s continuous fuzzing service for open source
software. USENIX Association, Vancouver, BC, URL https://www.usenix.org/
conference/usenixsecurity17/technical-sessions/presentation/serebryany

Shi H, Wang R, Fu Y, et al (2019) Industry practice of coverage-guided enterprise
linux kernel fuzzing. In: Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. Association for Computing Machinery, New York, NY, USA,
ESEC/FSE 2019, p 986–995, https://doi.org/10.1145/3338906.3340460

Smith L (2001) Shift-Left Testing — drdobbs.com. https://www.drdobbs.com/
shift-left-testing/184404768, [Accessed 25-10-2023]

Votipka D, Fulton KR, Parker J, et al (2020) Understanding security mistakes
developers make: Qualitative analysis from build it, break it, fix it. In: 29th
USENIX Security Symposium (USENIX Security 20). USENIX Association, pp
109–126, URL https://www.usenix.org/conference/usenixsecurity20/presentation/
votipka-understanding

Wald A (1943) Tests of statistical hypotheses concerning several parameters when the
number of observations is large. Transactions of the American Mathematical society
54(3):426–482

Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics Bulletin
1(6):80–83

Winters T, Manshreck T, Wright H (2020) Software engineering at google: Lessons
learned from programming over time. O’Reilly Media

Yan Q, Cao H, Lu S, et al (2023) Infuzz: An interactive tool for enhancing efficiency
in fuzzing through visual bottleneck analysis (registered report). In: Proceedings
of the 2nd International Fuzzing Workshop. Association for Computing Machinery,
New York, NY, USA, FUZZING 2023, p 56–61, https://doi.org/10.1145/3605157.
3605847, URL https://doi.org/10.1145/3605157.3605847

Zhang J, Cui Z, Chen X, et al (2023) Cidfuzz: Fuzz testing for continuous integration.
IET Software 17(3):301–315. https://doi.org/10.1049/sfw2.12125

Zhu X, Böhme M (2021) Regression greybox fuzzing. In: Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security. Association for
Computing Machinery, New York, NY, USA, CCS ’21, p 2169–2182, https://doi.
org/10.1145/3460120.3484596, URL https://doi.org/10.1145/3460120.3484596

34

https://doi.org/10.1109/MS.2006.91
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/serebryany
https://doi.org/10.1145/3338906.3340460
https://www.drdobbs.com/shift-left-testing/184404768
https://www.drdobbs.com/shift-left-testing/184404768
https://www.usenix.org/conference/usenixsecurity20/presentation/votipka-understanding
https://www.usenix.org/conference/usenixsecurity20/presentation/votipka-understanding
https://doi.org/10.1145/3605157.3605847
https://doi.org/10.1145/3605157.3605847
https://doi.org/10.1145/3605157.3605847
https://doi.org/10.1049/sfw2.12125
https://doi.org/10.1145/3460120.3484596
https://doi.org/10.1145/3460120.3484596
https://doi.org/10.1145/3460120.3484596

	Introduction
	Background
	Software Testing
	Regression Testing
	Test Cases and Inputs

	Software Fuzzing
	Fuzzing
	Mutational Grey-Box Fuzzing
	Initial Corpus
	Fuzz Campaign
	Directed Fuzzing
	Commit Fuzzing
	Regression Fuzzing
	Code Coverage
	Sanitizers
	Cumulative and Continuous Fuzzing

	Survey Methodology
	Survey Overview
	Participants
	Analysis

	Survey Results
	Workflows and Use Cases (RQ1)
	Testing Goals
	Concrete Workflows
	Infrastructure
	Obstacles in Fuzzing

	Fuzzer Setup and Inputs (RQ2)
	Fuzzer Setup
	Interacting with the Fuzzer
	Specifications

	Fuzzer Outputs and Artifacts (RQ3)
	Bug Relevance
	Usefulness of Bug Reports
	Outputs
	Generated Test Cases

	Fuzzer Evaluations (RQ4)
	Evaluation Configurations
	Evaluation Metrics

	Summary

	Evaluation of Fuzzers in a Commit Fuzzing Scenario
	Experiment Setup
	Fuzzers
	Subject Programs
	Fuzzing Setup
	Hardware
	Evaluation Metrics
	Results Table Description

	(RQ5) Effectiveness of Existing Fuzzers
	Comparison of Fuzzers

	(RQ6) Impact of Additional Variables on Fuzzer Effectiveness
	Comparison of Corpora
	Build Times

	Threats to Validity
	Developer Survey
	Construct
	Internal
	Conclusion
	External

	Commit Fuzzing
	Construct
	Internal
	Conclusion
	External

	Related Work
	Fuzzing User Surveys
	Empirical User Studies of Automated Test Generation Techniques
	Regression and Unit Fuzzing
	Fuzzer Evaluation Configurations

	Perspectives
	Funding and/or Conflicts of interests/Competing interests
	Compliance with Ethical Standards
	Data Availability

