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Abstract
Fuzzing has proven to be an effective tool for finding bugs in software, with Google’s 
OSSFuzz alone being responsible for finding thousands of critical security vulnerabilities 
in open source projects. As software development practices evolve, there is a growing rec-
ognition of the need to integrate security testing earlier in the development process. Yet in 
our survey of software practitioners, only 20% used fuzzing as part of their development 
workflow. In this paper, we explore how fuzzing can fit into the software development life 
cycle. We do so with two empirical studies, including perspectives from over 40 industry 
practitioners. First, in a survey of software professionals, we identify several gaps between 
current state-of-the-art fuzzers’ capabilities and engineers’ expectations. In particular, we 
find that most developers are willing to use fuzzers, but prefer shorter, more frequent 
fuzzing runs as part of a continuous integration/continuous deployment (CI/CD) workflow. 
Next, based on results of this survey, we assess state-of-the-art fuzzers’ capabilities in 
the context of CI/CD and local development workflows. We observe that existing fuzzers 
can find up to 50% of bugs within 5 minutes of fuzzing, meeting developer expectations 
from our survey, but that further research is needed to uncover more difficult bugs within 
tolerable time limits. Additionally, we see that the initial corpus and time needed to build 
and analyze a project for a particular fuzzer both have a significant effect on fuzzer ef-
fectiveness in this context. We hope that our work will help the community to drive wider 
adoption of fuzzing in the software development lifecycle.
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1 Introduction

Software bugs introduced during the development process can have catastrophic conse-
quences if they are not uncovered and fixed before reaching production (Goodin 2023; 
Newman 2021). In 2017, exploitation of a single vulnerability1 in Apache Struts cost US 
credit agency Equifax an estimated 1.7 billion USD (Lane 2020). To mitigate the impact of 
such critical bugs, one approach that has seen increasing attention (Winters et al. 2020) is to 
push validation activities towards earlier phases of development, sometimes referred to as 
a “shift left” (Smith 2001).

Unit testing (Daka and Fraser 2014), for example, has become emblematic of this effort, 
with developers manually writing tests for smaller units of functionality along with or even 
before (Beck 2002) writing the application code itself. Increasingly, these unit tests are 
run as part of Continuous Integration and Continuous Deployment (CI/CD) workflows to 
ensure that code that is committed or deployed has always passed these checks. Still, in our 
surveyed users, many found that such tests can be onerous to write (31/44 participants) and 
difficult to maintain as software evolves (34/44). Moreover, unit testing (for testing func-
tionality) has been widely employed by practitioners for roughly two decades (Runeson 
2006; Micco 2018), but security and reliability issues continue to plague the software indus-
try today. Static analysis (Calcagno and Distefano 2011) has also been leveraged to detect 
bugs earlier in development cycles (Churchill 2018; Distefano et al. 2019; Jin et al. 2023). 
However, static analyses typically generate large numbers of false positives, resulting in 
trust issues among the developer community (Phan et al. 2023).

Recently, fuzzing (Miller et al. 1990) has emerged as another effective technique for 
finding security vulnerabilities and other classes of critical bugs (Liang et al. 2018; Mansur 
et al. 2020). Unlike static analysis, it has higher precision, providing a reproducing test case 
for each bug found. Unlike unit testing, it is highly automated, generating test cases with-
out human intervention. However, while much research has been dedicated to improve the 
bug detection capabilities of fuzzers (Meng et al. 2022; Menendez and Clark 2022; Pham 
et al. 2020), even expert users face many challenges in using existing fuzzers (Nourry et al. 
2023). Furthermore, little or no research has been conducted on user needs for fuzzers in 
left-shifted software development workflows such as automated CI/CD pipelines.

In this paper, we investigate what would be needed to make fuzzers useful at earlier 
stages of development for a software practitioner who is not necessarily a fuzzing expert. 
What are the gaps between these sofware professionals’ expectations and existing fuzzing 
tools or workflows? What changes would drive broader adoption of fuzzing at early stages 
in the development process? How do these changes impact the way researchers design and 
evaluate fuzzers? We examine industry practitioner perspectives on development workflows 
that utilize fuzzing to provide early assurance during development. We hope these user 
insights will open new research directions in which fuzzing can be a pathway for shifting 
automated validation to the left in software development.

Concretely, we first examine user expectations in fuzzing through a survey, aiming to 
answer the following research questions:

RQ1 What workflows and use cases do practitioners have for fuzzing?
RQ2 What kinds of inputs and setup will users undertake for fuzzers?

1  h t t p s :  / / c v e  . m i t r e  . o r g  / c g i -  b i n / c  v e n a m e  . c g i  ? n a m e = C V E - 2 0 1 7 - 5 6 3 8
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RQ3 What kinds of outputs and artifacts do users expect from fuzzers?
RQ4 How do users evaluate the effectiveness of fuzzing tools?

We surveyed 44 industry practitioners with 1-10 years of experience and asked how they 
envision a fuzzer’s role in the development process. Most of our survey participants are 
highly technical developers who are not necessarily fuzzing experts, with half of them hav-
ing more than five years of experience in software development.

From the results of our survey, we formulate and answer two additional questions to 
examine the feasibility of one highly desired development workflow with existing fuzzing 
tools, namely:

RQ5 How effective are existing fuzzers at testing code-changes in a software project?
RQ6 How do additional variables affect fuzzer effectiveness in this scenario?

For these questions, we analyze the current capabilities of state-of-the-art fuzzers’ in contin-
uous testing. We compare the efficacy of these tools with respect to developer expectations 
and desired workflows. In total, we evaluate two general purpose fuzzers (AFL2 and AFL++ 
by  Fioraldi et al. (2020)), two commit/regression fuzzers (AFLChurn by  Zhu and Böhme 
(2021), and CIDFuzz by Zhang et al. (2023)) and two directed fuzzers (AFLGo by Böhme 
et al. (2017) and SelectFuzz by Luo et al. (2023)). Our results indicate that state-of-the-art 
fuzzers can find rougly 50%-60% of the regression bugs in our data set within a time period 
desired for local development or CI/CD workflows, respectively. Additionally, we find that 
the context of the fuzzing campaign: how long a fuzzer takes to instrument and analyze the 
code of a target program, and the initial test cases given to the fuzzer both have a significant 
impact on fuzzer effectiveness in this scenario. These results show that, while existing tools 
can already provide a substantial benefit in this context, more research is needed to find all 
bugs within the shorter time frames desired by developers.

2 Background

In this section we first provide a background on software testing and software fuzzing. To 
explain the challenges faced by industry practitioners in using fuzzing, we also provide 
background on regression testing, directed fuzzing and commit fuzzing.

2.1 Software Testing

Regression Testing Regression testing is a technique designed to ensure that existing fea-
tures continue to function as expected after a code change. It leverages a previously exe-
cuted test suite to identify any new defects introduced by the recent modifications that were 
not present before the changes.

2 https://github.com/google/AFL
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Test Cases and Inputs In this paper, we use test cases and inputs interchangeably to refer to 
data that is passed to the program under test during execution. For example, a test case for a 
PDF reader like OpenPDF3 would be a PDF file.

2.2 Software Fuzzing

Fuzzing Fuzzing (Miller et al. 1990) is broadly defined as passing randomized inputs to 
a target program and observing whether or not the program crashes. In the context of this 
paper, when we mention fuzzing we always refer specifically to mutational grey-box fuzz-
ing. This class of fuzzer has been widely successful in research and industry, and has been 
deployed at scale across hundreds of open-source projects within the OSS-Fuzz framework 
(Serebryany 2017).

Mutational Grey-Box Fuzzing In grey-box fuzzing, the program is instrumented to provide 
a signal to the fuzzer when new behavior is observed. This allows the fuzzer to bias the 
randomized search towards (or away from) particular behaviors. Typically, grey-box fuzz-
ers use some form of code-coverage (e.g. branch coverage) as feedback to bias the search. 
Mutational fuzzers generate new random inputs by mutating existing inputs, rather than 
sampling from the space of all possible inputs.

Initial Corpus As mutational fuzzers generate random inputs from existing inputs, they are 
usually provided with a set of inputs that explore some basic program behaviors to expe-
dite the search, called an initial corpus. These are often either hand-crafted by developers, 
downloaded from an online repository of inputs with a common format (e.g. PNG files), or 
generated by a prior run of a fuzzing tool.

Fuzz Campaign A set period of time during with a fuzzer is applied to a target program with 
a given initial corpus in the hopes of finding bugs.

Directed Fuzzing Directed fuzzing is a class of grey-box fuzzing in which the fuzzer pri-
oritizes exploring behaviors of specific code regions of interest (Böhme et al. 2017). These 
areas of interest can vary based on the testing requirements, and could be provided by a 
human auditor, static analysis tool, or other source. This approach is in contrast to general 
purpose fuzzers, which are designed to explore any new (hopefully buggy) behaviors in 
the program, regardless of location. In the context of this work, directed fuzzers can be set 
to target the behavior of changed lines of code, similar to commit and regression fuzzing 
(defined below).

Commit Fuzzing Commit fuzzing targets behaviors in locations affected by individual com-
mits. When a new commit is made, inputs are generated specifically to exercise the program 
locations impacted by the code changes introduced in that commit (Zhang et al. 2023).

Regression Fuzzing Regression fuzzing is a specialized process aimed at targeting code 
that has been recently and frequently modified. It focuses on directing the input generation 
towards these frequently changed code regions (Zhu and Böhme 2021). Unlike commit 

3 https://github.com/LibrePDF/OpenPDF
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fuzzing, which targets specific program locations affected by individual commits, regres-
sion fuzzing focuses on code regions that are frequently modified across multiple commits.

Code Coverage Code coverage is a measure of what parts of the program were executed 
during one or more executions. This can be measured a number of different ways at different 
levels of abstraction set of source lines, paths, branches, basic blocks. In this work, when 
we discuss code coverage or coverage, we refer to control-flow graph edge coverage of a 
program, which is commonly used by fuzzers like AFL and AFL++ (Fioraldi et al. 2020). 
This property measures whether or not a transition between two basic blocks was observed 
in one or more executions of the program.

Sanitizers Fuzzing is typically used to detect crashes, but not all bugs will necessarily crash 
the program. As such, several tools have been developed to serve as test oracles for fuzzing, 
exiting the program with a crash signal when buggy behavior is observed. The LLVM sani-
tizers are some commonly used examples4, identifying memory safety, undefined behavior 
and other issues visible to a fuzzer at runtime in a target program, even if they would other-
wise not crash the program.

Cumulative and Continuous Fuzzing Cumulative fuzzing is when fuzzers are used on the 
same program over a long period of time (often multiple years), frequently as the program 
itself is undergoing active development. The version of the program being fuzzed is updated 
automatically as the program evolves. The most prominent example of this is OSS-Fuzz 
(Serebryany 2017), where hundreds of open-source projects are fuzzed in the cloud.

3 Survey Methodology

To address the RQ1-4, we designed an online survey, which we distributed in March 2023 
via invitations to contacts from global companies, using the “snowball” method (Kitchen-
ham and Pfleeger 2008). The participants did not receive any compensation; however, for 
each participant, we donated $5 SGD to Doctors Without Borders/Médecins Sans Frontières 
(MSF). Note that before the study, we received the corresponding approval from our orga-
nization’s Institutional Review Board (IRB).

Survey Overview In total, we asked 47 questions about the goals and usage scenarios of 
fuzzing, as well as the relevant inputs, setups, interactions and outputs. Prior to the survey 
questions, all participants were presented with a brief textual definition and description of 
fuzzing, as well as a link to a short 4-minute video introduction to fuzzing produced by the 
Communications of the Association for Computing Machinery (CACM) (Godefroid 2020). 
The survey includes open-ended questions like “If you use fuzzers regularly, please describe 
your step-by-step workflow(s) when using these tools.” and close-ended questions like “At 
what scale would you conduct fuzzing campaigns?” with Multiple Choice, a 5-point Likert 
scale, or ranking options. The survey was created and deployed with Microsoft Forms. Our 
artifact (Section 8) contains a complete list of our questions.

4 https://compiler-rt.llvm.org/
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Participants In total, we received 51 survey responses from over eleven countries in a wide 
range of industries, e.g., technology (11), software services and consulting (7), general 
software development (5), and software security (4). Of the 51 total participants, seven 
identified themselves as academics or students. To accurately capture the opinions and expe-
riences from software practitioners, rather than those of academics, we omit these seven 
responses from our analysis. Of the remaining participants, 61% (27/44) identified them-
selves as software developers. 78% (21/27) of these software developers have not used a 
fuzzer in their professional work setup. Other participants identified themselves as technical 
leads (6), managers (2) or in other roles like security architect, security engineer, or techni-
cal consultant. Figures 1 and 2 show the practical experience and familiarity with fuzzing of 
our participants. Across all participants, 52% (23/44) have not used a fuzzer yet. From the 
remaining participants, only 27% (12/44) indicated that they are expert users of automated 
software testing tools. However, 77% (34/44) of the participants are at least familiar with 
the concept of fuzz testing. Most of our participants are not experts in fuzzing, but typically 
had a large amount of technical experience (7.2 years mean, 6.5 years median). While only 
12 participants considered themselves fuzzing experts, 34/44 were at least familiar with 
fuzzing concepts. The 10 remaining participants who are not at all familiar with fuzzers 
have a mean of 5.3 years technical experience. Therefore, we believe we have reached an 
interesting set of participants who can provide insights into expectations and current obsta-
cles for the integration of fuzzing in broader software development workflows. We used the 
data shown in Fig. 2 to separate the participants into two groups: experienced (21/44, 48%) 
who reported at least non-regular usage of fuzzers and inexperienced (23/44, 52%) practi-
tioners. In our discussion, we highlight differences between these two groups, if they exist. 

Fig. 2 Participant’s familiarity with fuzzing/testing tools

 

Fig. 1 Participant’s years of experience in their current role
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For the remainder of this paper, when we say “experienced" or “inexperienced" developers, 
we refer to their experience with fuzzing/testing tools.

Analysis For all questions with a 5-point Likert scale, we analyzed the distribution of nega-
tive/disagreement (1 and 2), neutral (3), and positive/agreement (4 and 5) responses. For the 
ranking questions, we analyzed which answers have been ranked highest. For the Multiple 
Choice questions, we analyzed which choices were selected most; further, we analyzed the 
open-ended “Other” choices and mapped them to the existing options or treated them as new 
ones if necessary. For all other open-ended questions, we performed a qualitative content 
analysis coding (Schreier 2012) to summarize the themes and opinions. The first iteration 
of the analysis and coding was done by one author, followed by the other authors’ review. 
The following sections summarize and discuss the most mentioned responses indicating 
their frequency in brackets. To compare the two groups of experienced and inexperienced 
developers in the context of fuzzing, we use the chi-square test of independence (Pearson 
1900) (α = 0.01). The chi-square test of independence tests whether the two categorical 
variables are related. For example, a) the experience of developers in using fuzzing and 
b) their preferred (local/CI/on-demand) fuzzing campaign length. In particular, we test 
whether there is any statistically significant difference in their general preferences. We also 
test the significance of the obtained trends/majorities with the Binomial Test (Dodge 2008) 
(α = 0.05), e.g., is an observed majority of preferred usage actually significant in relation 
to the total number of participants. We present the corresponding P values. Our research 
artifact includes all data, statistics, and codes.

4 Survey Results

4.1 Workflows and Use Cases (RQ1)

The first section of our survey focused on high-level goals and workflows, to understand 
how developers envision using fuzzing in their day-to-day development process.

Testing Goals To determine which kinds of bugs and test-oracles fuzzing researchers and 
practitioners should focus on, we asked our participants “What properties are important to 
test your software for?” (Fig. 3). Classes of bugs commonly targeted by existing fuzzers 
and sanitizers, such as memory safety bugs, are deemed important by a strong majority of 
experienced and inexperienced developers. Functional correctness, however, was the most 
important property identified by nearly all of our participants (39/44, 89%, P <.001). Par-
ticipants mentioned memory safety as the second most important property, followed by con-
currency safety. Many other non-functional properties, such as execution speed, memory 
consumption and side-channel vulnerabilities were also deemed important by more than 
one-third of our participants. Contrary to the goals of our participants, in general, fuzzer 
and sanitizer support for finding non-crashing bugs is often limited, if it exists at all. The 
commonly used LLVM sanitizers, for example, can not identify liveness, performance, or 
side-channel vulnerabilities at all, and only find a subset of concurrency bugs (data-races 
and deadlocks) at the cost of extremely high memory and execution time overhead (often 
over 10x). 

1 3
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We also asked developers “What is important to gain from a fuzzing campaign (i.e. fuzz-
ing a software application)?” We did not observe any significant difference between the 
importance of the three possible outcomes we included in this question: obtaining a regres-
sion test suite, bug discovery, or exercising a particular code location. Additionally, we did 
not see a significant difference between the experienced and inexperienced participants in 
this case. Nevertheless, the majority of the participants indicated that all three of these three 
goals are important (31/44, 70%, P <.01).

However, most state-of-the-art fuzzers do not provide any tools for understanding and 
maintaining such automatically generated test suites over time, other than test suite mini-
mization tools. 

Fig. 3 Participants’ opinions about the most important testing properties
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Concrete Workflows CI/CD has emerged as a key process in modern software development. 
We asked our participants whether they would include fuzzing in their CI/CD system and 
also “How frequently would you run a fuzzer as part of your build integration or deploy-
ment system?” to understand how fuzzing can be used in this context. We found that a 
large majority of our participants (33/44, 75%, P <.001) would add fuzzing to their CI/CD 
pipelines, predominantly as either per commit or in nightly administered fuzzing runs. We 
could not determine any significant difference between the responses of experienced and 
inexperienced participants for this topic.

We also queried about integrating fuzzing into the participants’ local development work-
flows. Perhaps surprisingly, most participants (28/44, 64%, P <.05) would include fuzzing 
in their local development workflow. These practitioners would mostly run a fuzzer only as 
a local pre-commit or pre-merge step (19/28, 68%, P <.05), rather than more frequently 
(e.g., on each file-edit). Some experienced practitioners indicated that they would also peri-
odically run a fuzzer multiple times before committing to the CI pipeline, while no inex-
perienced developers indicated they would do so (experienced: 5/21, 24%; inexperienced: 
0/23, 0%; P = .013>.01). 

Infrastructure We also asked practitioners “At what scale would you conduct fuzzing cam-
paigns?”. A large number of our participants (36/44, 57%, P = .146>.05), with a stronger 
majority of experienced practitioners (14/21, 67%, P <.05), would deploy fuzzers on a 
single machine with one or a small number of cores. This indicates that fuzzing research’s 
emphasis on single or few-core performance is well-justified. Of the remaining partici-
pants, roughly an equal number indicated that they would use vertically (many core, single 
machine) or horizontally scaled (many machines) hardware for their fuzzing campaigns.

Obstacles in Fuzzing While fuzzing has grown in prominence in recent years, the major-
ity of our participants do not yet use them regularly in their development workflows. To 
understand why, we asked “What prevents you from using fuzzers?”. Most inexperienced 
participants (14/23, 61%) gave no indication for one or more parts of this question, and we 
saw no significant trend among the remaining few responses from this group. Therefore, 
we only discuss the responses from the experienced participants (Fig. 4). In agreement with 
prior research (Nourry et al. 2023), one of the leading barriers to adoption of fuzzing among 
our experienced participants was usability (14/21, 67%, P <.05), Interestingly, modeling 
environmental changes was seen equally problematic (14/21, 67%, P <.05). Further, a large 
minority of our experienced participants saw reaching deep behavior and code paths as key 
obstacles as well.

1 3
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4.2 Fuzzer Setup and Inputs (RQ2)

The next section of our survey investigated developers’ tolerance for manual steps to start 
using a fuzzer, to better establish which steps should be automated or otherwise avoided in 
fuzzing workflows.

Fuzzer Setup To understand users’ tolerances to various common set-up tasks for fuzzing, 
we asked our participants “What level of setup are you willing to do (if any) to configure a 
fuzzer on a given target?” (Fig. 5). While a small number of participants would only use a 
nearly completely automated, “push-button” fuzzer, most (38/44, P <.001) would be will-
ing to do some amount of manual configuration. For the various tasks associated with the 
program under test–modifying the build-process, writing a fuzzing harness, providing initial 
test cases, or specifying an input grammar– a similar proportion of roughly 40% of users 
are willing to undertake them. Far fewer would consider modifying the fuzzer to conform 
to a particular target program. We note that this dichotomy may contrast with the fuzzing 
research community, who are likely more familiar with the fuzzing tools than the programs 
being tested. While, in general, we could not determine a statistically significant difference 
between the experienced and inexperienced participants for this topic, we still would like to 
highlight two aspects: Firstly, while most inexperienced practitioners (15/23, 65%, P <.05) 

Fig. 5 Participants’ willingness to configure and setup the fuzzer

 

Fig. 4 Experienced participants’ choices for reasons that prevent them from using fuzzing
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would be willing to modify the build process, only a few experienced practitioners (7/21, 
33%) would do the same (difference across groups: P = .035>α = .01). Secondly, most 
inexperienced participants (17/23, 74%, P <.01) would not be willing to provide any input 
specification; however, the experienced participants were more divided on this question, 
with 11/21 being positive and 10/21 being negative about providing an input specification 
(difference across groups: P = .074>.alpha = 01).

Interacting with the Fuzzer A majority of our participants (25/44, 57%) want to interac-
tively guide a fuzzer towards particular code locations. More interestingly, the same number 
of users would also like to interactively patch roadblocks that hinder the fuzzer from making 
progress. This could be facilitated by a visualization of roadblocks faced during a campaign, 
as recently proposed by Yan et al. (2023).

Specifications While the complete specifications needed for verification are often consid-
ered too heavy-weight for most developers, in the context of fuzzing, incomplete speci-
fications can still be useful as test oracles. We asked our participants “How willing are 
you to write the following kinds of specifications for a program to detect bugs while fuzz-
ing?” (Fig. 6). To ensure participants who are not familiar with specifications were able 
to give accurate responses, we provided concrete example specifications for context. Of 
the three possible modes of specifications we included in our survey–temporal properties, 
data invariants, and pre/post-conditions– none would be willingly written by a majority of 
developers. Thus, to target the majority, fuzzer authors should continue to focus on using 
lightweight, implicit oracles (such as Address Sanitizer) rather than requiring users to manu-
ally write specifications. There is, however, a substantial portion of developers (> 1

3 ) who 
would be willing to write specifications of all three possible modes of specifications we 
asked about. 

Fig. 6 Participants’ willingness to write/provide additional specifications as inputs to fuzzer
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4.3 Fuzzer Outputs and Artifacts (RQ3)

This section of our survey examined developer expectations for the outputs of a fuzzing 
campaign, which can help tool builders understand which output artifacts are most useful 
for their users.

Bug Relevance Most of the inexperienced participants (17/23, 74%, P <.01) indicated that 
they cannot comment on the relevance of fuzzer-generated bug reports, so we only discuss 
responses from the experienced participants, who mostly (19/21, 90%, P <.01) commented 
on this question. In general, a reduction of false alarms in bug reports relative to static analy-
sis tools is often mentioned as one of the primary strengths of fuzzing and other dynamic 
analysis techniques. However, a large group of our experienced respondents familiar with 
such reports (10/19, 53%) indicated that fuzzer-generated bug reports are either mostly irrel-
evant or at least contain a mix of irrelevant and relevant findings.

Thus, while better positioned than static-analysis, fuzzing-generated reports still require 
triage in most cases. Automatically identifying false alarms in fuzzer-generated bug reports 
could be an impactful direction for future research.

Usefulness of Bug Reports Figure 7 shows user opinions on the difficulty of fixing fuzzer-
reported bugs relative to user-reported bugs. Overall, we cannot say that users find bugs 
reported by fuzzers are any easier or harder to fix than user-reported bugs. The majority 
of the inexperienced participants did not know (13/23, 57%), and the experienced partici-
pants had no clear trend towards a specific direction. After showing participants examples 
of fuzzer-generated bug reports, we also asked “How useful do you think each feature of 
a fuzzer-generated bug report would be?”. Unsurprisingly, most participants (36/44, 82%, 
P <.001) mention it is very useful to have the identified assertion violation or crash mes-
sage, including a stack trace. A large majority also indicated that suggested fault and fix 
locations (32/44, 73%, P <.001) or a proposed patch (31/44, 70%, P <.01) for the bug 
would be beneficial. Interestingly, the responses from experienced and inexperienced prac-
titioners were mainly consistent, indicating the relevance of the obtained feedback about 
fuzzer-generated bug reports for general software development. 

Fig. 7 Participants opinions about features in fuzzer-generated bug reports
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Outputs Participants mentioned the integration of fuzzers into their existing development 
environments, pipelines, and tools. For example, automated issue reporting with tools like 
Sonarqube and Jira. Others mentioned ideas to further improve the information in bug 
reports by adding the execution trace with the state values of the reproducing test case, the 
relevant bytes in the crashing input that differentiate (w.r.t. the execution behavior) from 
other similar but non-crashing inputs, runtime profiling (memory usage and timing infor-
mation) of each function that is executed along with the reproducing test case, and any 
additional information the system under test produced as part of the execution (logs, error 
messages, etc.).

Generated Test Cases The readability and interpretability of fuzzer-generated test cases 
was regarded as very important by most participants (38/44, 86%, P <.001). Yet there are 
few tools available for understanding generated tests. Additionally, while most existing 
automated debugging techniques focus on minimization5, minimality only ranked third in 
importance among our respondents.

Our participants (consistently across the two groups) prefer automatically generated test 
cases which have more human readable characters (20/44), followed by test cases which are 
similar to user-provided “well-formed” inputs (15/44). Future research can focus on maxi-
mizing the interpretability of generated test cases. 

Interpretability is more important than minimality for fuzzer-generated test cases.

4.4 Fuzzer Evaluations (RQ4)

Developer expectations also provide important to establish evaluation criteria for fuzzing 
research, which is of great interest to the fuzzing research community (Böhme et al. 2020; 
Liang et al. 2018).

Evaluation Configurations Generally, fuzzer evaluation configurations should mirror real-
world use cases, such as those identified in Section 4.1. We queried participants about 
the expected fuzz campaign lengths for three fuzzing workflows: on-demand audits, CI/
CD fuzzing, and fuzzing in the local development cycle. Figure 8 shows their aggregate 
responses. While we observed that experienced practitioners could be willing to wait a bit 
longer, our analysis could not determine a significant difference between the two groups. 
Therefore Fig. 8 shows the responses over all 44 participants. For an on-demand fuzzing 
campaign, 39% (17/44) of all participants would wait up to 24 hours, with a sharp drop to 
only 18% of participants willing to wait 48 hours or more. There are similarly sharp declines 

5  h t t p s :  / / g i t  h u b . c o  m / g o  o g l e /  A F L / b  l o b / m a  s t e r  / a fl  - t m i n . c
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from 1 hour to 6 hours, and between 12 and 24 hours. Still, the general recommendation 
of 24 hours for fuzzing campaigns appears to be in-line with developer expectation for on-
demand fuzzing campaigns.

In contrast, participants prefer shorter time bounds for CI fuzzing. Only a few of the 
participants (7/44, 16%) were willing to run a CI fuzzing job for more than one hour. Dur-
ing local development, even fewer of the participants would wait longer than an hour for a 
fuzzing run, while most would not wait more than five minutes.

For the strongly desired local and CI/CD fuzzing, the expected timeouts are substantially 
shorter than the usual evaluation timeouts suggested in the fuzzing literature (Klees et al. 
2018). This inspired us to perform follow-up experimentation to assess current state-of-the-
art fuzzers under these new expectations (see Section 5). 

Evaluation Metrics While bug-finding ability is a primary goal of any fuzzer, there are many 
ways in which this effectiveness can be measured. To understand which of these measures 
are preferred by practitioners, we asked “When evaluating fuzzers on a benchmark suite, 
which metric is most important?”. A strong plurality of our respondents (20/44, 45%) indi-
cated that the number of exploitable bugs is the most important evaluation metric. 32% 
(14/44) of our participants indicated that the quantity of bugs found was most important, 
with relatively few remaining participants selecting other options. This top-2 ranking of the 
most important ranking for fuzzing evaluation was indeed consistent across experienced 
and inexperienced participants. 

Fig. 8 Cumulative presentation of the expected fuzzing campaign lengths for the different workflow types
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While users indicated that bug-finding ability, particularly for exploitable bugs is an 
important metric for fuzzers, ground-truth evaluations can be difficult to conduct due to 
the relative sparsity of bugs. To generate benchmarks for these evaluations, our participants 
mostly would trust artificial bugs that are automatically backported from a different version 
of the program under test (29/44, 66%, P <.05). Overall, our hypothesis testing did not 
conclude any significant difference between the two groups; however, we would still want 
to highlight the following observations: The majority of the experienced participants (15/21, 
71%, P <.05) follow the trend of trusting automatically backported bugs most, followed 
by bugs generated based on known bug patterns (9/21) and transplanted bugs from similar 
software (9/21). The inexperienced participants are less clear in their decision and equally 
often (14/23, 61%) mentioned backported bugs, bugs generated based on known bug pat-
terns, and manually crafted bugs. Somewhat fewer would trust evaluations on bugs gener-
ated by simple random mutations, indicating that researchers may need to work to increase 
practitioner trust in techniques such as mutation testing (Just et al. 2014). 

4.5 Summary

We summarize our findings from this user survey in the table below:
4.1: Workflows and Use 
Cases
Types of Bugs Diverse fuzz-testing oracles are desired
Testing Goals Regression-test generation, bug discovery, and directed testing are equally 

important
Deployment Scenarios Typical deployments of fuzzers are on a single-machine, with low parallelism
Workflows Local Development and CI/CD workflows are desired for fuzzing
Obstacles UI/UX is the greatest obstacle to adoption of fuzzing
4.2: Setup and Inputs
Setup Developers are somewhat willing to tolerate setup costs for fuzzing
Interaction Users desire interactive workflows with fuzzers that can take guidance from 

a human
Specifications Developers are mixed on writing specifications, but the majority are unwill-

ing to do so
4.3: Outputs and 
Artifacts
Bug Relevance False positives and noise are still problematic for the deployment of fuzzers
Usefulness of Reports Fuzzer-generated bug reports are about as useful as other bugs
Report Artifacts Fault localization and proposed patches are more important than a reproduc-

ing test case
Other Outputs Developers mentioned integrations with issue-tracking platforms as desired
Generated Test-cases Interpretability of fuzzer-generated test cases is highly important
4.4: Evaluations
Evaluation Configurations We identify empirical thresholds for fuzzing cutoff times that meet developer 

expectations
Bug-Finding Evaluations Severity of bugs found is the most important criteria for fuzzer evaluation

1 3
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Alternative Metrics Alternatives to ground truth bugs are generally trusted by developers

5 Evaluation of Fuzzers in a Commit Fuzzing Scenario

As continuous local and CI/CD fuzzing were both strongly desired workflows for our sur-
vey participants, we conducted an additional quantitative analysis to assess the capabilities 
of fuzzing tools in this context. We evaluate how commit, regression, directed, and general 
purpose fuzzers can find existing regression bugs in previous versions of real open-source 
software projects. We explore whether state-of-the-art fuzzing techniques can detect regres-
sion errors under strict configurations that match developer expectations and requirements. 
Specifically, we provide answers to the research question RQ5.

5.1 Experiment Setup

Fuzzers For our evaluation, after a literature review in total we select six state-of-the-art 
fuzzers that met our criteria representing three different avenues explored in the literature, 
namely commit fuzzing (CIDFuzz by Zhang et al. (2023)), regression fuzzing (AFLChurn 
by Zhu and Böhme (2021)), directed fuzzing (AFLGo by Böhme et al. (2017) and Select-
Fuzz by Luo et al. (2023)), and general fuzzing (AFL and AFL++ by Fioraldi et al. (2020)). 
Our selection criteria for directed, commit and regression fuzzers was that they (1) were 
compatible and able to run in Fuzzbench (Metzman et al. 2021) infrastructure (2) that the 
code for the fuzzer was openly available and (3) that it was compatible with both C and 
C++ programs. We included all such fuzzers we identified that met this criteria. We selected 
AFL and AFL++ as the baseline comparisons for our evaluation as state-of-the-art general-
purpose fuzzers because all fuzzers in our evaluation are based on the AFL fuzzing algo-
rithm and implementation. We compare against AFLGo and SelectFuzz, which attempt to 
generate test inputs that reach target locations in a program. For the program locations, we 
use the changed lines in the buggy commit as targets. Finally, we choose AFLChurn and 
CIDFuzz as regression fuzzers specifically designed to detect bugs in a commit of a soft-
ware program. We configured each fuzzer to use default parameters in our benchmarking 
setup according to its respective documentation or openly available example configurations 
in a best-effort manner.

Based on our survey results in Sections 4.1 and 4.2, fuzzer usability is the number one 
obstacle for software professionals to use fuzzers and the majority of developers are not 
willing to extensively customize fuzzer configurations to their systems; thus we believe this 
setup reflects how practitioners would utilize these tools in their own workflows.

Subject Programs We randomly selected 10 bugs from OSS-Fuzz (Serebryany 2017) that 
are (1) labeled as reproducible, (2) were able to be built and run in the FuzzBench infra-
structure, and (3) where we were manually able to reproduce the bug and identify the bug-
introducing commit. We sampled bugs starting from the front page of the bug tracker6 at the 
time of experimentation, up to one regression bug per program that met criteria (1), (2), and 
(3), moving to the subsequent page if no bugs met our criteria. We sampled up to 10 bugs, 

6 https://issues.oss-fuzz.com/issues
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with no more than one bug per project. As a result, all our subjects are C/C++ programs 
from open source projects integrated with the OSS-Fuzz infrastructure.

Fuzzing Setup For our evaluation setup, we seek to emulate frequent, cumulative fuzzing on 
a given target in response to code changes, as in a CI/CD pipeline or in a local development 
workflow. Thus, we create a fuzzer-generated corpus on the program under test before the 
bug-introducing commit which we call the saturated corpus. This saturated corpus emulates 
a fuzzer-created test suite built up over many iterations of successive, change-based fuzz-
ing campaigns during the lifetime of a project. To generate the saturated corpus, we fuzzed 
the pre-bug commit version of each program continuously for two weeks each with AFL 
and AFL++. We then aggregated all test cases saved by the two-week campaigns and used 
afl-cmin7 to minimize them with respect to edge coverage. afl-cmin is a utility program that 
greedily constructs a subset of test cases to achieve the total coverage of all test cases. In our 
evaluation of fuzzers, we use this minimized corpus as the initial seeds for each program.

As an additional baseline, we also evaluated each fuzzer with a corpus comprised only of 
test cases provided in the project source repository. For each project, we used the OSS-fuzz 
configuration and project documentation to locate these test cases, taking only the test cases 
which were available prior to the bug introducing commit. We call this the static corpus.

Hardware All experiments were conducted using the standard benchmarking service Fuzz-
Bench (Metzman et al. 2021) via Docker containers on a 112-core 2.70GHz 191G RAM 
Intel Xeon (Gold) machine.

Evaluation Metrics We assess both the efficacy and efficiency of the fuzzers in finding 
regression errors. We manually analyzed the crash signatures recorded by Fuzzbench and 
determined if they corresponded to the vulnerability in question. Three of the authors inde-
pendently checked the crash signatures to determine whether they corresponded to the vul-
nerability in question.

To analyze the results we use survival analysis because our bug-finding trials are right-
censored data. Specifically, we use the Kaplan and Meier (1958) method. For some addi-
tional claims of statistical significance, we use Wald’s t-test (Wald 1943) on the bootstrapped 
Restricted Mean Survival Time (RMST) of the fitted Kaplan-Meier models. The RMST cap-
tures the area under the curve of a survival plot, thus a higher RMST indicates that a fuzzer 
is less effective because the bug “survives” longer.

Results Table Description We collect results for each of the fuzzers over 20 repetitions and 
analyzed the efficacy of finding the target regression error. Table 1 summarizes the efficacy 
of each fuzzer for timeouts of 5 and 60 minutes (see Section 4.4) and the build time for each 
project. For each sub-column, P5m and P1h represent the probability of the fuzzer detecting 
the target regression errors in twenty trials for time duration of 5 minutes and 60 minutes, 
respectively. Px-static represents these probabilities when using the static corpus, rather 
than the saturated corpus (Px-sat.). Sub-column tbuild depicts the average time in seconds 
needed for building the subject for each fuzzer over 20 repetitions. Note that tbuild–which 

7  h t t p s :  / / g i t  h u b . c o  m / g o  o g l e /  A F L / b  l o b / m a  s t e r  / a fl  - c m i n
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captures the time taken for each fuzzer’s instrumentation and/or other inital program analy-
ses– is included in the computation of P5m and P1h. In otherwords, a trial is considered 
successful if the fuzzer can both build, instrument and analyze the project and find the bug 
within the target timeframe.

5.2 (RQ5) Effectiveness of Existing Fuzzers

Of the ten bugs in our evaluation, four bugs–in libvpx, proj4, yara and libxml2– were not 
found by any of our evaluated fuzzers in the one-hour time limit.8 However, out of the 
remaining six programs, we find that the static corpora or a saturated corpus of test cases 
generated by fuzzing earlier versions of the program was able to trigger the bug in three 
programs: file, usrsctp and libtiff. These bugs were triggered by existing inputs without any 
additional fuzzing on the bug-introducing commit itself.

With respect to our identified thresholds of 5 minutes for local fuzzing and 1 hour for CI/
CD fuzzing, we see mixed results when using a saturated corpus. Table 1 shows the discov-
ery rates for each fuzzer on each bug at each duration. Here, we observe that two of the bugs 
are discovered at least once within the first five minutes. Mostly, the probability of finding 
these bugs within 5 minutes is relatively high as well (e.g., geomean of 0.75 for AFL). At 
an hour, prospects improve somewhat for finding the bug in zstd, but still, no fuzzer can 
find the bug in the majority of trials. For the other programs in which bugs can be found, 
increasing the fuzzing campaign up to one hour nearly ensures the bug will be discovered. 

Comparison of Fuzzers We show the Kaplan and Meier (1958) fitted survival plot for all 
programs where there are differences in effectiveness across fuzzers in Fig. 10.(middle). 
The survival plots show the probability that a bug has not been found by the corresponding 
fuzzer over time. Across these programs, we don’t see any trend in terms of fuzzer superior-
ity; no one fuzzer appears to be significantly better or worse than the others at finding this 
regression bug.

We do observe that AFL consistently beats AFL++, despite the latter being a 
re-implementation of the former with additional features (RMST5m : 226.85  
AFL++ → 208.34 AFL, p < 0.001 and RMST1h : 2099.02 AFL++ 
→ 2026.42 AFL, p < 0.001). This is unusual, as AFL++ is generally meant to be an 
improved implementation of AFL, but not unheard of; AFL also beats AFL++ occasionally 
in public benchmarking results9.

We could not determine clearly that directed or commit/regression fuzzers perform better 
in this context relative to the general-purpose fuzzers. This result is surprising, as directed 

8 In preliminary testing, some fuzzers were able to find the bugs in libxml2 and yara within one hour with 
very low probability using the saturated corpus, but this did not occur in our final evaluation with 20 trials.

9  h t t p s :  / / w w w  . f u z z b  e n c h  . c o m /  r e p o r  t s / 2 0 2  1 - 0 6  - 0 2 / i  n d e x .  h t m l # m  b e d t  l s _ f u z z _ d t l s c l i e n t - s u m m a r y
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and commit/regression fuzzers are optimized for reaching particular code target locations 
quickly. Unfortunately, all of the directed and regression fuzzers are incompatible with one 
or more of the programs in our evaluation set, especially in the case of CIDFuzz.10 However, 
despite CIDFuzz compatibility issues, it does attain the statistically significant highest code 
coverage for the two programs it can successfully fuzz.

5.3 (RQ6) Impact of Additional Variables on Fuzzer Effectiveness

Comparison of Corpora For this experiment we used two different starting corpora. One of 
which is saturated in that it is distilled from the historical corpus of OSS-Fuzz runs and thus 
is expected to be high coverage. In contrast, the static corpus consisted of existing test cases 
extracted from each target program’s repository. Figure 9.(left) shows the LLVM edge cov-
erage of each corpus, normalized to the maximum coverage observed during fuzzing.11 Here 
we can see that the saturated corpus is indeed, very high coverage in all cases. However, the 
static corpus coverage varies widely, with some examples less than 10% of the maximum 
observed coverage and other examples having nearly the same coverage as the saturated 
corpus. Figure 9.(right), we can see the distribution of corpus sizes across programs. Here 
again, we see a wide variance across projects, with some projects like libvpx having more 
test cases than the saturated corpus, despite having lower initial coverage.

Looking at Fig. 10.(top) and .(middle), we can compare the bug-finding efficiency of our 
fuzzers when using each corpora. Here we see that fuzzers using either corpus are able to find 
all three bugs in at least some cases, but, generally, the bugs are found more quickly and reli-
ably with the saturated corpus. For example, on openvswitch, all fuzzers find the bug within 
one hour when using the saturated corpus, but none of the fuzzers can find the bug in the 

10 CIDFuzz’s LLVM instrumentation pass causes segmentation faults on most programs. The build process 
for zstd is complex, and would need to be heavily modified to incorporate most AFLGo-based fuzzers’ instru-
mentation steps. Similarly, usrsctp has a library versioning conflict with several AFLGo-based fuzzers, which 
results in a linker error on instrumentation.
11 Note that for zstd the LLVM coverage calculator failed to generate a coverage report, likely due to its 
excessively large size. Thus we are missing the initial coverage for the static corpus of this target program.

Program
# Test Cases

Saturated Static

file 386 74
grok 442 36
haproxy 87 40
libti� 940 7367
libvpx 155 161
libxml2 377 40
openvswitch 2249 24
proj4 1555 133
usrsctp 25 24
yara 121 7
zstd 782 24223

Fig. 9 (Left) Initial Corpus Coverage Normalized to Maximum Observed Coverage per Program and 
(Right) Initial Corpus Size (Number of Test Cases)
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majority of trials when the static corpus is used instead. Similarly, both AFL and AFLGo are 
able to find the bug in haproxy within 5 minutes in the majority of trials with the saturated cor-
pus, but never find the bug in less than 5 minutes using the saturated corpus. Across all bench-
marks, there is a significant decrease in effectiveness when the static corpus is used instead 
of the saturated corpus (RMST5m : 239.13 static → 206.80 saturated, p < 0.001 and 
RMST1h : 2324.71 static → 1940.65 saturated, p < 0.001). 

Build Times An often overlooked aspect in research papers is the build time overhead of 
a given tool. This number includes the time it takes a fuzzer to analyze and instrument a 
target program before it starts fuzzing.  In the context of 24-hour fuzzing campaigns, this 
additional instrumentation and analysis time may be negligible. However, for local devel-

Fig. 10 Probability that the regression bug is not found by each fuzzer over time (lower is better). (top) 
using static corpus; (middle) using saturated corpus; (bottom) using the saturated corpus excluding build 
times
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opment or CI/CD fuzzing, with the total campaign length being only a few minutes to an 
hour, the additional build times can be substantial. Indeed, looking at the columns tbuild in 
Table 1, we can see a large difference between fuzzers. Selectfuzz takes ten times the build 
time of AFL on average! Even AFL++ or AFLGo takes 80 to 90 seconds longer than AFL to 
instrument programs on average; in the context of a local development fuzz campaign, this 
is equivalent to more than 20% of the total time budget.

We can see the impact on fuzzer effectiveness for our identified timing thresholds of 
5 minutes and 1 hour in Fig. 10. Comparing the (middle) and (bottom) rows, we can see 
the difference in survival plots for the saturated corpus are included and excluded, respec-
tively. Here we can see a significant visual difference for some fuzzers: AFLchurn goes 
from being being among the worst fuzzers on the haproxy benchmark program with build 
times included (middle), to being among the best if we ignore build times (bottom). 
Indeed overall, we see a statistically significant drop in effectiveness across all fuzz-
ers and benchmarks (RMST5m : 234.31 excluded → 200.12 included, p < 0.001 and 
RMST1h : 2154.33 included → 2076.55 excluded, p < 0.001). 

6 Threats to Validity

6.1 Developer Survey

Construct Experimenter bias is always a threat to the validity of personal opinion surveys. 
We attempted to phrase all of our questions in neutral language, but it is possible that aspects 
of our survey instrument may have biased the results. To avoid observer bias, we designed 
the survey to collect no personally identifying information, giving our participants a trusted 
platform.

Internal To ensure the clarity of our questions and the form’s structure, we performed 
small-scale test runs with researchers who were not involved in the study.

The overarching goal of our study was to assess the expectations of software profession-
als for a usable fuzzing workflow; to ensure our conclusions reflect this, we blocked our data 
on fuzzing experience and discarded responses from academic researchers. We choose to 
include responses from those unfamiliar with fuzzing because we are explicitly interested in 
how these users see themselves using a fuzzing tool. While there is a risk that this popula-
tion are not able to accurately answer questions, our target population is nonetheless highly 
technical (Section 3) and we provided a general summary of fuzzing concepts at the begin-
ning of our survey form to ensure our participants had the requisite background information.
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Conclusion To reliably interpret all responses, particularly the open-text responses, we 
applied qualitative analysis coding with an agreement of at least two authors on all codes. 
For questions measuring agreement, we used the chi-square test of independence (Pearson 
1900) and the binomial test (Dodge 2008), both well-established statistical tests in the realm 
of user surveys (Hilton et al. 2017; Gorski et al. 2018; Javed et al. 2019; Votipka et al. 2020; 
van der Linden et al. 2020; Noller et al. 2022).

External A potential threat to external validity is the limited sample size and scope of par-
ticipants in our survey. By collecting responses using the snowball method (see Kitchenham 
and Pfleeger (2008)) from 44 participants across 23 companies and 11 countries, which we 
see as a sufficiently diverse set of participants, but we cannot guarantee the generalization of 
our results. We believe that we were able to reach an important sample cohort because they 
mostly identify as highly technical software developers who have only limited experience 
with fuzzing while being familiar with the concept (Section 3).

6.2 Commit Fuzzing

Construct To ensure construct validity, we directly measure our criteria for fuzzer effective-
ness–ability to find bugs associated with a code change– rather than using a proxy metric, 
such as code coverage. Because crashes from different bugs can look similar, three of the 
authors examined the crash signatures for each crash detected during fuzzing to determine 
whether they corresponded to the targeted bug.

Internal To avoid selection bias in our choice of benchmarks, we chose them randomly 
from real-world bugs in the OSS-Fuzz (Serebryany 2017) bug tracker. More specifically, we 
sampled randomly from the front page of the OSS-Fuzz bug tracker at the date of experi-
mentation, filtering for confirmed and reproducible bugs. It is possible that there is a tempo-
ral bias, as our bugs all come from a similar timeframe, but we sampled only up to one bug 
per project to minimize this effect.

We attempted to avoid selection bias in our choice of fuzzers by using all openly avail-
able directed, commit and regression fuzzers that we were able to make compatible with 
the Fuzzbench benchmark suite. To identify these fuzzers, we searched for these keywords 
(along with fuzzing/fuzzer) in research databases such as Google Scholar and DBLP. We 
used all fuzzers we identified that met our criteria. We chose AFL and AFL++ as baselines 
to reduce the risk of cross-implementation differences in fuzzers, rather than fundamental 
algorithmic differences (e.g. directed vs. undirected fuzzing); all of the evaluated fuzzers’ 
implementations are modifications or extensions of the AFL fuzzer.

Another possible threat to internal threat to validity is three of the bugs were originally 
discovered by AFL, which might give AFL an advantage in our experiment. However, for 
two of these three bugs (yara and file) we see no difference in fuzzer effectiveness. For the 
last bug found by AFL, haproxy, there are differences in performance, but all fuzzers except 
for one (Selectfuzz) find the bug in 5 minutes excluding build times. Additionally, because 
we evaluated only fuzzers based on the AFL fuzzer implementation, we believe this effect to 
be minimal. We leave a larger follow up study with additional bugs found by both AFL and 
LibFuzzer which could isolate this effect to future work.
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Conclusion In general, we believe our experimental setup is in accordance with the latest 
standards for fuzzer evaluations  (Klees et al. 2018; Kim et al. 2024).

To avoid issues with misinterpreting our results, we use statistical techniques that are 
well-established across multiple fields of research. As bug-finding benchmarks are right-
censored data, we use survival analysis (Kaplan and Meier 1958). To determine statistical 
significance between fuzzers on individual benchmarks for a single configuration, we use 
the confidence intervals given by our survival analysis (Kalbfleisch and Prentice 2002), 
which can be seen in Fig. 10. When comparing across benchmarks and fuzzers, we use the 
bootstrapped Restricted Mean Survival Time (Royston and Parmar 2013) and Wald’s t-test 
(Wald 1943). For bootstrapping, we use 100 iterations of case-resampling the individual 
trials of each experiment. For other claims of significance, we compare build times with 
Wald’s t-test and code coverage for CIDFuzz with Fuzzbench’s built in Mann-Whitney U 
test (Mann and Whitney 1947; Wilcoxon 1945).

To validate model assumptions, we check for normality visually using a QQ plot before 
applying Wald’s t-test, available in our artifact (Section 8).

Notably, we choose not to use two common analyses for censored data–the log-rank test 
and Cox-regression– because our data appears to violate the proportional hazards assump-
tion (Fig. 10).

External We follow the recommendation of Klees et al. (2018) that ≥ 10 benchmark pro-
grams should be used for fuzzer evaluations. As with any empirical study, more subject 
programs and fuzzers would improve the generalizability of our results. However, verify-
ing each bug’s reproducibility, the introducing commit, integrating OSS-Fuzz benchmark 
programs, and generating a large initial corpus all take significant manual effort. During the 
course of this experiment, we attempted to set up a total of 25 OSS-fuzz programs using 
Fuzzbench’s integration with OSS-Fuzz. However, of these programs and bugs, most could 
not be used: seven resulted in build errors that we were not able to debug, three had errors 
related to fuzzer instrumentation passes, three we could not reproduce reported bugs at the 
commits indicated in the bug report, and the remaining two had issues with several depen-
dent libraries which also needed to be built as specific commits to reproduce past bugs.

We believe that this study is still valuable at its current size, especially when viewed 
with complementary works such as Zhu and Böhme (2021); Zhang et al. (2023); Kim et al. 
(2024); Klooster et al. (2023) and we ensured that each of our configurations had sufficient 
trials (n = 20) to generalize for the bugs and subject programs we evaluated.

7 Related Work

Fuzzing User Surveys Böhme et al. (2020) discuss the challenges in fuzzing identified by 
expert researchers and users at a recent Shonan meeting. Similarly, Nourry et al. (2023) con-
structed an extensive taxonomy on the specific challenges faced by fuzzing experts. In this 
work, we identify some key challenges in fuzzing which largely agree with some findings 
in these prior publications. Namely, (1) that usability issues are the largest impediment to 
adoption among developers (Nourry et al. 2023; Böhme et al. 2020) (2) that users of fuzzers 
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prefer shorter time budgets than those typically seen in academic literature (Nourry et al. 
2023), that (3) these users also want to be able to detect classes of bugs not easily detect-
able by existing fuzzers and sanitizers (Böhme et al. 2020), and that (4) most developers 
want human-in-the-loop, interactive features in their fuzzers (Böhme et al. 2020). However, 
we also provide several novel findings not found in these prior studies, specifically that a 
majority of software professionals want to run fuzzers as part of their local development 
workflow, that software professionals are more amenable to modifying their systems to be 
fuzzed rather than adapting an existing fuzzer for their system, that interpretability is more 
important than minimality for generated test inputs, that many alternatives to ground-truth 
bugs are trusted by software professionals, that bug severity is more important than bug-
quantity in fuzzer evaluations and additionally we establish novel, user-expectation based 
timing bounds for fuzzers in different workflows. For a comprehensive list, see Section 4.5.

More generally, the questions from our study are not focused on challenges in existing 
fuzzer workflows, but rather on desired use cases to bring fuzzing to new users. Nearly all 
participants from Nourry et al. (2023) and Böhme et al. (2020) are deeply ingrained in exist-
ing workflows, having either attended a small conference for fuzzing researchers or partici-
pated in online discussions about OSS-Fuzz, whereas our users bring a fresh perspective on 
adaptations needed to drive adoption in fuzzing. Also, unlike these two works, we conduct 
a follow up study based on key outcomes from our survey results.

Empirical User Studies of Automated Test Generation Techniques Other researchers have 
conducted fuzzer usability studies with students  (Plöger et al. 2021, 2023) and in industrial 
contexts  (Liang et al. 2018).

We identified usability as the largest obstacle to fuzzer adoption. These studies are com-
plementary to our survey in that they provide insights into the specific usability challenges 
that users encounter with fuzzers.

Indeed, while a substantial portion of developers in our study (43%) indicated that they 
are willing to write a custom fuzzing harness, in practice, many users struggle with this task 
using existing fuzzing tools  (Plöger et al. 2021, 2023; Liang et al. 2018). Future research 
in automatic fuzz-harness generation  (Kelly et al 2019; Babić et al. 2019) could mitigate 
these issues in practice.

Likely a combination of improving these usability issues identified by other work and 
meeting expectations of software professionals will be needed to shift fuzzers left in devel-
opment workflows.

Fraser et al. (2015) conducted a user study for the closely related technique of automated 
unit test generation with EvoSuite (Fraser and Arcuri 2011). They found that bug detection 
was not easier for developers using automatically generated unit tests, despite a significant 
increase in code coverage from these tests. Our survey has a similar goal, in that we are 
attempting to identify how to make automated testing tools (in this case, fuzzers) a useful 
component of the sofware lifecycle. We conduct an empirical evaluation as a follow up 
(Section 5). However, we did not evaluate the usability of fuzzers for developers (as has 
been discussed in aforementioned prior work), but rather the efficacy of available fuzzers 
for a novel application, namely commit fuzzing in CI/CD systems.
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Regression and Unit Fuzzing Dynamic analysis has emerged as one of the primary ways of 
combating regression bugs (Braz et al. 2022; Memon et al. 2017), which may comprise as 
much as 77% of vulnerabilities in open source projects (Zhu and Böhme 2021). As a result, 
many researchers and industry leaders have begun to investigate and use fuzzers in local 
and CI/CD settings. Google has created CIFuzz12 for continuous integration fuzzing for 
OSSFuzz and other projects. Other companies like Gitlab13 and CodeIntelligence14 have 
similar offerings. A case study of CI fuzzing in the Linux kernel has even been recently con-
ducted (Shi et al. 2019). From academic research, regression fuzzers target recently changed 
code with modified basic-block distance-to-change based power schedules (Zhu and Böhme 
2021; Zhang et al. 2023) or in combination with shadow symbolic execution (Noller et al. 
2020). These tools are similar in concept and design to directed fuzzers (Böhme et al. 2017; 
Luo et al. 2023; Marinescu and Cadar 2013), which target one or more code locations. Our 
follow-up study evaluates the current abilities of general purpose, directed and regression 
fuzzers, for commit-level fuzzing.

Fuzzer Evaluation Configurations Past recommendations for evaluation configurations have 
primarily been derived from observations of existing fuzzer capabilities (Klees et al. 2018; 
Herrera et al. 2021). In contrast, we ask developers a priori how much time they would be 
willing to allocate to fuzzing tools in various contexts. We believe that these user expecta-
tions can be combined with practical limitations to provide more representative guidelines 
for evaluations in the future. Several other evaluations of fuzzers in the context of regression 
or directed fuzzing have been conducted in parallel with this work. Kim and Hong (2023) 
curated a benchmark of OSS Fuzz reported bugs for evaluating regression fuzzers. How-
ever, they omit bugs that are found in less than three minutes. This choice is appropriate for 
determining which fuzzers are best at finding challenging regression bugs, but diminishes 
the ability of fuzzers of finding regression bugs quickly in general. Additionally, Kim and 
Hong use the seed corpus present in the version control history for the bug-inducing com-
mit of the given program. We use this setup as our baseline static corpus, but also compare 
results to a saturated corpus up to the bug-inducing commit. Indeed, our results indicate 
that the setup used by Kim et al. (2024) is not optimal for change-based fuzzing.  Klooster 
et al. (2023) also conduct an evaluation of fuzzers in the CI/CD context, similarly finding 
that many regression bugs can be found relatively quickly by existing fuzzers (< 15 min-
utes). However, unlike our follow-up study, their research focuses only on the capabilities 
of general-purpose grey-box fuzzers, omitting regression and directed fuzzers. Instead of 
using a saturated corpus on a single commit, they simulate a sequence of commits start-
ing from the corpus of the first bug-inducing commit and augmenting it cumulatively. As 
neither approach is an exact replication of long-term continuous fuzzing, we believe that 
results from both works can be informative and complementary. Kim et al. (2024) assessed 
the state of directed fuzzer evaluations, excluding general purpose and regression fuzzers, 
and do so in a more conventional context with 24 hour timeouts rather than CI/CD or local 
development workflows.

12  h t t p s :  / / g o o  g l e . g i  t h u b  . i o / o  s s - f u  z z / g e t  t i n g  - s t a r  t e d / c  o n t i n u  o u s -  i n t e g r a t i o n /
13  h t t p s :   /  / d o c  s . g i t l a  b .  c  o m /   e e / u  s  e r / a p  p l i c  a t  i o n  _ s e c u   r i t y /  c o v e   r a g e _ f u z z i n g
14 https://www.code-intelligence.com/cli-tool
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8 Perspectives

Fuzz testing has conventionally been used for finding security vulnerabilities in existing 
software systems. As such, it has been primarily employed on mature software systems or 
even vendor-provided code upon acquisition. The role of fuzz testing in software develop-
ment has been relatively less examined. This is the outlook we examine in this paper. Our 
follow up study shows that, to some extent, developer expectations from our survey can 
already be met by existing technology; if left-shifted into development workflows, fuzzers 
can effectively find many regression errors within tolerable time limits. Beyond change-
based fuzzing, the user survey we present in this paper is of general relevance. Our partici-
pants’ answers provide many insights on the usage of fuzzing, whether conducted as part of 
the software development process or for hardening a mature or acquired software system.

The findings from our work indicate the need to connect fuzzers with new development 
tools. For the software engineering community, our work promotes the need to integrate 
fuzzing into future development environments and build workflows, with the goal of writing 
a functionally correct program. This would truly amount to a shift-left of fuzzing in software 
engineering workflows.
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