
Accepted: 10 July 2025
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025

Communicated by: Marco Torchiano.

Extended author information available on the last page of the article

Shifting fuzzing left in software workflows

Dylan J. Wolff1 · Ridwan Shariffdeen1 · Yannic Noller2 · Abhik Roychoudhury1

Empirical Software Engineering (2025) 30:146
https://doi.org/10.1007/s10664-025-10702-5

Abstract
Fuzzing has proven to be an effective tool for finding bugs in software, with Google’s
OSSFuzz alone being responsible for finding thousands of critical security vulnerabilities
in open source projects. As software development practices evolve, there is a growing rec-
ognition of the need to integrate security testing earlier in the development process. Yet in
our survey of software practitioners, only 20% used fuzzing as part of their development
workflow. In this paper, we explore how fuzzing can fit into the software development life
cycle. We do so with two empirical studies, including perspectives from over 40 industry
practitioners. First, in a survey of software professionals, we identify several gaps between
current state-of-the-art fuzzers’ capabilities and engineers’ expectations. In particular, we
find that most developers are willing to use fuzzers, but prefer shorter, more frequent
fuzzing runs as part of a continuous integration/continuous deployment (CI/CD) workflow.
Next, based on results of this survey, we assess state-of-the-art fuzzers’ capabilities in
the context of CI/CD and local development workflows. We observe that existing fuzzers
can find up to 50% of bugs within 5 minutes of fuzzing, meeting developer expectations
from our survey, but that further research is needed to uncover more difficult bugs within
tolerable time limits. Additionally, we see that the initial corpus and time needed to build
and analyze a project for a particular fuzzer both have a significant effect on fuzzer ef-
fectiveness in this context. We hope that our work will help the community to drive wider
adoption of fuzzing in the software development lifecycle.

Keywords Fuzzing · Empirical study · Program repair · Software security

1 3

http://orcid.org/0000-0002-6958-7159
http://orcid.org/0000-0001-5409-4864
http://orcid.org/0000-0002-9318-8027
http://orcid.org/0000-0002-7127-1137
https://doi.org/10.1007/s10664-025-10702-5
http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-025-10702-5&domain=pdf&date_stamp=2025-7-19

Empirical Software Engineering (2025) 30:146

1 Introduction

Software bugs introduced during the development process can have catastrophic conse-
quences if they are not uncovered and fixed before reaching production (Goodin 2023;
Newman 2021). In 2017, exploitation of a single vulnerability1 in Apache Struts cost US
credit agency Equifax an estimated 1.7 billion USD (Lane 2020). To mitigate the impact of
such critical bugs, one approach that has seen increasing attention (Winters et al. 2020) is to
push validation activities towards earlier phases of development, sometimes referred to as
a “shift left” (Smith 2001).

Unit testing (Daka and Fraser 2014), for example, has become emblematic of this effort,
with developers manually writing tests for smaller units of functionality along with or even
before (Beck 2002) writing the application code itself. Increasingly, these unit tests are
run as part of Continuous Integration and Continuous Deployment (CI/CD) workflows to
ensure that code that is committed or deployed has always passed these checks. Still, in our
surveyed users, many found that such tests can be onerous to write (31/44 participants) and
difficult to maintain as software evolves (34/44). Moreover, unit testing (for testing func-
tionality) has been widely employed by practitioners for roughly two decades (Runeson
2006; Micco 2018), but security and reliability issues continue to plague the software indus-
try today. Static analysis (Calcagno and Distefano 2011) has also been leveraged to detect
bugs earlier in development cycles (Churchill 2018; Distefano et al. 2019; Jin et al. 2023).
However, static analyses typically generate large numbers of false positives, resulting in
trust issues among the developer community (Phan et al. 2023).

Recently, fuzzing (Miller et al. 1990) has emerged as another effective technique for
finding security vulnerabilities and other classes of critical bugs (Liang et al. 2018; Mansur
et al. 2020). Unlike static analysis, it has higher precision, providing a reproducing test case
for each bug found. Unlike unit testing, it is highly automated, generating test cases with-
out human intervention. However, while much research has been dedicated to improve the
bug detection capabilities of fuzzers (Meng et al. 2022; Menendez and Clark 2022; Pham
et al. 2020), even expert users face many challenges in using existing fuzzers (Nourry et al.
2023). Furthermore, little or no research has been conducted on user needs for fuzzers in
left-shifted software development workflows such as automated CI/CD pipelines.

In this paper, we investigate what would be needed to make fuzzers useful at earlier
stages of development for a software practitioner who is not necessarily a fuzzing expert.
What are the gaps between these sofware professionals’ expectations and existing fuzzing
tools or workflows? What changes would drive broader adoption of fuzzing at early stages
in the development process? How do these changes impact the way researchers design and
evaluate fuzzers? We examine industry practitioner perspectives on development workflows
that utilize fuzzing to provide early assurance during development. We hope these user
insights will open new research directions in which fuzzing can be a pathway for shifting
automated validation to the left in software development.

Concretely, we first examine user expectations in fuzzing through a survey, aiming to
answer the following research questions:

RQ1 What workflows and use cases do practitioners have for fuzzing?
RQ2 What kinds of inputs and setup will users undertake for fuzzers?

1 h t t p s : / / c v e . m i t r e . o r g / c g i - b i n / c v e n a m e . c g i ? n a m e = C V E - 2 0 1 7 - 5 6 3 8

1 3

 146 Page 2 of 32

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5638

Empirical Software Engineering (2025) 30:146

RQ3 What kinds of outputs and artifacts do users expect from fuzzers?
RQ4 How do users evaluate the effectiveness of fuzzing tools?

We surveyed 44 industry practitioners with 1-10 years of experience and asked how they
envision a fuzzer’s role in the development process. Most of our survey participants are
highly technical developers who are not necessarily fuzzing experts, with half of them hav-
ing more than five years of experience in software development.

From the results of our survey, we formulate and answer two additional questions to
examine the feasibility of one highly desired development workflow with existing fuzzing
tools, namely:

RQ5 How effective are existing fuzzers at testing code-changes in a software project?
RQ6 How do additional variables affect fuzzer effectiveness in this scenario?

For these questions, we analyze the current capabilities of state-of-the-art fuzzers’ in contin-
uous testing. We compare the efficacy of these tools with respect to developer expectations
and desired workflows. In total, we evaluate two general purpose fuzzers (AFL2 and AFL++
by Fioraldi et al. (2020)), two commit/regression fuzzers (AFLChurn by Zhu and Böhme
(2021), and CIDFuzz by Zhang et al. (2023)) and two directed fuzzers (AFLGo by Böhme
et al. (2017) and SelectFuzz by Luo et al. (2023)). Our results indicate that state-of-the-art
fuzzers can find rougly 50%-60% of the regression bugs in our data set within a time period
desired for local development or CI/CD workflows, respectively. Additionally, we find that
the context of the fuzzing campaign: how long a fuzzer takes to instrument and analyze the
code of a target program, and the initial test cases given to the fuzzer both have a significant
impact on fuzzer effectiveness in this scenario. These results show that, while existing tools
can already provide a substantial benefit in this context, more research is needed to find all
bugs within the shorter time frames desired by developers.

2 Background

In this section we first provide a background on software testing and software fuzzing. To
explain the challenges faced by industry practitioners in using fuzzing, we also provide
background on regression testing, directed fuzzing and commit fuzzing.

2.1 Software Testing

Regression Testing Regression testing is a technique designed to ensure that existing fea-
tures continue to function as expected after a code change. It leverages a previously exe-
cuted test suite to identify any new defects introduced by the recent modifications that were
not present before the changes.

2 https://github.com/google/AFL

1 3

Page 3 of 32 146

https://github.com/google/AFL

Empirical Software Engineering (2025) 30:146

Test Cases and Inputs In this paper, we use test cases and inputs interchangeably to refer to
data that is passed to the program under test during execution. For example, a test case for a
PDF reader like OpenPDF3 would be a PDF file.

2.2 Software Fuzzing

Fuzzing Fuzzing (Miller et al. 1990) is broadly defined as passing randomized inputs to
a target program and observing whether or not the program crashes. In the context of this
paper, when we mention fuzzing we always refer specifically to mutational grey-box fuzz-
ing. This class of fuzzer has been widely successful in research and industry, and has been
deployed at scale across hundreds of open-source projects within the OSS-Fuzz framework
(Serebryany 2017).

Mutational Grey-Box Fuzzing In grey-box fuzzing, the program is instrumented to provide
a signal to the fuzzer when new behavior is observed. This allows the fuzzer to bias the
randomized search towards (or away from) particular behaviors. Typically, grey-box fuzz-
ers use some form of code-coverage (e.g. branch coverage) as feedback to bias the search.
Mutational fuzzers generate new random inputs by mutating existing inputs, rather than
sampling from the space of all possible inputs.

Initial Corpus As mutational fuzzers generate random inputs from existing inputs, they are
usually provided with a set of inputs that explore some basic program behaviors to expe-
dite the search, called an initial corpus. These are often either hand-crafted by developers,
downloaded from an online repository of inputs with a common format (e.g. PNG files), or
generated by a prior run of a fuzzing tool.

Fuzz Campaign A set period of time during with a fuzzer is applied to a target program with
a given initial corpus in the hopes of finding bugs.

Directed Fuzzing Directed fuzzing is a class of grey-box fuzzing in which the fuzzer pri-
oritizes exploring behaviors of specific code regions of interest (Böhme et al. 2017). These
areas of interest can vary based on the testing requirements, and could be provided by a
human auditor, static analysis tool, or other source. This approach is in contrast to general
purpose fuzzers, which are designed to explore any new (hopefully buggy) behaviors in
the program, regardless of location. In the context of this work, directed fuzzers can be set
to target the behavior of changed lines of code, similar to commit and regression fuzzing
(defined below).

Commit Fuzzing Commit fuzzing targets behaviors in locations affected by individual com-
mits. When a new commit is made, inputs are generated specifically to exercise the program
locations impacted by the code changes introduced in that commit (Zhang et al. 2023).

Regression Fuzzing Regression fuzzing is a specialized process aimed at targeting code
that has been recently and frequently modified. It focuses on directing the input generation
towards these frequently changed code regions (Zhu and Böhme 2021). Unlike commit

3 https://github.com/LibrePDF/OpenPDF

1 3

 146 Page 4 of 32

https://github.com/LibrePDF/OpenPDF

Empirical Software Engineering (2025) 30:146

fuzzing, which targets specific program locations affected by individual commits, regres-
sion fuzzing focuses on code regions that are frequently modified across multiple commits.

Code Coverage Code coverage is a measure of what parts of the program were executed
during one or more executions. This can be measured a number of different ways at different
levels of abstraction set of source lines, paths, branches, basic blocks. In this work, when
we discuss code coverage or coverage, we refer to control-flow graph edge coverage of a
program, which is commonly used by fuzzers like AFL and AFL++ (Fioraldi et al. 2020).
This property measures whether or not a transition between two basic blocks was observed
in one or more executions of the program.

Sanitizers Fuzzing is typically used to detect crashes, but not all bugs will necessarily crash
the program. As such, several tools have been developed to serve as test oracles for fuzzing,
exiting the program with a crash signal when buggy behavior is observed. The LLVM sani-
tizers are some commonly used examples4, identifying memory safety, undefined behavior
and other issues visible to a fuzzer at runtime in a target program, even if they would other-
wise not crash the program.

Cumulative and Continuous Fuzzing Cumulative fuzzing is when fuzzers are used on the
same program over a long period of time (often multiple years), frequently as the program
itself is undergoing active development. The version of the program being fuzzed is updated
automatically as the program evolves. The most prominent example of this is OSS-Fuzz
(Serebryany 2017), where hundreds of open-source projects are fuzzed in the cloud.

3 Survey Methodology

To address the RQ1-4, we designed an online survey, which we distributed in March 2023
via invitations to contacts from global companies, using the “snowball” method (Kitchen-
ham and Pfleeger 2008). The participants did not receive any compensation; however, for
each participant, we donated $5 SGD to Doctors Without Borders/Médecins Sans Frontières
(MSF). Note that before the study, we received the corresponding approval from our orga-
nization’s Institutional Review Board (IRB).

Survey Overview In total, we asked 47 questions about the goals and usage scenarios of
fuzzing, as well as the relevant inputs, setups, interactions and outputs. Prior to the survey
questions, all participants were presented with a brief textual definition and description of
fuzzing, as well as a link to a short 4-minute video introduction to fuzzing produced by the
Communications of the Association for Computing Machinery (CACM) (Godefroid 2020).
The survey includes open-ended questions like “If you use fuzzers regularly, please describe
your step-by-step workflow(s) when using these tools.” and close-ended questions like “At
what scale would you conduct fuzzing campaigns?” with Multiple Choice, a 5-point Likert
scale, or ranking options. The survey was created and deployed with Microsoft Forms. Our
artifact (Section 8) contains a complete list of our questions.

4 https://compiler-rt.llvm.org/

1 3

Page 5 of 32 146

https://compiler-rt.llvm.org/

Empirical Software Engineering (2025) 30:146

Participants In total, we received 51 survey responses from over eleven countries in a wide
range of industries, e.g., technology (11), software services and consulting (7), general
software development (5), and software security (4). Of the 51 total participants, seven
identified themselves as academics or students. To accurately capture the opinions and expe-
riences from software practitioners, rather than those of academics, we omit these seven
responses from our analysis. Of the remaining participants, 61% (27/44) identified them-
selves as software developers. 78% (21/27) of these software developers have not used a
fuzzer in their professional work setup. Other participants identified themselves as technical
leads (6), managers (2) or in other roles like security architect, security engineer, or techni-
cal consultant. Figures 1 and 2 show the practical experience and familiarity with fuzzing of
our participants. Across all participants, 52% (23/44) have not used a fuzzer yet. From the
remaining participants, only 27% (12/44) indicated that they are expert users of automated
software testing tools. However, 77% (34/44) of the participants are at least familiar with
the concept of fuzz testing. Most of our participants are not experts in fuzzing, but typically
had a large amount of technical experience (7.2 years mean, 6.5 years median). While only
12 participants considered themselves fuzzing experts, 34/44 were at least familiar with
fuzzing concepts. The 10 remaining participants who are not at all familiar with fuzzers
have a mean of 5.3 years technical experience. Therefore, we believe we have reached an
interesting set of participants who can provide insights into expectations and current obsta-
cles for the integration of fuzzing in broader software development workflows. We used the
data shown in Fig. 2 to separate the participants into two groups: experienced (21/44, 48%)
who reported at least non-regular usage of fuzzers and inexperienced (23/44, 52%) practi-
tioners. In our discussion, we highlight differences between these two groups, if they exist.

Fig. 2 Participant’s familiarity with fuzzing/testing tools

Fig. 1 Participant’s years of experience in their current role

1 3

 146 Page 6 of 32

Empirical Software Engineering (2025) 30:146

For the remainder of this paper, when we say “experienced" or “inexperienced" developers,
we refer to their experience with fuzzing/testing tools.

Analysis For all questions with a 5-point Likert scale, we analyzed the distribution of nega-
tive/disagreement (1 and 2), neutral (3), and positive/agreement (4 and 5) responses. For the
ranking questions, we analyzed which answers have been ranked highest. For the Multiple
Choice questions, we analyzed which choices were selected most; further, we analyzed the
open-ended “Other” choices and mapped them to the existing options or treated them as new
ones if necessary. For all other open-ended questions, we performed a qualitative content
analysis coding (Schreier 2012) to summarize the themes and opinions. The first iteration
of the analysis and coding was done by one author, followed by the other authors’ review.
The following sections summarize and discuss the most mentioned responses indicating
their frequency in brackets. To compare the two groups of experienced and inexperienced
developers in the context of fuzzing, we use the chi-square test of independence (Pearson
1900) (α = 0.01). The chi-square test of independence tests whether the two categorical
variables are related. For example, a) the experience of developers in using fuzzing and
b) their preferred (local/CI/on-demand) fuzzing campaign length. In particular, we test
whether there is any statistically significant difference in their general preferences. We also
test the significance of the obtained trends/majorities with the Binomial Test (Dodge 2008)
(α = 0.05), e.g., is an observed majority of preferred usage actually significant in relation
to the total number of participants. We present the corresponding P values. Our research
artifact includes all data, statistics, and codes.

4 Survey Results

4.1 Workflows and Use Cases (RQ1)

The first section of our survey focused on high-level goals and workflows, to understand
how developers envision using fuzzing in their day-to-day development process.

Testing Goals To determine which kinds of bugs and test-oracles fuzzing researchers and
practitioners should focus on, we asked our participants “What properties are important to
test your software for?” (Fig. 3). Classes of bugs commonly targeted by existing fuzzers
and sanitizers, such as memory safety bugs, are deemed important by a strong majority of
experienced and inexperienced developers. Functional correctness, however, was the most
important property identified by nearly all of our participants (39/44, 89%, P <.001). Par-
ticipants mentioned memory safety as the second most important property, followed by con-
currency safety. Many other non-functional properties, such as execution speed, memory
consumption and side-channel vulnerabilities were also deemed important by more than
one-third of our participants. Contrary to the goals of our participants, in general, fuzzer
and sanitizer support for finding non-crashing bugs is often limited, if it exists at all. The
commonly used LLVM sanitizers, for example, can not identify liveness, performance, or
side-channel vulnerabilities at all, and only find a subset of concurrency bugs (data-races
and deadlocks) at the cost of extremely high memory and execution time overhead (often
over 10x).

1 3

Page 7 of 32 146

Empirical Software Engineering (2025) 30:146

We also asked developers “What is important to gain from a fuzzing campaign (i.e. fuzz-
ing a software application)?” We did not observe any significant difference between the
importance of the three possible outcomes we included in this question: obtaining a regres-
sion test suite, bug discovery, or exercising a particular code location. Additionally, we did
not see a significant difference between the experienced and inexperienced participants in
this case. Nevertheless, the majority of the participants indicated that all three of these three
goals are important (31/44, 70%, P <.01).

However, most state-of-the-art fuzzers do not provide any tools for understanding and
maintaining such automatically generated test suites over time, other than test suite mini-
mization tools.

Fig. 3 Participants’ opinions about the most important testing properties

1 3

 146 Page 8 of 32

Empirical Software Engineering (2025) 30:146

Concrete Workflows CI/CD has emerged as a key process in modern software development.
We asked our participants whether they would include fuzzing in their CI/CD system and
also “How frequently would you run a fuzzer as part of your build integration or deploy-
ment system?” to understand how fuzzing can be used in this context. We found that a
large majority of our participants (33/44, 75%, P <.001) would add fuzzing to their CI/CD
pipelines, predominantly as either per commit or in nightly administered fuzzing runs. We
could not determine any significant difference between the responses of experienced and
inexperienced participants for this topic.

We also queried about integrating fuzzing into the participants’ local development work-
flows. Perhaps surprisingly, most participants (28/44, 64%, P <.05) would include fuzzing
in their local development workflow. These practitioners would mostly run a fuzzer only as
a local pre-commit or pre-merge step (19/28, 68%, P <.05), rather than more frequently
(e.g., on each file-edit). Some experienced practitioners indicated that they would also peri-
odically run a fuzzer multiple times before committing to the CI pipeline, while no inex-
perienced developers indicated they would do so (experienced: 5/21, 24%; inexperienced:
0/23, 0%; P = .013>.01).

Infrastructure We also asked practitioners “At what scale would you conduct fuzzing cam-
paigns?”. A large number of our participants (36/44, 57%, P = .146>.05), with a stronger
majority of experienced practitioners (14/21, 67%, P <.05), would deploy fuzzers on a
single machine with one or a small number of cores. This indicates that fuzzing research’s
emphasis on single or few-core performance is well-justified. Of the remaining partici-
pants, roughly an equal number indicated that they would use vertically (many core, single
machine) or horizontally scaled (many machines) hardware for their fuzzing campaigns.

Obstacles in Fuzzing While fuzzing has grown in prominence in recent years, the major-
ity of our participants do not yet use them regularly in their development workflows. To
understand why, we asked “What prevents you from using fuzzers?”. Most inexperienced
participants (14/23, 61%) gave no indication for one or more parts of this question, and we
saw no significant trend among the remaining few responses from this group. Therefore,
we only discuss the responses from the experienced participants (Fig. 4). In agreement with
prior research (Nourry et al. 2023), one of the leading barriers to adoption of fuzzing among
our experienced participants was usability (14/21, 67%, P <.05), Interestingly, modeling
environmental changes was seen equally problematic (14/21, 67%, P <.05). Further, a large
minority of our experienced participants saw reaching deep behavior and code paths as key
obstacles as well.

1 3

Page 9 of 32 146

Empirical Software Engineering (2025) 30:146

4.2 Fuzzer Setup and Inputs (RQ2)

The next section of our survey investigated developers’ tolerance for manual steps to start
using a fuzzer, to better establish which steps should be automated or otherwise avoided in
fuzzing workflows.

Fuzzer Setup To understand users’ tolerances to various common set-up tasks for fuzzing,
we asked our participants “What level of setup are you willing to do (if any) to configure a
fuzzer on a given target?” (Fig. 5). While a small number of participants would only use a
nearly completely automated, “push-button” fuzzer, most (38/44, P <.001) would be will-
ing to do some amount of manual configuration. For the various tasks associated with the
program under test–modifying the build-process, writing a fuzzing harness, providing initial
test cases, or specifying an input grammar– a similar proportion of roughly 40% of users
are willing to undertake them. Far fewer would consider modifying the fuzzer to conform
to a particular target program. We note that this dichotomy may contrast with the fuzzing
research community, who are likely more familiar with the fuzzing tools than the programs
being tested. While, in general, we could not determine a statistically significant difference
between the experienced and inexperienced participants for this topic, we still would like to
highlight two aspects: Firstly, while most inexperienced practitioners (15/23, 65%, P <.05)

Fig. 5 Participants’ willingness to configure and setup the fuzzer

Fig. 4 Experienced participants’ choices for reasons that prevent them from using fuzzing

1 3

 146 Page 10 of 32

Empirical Software Engineering (2025) 30:146

would be willing to modify the build process, only a few experienced practitioners (7/21,
33%) would do the same (difference across groups: P = .035>α = .01). Secondly, most
inexperienced participants (17/23, 74%, P <.01) would not be willing to provide any input
specification; however, the experienced participants were more divided on this question,
with 11/21 being positive and 10/21 being negative about providing an input specification
(difference across groups: P = .074>.alpha = 01).

Interacting with the Fuzzer A majority of our participants (25/44, 57%) want to interac-
tively guide a fuzzer towards particular code locations. More interestingly, the same number
of users would also like to interactively patch roadblocks that hinder the fuzzer from making
progress. This could be facilitated by a visualization of roadblocks faced during a campaign,
as recently proposed by Yan et al. (2023).

Specifications While the complete specifications needed for verification are often consid-
ered too heavy-weight for most developers, in the context of fuzzing, incomplete speci-
fications can still be useful as test oracles. We asked our participants “How willing are
you to write the following kinds of specifications for a program to detect bugs while fuzz-
ing?” (Fig. 6). To ensure participants who are not familiar with specifications were able
to give accurate responses, we provided concrete example specifications for context. Of
the three possible modes of specifications we included in our survey–temporal properties,
data invariants, and pre/post-conditions– none would be willingly written by a majority of
developers. Thus, to target the majority, fuzzer authors should continue to focus on using
lightweight, implicit oracles (such as Address Sanitizer) rather than requiring users to manu-
ally write specifications. There is, however, a substantial portion of developers (> 1

3) who
would be willing to write specifications of all three possible modes of specifications we
asked about.

Fig. 6 Participants’ willingness to write/provide additional specifications as inputs to fuzzer

1 3

Page 11 of 32 146

Empirical Software Engineering (2025) 30:146

4.3 Fuzzer Outputs and Artifacts (RQ3)

This section of our survey examined developer expectations for the outputs of a fuzzing
campaign, which can help tool builders understand which output artifacts are most useful
for their users.

Bug Relevance Most of the inexperienced participants (17/23, 74%, P <.01) indicated that
they cannot comment on the relevance of fuzzer-generated bug reports, so we only discuss
responses from the experienced participants, who mostly (19/21, 90%, P <.01) commented
on this question. In general, a reduction of false alarms in bug reports relative to static analy-
sis tools is often mentioned as one of the primary strengths of fuzzing and other dynamic
analysis techniques. However, a large group of our experienced respondents familiar with
such reports (10/19, 53%) indicated that fuzzer-generated bug reports are either mostly irrel-
evant or at least contain a mix of irrelevant and relevant findings.

Thus, while better positioned than static-analysis, fuzzing-generated reports still require
triage in most cases. Automatically identifying false alarms in fuzzer-generated bug reports
could be an impactful direction for future research.

Usefulness of Bug Reports Figure 7 shows user opinions on the difficulty of fixing fuzzer-
reported bugs relative to user-reported bugs. Overall, we cannot say that users find bugs
reported by fuzzers are any easier or harder to fix than user-reported bugs. The majority
of the inexperienced participants did not know (13/23, 57%), and the experienced partici-
pants had no clear trend towards a specific direction. After showing participants examples
of fuzzer-generated bug reports, we also asked “How useful do you think each feature of
a fuzzer-generated bug report would be?”. Unsurprisingly, most participants (36/44, 82%,
P <.001) mention it is very useful to have the identified assertion violation or crash mes-
sage, including a stack trace. A large majority also indicated that suggested fault and fix
locations (32/44, 73%, P <.001) or a proposed patch (31/44, 70%, P <.01) for the bug
would be beneficial. Interestingly, the responses from experienced and inexperienced prac-
titioners were mainly consistent, indicating the relevance of the obtained feedback about
fuzzer-generated bug reports for general software development.

Fig. 7 Participants opinions about features in fuzzer-generated bug reports

1 3

 146 Page 12 of 32

Empirical Software Engineering (2025) 30:146

Outputs Participants mentioned the integration of fuzzers into their existing development
environments, pipelines, and tools. For example, automated issue reporting with tools like
Sonarqube and Jira. Others mentioned ideas to further improve the information in bug
reports by adding the execution trace with the state values of the reproducing test case, the
relevant bytes in the crashing input that differentiate (w.r.t. the execution behavior) from
other similar but non-crashing inputs, runtime profiling (memory usage and timing infor-
mation) of each function that is executed along with the reproducing test case, and any
additional information the system under test produced as part of the execution (logs, error
messages, etc.).

Generated Test Cases The readability and interpretability of fuzzer-generated test cases
was regarded as very important by most participants (38/44, 86%, P <.001). Yet there are
few tools available for understanding generated tests. Additionally, while most existing
automated debugging techniques focus on minimization5, minimality only ranked third in
importance among our respondents.

Our participants (consistently across the two groups) prefer automatically generated test
cases which have more human readable characters (20/44), followed by test cases which are
similar to user-provided “well-formed” inputs (15/44). Future research can focus on maxi-
mizing the interpretability of generated test cases.

Interpretability is more important than minimality for fuzzer-generated test cases.

4.4 Fuzzer Evaluations (RQ4)

Developer expectations also provide important to establish evaluation criteria for fuzzing
research, which is of great interest to the fuzzing research community (Böhme et al. 2020;
Liang et al. 2018).

Evaluation Configurations Generally, fuzzer evaluation configurations should mirror real-
world use cases, such as those identified in Section 4.1. We queried participants about
the expected fuzz campaign lengths for three fuzzing workflows: on-demand audits, CI/
CD fuzzing, and fuzzing in the local development cycle. Figure 8 shows their aggregate
responses. While we observed that experienced practitioners could be willing to wait a bit
longer, our analysis could not determine a significant difference between the two groups.
Therefore Fig. 8 shows the responses over all 44 participants. For an on-demand fuzzing
campaign, 39% (17/44) of all participants would wait up to 24 hours, with a sharp drop to
only 18% of participants willing to wait 48 hours or more. There are similarly sharp declines

5 h t t p s : / / g i t h u b . c o m / g o o g l e / A F L / b l o b / m a s t e r / a fl - t m i n . c

1 3

Page 13 of 32 146

https://github.com/google/AFL/blob/master/afl-tmin.c

Empirical Software Engineering (2025) 30:146

from 1 hour to 6 hours, and between 12 and 24 hours. Still, the general recommendation
of 24 hours for fuzzing campaigns appears to be in-line with developer expectation for on-
demand fuzzing campaigns.

In contrast, participants prefer shorter time bounds for CI fuzzing. Only a few of the
participants (7/44, 16%) were willing to run a CI fuzzing job for more than one hour. Dur-
ing local development, even fewer of the participants would wait longer than an hour for a
fuzzing run, while most would not wait more than five minutes.

For the strongly desired local and CI/CD fuzzing, the expected timeouts are substantially
shorter than the usual evaluation timeouts suggested in the fuzzing literature (Klees et al.
2018). This inspired us to perform follow-up experimentation to assess current state-of-the-
art fuzzers under these new expectations (see Section 5).

Evaluation Metrics While bug-finding ability is a primary goal of any fuzzer, there are many
ways in which this effectiveness can be measured. To understand which of these measures
are preferred by practitioners, we asked “When evaluating fuzzers on a benchmark suite,
which metric is most important?”. A strong plurality of our respondents (20/44, 45%) indi-
cated that the number of exploitable bugs is the most important evaluation metric. 32%
(14/44) of our participants indicated that the quantity of bugs found was most important,
with relatively few remaining participants selecting other options. This top-2 ranking of the
most important ranking for fuzzing evaluation was indeed consistent across experienced
and inexperienced participants.

Fig. 8 Cumulative presentation of the expected fuzzing campaign lengths for the different workflow types

1 3

 146 Page 14 of 32

Empirical Software Engineering (2025) 30:146

While users indicated that bug-finding ability, particularly for exploitable bugs is an
important metric for fuzzers, ground-truth evaluations can be difficult to conduct due to
the relative sparsity of bugs. To generate benchmarks for these evaluations, our participants
mostly would trust artificial bugs that are automatically backported from a different version
of the program under test (29/44, 66%, P <.05). Overall, our hypothesis testing did not
conclude any significant difference between the two groups; however, we would still want
to highlight the following observations: The majority of the experienced participants (15/21,
71%, P <.05) follow the trend of trusting automatically backported bugs most, followed
by bugs generated based on known bug patterns (9/21) and transplanted bugs from similar
software (9/21). The inexperienced participants are less clear in their decision and equally
often (14/23, 61%) mentioned backported bugs, bugs generated based on known bug pat-
terns, and manually crafted bugs. Somewhat fewer would trust evaluations on bugs gener-
ated by simple random mutations, indicating that researchers may need to work to increase
practitioner trust in techniques such as mutation testing (Just et al. 2014).

4.5 Summary

We summarize our findings from this user survey in the table below:
4.1: Workflows and Use
Cases
Types of Bugs Diverse fuzz-testing oracles are desired
Testing Goals Regression-test generation, bug discovery, and directed testing are equally

important
Deployment Scenarios Typical deployments of fuzzers are on a single-machine, with low parallelism
Workflows Local Development and CI/CD workflows are desired for fuzzing
Obstacles UI/UX is the greatest obstacle to adoption of fuzzing
4.2: Setup and Inputs
Setup Developers are somewhat willing to tolerate setup costs for fuzzing
Interaction Users desire interactive workflows with fuzzers that can take guidance from

a human
Specifications Developers are mixed on writing specifications, but the majority are unwill-

ing to do so
4.3: Outputs and
Artifacts
Bug Relevance False positives and noise are still problematic for the deployment of fuzzers
Usefulness of Reports Fuzzer-generated bug reports are about as useful as other bugs
Report Artifacts Fault localization and proposed patches are more important than a reproduc-

ing test case
Other Outputs Developers mentioned integrations with issue-tracking platforms as desired
Generated Test-cases Interpretability of fuzzer-generated test cases is highly important
4.4: Evaluations
Evaluation Configurations We identify empirical thresholds for fuzzing cutoff times that meet developer

expectations
Bug-Finding Evaluations Severity of bugs found is the most important criteria for fuzzer evaluation

1 3

Page 15 of 32 146

Empirical Software Engineering (2025) 30:146

Alternative Metrics Alternatives to ground truth bugs are generally trusted by developers

5 Evaluation of Fuzzers in a Commit Fuzzing Scenario

As continuous local and CI/CD fuzzing were both strongly desired workflows for our sur-
vey participants, we conducted an additional quantitative analysis to assess the capabilities
of fuzzing tools in this context. We evaluate how commit, regression, directed, and general
purpose fuzzers can find existing regression bugs in previous versions of real open-source
software projects. We explore whether state-of-the-art fuzzing techniques can detect regres-
sion errors under strict configurations that match developer expectations and requirements.
Specifically, we provide answers to the research question RQ5.

5.1 Experiment Setup

Fuzzers For our evaluation, after a literature review in total we select six state-of-the-art
fuzzers that met our criteria representing three different avenues explored in the literature,
namely commit fuzzing (CIDFuzz by Zhang et al. (2023)), regression fuzzing (AFLChurn
by Zhu and Böhme (2021)), directed fuzzing (AFLGo by Böhme et al. (2017) and Select-
Fuzz by Luo et al. (2023)), and general fuzzing (AFL and AFL++ by Fioraldi et al. (2020)).
Our selection criteria for directed, commit and regression fuzzers was that they (1) were
compatible and able to run in Fuzzbench (Metzman et al. 2021) infrastructure (2) that the
code for the fuzzer was openly available and (3) that it was compatible with both C and
C++ programs. We included all such fuzzers we identified that met this criteria. We selected
AFL and AFL++ as the baseline comparisons for our evaluation as state-of-the-art general-
purpose fuzzers because all fuzzers in our evaluation are based on the AFL fuzzing algo-
rithm and implementation. We compare against AFLGo and SelectFuzz, which attempt to
generate test inputs that reach target locations in a program. For the program locations, we
use the changed lines in the buggy commit as targets. Finally, we choose AFLChurn and
CIDFuzz as regression fuzzers specifically designed to detect bugs in a commit of a soft-
ware program. We configured each fuzzer to use default parameters in our benchmarking
setup according to its respective documentation or openly available example configurations
in a best-effort manner.

Based on our survey results in Sections 4.1 and 4.2, fuzzer usability is the number one
obstacle for software professionals to use fuzzers and the majority of developers are not
willing to extensively customize fuzzer configurations to their systems; thus we believe this
setup reflects how practitioners would utilize these tools in their own workflows.

Subject Programs We randomly selected 10 bugs from OSS-Fuzz (Serebryany 2017) that
are (1) labeled as reproducible, (2) were able to be built and run in the FuzzBench infra-
structure, and (3) where we were manually able to reproduce the bug and identify the bug-
introducing commit. We sampled bugs starting from the front page of the bug tracker6 at the
time of experimentation, up to one regression bug per program that met criteria (1), (2), and
(3), moving to the subsequent page if no bugs met our criteria. We sampled up to 10 bugs,

6 https://issues.oss-fuzz.com/issues

1 3

 146 Page 16 of 32

https://issues.oss-fuzz.com/issues

Empirical Software Engineering (2025) 30:146

with no more than one bug per project. As a result, all our subjects are C/C++ programs
from open source projects integrated with the OSS-Fuzz infrastructure.

Fuzzing Setup For our evaluation setup, we seek to emulate frequent, cumulative fuzzing on
a given target in response to code changes, as in a CI/CD pipeline or in a local development
workflow. Thus, we create a fuzzer-generated corpus on the program under test before the
bug-introducing commit which we call the saturated corpus. This saturated corpus emulates
a fuzzer-created test suite built up over many iterations of successive, change-based fuzz-
ing campaigns during the lifetime of a project. To generate the saturated corpus, we fuzzed
the pre-bug commit version of each program continuously for two weeks each with AFL
and AFL++. We then aggregated all test cases saved by the two-week campaigns and used
afl-cmin7 to minimize them with respect to edge coverage. afl-cmin is a utility program that
greedily constructs a subset of test cases to achieve the total coverage of all test cases. In our
evaluation of fuzzers, we use this minimized corpus as the initial seeds for each program.

As an additional baseline, we also evaluated each fuzzer with a corpus comprised only of
test cases provided in the project source repository. For each project, we used the OSS-fuzz
configuration and project documentation to locate these test cases, taking only the test cases
which were available prior to the bug introducing commit. We call this the static corpus.

Hardware All experiments were conducted using the standard benchmarking service Fuzz-
Bench (Metzman et al. 2021) via Docker containers on a 112-core 2.70GHz 191G RAM
Intel Xeon (Gold) machine.

Evaluation Metrics We assess both the efficacy and efficiency of the fuzzers in finding
regression errors. We manually analyzed the crash signatures recorded by Fuzzbench and
determined if they corresponded to the vulnerability in question. Three of the authors inde-
pendently checked the crash signatures to determine whether they corresponded to the vul-
nerability in question.

To analyze the results we use survival analysis because our bug-finding trials are right-
censored data. Specifically, we use the Kaplan and Meier (1958) method. For some addi-
tional claims of statistical significance, we use Wald’s t-test (Wald 1943) on the bootstrapped
Restricted Mean Survival Time (RMST) of the fitted Kaplan-Meier models. The RMST cap-
tures the area under the curve of a survival plot, thus a higher RMST indicates that a fuzzer
is less effective because the bug “survives” longer.

Results Table Description We collect results for each of the fuzzers over 20 repetitions and
analyzed the efficacy of finding the target regression error. Table 1 summarizes the efficacy
of each fuzzer for timeouts of 5 and 60 minutes (see Section 4.4) and the build time for each
project. For each sub-column, P5m and P1h represent the probability of the fuzzer detecting
the target regression errors in twenty trials for time duration of 5 minutes and 60 minutes,
respectively. Px-static represents these probabilities when using the static corpus, rather
than the saturated corpus (Px-sat.). Sub-column tbuild depicts the average time in seconds
needed for building the subject for each fuzzer over 20 repetitions. Note that tbuild–which

7 h t t p s : / / g i t h u b . c o m / g o o g l e / A F L / b l o b / m a s t e r / a fl - c m i n

1 3

Page 17 of 32 146

https://github.com/google/AFL/blob/master/afl-cmin

Empirical Software Engineering (2025) 30:146

captures the time taken for each fuzzer’s instrumentation and/or other inital program analy-
ses– is included in the computation of P5m and P1h. In otherwords, a trial is considered
successful if the fuzzer can both build, instrument and analyze the project and find the bug
within the target timeframe.

5.2 (RQ5) Effectiveness of Existing Fuzzers

Of the ten bugs in our evaluation, four bugs–in libvpx, proj4, yara and libxml2– were not
found by any of our evaluated fuzzers in the one-hour time limit.8 However, out of the
remaining six programs, we find that the static corpora or a saturated corpus of test cases
generated by fuzzing earlier versions of the program was able to trigger the bug in three
programs: file, usrsctp and libtiff. These bugs were triggered by existing inputs without any
additional fuzzing on the bug-introducing commit itself.

With respect to our identified thresholds of 5 minutes for local fuzzing and 1 hour for CI/
CD fuzzing, we see mixed results when using a saturated corpus. Table 1 shows the discov-
ery rates for each fuzzer on each bug at each duration. Here, we observe that two of the bugs
are discovered at least once within the first five minutes. Mostly, the probability of finding
these bugs within 5 minutes is relatively high as well (e.g., geomean of 0.75 for AFL). At
an hour, prospects improve somewhat for finding the bug in zstd, but still, no fuzzer can
find the bug in the majority of trials. For the other programs in which bugs can be found,
increasing the fuzzing campaign up to one hour nearly ensures the bug will be discovered.

Comparison of Fuzzers We show the Kaplan and Meier (1958) fitted survival plot for all
programs where there are differences in effectiveness across fuzzers in Fig. 10.(middle).
The survival plots show the probability that a bug has not been found by the corresponding
fuzzer over time. Across these programs, we don’t see any trend in terms of fuzzer superior-
ity; no one fuzzer appears to be significantly better or worse than the others at finding this
regression bug.

We do observe that AFL consistently beats AFL++, despite the latter being a
re-implementation of the former with additional features (RMST5m : 226.85
AFL++ → 208.34 AFL, p < 0.001 and RMST1h : 2099.02 AFL++
→ 2026.42 AFL, p < 0.001). This is unusual, as AFL++ is generally meant to be an
improved implementation of AFL, but not unheard of; AFL also beats AFL++ occasionally
in public benchmarking results9.

We could not determine clearly that directed or commit/regression fuzzers perform better
in this context relative to the general-purpose fuzzers. This result is surprising, as directed

8 In preliminary testing, some fuzzers were able to find the bugs in libxml2 and yara within one hour with
very low probability using the saturated corpus, but this did not occur in our final evaluation with 20 trials.

9 h t t p s : / / w w w . f u z z b e n c h . c o m / r e p o r t s / 2 0 2 1 - 0 6 - 0 2 / i n d e x . h t m l # m b e d t l s _ f u z z _ d t l s c l i e n t - s u m m a r y

1 3

 146 Page 18 of 32

https://www.fuzzbench.com/reports/2021-06-02/index.html#mbedtls_fuzz_dtlsclient-summary

Empirical Software Engineering (2025) 30:146

Pr
og

ra
m

 →
ya

ra
lib

tiff
pr

oj
4

zs
td

lib
xm

l2
fil

e
ha

pr
ox

y
lib

vp
x

us
rs

ct
p

op
en

vs
w

itc
h

Is
su

e

→
48

32
9

58
72

9
49

25
6

57
08

6
57

46
9

59
43

8
52

04
9

48
81

6
47

71
2

47
11

2
Fu

zz
er

 ↓
A

FL
t b

u
il

d
 (s

)
18

.6
5

42
.5

0
11

0.
36

10
7.

21
22

.1
2

28
.3

5
84

.1
9

7.
48

12
.3

6
31

.3
6

P
5m

-s
at

.
0.

00
1.

00
0.

00
0.

00
0.

00
1.

00
0.

95
0.

00
1.

00
0.

60
P

1h
-s

at
.

0.
00

1.
00

0.
00

0.
25

0.
00

1.
00

1.
00

0.
00

1.
00

1.
00

P
5m

-s
ta

tic
0.

00
1.

00
0.

00
0.

00
0.

00
1.

00
0.

00
0.

00
1.

00
0.

05
P

1h
-s

ta
tic

0.
00

1.
00

0.
00

0.
05

0.
00

1.
00

1.
00

0.
00

1.
00

0.
55

A
FL

ch
ur

n
t b

u
il

d
 (s

)
36

.8
6

58
.7

2
11

9.
25

14
2.

16
53

.5
0

73
.7

3
11

68
.0

9
12

.0
3

-
15

0.
93

P
5m

-s
at

.
0.

00
1.

00
0.

00
0.

00
0.

00
1.

00
0.

00
0.

00
-

0.
90

P
1h

-s
at

.
0.

00
1.

00
0.

00
0.

20
0.

00
1.

00
1.

00
0.

00
-

1.
00

P
5m

-s
ta

tic
0.

00
1.

00
0.

00
0.

00
0.

00
1.

00
0.

00
0.

00
-

0.
05

P
1h

-s
ta

tic
0.

00
1.

00
0.

00
0.

00
0.

00
1.

00
1.

00
0.

00
-

0.
40

A
FL

go
t b

u
il

d
 (s

)
80

.9
7

12
7.

14
48

7.
35

-
73

.0
7

57
.3

5
19

8.
41

34
.9

8
-

10
8.

66
P

5m
-s

at
.

0.
00

1.
00

0.
00

-
0.

00
1.

00
0.

85
0.

00
-

0.
90

P
1h

-s
at

.
0.

00
1.

00
0.

00
-

0.
00

1.
00

1.
00

0.
00

-
1.

00
P

5m
-s

ta
tic

0.
00

1.
00

0.
00

-
0.

00
1.

00
0.

00
0.

00
-

0.
00

P
1h

-s
ta

tic
0.

00
1.

00
0.

00
-

0.
00

1.
00

1.
00

0.
00

-
0.

45
A

FL
++

t b
u

il
d

 (s
)

10
1.

20
10

4.
93

24
1.

39
21

6.
15

53
.3

3
65

.9
5

19
4.

88
15

.4
6

30
.6

7
70

.1
7

P
5m

-s
at

.
0.

00
1.

00
0.

00
0.

00
0.

00
1.

00
0.

25
0.

00
1.

00
0.

40
P

1h
-s

at
.

0.
00

1.
00

0.
00

0.
05

0.
00

1.
00

1.
00

0.
00

1.
00

1.
00

P
5m

-s
ta

tic
0.

00
1.

00
0.

00
0.

00
0.

00
1.

00
0.

00
0.

00
1.

00
0.

05
P

1h
-s

ta
tic

0.
00

1.
00

0.
00

0.
05

0.
00

1.
00

1.
00

0.
00

1.
00

0.
35

C
ID

fu
zz

t b
u

il
d

 (s
)

-
-

-
-

92
3.

58
80

.6
5

-
-

-
-

P
5m

-s
at

.
-

-
-

-
0.

00
1.

00
-

-
-

-
P

1h
-s

at
.

-
-

-
-

0.
00

1.
00

-
-

-
-

P
5m

-s
ta

tic
-

-
-

-
0.

00
1.

00
-

-
-

-
P

1h
-s

ta
tic

-
-

-
-

0.
00

1.
00

-
-

-
-

Ta
bl

e
1

Pr
ob

ab
ili

ty
 o

f B
ug

 D
is

co
ve

ry
 fo

r C
om

m
it-

le
ve

l F
uz

zi
ng

 o
f O

pe
n

So
ur

ce
 P

ro
gr

am
s w

ith
 T

im
e

Li
m

it
in

cl
ud

in
g

bu
ild

 ti
m

es
 o

f 5
 m

in
ut

es
 (P

5m
) a

nd
 1

 h
ou

r (
P

1h
) .

R
es

ul
ts

sh

ow
n

fo
r u

si
ng

 a
 sa

tu
ra

te
d

(-
sa

t.)
 o

r s
ta

tic
 (-

st
at

ic
) c

or
pu

s

1 3

Page 19 of 32 146

https://issues.oss-fuzz.com/issues/42512561
https://issues.oss-fuzz.com/issues/42524111
https://issues.oss-fuzz.com/issues/42513591
https://issues.oss-fuzz.com/issues/42522287
https://issues.oss-fuzz.com/issues/42522712
https://issues.oss-fuzz.com/issues/42524899
https://issues.oss-fuzz.com/issues/42516694
https://issues.oss-fuzz.com/issues/42513102
https://issues.oss-fuzz.com/issues/42511876
https://issues.oss-fuzz.com/issues/42511210

Empirical Software Engineering (2025) 30:146

Pr
og

ra
m

 →
ya

ra
lib

tiff
pr

oj
4

zs
td

lib
xm

l2
fil

e
ha

pr
ox

y
lib

vp
x

us
rs

ct
p

op
en

vs
w

itc
h

Is
su

e

→
48

32
9

58
72

9
49

25
6

57
08

6
57

46
9

59
43

8
52

04
9

48
81

6
47

71
2

47
11

2
Fu

zz
er

 ↓
Se

le
ct

fu
zz

t b
u

il
d

 (s
)

10
7.

06
95

2.
77

26
70

.9
4

-
13

3.
40

67
.3

0
21

9.
56

10
2.

30
-

20
7.

92
P

5m
-s

at
.

0.
00

0.
00

0.
00

-
0.

00
1.

00
0.

10
0.

00
-

0.
55

P
1h

-s
at

.
0.

00
1.

00
0.

00
-

0.
00

1.
00

1.
00

0.
00

-
1.

00
P

5m
-s

ta
tic

0.
00

0.
00

0.
00

-
0.

00
1.

00
0.

00
0.

00
-

0.
05

P
1h

-s
ta

tic
0.

00
1.

00
0.

00
-

0.
00

1.
00

1.
00

0.
00

-
0.

30

Ta
bl

e
1

(c
on

tin
ue

d)

1 3

 146 Page 20 of 32

https://issues.oss-fuzz.com/issues/42512561
https://issues.oss-fuzz.com/issues/42524111
https://issues.oss-fuzz.com/issues/42513591
https://issues.oss-fuzz.com/issues/42522287
https://issues.oss-fuzz.com/issues/42522712
https://issues.oss-fuzz.com/issues/42524899
https://issues.oss-fuzz.com/issues/42516694
https://issues.oss-fuzz.com/issues/42513102
https://issues.oss-fuzz.com/issues/42511876
https://issues.oss-fuzz.com/issues/42511210

Empirical Software Engineering (2025) 30:146

and commit/regression fuzzers are optimized for reaching particular code target locations
quickly. Unfortunately, all of the directed and regression fuzzers are incompatible with one
or more of the programs in our evaluation set, especially in the case of CIDFuzz.10 However,
despite CIDFuzz compatibility issues, it does attain the statistically significant highest code
coverage for the two programs it can successfully fuzz.

5.3 (RQ6) Impact of Additional Variables on Fuzzer Effectiveness

Comparison of Corpora For this experiment we used two different starting corpora. One of
which is saturated in that it is distilled from the historical corpus of OSS-Fuzz runs and thus
is expected to be high coverage. In contrast, the static corpus consisted of existing test cases
extracted from each target program’s repository. Figure 9.(left) shows the LLVM edge cov-
erage of each corpus, normalized to the maximum coverage observed during fuzzing.11 Here
we can see that the saturated corpus is indeed, very high coverage in all cases. However, the
static corpus coverage varies widely, with some examples less than 10% of the maximum
observed coverage and other examples having nearly the same coverage as the saturated
corpus. Figure 9.(right), we can see the distribution of corpus sizes across programs. Here
again, we see a wide variance across projects, with some projects like libvpx having more
test cases than the saturated corpus, despite having lower initial coverage.

Looking at Fig. 10.(top) and .(middle), we can compare the bug-finding efficiency of our
fuzzers when using each corpora. Here we see that fuzzers using either corpus are able to find
all three bugs in at least some cases, but, generally, the bugs are found more quickly and reli-
ably with the saturated corpus. For example, on openvswitch, all fuzzers find the bug within
one hour when using the saturated corpus, but none of the fuzzers can find the bug in the

10 CIDFuzz’s LLVM instrumentation pass causes segmentation faults on most programs. The build process
for zstd is complex, and would need to be heavily modified to incorporate most AFLGo-based fuzzers’ instru-
mentation steps. Similarly, usrsctp has a library versioning conflict with several AFLGo-based fuzzers, which
results in a linker error on instrumentation.
11 Note that for zstd the LLVM coverage calculator failed to generate a coverage report, likely due to its
excessively large size. Thus we are missing the initial coverage for the static corpus of this target program.

Program
Test Cases

Saturated Static

file 386 74
grok 442 36
haproxy 87 40
libti� 940 7367
libvpx 155 161
libxml2 377 40
openvswitch 2249 24
proj4 1555 133
usrsctp 25 24
yara 121 7
zstd 782 24223

Fig. 9 (Left) Initial Corpus Coverage Normalized to Maximum Observed Coverage per Program and
(Right) Initial Corpus Size (Number of Test Cases)

1 3

Page 21 of 32 146

Empirical Software Engineering (2025) 30:146

majority of trials when the static corpus is used instead. Similarly, both AFL and AFLGo are
able to find the bug in haproxy within 5 minutes in the majority of trials with the saturated cor-
pus, but never find the bug in less than 5 minutes using the saturated corpus. Across all bench-
marks, there is a significant decrease in effectiveness when the static corpus is used instead
of the saturated corpus (RMST5m : 239.13 static → 206.80 saturated, p < 0.001 and
RMST1h : 2324.71 static → 1940.65 saturated, p < 0.001).

Build Times An often overlooked aspect in research papers is the build time overhead of
a given tool. This number includes the time it takes a fuzzer to analyze and instrument a
target program before it starts fuzzing. In the context of 24-hour fuzzing campaigns, this
additional instrumentation and analysis time may be negligible. However, for local devel-

Fig. 10 Probability that the regression bug is not found by each fuzzer over time (lower is better). (top)
using static corpus; (middle) using saturated corpus; (bottom) using the saturated corpus excluding build
times

1 3

 146 Page 22 of 32

Empirical Software Engineering (2025) 30:146

opment or CI/CD fuzzing, with the total campaign length being only a few minutes to an
hour, the additional build times can be substantial. Indeed, looking at the columns tbuild in
Table 1, we can see a large difference between fuzzers. Selectfuzz takes ten times the build
time of AFL on average! Even AFL++ or AFLGo takes 80 to 90 seconds longer than AFL to
instrument programs on average; in the context of a local development fuzz campaign, this
is equivalent to more than 20% of the total time budget.

We can see the impact on fuzzer effectiveness for our identified timing thresholds of
5 minutes and 1 hour in Fig. 10. Comparing the (middle) and (bottom) rows, we can see
the difference in survival plots for the saturated corpus are included and excluded, respec-
tively. Here we can see a significant visual difference for some fuzzers: AFLchurn goes
from being being among the worst fuzzers on the haproxy benchmark program with build
times included (middle), to being among the best if we ignore build times (bottom).
Indeed overall, we see a statistically significant drop in effectiveness across all fuzz-
ers and benchmarks (RMST5m : 234.31 excluded → 200.12 included, p < 0.001 and
RMST1h : 2154.33 included → 2076.55 excluded, p < 0.001).

6 Threats to Validity

6.1 Developer Survey

Construct Experimenter bias is always a threat to the validity of personal opinion surveys.
We attempted to phrase all of our questions in neutral language, but it is possible that aspects
of our survey instrument may have biased the results. To avoid observer bias, we designed
the survey to collect no personally identifying information, giving our participants a trusted
platform.

Internal To ensure the clarity of our questions and the form’s structure, we performed
small-scale test runs with researchers who were not involved in the study.

The overarching goal of our study was to assess the expectations of software profession-
als for a usable fuzzing workflow; to ensure our conclusions reflect this, we blocked our data
on fuzzing experience and discarded responses from academic researchers. We choose to
include responses from those unfamiliar with fuzzing because we are explicitly interested in
how these users see themselves using a fuzzing tool. While there is a risk that this popula-
tion are not able to accurately answer questions, our target population is nonetheless highly
technical (Section 3) and we provided a general summary of fuzzing concepts at the begin-
ning of our survey form to ensure our participants had the requisite background information.

1 3

Page 23 of 32 146

Empirical Software Engineering (2025) 30:146

Conclusion To reliably interpret all responses, particularly the open-text responses, we
applied qualitative analysis coding with an agreement of at least two authors on all codes.
For questions measuring agreement, we used the chi-square test of independence (Pearson
1900) and the binomial test (Dodge 2008), both well-established statistical tests in the realm
of user surveys (Hilton et al. 2017; Gorski et al. 2018; Javed et al. 2019; Votipka et al. 2020;
van der Linden et al. 2020; Noller et al. 2022).

External A potential threat to external validity is the limited sample size and scope of par-
ticipants in our survey. By collecting responses using the snowball method (see Kitchenham
and Pfleeger (2008)) from 44 participants across 23 companies and 11 countries, which we
see as a sufficiently diverse set of participants, but we cannot guarantee the generalization of
our results. We believe that we were able to reach an important sample cohort because they
mostly identify as highly technical software developers who have only limited experience
with fuzzing while being familiar with the concept (Section 3).

6.2 Commit Fuzzing

Construct To ensure construct validity, we directly measure our criteria for fuzzer effective-
ness–ability to find bugs associated with a code change– rather than using a proxy metric,
such as code coverage. Because crashes from different bugs can look similar, three of the
authors examined the crash signatures for each crash detected during fuzzing to determine
whether they corresponded to the targeted bug.

Internal To avoid selection bias in our choice of benchmarks, we chose them randomly
from real-world bugs in the OSS-Fuzz (Serebryany 2017) bug tracker. More specifically, we
sampled randomly from the front page of the OSS-Fuzz bug tracker at the date of experi-
mentation, filtering for confirmed and reproducible bugs. It is possible that there is a tempo-
ral bias, as our bugs all come from a similar timeframe, but we sampled only up to one bug
per project to minimize this effect.

We attempted to avoid selection bias in our choice of fuzzers by using all openly avail-
able directed, commit and regression fuzzers that we were able to make compatible with
the Fuzzbench benchmark suite. To identify these fuzzers, we searched for these keywords
(along with fuzzing/fuzzer) in research databases such as Google Scholar and DBLP. We
used all fuzzers we identified that met our criteria. We chose AFL and AFL++ as baselines
to reduce the risk of cross-implementation differences in fuzzers, rather than fundamental
algorithmic differences (e.g. directed vs. undirected fuzzing); all of the evaluated fuzzers’
implementations are modifications or extensions of the AFL fuzzer.

Another possible threat to internal threat to validity is three of the bugs were originally
discovered by AFL, which might give AFL an advantage in our experiment. However, for
two of these three bugs (yara and file) we see no difference in fuzzer effectiveness. For the
last bug found by AFL, haproxy, there are differences in performance, but all fuzzers except
for one (Selectfuzz) find the bug in 5 minutes excluding build times. Additionally, because
we evaluated only fuzzers based on the AFL fuzzer implementation, we believe this effect to
be minimal. We leave a larger follow up study with additional bugs found by both AFL and
LibFuzzer which could isolate this effect to future work.

1 3

 146 Page 24 of 32

Empirical Software Engineering (2025) 30:146

Conclusion In general, we believe our experimental setup is in accordance with the latest
standards for fuzzer evaluations (Klees et al. 2018; Kim et al. 2024).

To avoid issues with misinterpreting our results, we use statistical techniques that are
well-established across multiple fields of research. As bug-finding benchmarks are right-
censored data, we use survival analysis (Kaplan and Meier 1958). To determine statistical
significance between fuzzers on individual benchmarks for a single configuration, we use
the confidence intervals given by our survival analysis (Kalbfleisch and Prentice 2002),
which can be seen in Fig. 10. When comparing across benchmarks and fuzzers, we use the
bootstrapped Restricted Mean Survival Time (Royston and Parmar 2013) and Wald’s t-test
(Wald 1943). For bootstrapping, we use 100 iterations of case-resampling the individual
trials of each experiment. For other claims of significance, we compare build times with
Wald’s t-test and code coverage for CIDFuzz with Fuzzbench’s built in Mann-Whitney U
test (Mann and Whitney 1947; Wilcoxon 1945).

To validate model assumptions, we check for normality visually using a QQ plot before
applying Wald’s t-test, available in our artifact (Section 8).

Notably, we choose not to use two common analyses for censored data–the log-rank test
and Cox-regression– because our data appears to violate the proportional hazards assump-
tion (Fig. 10).

External We follow the recommendation of Klees et al. (2018) that ≥ 10 benchmark pro-
grams should be used for fuzzer evaluations. As with any empirical study, more subject
programs and fuzzers would improve the generalizability of our results. However, verify-
ing each bug’s reproducibility, the introducing commit, integrating OSS-Fuzz benchmark
programs, and generating a large initial corpus all take significant manual effort. During the
course of this experiment, we attempted to set up a total of 25 OSS-fuzz programs using
Fuzzbench’s integration with OSS-Fuzz. However, of these programs and bugs, most could
not be used: seven resulted in build errors that we were not able to debug, three had errors
related to fuzzer instrumentation passes, three we could not reproduce reported bugs at the
commits indicated in the bug report, and the remaining two had issues with several depen-
dent libraries which also needed to be built as specific commits to reproduce past bugs.

We believe that this study is still valuable at its current size, especially when viewed
with complementary works such as Zhu and Böhme (2021); Zhang et al. (2023); Kim et al.
(2024); Klooster et al. (2023) and we ensured that each of our configurations had sufficient
trials (n = 20) to generalize for the bugs and subject programs we evaluated.

7 Related Work

Fuzzing User Surveys Böhme et al. (2020) discuss the challenges in fuzzing identified by
expert researchers and users at a recent Shonan meeting. Similarly, Nourry et al. (2023) con-
structed an extensive taxonomy on the specific challenges faced by fuzzing experts. In this
work, we identify some key challenges in fuzzing which largely agree with some findings
in these prior publications. Namely, (1) that usability issues are the largest impediment to
adoption among developers (Nourry et al. 2023; Böhme et al. 2020) (2) that users of fuzzers

1 3

Page 25 of 32 146

Empirical Software Engineering (2025) 30:146

prefer shorter time budgets than those typically seen in academic literature (Nourry et al.
2023), that (3) these users also want to be able to detect classes of bugs not easily detect-
able by existing fuzzers and sanitizers (Böhme et al. 2020), and that (4) most developers
want human-in-the-loop, interactive features in their fuzzers (Böhme et al. 2020). However,
we also provide several novel findings not found in these prior studies, specifically that a
majority of software professionals want to run fuzzers as part of their local development
workflow, that software professionals are more amenable to modifying their systems to be
fuzzed rather than adapting an existing fuzzer for their system, that interpretability is more
important than minimality for generated test inputs, that many alternatives to ground-truth
bugs are trusted by software professionals, that bug severity is more important than bug-
quantity in fuzzer evaluations and additionally we establish novel, user-expectation based
timing bounds for fuzzers in different workflows. For a comprehensive list, see Section 4.5.

More generally, the questions from our study are not focused on challenges in existing
fuzzer workflows, but rather on desired use cases to bring fuzzing to new users. Nearly all
participants from Nourry et al. (2023) and Böhme et al. (2020) are deeply ingrained in exist-
ing workflows, having either attended a small conference for fuzzing researchers or partici-
pated in online discussions about OSS-Fuzz, whereas our users bring a fresh perspective on
adaptations needed to drive adoption in fuzzing. Also, unlike these two works, we conduct
a follow up study based on key outcomes from our survey results.

Empirical User Studies of Automated Test Generation Techniques Other researchers have
conducted fuzzer usability studies with students (Plöger et al. 2021, 2023) and in industrial
contexts (Liang et al. 2018).

We identified usability as the largest obstacle to fuzzer adoption. These studies are com-
plementary to our survey in that they provide insights into the specific usability challenges
that users encounter with fuzzers.

Indeed, while a substantial portion of developers in our study (43%) indicated that they
are willing to write a custom fuzzing harness, in practice, many users struggle with this task
using existing fuzzing tools (Plöger et al. 2021, 2023; Liang et al. 2018). Future research
in automatic fuzz-harness generation (Kelly et al 2019; Babić et al. 2019) could mitigate
these issues in practice.

Likely a combination of improving these usability issues identified by other work and
meeting expectations of software professionals will be needed to shift fuzzers left in devel-
opment workflows.

Fraser et al. (2015) conducted a user study for the closely related technique of automated
unit test generation with EvoSuite (Fraser and Arcuri 2011). They found that bug detection
was not easier for developers using automatically generated unit tests, despite a significant
increase in code coverage from these tests. Our survey has a similar goal, in that we are
attempting to identify how to make automated testing tools (in this case, fuzzers) a useful
component of the sofware lifecycle. We conduct an empirical evaluation as a follow up
(Section 5). However, we did not evaluate the usability of fuzzers for developers (as has
been discussed in aforementioned prior work), but rather the efficacy of available fuzzers
for a novel application, namely commit fuzzing in CI/CD systems.

1 3

 146 Page 26 of 32

Empirical Software Engineering (2025) 30:146

Regression and Unit Fuzzing Dynamic analysis has emerged as one of the primary ways of
combating regression bugs (Braz et al. 2022; Memon et al. 2017), which may comprise as
much as 77% of vulnerabilities in open source projects (Zhu and Böhme 2021). As a result,
many researchers and industry leaders have begun to investigate and use fuzzers in local
and CI/CD settings. Google has created CIFuzz12 for continuous integration fuzzing for
OSSFuzz and other projects. Other companies like Gitlab13 and CodeIntelligence14 have
similar offerings. A case study of CI fuzzing in the Linux kernel has even been recently con-
ducted (Shi et al. 2019). From academic research, regression fuzzers target recently changed
code with modified basic-block distance-to-change based power schedules (Zhu and Böhme
2021; Zhang et al. 2023) or in combination with shadow symbolic execution (Noller et al.
2020). These tools are similar in concept and design to directed fuzzers (Böhme et al. 2017;
Luo et al. 2023; Marinescu and Cadar 2013), which target one or more code locations. Our
follow-up study evaluates the current abilities of general purpose, directed and regression
fuzzers, for commit-level fuzzing.

Fuzzer Evaluation Configurations Past recommendations for evaluation configurations have
primarily been derived from observations of existing fuzzer capabilities (Klees et al. 2018;
Herrera et al. 2021). In contrast, we ask developers a priori how much time they would be
willing to allocate to fuzzing tools in various contexts. We believe that these user expecta-
tions can be combined with practical limitations to provide more representative guidelines
for evaluations in the future. Several other evaluations of fuzzers in the context of regression
or directed fuzzing have been conducted in parallel with this work. Kim and Hong (2023)
curated a benchmark of OSS Fuzz reported bugs for evaluating regression fuzzers. How-
ever, they omit bugs that are found in less than three minutes. This choice is appropriate for
determining which fuzzers are best at finding challenging regression bugs, but diminishes
the ability of fuzzers of finding regression bugs quickly in general. Additionally, Kim and
Hong use the seed corpus present in the version control history for the bug-inducing com-
mit of the given program. We use this setup as our baseline static corpus, but also compare
results to a saturated corpus up to the bug-inducing commit. Indeed, our results indicate
that the setup used by Kim et al. (2024) is not optimal for change-based fuzzing. Klooster
et al. (2023) also conduct an evaluation of fuzzers in the CI/CD context, similarly finding
that many regression bugs can be found relatively quickly by existing fuzzers (< 15 min-
utes). However, unlike our follow-up study, their research focuses only on the capabilities
of general-purpose grey-box fuzzers, omitting regression and directed fuzzers. Instead of
using a saturated corpus on a single commit, they simulate a sequence of commits start-
ing from the corpus of the first bug-inducing commit and augmenting it cumulatively. As
neither approach is an exact replication of long-term continuous fuzzing, we believe that
results from both works can be informative and complementary. Kim et al. (2024) assessed
the state of directed fuzzer evaluations, excluding general purpose and regression fuzzers,
and do so in a more conventional context with 24 hour timeouts rather than CI/CD or local
development workflows.

12 h t t p s : / / g o o g l e . g i t h u b . i o / o s s - f u z z / g e t t i n g - s t a r t e d / c o n t i n u o u s - i n t e g r a t i o n /
13 h t t p s : / / d o c s . g i t l a b . c o m / e e / u s e r / a p p l i c a t i o n _ s e c u r i t y / c o v e r a g e _ f u z z i n g
14 https://www.code-intelligence.com/cli-tool

1 3

Page 27 of 32 146

https://google.github.io/oss-fuzz/getting-started/continuous-integration/
https://docs.gitlab.com/ee/user/application_security/coverage_fuzzing
https://www.code-intelligence.com/cli-tool

Empirical Software Engineering (2025) 30:146

8 Perspectives

Fuzz testing has conventionally been used for finding security vulnerabilities in existing
software systems. As such, it has been primarily employed on mature software systems or
even vendor-provided code upon acquisition. The role of fuzz testing in software develop-
ment has been relatively less examined. This is the outlook we examine in this paper. Our
follow up study shows that, to some extent, developer expectations from our survey can
already be met by existing technology; if left-shifted into development workflows, fuzzers
can effectively find many regression errors within tolerable time limits. Beyond change-
based fuzzing, the user survey we present in this paper is of general relevance. Our partici-
pants’ answers provide many insights on the usage of fuzzing, whether conducted as part of
the software development process or for hardening a mature or acquired software system.

The findings from our work indicate the need to connect fuzzers with new development
tools. For the software engineering community, our work promotes the need to integrate
fuzzing into future development environments and build workflows, with the goal of writing
a functionally correct program. This would truly amount to a shift-left of fuzzing in software
engineering workflows.

Funding This research is supported by the National Research Foundation, Singapore, and Cyber
Security Agency of Singapore under its National Cybersecurity R&D Programme (Fuzz Testing
<NRF-NCR25-Fuzz-0001>).
Any opinions, findings and conclusions, or recommendations expressed in this material are those of the
author(s) and do not reflect the views of National Research Foundation, Singapore, and Cyber Security
Agency of Singapore.

Data Availability Our research artifact includes all data, statistics, and codes for our user study, as well as the
data for our fuzzing experiments: h t t p s : / / d o i . o r g / 1 0 . 6 0 8 4 / m 9 . fi g s h a r e . 2 4 7 6 9 7 1 9 . v 1.

Declarations

Competing interests The authors declare that they have no conflict of interest.

Ethical Approval We obtained approval from the Institutional Review Board (IRB) of the National University
of Singapore before executing our developer survey.

References

Babić D, Bucur S, Chen Y, et al (2019) Fudge: Fuzz driver generation at scale. In: Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering. Association for Computing Machinery, New York, NY, USA, ESEC/
FSE 2019, p 975–985, https://doi.org/10.1145/3338906.3340456

Beck K (2002) Test Driven Development: By Example. Addison-Wesley Longman Publishing Co., Inc, USA
Böhme M, Pham VT, Nguyen MD, et al (2017) Directed greybox fuzzing. In: Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications Security. Association for Computing Machin-
ery, New York, NY, USA, CCS ’17, p 2329–234https://doi.org/10.1145/3133956.3134020

Böhme M, Cadar C, Roychoudhury A (2020) Fuzzing: Challenges and reflections. IEEE Software 38(3):79–
8. https://doi.org/10.1109/MS.2020.3016773

Braz L, Fregnan E, Arora V, et al (2022) An exploratory study on regression vulnerabilities. In: Proceedings
of the 16th ACM / IEEE International Symposium on Empirical Software Engineering and Measure-
ment. Association for Computing Machinery, New York, NY, USA, ESEM ’22, p 12– 2 2 , h t t p s : / / d o i . o r g
/ 1 0 . 1 1 4 5 / 3 5 4 4 9 0 2 . 3 5 4 6 2 5 0

1 3

 146 Page 28 of 32

https://doi.org/10.6084/m9.figshare.24769719.v1
https://doi.org/10.1145/3338906.3340456
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1109/MS.2020.3016773
https://doi.org/10.1145/3544902.3546250
https://doi.org/10.1145/3544902.3546250

Empirical Software Engineering (2025) 30:146

Calcagno C, Distefano D (2011) Infer: An automatic program verifier for memory safety of c programs. In:
Bobaru M, Havelund K, Holzmann GJ, et al (eds) NASA Formal Methods. Springer Berlin Heidelberg,
Berlin, Heidelberg, pp 459–465,https://doi.org/10.1007/978-3-642-20398-5_33

Canakci S, Matyunin N, Graffi K, et al (2022) Targetfuzz: Using darts to guide directed greybox fuzzers.
In: Proceedings of the 2022 ACM on Asia conference on computer and communications security, pp
561–573https://doi.org/10.1145/3488932.3501276

Churchill D (2018) Keynotes. In: 2018 IEEE 11th International Conference on Software Testing, Verification
and Validation (ICST), pp 23–25,https://doi.org/10.1109/ICST.2018.00010

Daka E, Fraser G (2014) A survey on unit testing practices and problems. In: 2014 IEEE 25th Interna-
tional Symposium on Software Reliability Engineering, IEEE, pp 201–21https://doi.org/10.1109/
ISSRE.2014.11

Distefano D, Fähndrich M, Logozzo F et al (2019) Scaling static analyses at facebook. Commun ACM
62(8):62–7. https://doi.org/10.1145/3338112

Dodge Y (2008) Binomial Test, Springer New York, New York, NY, pp 47– 4 9 . h t t p s : / / d o i . o r g / 1 0 . 1 0 0 7 / 9 7
8 - 0 - 3 8 7 - 3 2 8 3 3 - 1 _ 3 6

Fioraldi A, Maier D, Eißfeldt H, et al (2020) Afl++: Combining incremental steps of fuzzing research. In:
Proceedings of the 14th USENIX Conference on Offensive Technologies. USENIX Association, USA,
WOOT’20, h t t p s : / / w w w . u s e n i x . o r g / c o n f e r e n c e / w o o t 2 0 / p r e s e n t a t i o n / fi o r a l d i

Fraser G, Arcuri A (2011) Evosuite: automatic test suite generation for object-oriented software. In: Proceed-
ings of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations of
software engineering, pp 416–4https://doi.org/10.1145/2025113.2025179

Fraser G, Staats M, McMinn P et al (2015) Does automated unit test generation really help software testers?
a controlled empirical study. ACM Transactions on Software Engineering and Methodology (TOSEM)
24(4):1–49. https://doi.org/10.1145/2699688

Godefroid P (2020) Fuzzing: hack, art, and science. Commun ACM 63(2):70–76. h t t p s : / / d o i . o r g / 1 0 . 1 1 4 5 / 3
3 6 3 8 2 4

Goodin D (2023) Cisco buried the lede. [CDATA[<]]<10,000 network devices backdoored through
unpatched 0-day. h t t p s : / / a r s t e c h n i c a . c o m / s e c u r i t y / 2 0 2 3 / 1 0 / a c t i v e l y - e x p l o i t e d - c i s c o - 0 - d a y - w i t h - m a x i m
u m - 1 0 - s e v e r i t y - g i v e s - f u l l - n e t w o r k - c o n t r o l /, [Accessed 27-10-2023]

Gorski PL, Iacono LL, Wermke D, et al (2018) Developers deserve security warnings, too: On the effect of
integrated security advice on cryptographic API misuse. In: Fourteenth Symposium on Usable Privacy
and Security (SOUPS 2018). USENIX Association, Baltimore, MD, pp 265–281, h t t p s : / / w w w . u s e n i x . o
r g / c o n f e r e n c e / s o u p s 2 0 1 8 / p r e s e n t a t i o n / g o r s k i

Herrera A, Gunadi H, Magrath S, et al (2021) Seed selection for successful fuzzing. In: Proceedings of the 30th
ACM SIGSOFT International Symposium on Software Testing and Analysis. Association for Computing
Machinery, New York, NY, USA, ISSTA 2021, p 230–243, https://doi.org/10.1145/3460319.3464795

Hilton M, Nelson N, Tunnell T, et al (2017) Trade-offs in continuous integration: assurance, security, and
flexibility. In: Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering.
Association for Computing Machinery, New York, NY, USA, ESEC/FSE 2017, p 197– 2 0 7 , h t t p s : / / d o i .
o r g / 1 0 . 1 1 4 5 / 3 1 0 6 2 3 7 . 3 1 0 6 2 7 0

Javed Y, Sethi S, Jadoun A (2019) Alexa’s voice recording behavior: A survey of user understanding and
awareness. In: Proceedings of the 14th International Conference on Availability, Reliability and Secu-
rity. Association for Computing Machinery, New York, NY, USA, ARES ’ 1 9 , h t t p s : / / d o i . o r g / 1 0 . 1 1 4 5 / 3
3 3 9 2 5 2 . 3 3 4 0 3 3 0

Jin M, Shahriar S, Tufano M, et al (2023) Inferfix: End-to-end program repair with llms. In: Proceedings of
the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. Association for Computing Machinery, New York, NY, USA, ESEC/FSE 2023,
p 1646–165https://doi.org/10.1145/3611643.3613892

Just R, Jalali D, Inozemtseva L, et al (2014) Are mutants a valid substitute for real faults in software testing?
In: Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering. Association for Computing Machinery, New York, NY, USA, FSE 2014, p 654– 6 6 5 , h t t p s
: / / d o i . o r g / 1 0 . 1 1 4 5 / 2 6 3 5 8 6 8 . 2 6 3 5 9 2 9

Kalbfleisch JD, Prentice RL (2002) The statistical analysis of failure time data. Hoboken, John Wiley & Sons
Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. Journal of the Ameri-

can statistical association 53(282):457–481
Kelly M, Treude C, Murray A (2019) A case study on automated fuzz target generation for large codebases.

In: 2019 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM), pp 1–6,https://doi.org/10.1109/ESEM.2019.8870150

Kim J, Hong S (2023) Poster: Bugoss: A regression bug benchmark for empirical study of regression fuzz-
ing techniques. In: 2023 IEEE Conference on Software Testing, Verification and Validation (ICST), pp
470–473,https://doi.org/10.1109/ICST57152.2023.00053

1 3

Page 29 of 32 146

https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1145/3488932.3501276
https://doi.org/10.1109/ICST.2018.00010
https://doi.org/10.1109/ISSRE.2014.11
https://doi.org/10.1109/ISSRE.2014.11
https://doi.org/10.1145/3338112
https://doi.org/10.1007/978-0-387-32833-1_36
https://doi.org/10.1007/978-0-387-32833-1_36
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2699688
https://doi.org/10.1145/3363824
https://doi.org/10.1145/3363824
https://arstechnica.com/security/2023/10/actively-exploited-cisco-0-day-with-maximum-10-severity-gives-full-network-control/
https://arstechnica.com/security/2023/10/actively-exploited-cisco-0-day-with-maximum-10-severity-gives-full-network-control/
https://www.usenix.org/conference/soups2018/presentation/gorski
https://www.usenix.org/conference/soups2018/presentation/gorski
https://doi.org/10.1145/3460319.3464795
https://doi.org/10.1145/3106237.3106270
https://doi.org/10.1145/3106237.3106270
https://doi.org/10.1145/3339252.3340330
https://doi.org/10.1145/3339252.3340330
https://doi.org/10.1145/3611643.3613892
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1109/ESEM.2019.8870150
https://doi.org/10.1109/ICST57152.2023.00053

Empirical Software Engineering (2025) 30:146

Kim TE, Choi J, Im S, et al (2024) Evaluating directed fuzzers: Are we heading in the right direction? Proc
ACM Softw Eng 1(FSEhttps://doi.org/10.1145/3643741

Kitchenham BA, Pfleeger SL (2008) Personal Opinion Surveys, Springer London, London, pp 63–9https://
doi.org/10.1007/978-1-84800-044-5_3

Klees G, Ruef A, Cooper B, et al (2018) Evaluating fuzz testing. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. Association for Computing Machinery, New
York, NY, USA, CCS ’18, p 2123–21https://doi.org/10.1145/3243734.3243804

Klooster T, Turkmen F, Broenink G, et al (2023) Continuous fuzzing: A study of the effectiveness and scal-
ability of fuzzing in ci/cd pipelines. In: 2023 IEEE/ACM International Workshop on Search-Based and
Fuzz Testing (SBFT), pp 25–3https://doi.org/10.1109/SBFT59156.2023.00015

Lane B (2020) Equifax expects to pay out another 100 million for data breach. h t t p s : / / w w w . h o u s i n g w i r e . c o
m / a r t i c l e s / e q u i f a x - e x p e c t s - t o - p a y - o u t - a n o t h e r - 1 0 0 - m i l l i o n - f o r - d a t a - b r e a c h /

Liang J, Wang M, Chen Y, et al (2018) Fuzz testing in practice: Obstacles and solutions. In: 2018 IEEE
25th International Conference on Software Analysis, Evolution and Reengineering (SANER), pp 562–
566,https://doi.org/10.1109/SANER.2018.8330260

Luo C, Meng W, Li P (2023) Selectfuzz: Efficient directed fuzzing with selective path exploration. In: 2023
IEEE Symposium on Security and Privacy (SP), pp 2693–270 h t t p s : / / d o i . o r g / 1 0 . 1 1 0 9 / S P 4 6 2 1 5 . 2 0 2 3 . 1
0 1 7 9 2 9 6

Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger
than the other. The Annals of Mathematical Statistics 18(1):50–60. http://www.jstor.org/stable/2236101

Mansur MN, Christakis M, Wüstholz V, et al (2020) Detecting critical bugs in smt solvers using blackbox
mutational fuzzing. In: Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. Association for Computing
Machinery, New York, NY, USA, ESEC/FSE 2020, p 701–712,https://doi.org/10.1145/3368089.3409763

Marinescu PD, Cadar C (2013) Katch: High-coverage testing of software patches. In: Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering. Association for Computing Machin-
ery, New York, NY, USA, ESEC/FSE 2013, p 235–24https://doi.org/10.1145/2491411.2491438

Memon A, Gao Z, Nguyen B, et al (2017) Taming google-scale continuous testing. In: 2017 IEEE/ACM
39th International Conference on Software Engineering: Software Engineering in Practice Track (ICSE-
SEIP), pp 233–242,https://doi.org/10.1109/ICSE-SEIP.2017.16

Menendez HD, Clark D (2022) Hashing fuzzing: Introducing input diversity to improve crash detection. IEEE
Transactions on Software Engineering 48(9):3540–355. https://doi.org/10.1109/TSE.2021.3100858

Meng R, Dong Z, Li J, et al (2022) Linear-time temporal logic guided greybox fuzzing. In: Proceedings of the
44th International Conference on Software Engineering. Association for Computing Machinery, New
York, NY, USA, ICSE ’22, p 1343–135https://doi.org/10.1145/3510003.3510082

Metzman J, Szekeres L, Simon L, et al (2021) Fuzzbench: An open fuzzer benchmarking platform and ser-
vice. In: Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. Association for Computing Machinery,
New York, NY, USA, ESEC/FSE 2021, p 1393–140https://doi.org/10.1145/3468264.3473932

Micco J (2018) Advances in continuous integration testing at google. https://research.google/pubs/pub46593
Miller BP, Fredriksen L, So B (1990) An empirical study of the reliability of unix utilities. Commun ACM

33(12):32–4. https://doi.org/10.1145/96267.96279
Newman LH (2021) ’the internet is on fire’. h t t p s : / / w w w . w i r e d . c o m / s t o r y / l o g 4 j - fl a w - h a c k i n g - i n t e r n e t /
Noller Y, Pasareanu C, Böhme M, et al (2020) Hydiff: Hybrid differential software analysis. In: Proceed-

ings of the 42nd ACM/IEEE International Conference on Software Engineering, ICSE 2020, pp 1273–
1285,https://doi.org/10.1145/3377811.3380363

Noller Y, Shariffdeen R, Gao X, et al (2022) Trust enhancement issues in program repair. In: Proceedings
of the 44th International Conference on Software Engineering. Association for Computing Machinery,
New York, NY, USA, ICSE ’22, p 2228–224https://doi.org/10.1145/3510003.3510040

Nourry O, Kashiwa Y, Lin B, et al (2023) The human side of fuzzing: Challenges faced by developers during
fuzzing activities. ACM Trans Softw Eng Methodol 33(1https://doi.org/10.1145/3611668

Pearson K (1900) X. on the criterion that a given system of deviations from the probable in the case of
a correlated system of variables is such that it can be reasonably supposed to have arisen from ran-
dom sampling. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
50(302):157–17https://doi.org/10.1080/14786440009463897

Pham VT, Böhme M, Roychoudhury A (2020) Aflnet: A greybox fuzzer for network protocols. In: 2020
IEEE 13th International Conference on Software Testing, Validation and Verification (ICST), pp 460–
465,https://doi.org/10.1109/ICST46399.2020.00062

Phan QS, Nguyen KH, Nguyen T (2023) The challenges of shift left static analysis. In: 2023 IEEE/ACM 45th
International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), pp
340–342, h t t p s : / / d o i . o r g / 1 0 . 1 1 0 9 / I C S E - S E I P 5 8 6 8 4 . 2 0 2 3 . 0 0 0 3 6

1 3

 146 Page 30 of 32

https://doi.org/10.1145/3643741
https://doi.org/10.1007/978-1-84800-044-5_3
https://doi.org/10.1007/978-1-84800-044-5_3
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1109/SBFT59156.2023.00015
https://www.housingwire.com/articles/equifax-expects-to-pay-out-another-100-million-for-data-breach/
https://www.housingwire.com/articles/equifax-expects-to-pay-out-another-100-million-for-data-breach/
https://doi.org/10.1109/SANER.2018.8330260
https://doi.org/10.1109/SP46215.2023.10179296
https://doi.org/10.1109/SP46215.2023.10179296
http://www.jstor.org/stable/2236101
https://doi.org/10.1145/3368089.3409763
https://doi.org/10.1145/2491411.2491438
https://doi.org/10.1109/ICSE-SEIP.2017.16
https://doi.org/10.1109/TSE.2021.3100858
https://doi.org/10.1145/3510003.3510082
https://doi.org/10.1145/3468264.3473932
https://research.google/pubs/pub46593
https://doi.org/10.1145/96267.96279
https://www.wired.com/story/log4j-flaw-hacking-internet/
https://doi.org/10.1145/3377811.3380363
https://doi.org/10.1145/3510003.3510040
https://doi.org/10.1145/3611668
https://doi.org/10.1080/14786440009463897
https://doi.org/10.1109/ICST46399.2020.00062
https://doi.org/10.1109/ICSE-SEIP58684.2023.00036

Empirical Software Engineering (2025) 30:146

Plöger S, Meier M, Smith M (2021) A qualitative usability evaluation of the clang static analyzer and lib-
Fuzzer with CS students and CTF players. In: Seventeenth Symposium on Usable Privacy and Security
(SOUPS 2021). USENIX Association, pp 553–572, h t t p s : / / w w w . u s e n i x . o r g / c o n f e r e n c e / s o u p s 2 0 2 1 / p r e
s e n t a t i o n / p l o g e r

Plöger S, Meier M, Smith M (2023) A usability evaluation of afl and libfuzzer with cs students. In: Proceed-
ings of the 2023 CHI Conference on Human Factors in Computing Systems. Association for Computing
Machinery, New York, NY, USA, CHI ’2https://doi.org/10.1145/3544548.3581178

Royston P, Parmar MK (2013) Restricted mean survival time: an alternative to the hazard ratio for the design
and analysis of randomized trials with a time-to-event outcome. BMC medical research methodology
13:1–15. https://doi.org/10.1186/1471-2288-13-152

Runeson P (2006) A survey of unit testing practices. IEEE Software 23(4):22–29. h t t p s : / / d o i . o r g / 1 0 . 1 1 0 9 / M
S . 2 0 0 6 . 9 1

Schreier M (2012) Qualitative content analysis in practice. Sage publications
Serebryany K (2017) OSS-Fuzz - google’s continuous fuzzing service for open source software. USENIX

Association, Vancouver, BC, h t t p s : / / w w w . u s e n i x . o r g / c o n f e r e n c e / u s e n i x s e c u r i t y 1 7 / t e c h n i c a l - s e s s i o n s / p
r e s e n t a t i o n / s e r e b r y a n y

Shi H, Wang R, Fu Y, et al (2019) Industry practice of coverage-guided enterprise linux kernel fuzzing. In:
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. Association for Computing Machinery, New
York, NY, USA, ESEC/FSE 2019, p 986–99https://doi.org/10.1145/3338906.3340460

Smith L (2001) Shift-Left Testing — drdobbs.com. h t t p s : / / w w w . d r d o b b s . c o m / s h i f t - l e f t - t e s t i n g / 1 8 4 4 0 4 7 6 8,
[Accessed 25-10-2023]

van der Linden D, Anthonysamy P, Nuseibeh B, et al (2020) Schrödinger’s security: opening the box on
app developers’ security rationale. In: Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering. Association for Computing Machinery, New York, NY, USA, ICSE ’20, p
149–160. https://doi.org/10.1145/3377811.3380394

Votipka D, Fulton KR, Parker J, et al (2020) Understanding security mistakes developers make: Qualitative
analysis from build it, break it, fix it. In: 29th USENIX Security Symposium (USENIX Security 20).
USENIX Association, pp 109–126, h t t p s : / / w w w . u s e n i x . o r g / c o n f e r e n c e / u s e n i x s e c u r i t y 2 0 / p r e s e n t a t i o n /
v o t i p k a - u n d e r s t a n d i n g

Wald A (1943) Tests of statistical hypotheses concerning several parameters when the number of observa-
tions is large. Transactions of the American Mathematical society 54(3):426–482

Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics Bulletin 1(6):80–83
Winters T, Manshreck T, Wright H (2020) Software engineering at google: Lessons learned from program-

ming over time. O’Reilly Media
Yan Q, Cao H, Lu S, et al (2023) Infuzz: An interactive tool for enhancing efficiency in fuzzing through visual

bottleneck analysis (registered report). In: Proceedings of the 2nd International Fuzzing Workshop.
Association for Computing Machinery, New York, NY, USA, FUZZING 2023, p 56–61. h t t p s : / / d o i . o r
g / 1 0 . 1 1 4 5 / 3 6 0 5 1 5 7 . 3 6 0 5 8 4 7

Zhang J, Cui Z, Chen X et al (2023) Cidfuzz: Fuzz testing for continuous integration. IET Software
17(3):301–315. https://doi.org/10.1049/sfw2.12125

Zhu X, Böhme M (2021) Regression greybox fuzzing. In: Proceedings of the 2021 ACM SIGSAC Confer-
ence on Computer and Communications Security. Association for Computing Machinery, New York,
NY, USA, CCS ’21, p 2169–2182. https://doi.org/10.1145/3460120.3484596

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a
publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manu-
script version of this article is solely governed by the terms of such publishing agreement and applicable law.

1 3

Page 31 of 32 146

https://www.usenix.org/conference/soups2021/presentation/ploger
https://www.usenix.org/conference/soups2021/presentation/ploger
https://doi.org/10.1145/3544548.3581178
https://doi.org/10.1186/1471-2288-13-152
https://doi.org/10.1109/MS.2006.91
https://doi.org/10.1109/MS.2006.91
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/serebryany
https://doi.org/10.1145/3338906.3340460
https://www.drdobbs.com/shift-left-testing/184404768
https://doi.org/10.1145/3377811.3380394
https://www.usenix.org/conference/usenixsecurity20/presentation/votipka-understanding
https://www.usenix.org/conference/usenixsecurity20/presentation/votipka-understanding
https://doi.org/10.1145/3605157.3605847
https://doi.org/10.1145/3605157.3605847
https://doi.org/10.1049/sfw2.12125
https://doi.org/10.1145/3460120.3484596

Empirical Software Engineering (2025) 30:146

Authors and Affiliations

Dylan J. Wolff1 · Ridwan Shariffdeen1 · Yannic Noller2 · Abhik Roychoudhury1

 Dylan J. Wolff
wolffd@comp.nus.edu.sg

Ridwan Shariffdeen
ridwan@comp.nus.edu.sg

Yannic Noller
yannic.noller@acm.org

Abhik Roychoudhury
abhik@nus.edu.sg

1 National University of Singapore, Singapore, Singapore
2 Ruhr University Bochum, Bochum, Germany

1 3

 146 Page 32 of 32

http://orcid.org/0000-0002-6958-7159
http://orcid.org/0000-0001-5409-4864
http://orcid.org/0000-0002-9318-8027
http://orcid.org/0000-0002-7127-1137

	﻿Shifting fuzzing left in software workflows
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿2﻿ ﻿Background
	﻿2.1﻿ ﻿Software Testing
	﻿2.2﻿ ﻿Software Fuzzing

	﻿﻿3﻿ ﻿Survey Methodology
	﻿4﻿ ﻿Survey Results
	﻿﻿4.1﻿ ﻿Workflows and Use Cases (RQ1)
	﻿﻿4.2﻿ ﻿Fuzzer Setup and Inputs (RQ2)
	﻿4.3﻿ ﻿Fuzzer Outputs and Artifacts (RQ3)
	﻿﻿4.4﻿ ﻿Fuzzer Evaluations (RQ4)
	﻿﻿4.5﻿ ﻿Summary

	﻿﻿5﻿ ﻿Evaluation of Fuzzers in a Commit Fuzzing Scenario
	﻿5.1﻿ ﻿Experiment Setup
	﻿5.2﻿ ﻿(RQ5) Effectiveness of Existing Fuzzers
	﻿5.3﻿ ﻿(RQ6) Impact of Additional Variables on Fuzzer Effectiveness

	﻿6﻿ ﻿Threats to Validity
	﻿6.1﻿ ﻿Developer Survey
	﻿6.2﻿ ﻿Commit Fuzzing

	﻿7﻿ ﻿Related Work
	﻿﻿8﻿ ﻿Perspectives
	﻿References

