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Model checking has been used traditionally for finding violations of temporal properties. Recently, testing or

fuzzing approaches have also been applied to software systems to find temporal property violations. However,

model checking suffers from state explosion, while fuzzing can only partially cover program paths. Moreover,

once a violation is found, the fix for the temporal error is usually manual. In this work, we develop the first

compositional static analyzer for temporal properties, and the analyzer supports a proof-based repair strategy

to fix temporal bugs automatically. To enable a more flexible specification style for temporal properties, on

top of the classic pre/post-conditions, we allow users to write a future-condition to modularly express the

expected behaviors after the function call. Instead of requiring users to write specifications for each procedure,

our approach automatically infers the procedure’s specification according to user-supplied specifications for

a small number of primitive APIs. We further devise a term rewriting system to check the actual behaviors

against its inferred specification. Our method supports the analysis of 1) memory usage bugs, 2) unchecked

return values, 3) resource leaks, etc., with annotated specifications for 17 primitive APIs, and detects 515

vulnerabilities from over 1 million lines of code ranging from ten real-world C projects. Intuitively, the benefit

of our approach is that a small set of properties can be specified once and used to analyze/repair a large

number of programs. Experimental results show that our tool, ProveNFix, detects 72.2% more true alarms

than the latest release of the Infer static analyzer. Moreover, we show the effectiveness of our repair strategy

when compared to other state-of-the-art systems — fixing 5% more memory leaks than SAVER, 40% more

resource leaks than FootPatch, and with a 90% fix rate for null pointer dereferences.

CCS Concepts: • Software and its engineering→ Software verification and validation; Software test-

ing and debugging; • Theory of computation→ Program specifications; Modal and temporal logics.
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1 INTRODUCTION

Finding temporal logic property violations is typically accomplished by well-known reactive system
verification methods like model checking [7]. The common restrictions of model checking are that
it assumes that all the procedures used are available, it usually handles bounded state spaces, and it
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suffers from the "state explosion problem" [8]. Beyond model checking, testing [25] or fuzzing [26]
approaches have also been applied to software systems capturing real-world implementations to find
temporal logic property violations. While effectively finding bugs, they rely on higher-quality test
suits or longer execution times to achieve better code coverage. Static analyzers can help mitigate
the above problems, but no existing static analyzer is specifically designed for analyzing temporal
properties. To allow systematic code coverage and effectively finding bugs, we are interested in
developing the first compositional temporal-property-based static analyzer, where each part of the
program is analyzed locally and independently of the global context. It is known that breaking the
large analysis of a whole program into small analyzes of its procedures gives us the ability to scale
independently of the size of the analyzed code [35]. Here, we highlight three main difficulties in
building a compositional static analyzer to detect temporal property violations:

(1) To check program behaviors against given properties, existing works [7, 25, 26] rely on
inclusion checkers from deterministic finite automaton. However, the automata-based approach is
not only complex but also prevents the analysis from being modular 1 due to the lack of high-level
compositional patterns for hierarchical design;
(2) Having all the procedures in question, the formal specifications (abbreviated using specs

from here) of each procedure in question is not always available, and writing specs for them is
unnecessarily tedious and challenging. It is worth mentioning that it is not new for static analyzers
to automatically generate specs. For example, the Facebook’s Infer tool [5] utilizes bi-abduction
[23] to infer pre/post specs from bare code, given the specs for the primitives at the base level of the
code. Hence, the human does not need to write pre/post-conditions for all the procedures, which is
the key to achieving a high level of automation. However, simply developing a bi-abduction for
temporal properties is not sufficient for temporal property analysis;
(3) The classic pre/post-conditions only provide constraints for behaviors before the function

call, and behaviours expected from the current function call, respectively, but we cannot easily
express behaviors after executing the function call, such as temporal constraints like "opening a
read-only file should not be followed by any writing operations" or "some meaningful operations can
only happen if the return value of loading the certificate is positive".

To solve the above-mentioned problems, this paper first introduces future-conditions to ex-
press constraints for behaviors after the function calls have finished. Together with the pre/post-
conditions, a triplet style spec modularly and expressively captures a usage protocol for functions in
concern. We further propose a compositional temporal property static analyzer, which automatically
infers specs for each procedure and utilizes a term rewriting system as the back-end solver for
proving temporal logic formulae inclusions.

Moreover, the proposed future-condition and the compositional analysis also advance automated
program repair of temporal property violations. Program analysis-based repair has been previously
shown to be effective in fixing various bugs. For example, FootPatch [41] deploys Infer [5], and fixes
bugs related to resource leaks, memory leaks, and null dereferences, using templated repairs based
on separation logic. MemFix [24] deploys a typestate analysis for small programs, fixing memory
bugs, including memory leak, use-after-free, and double-free. The state-of-the-art tool SAVER [17]
has targeted the same set of memory bugs and has supported the generation of conditional patches
by constructing a full object flow graph for each given program. However, existing techniques either
only support templated patches by inserting statements [41], or they cannot handle the generalized
bug types such as unchecked return values and customized allocators/deallocators [17, 24]. In this
work, we leverage the expressiveness of temporal logic and derive a bi-directional fault localization
that is steered by future-conditions to compose safe patches for various bug types.

1Each procedure declaration is only analyzed once and procedures can be replaced by their already verified properties.
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Putting it all together — this paper presents ProveNFix, a static analyzer guided by temporal
properties and supported by a proof-based repair strategy for fixing detected bugs where possible.
Our goal is to automatically detect and fix bugs from some classes of program bugs and enable a
modular and program-independent analysis/repair. An extensive evaluation shows that ProveNFix
can fix various bug types, including null pointer dereferences, resource leak, and memory bugs. In
total, ProveNFix detects 515 and repairs 492 bugs for a more than 1 million lines of code benchmark
within 15 minutes, which outperforms SAVER and FootPatch regarding the execution time and
fix rate. Besides, ProveNFix can fix other bugs, such as unchecked return values and customized
temporal bugs. Our main contributions are summarized as follows:

• We propose a novel feature, called future-condition, and formalize a modular and practical
program analysis engine to effectively detect bugs with the help of minimal spec annotation.
• We propose a novel program repair approach, guided by constraints encoded using an expressive
temporal spec called IntRE, an abbreviation for Integrated Regular Expressions.
• We prototype our proposal as a repair tool ProveNFix, on top of Infer front-end, to support
large-scale C projects.
• We evaluate ProveNFix on an extensive benchmark and demonstrate that ProveNFix outper-
forms state-of-the-art tools in fixing a various types of bugs. The source code of ProveNFix
and dataset are available at [46].

2 ILLUSTRATIVE EXAMPLES

This section presents a few examples to show the core idea and benefits of our approach.

2.1 Future Conditions

void free (void *ptr);

// pre: ptr≠null →
←−
F (malloc(ptr))

// post: (ptr=null ∧ n) ∨ (ptr≠null ∧ free(ptr))

// future: true ∧ G (!_(ptr))

void *malloc (size_t size);

// pre: size>0 ∧ _★

// post: (ret=null ∧ n) ∨ (ret≠null ∧ malloc(ret))

// future: ret≠null → F (free(ret))

Fig. 1. Triplet specs for free and malloc APIs.

As an example demonstrated in Fig. 1,
we write pre/post/future-conditions
for the key functions and primitive
APIs. Each spec Φ contains a set of
tuples, i.e.,

∨

(c∧\ ), where each dis-
joined cases has a pure formula c

for the arithmetic constraints and a
trace formula \ for the temporal con-

straints. We use
←−
F , G, F to denote

the temporal operators for “past-time
finally”, “globally” and “finally”, re-
spectively.

The precondition of free says that
before freeing the (non-null) input pointer ptr, it has to have an event malloc(ptr) that occurred
in its past history. We use (c→\ ) as a short-hand for (c∧\ ∨ ¬c∧_★). Its postcondition says if ptr
is null, then the function does nothing, i.e., n; and if it is not null, its post-condition captures an
event free(ptr). Its future-condition enforces that after freeing it and within its lifetime, globally
the identifier cannot be used by any events, i.e., G (!_(ptr)), which is used to prevent null pointer
dereference, double-free and use-after-free. Similarly, the precondition of malloc requires its in-
put argument size to be positive, and it can be called at any point of the execution, i.e., _★. Its
postcondition states that, when a pointer is successfully allocated, its postcondition captures an
event malloc(ret), where ret denotes the return value. Lastly, its future-condition enforces that
the allocated pointer should be finally freed, which is used to prevent memory-leak. Although
simple, these six lines of specs already cover the major memory usage bugs.
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nm(G∗) ↦→ (Φpre,Φpost ,Φfuture) ∈ E

Φ ⊑ [~∗/G∗]Φpre Φ′post = [A/ret, ~
∗/G∗]Φpost

E ⊢ {Φ · Φ′post } 4 {Φ4 } Φ4 ⊑ [A/ret, ~
∗/G∗]Φfuture

E ⊢ {Φ} A = nm(~∗); 4 {Φ′post · Φ4 }
[�'-Call]

The above reasoning rule for function calls captures the essence of having future-conditions,

where proof obligations are highlighted . Traditional Hoare-style forward reasoning rule for

function calls works roughly as follows: it retrieves the callee =<’s spec from the environment
E and if the current program state Φ entails the callee’s instantiated precondition [~∗/G∗]Φpre, it
obtains the instantiated postcondition to be the extended program state, i.e., Φ′post . Now, having

the future spec, we extend the rule with one more proof obligation: the behavior of ‘e’, i.e., Φ4 ,
entails the callee’s instantiated future-condition. Each proof obligation enforces constraints for
code segments, here for the code before the current call and for the code after the call, i.e., ‘e’.

2.2 Specification Inference and Interprocedural Analysis

Many existing tools [24] [17] perform program analysis via the call-strings technique [35], which
blends interprocedural flow analysis with the analysis of intraprocedural flow, turning a whole
program into a single flow graph. In this way, they split the interprocedural analysis into a pre-
analysis phase, which gathers overestimated information about each procedure and followed by a
global intraprocedural analysis. We decide to target a more accurate analysis by viewing procedures
as collections of structured blocks and aim to establish input-output relations via the pre/post/future
specs – where procedures can be replaced by their verified properties. This approach relates closely
to most of the known techniques for program verification, and has the advantage of being rather
simple and potentially admitting efficient and scalable implementations.

void wrap_malloc_I (int* ptr)

// future: ptr=null ∧ G (!_(ptr))

∨ ptr≠null ∧ F (free(ptr))

{ ptr = malloc (4); return ;}

int* wrap_malloc_II ()

// future: ret=null ∧ G (!_(ret))

∨ ret≠null ∧ F (free(ret))

{ int* ptr = malloc (4); return ptr;}

int* wrap_malloc_III ()

// future: true ∧ F (free(ret))

{ int* ptr = malloc (4);

if (ptr == NULL) exit(-1);

return ptr;}

int* wrap_malloc_IV ()

// future: true ∧ _★

{ int* ptr = malloc (4);

+ if (ptr != NULL) free(ptr); // a repair

return NULL;}

Fig. 2. Four kinds of malloc wrappers and their inferred future-conditions.

Specification Inference. Based on the primitive specs defined in Fig. 1, spec inference allows
us to generate specs for bigger code blocks, which make use of the malloc and free primitives.
Here, we use the examples shown in Fig. 2, to demonstrate how ProveNFix propagate future-
conditions for customized memory allocations in different scenarios. For the first two cases, i.e.,
wrap_malloc_I and wrap_malloc_II, the future-conditions have been associated with their input and
return pointers, respectively; both contain disjunctive cases to distinguish the behaviors depending
on whether the memory is successfully allocated or not. For the third case, the future-condition for
wrap_malloc_III is no longer a disjunctive form because the program terminates when the pointer
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is null, and in case it returns, it must be a non-null pointer. For the last case, it dynamically allocates
memory to a pointer, but there is no deallocation within its lifetime, so ProveNFix reports a bug in
this case and generates a conditional patch to fix the bug. In the meantime, wrap_malloc_IV does
not have any meaningful future-condition, i.e., it allows anything to happen afterward.

Interprocedural Analysis. Fig. 3 presents a more involved example, drawn from the prior work
[24] and demonstrates a common failure point in existing repair techniques. Due to the possible
aliasing between q and p.f by calling foo at line 10, there is a possible double-free error at line 12.
We handle this program by first generating the post and future-condition for foo, shown as follows
(assuming there is sufficient heap and malloc will never fail):

// post: (p->flag ∧ malloc(ret)) ∨ (!p->flag ∧ q=p->f ∧ n)

// future: p->flag ∧ F free(ret)

1 int *foo(struct st *p)

2 { int *q;

3 if (p->flag) q = malloc (1);

4 else q = p->f;

5 return q;}

6 int main() {

7 struct st p; int *q;

8 p.f = malloc (1);

9 q = foo(&p);

10 - free(q);

11 + if (p->flag) free(q);

12 free(p.f);} // double -free

Fig. 3. Fixing a double free bug [24].

Next, when we reason about the main procedure, the
future-conditions accumulated by the malloc at line 8 and
by calling foo at line 9 enforce that the behaviors of lines
10-12 should satisfy the following spec:

Φ10−12 = (p->flag) ∧ F free(p.f) ∧ F free(q)

∨ (!p->flag ∧ q=p->f) ∧ F free(p.f)

Then, after the free statement in line 10, free’s future-
condition, i.e., true ∧ G(!_(q)), is violated by the second
free statement in line 12, i.e.,
(!p->flag ∧ q=p->f) ∧ free(p.f)@12 ̸⊑ true ∧ G(!_(q));
therefore, ProveNFix detects there is an error. When this
assertion failed, the bi-directional constraint propagation
computes the spec for line 10 to be: Φ10 = p->flag ∧ F

free(q). Finally, guided by Φ10, ProveNFix synthesizes
a patch by deleting the free statement at line 10 and
inserting a conditional free statement at line 11, which fixes this error.

1 static int swReactorProcess_reuse_port(swListenPort *ls)

2 { int sock = swSocket_create(ls->type); // Here acquires a socket resource

3 if (sock < 0) return SW_ERR;

4 if (swSocket_bind(sock , ls->type , ls->host , ls->port) < 0){

5 + close(sock); // a repair

6 return SW_ERR ;}

7 if (swSocket_is_stream(ls->type)) swSetNonBlock(sock);

8 ls->sock = sock; // Here is NOT a bug!

9 return swPort_listen(ls);}

Fig. 4. A false positive reported by Infer.

Reducing False Positives. We use the resource leak example in Fig. 4, detected in the Swoole
project [32], to show that future-conditions help to reduce the false positives in practice. The first
leak happens at line 6, where the code returns without releasing the socket. The repair is simply to
insert a close statement at line 5 before returning. However, Infer reports another leak at line 9 be-
cause the program never releases the socket. This is a false positive because of the assignment at line
8, and the program is safe as long as ‘swPort_listen’ or the caller of ‘swReactorProcess_reuse_port’
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releases ‘ls->sock’ in the future. In our approach, ProveNFix manages to generate the specs for
swPort_listen, which does not release the socket; therefore, we generate a future-condition for
swReactorProcess_reuse_port, defined as follows: ret≠SW_ERR ∧ F (close(ls->sock)), pushing
the obligation to close the resource to its callers, avoiding this false positive.

2.3 Handling Generalized Bug Types

1 void host_lookup (char *user_supplied_addr) {

2 validate_addr_form(user_supplied_addr);

3 addr = inet_addr(user_supplied_addr);

4 hp = gethostbyaddr(addr , sizeof (...), ...);

5 + if (hp==null) { exit(-1); } // a repair

6 strcpy(hostname , hp->h_name);}

Fig. 5. Null pointer dereference error, reported at CWE-476.

Many functions’ return value in-
dicates the success of their actions,
which alerts the users whether or
not to handle any bugs caused by
that function. Ignoring the return val-
ues can cause the program to over-
look unexpected states and condi-
tions, leading to a crash or other un-
intended behaviors. One instance of
unchecked return values (URV) is known as null pointer dereference (NPD). For example, as shown
in Fig. 5, the function host_lookup takes an IP address, verifies that it is well-formed, and then
looks up the hostname and copies it into a buffer 2. If an attacker provides an address that does not
resolve to a hostname, the call to gethostbyaddr, line 4 will return null. Since the code does not
check the return value, a null pointer dereference would occur in the call to strcpy. While there
are no complete fixes aside from conscientious programming, one potential mitigation is annotated
in line 5, which inserts a conditional statement to exit if hp is null. We detect and repair such NPD
bugs by having the following primitive spec:

struct hostent *gethostbyaddr (...); // future: ret=null ∧ G (!_(ret))

which restricts that if the return value ret is null, globally ret cannot be used as a parameter in any
events; and we let each pointer dereference generate a "deref" event; here, hp->h_name generates
"deref(hp)". With these specs, ProveNFix automatically detects NPD bugs and generates patches,
as provided in line 5. Notably, Infer cannot detect this bug because it does not support any inputs
for primitive specs. Without loss of generality, the URV bugs we can handle are not limited to
NPDs but also various other APIs used in different contexts, such as: fgets, returnChunkSize and
pthread_mutex_lock etc. Furthermore, other than APIs from standard C libraries, the URV errors
also often show in the applications of internet-facing protocols.

Fig. 6. An unchecked return value fixed in Github.

+ int t0 =

SSL_CTX_use_certificate(sslctx , crt);

+ if (t0 != 1) return NULL;

Fig. 7. Repair by inserting a temporary variable.

Fig. 6 presents a fix of an issue raised in the keepalived project 3, where function SSL_new()
returns a pointer to an SSL object on success or null on error. However, the code shown didn’t
check the return value properly. There are other URV errors caused by not having any handlers,
such as the example shown in Fig. 7 detected in the sslsplit project 4. For such cases, our approach

2The second example in CWE-476. https://cwe.mitre.org/data/definitions/476.html.
3Issue 1004: "Missing Error Check in function SSL_new()". https://github.com/acassen/keepalived/issues/1004.
4Issue 204: "Missing Error Check in function SSL_CTX_use_certificate()". https://github.com/droe/sslsplit/issues/224.
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can produce patches by inserting temporary variables, here t0, which cannot be achieved by any
existing repair tools. Experimental results in Sec. 7.5 show that ProveNFix can be used to generate
specs for these APIs from the source code, and these specs can be used to analyze the applications.

3 SYSTEM OVERVIEW AND LANGUAGES

Fig. 8. System Overview.

System Overview. Fig. 8 shows the
system overview, where the inputs and
output of the system are directed by
the fat arrows. ProveNFix takes a tar-
get program and a set of primitive specs
written in IntRE; produces a bug report
and safe patches at the end. Our tech-
nical contributions are captured in the
rounded boxes: a Hoare-style forward
reasoning which infers specs for pro-
cedures and generates constraints for
code segments; the bi-directional con-
straint propagation for the buggy code
segments; and the deductive synthesis
to derive source code patches from ex-
isting ingredients and the spec pool.We
use ⊑ 5 to denote the proof obligations between two IntRE formulae, and ̸⊑ to denote the failed
assertions. The workflow of ProveNFix is as follows:

(1) For each procedure, a set of well-defined forward reasoning rules (presented in Sec. 4) sum-
marize the actual behavior of its body using IntRE formulae. In particular, they generate
temporal constraints for program segments, dynamically aligning with the existing specs; in
the meantime, they infer specs for the current procedure and add them into the spec pool;

(2) Assertions between actual behaviors against their specs are represented using proof obligations
between IntRE. The proving is discharged by a back-end term rewriting system (presented
in Sec. 5), which is an extended inclusion checker for regular expressions. While proving the
inclusions, proof obligations for arithmetic constraints are discharged by the Z3 solver [11];

(3) Then, if any of the inclusions fails, it will be fed into the novel bi-directional spec propagation
(presented in Sec. 6.1), to compute the spec for the core buggy code segments;

(4) Lastly, we use the deductive synthesis (presented in Sec. 6.2) to generate source-code patches.
The patches that ProveNFix can generate include inserting/deleting code blocks, conditional
patches, and inserting temporary variables for unhanded return values.

Our approach has two principal benefits: the constant effort of spec annotation without restricting
the bug types and the highly reduced search space for patch generation. Intuitively, the events of
our interests are prescribed in the primitive specs, and after the spec inference, the search space is
effectively pruned to the code ingredients, which would generate effectful events. We show the
experimental results in Sec. 7, and conclude in Sec. 9.

Target Language. We target an imperative, well-typed, call-by-value core language, defined in
Fig. 9. A program P comprises a list of primitive specs spec∗, and procedure declarations proc∗. Here,
we use the ∗ superscript to denote a finite list of items, for example, G∗ refers to a list of variables,
G1, . . . , G= . Each procedure has a name nm, formal arguments G∗, and an expression-oriented body

5The inclusion relation between two IntRE specs Φ1 ⊑ Φ2 is formally defined in Definition 5.
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(Program) P ::= spec∗ ; proc∗

(Specifiction) spec ::= nm(G∗) ↦→ (Φpre,Φpost ,Φfuture)

(Procedure Declaration) proc ::= nm(G∗) {4}

(Binary Operations) 1 ::= bop(E1, E2)

(Expressions) 4 ::= local G ; 4 | G=E | nm(G∗) | 41; 42 | if 1 then 41 else 42 |

while(1) 4 | return E | assert (Φpre,Φfuture)

2 ∈ Z ∪ B ∪ unit G, nm ∈ var (Values) E ::= 2 | G | null bop ∈ {=, >, <, ≥, ≤}

Fig. 9. Syntax of the target language.

4 . Triplet specs are associated with procedure signatures. Simple values include constants 2 , ranging
from integers, Boolean, and unit; program variables G ; and null pointers =D;; .
We use bop(E1, E2) to represent atomic binary operations for values, including =, >, <, ≥ and
≤. Expressions include local variable declarations local G ; 4; assignments G=E ; function calls
nm(G∗); sequential composition 41; 42; conditionals if 1 41 else 42; while loops while(1) 4 ; return
statements return E ; and assertions, parameterized with Φpre and Φfuture , restricting the temporal
behaviors before and after the assertion, respectively.

IntRE, the Specification Language. As defined in Fig. 10, IntRE, standing for Integrated Regular
Expressions, denoted by Φ, contains a set of tuples (or conditioned traces per se) including disjointed
pure formulae c and their corresponding event sequences \ . Traces comprise false (⊥); empty traces
n ; singleton events I; sequences concatenations \1 · \2; disjunctions \1 ∨ \2; and the arbitrary times
(zero or many, possibly infinite) repetition of a trace, constructed by a Kleene star \★. Singleton
events are: parameterized events A(E); events with a specific label A(_); negation of parameterized
events !A(E); negation of events which make use of the value E , i.e., !_(E); the wild card _ matching
to all the events; and event conjunctions I1 ∧ I2.

(IntRE) Φ ::=
∨

(c ∧ \ )

(Traces) \ ::= ⊥ | n | I | \1 · \2 | \1 ∨ \2 | \
★

(Events) I ::= A(E) | A(_) | !A(E) | !_(E) | _ | I1 ∧ I2

(Pure) c ::= T | F | bop(C1, C2) | c1∧c2 | c1∨c2 | ¬c | ∃G .c

(Terms) C ::= E | C1+C2 | C1-C2

(Values) E ::= 2 | G | null

Fig. 10. Syntax of the spec language, IntRE.

We use c to denote a pure for-
mula which captures the simpli-
fied (decidable) Presburger arith-
metic conditions on program in-
puts and local variables, where
) and � denote true and false re-
spectively. A term can be a sim-
ple value E , or simple computa-
tions of terms, C1+C2 and C1-C2.
It is proven that the expres-

sive power of regular expres-
sions subsumes the classic linear temporal logic (LTL) formulae [43]. While ProveNFix allows both
syntaxes, the underlying reasoning and proving are formalized using IntRE. We deploy a standard
translation from LTL formulae to IntRE, shown in Appendix A.

4 FORWARD REASONING AND SPECIFICATION INFERENCE

This section addresses the details of constraint generation for code segments and spec inference
for procedures; while they happen simultaneously, we present them separately for clarity.
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4.1 Constraint Generation and Bug Reporting

Together with the rule [�'-Call] presented in Sec. 2.1, Fig. 11 formalizes a set of syntax-directed
forward rules for the target language. Our Hoare-style reasoning is in the form of E, C ⊢ {Φ} 4 {Φ′},
where E is an environment, initialized by the given primitive specs and extended with the inferred
specs along the way; C denotes the current procedure being analyzed. E and C are omitted when
not needed. The meaning of the relation is: if Φ describes the behaviors triggered before executing
4 , then by executing 4 , Φ′ describes the extension of the traces that will be triggered.

[�'-Return]

⊢ {Φ} return E {(ret=E)∧n, 1}

[�'-Assign]

⊢ {Φ} G=E {(G=E)∧n, 0}

[�'-Assert]

Φ ⊑ Φpre ⊢ {Φ} 4 {Φ4 } Φ4 ⊑ Φfuture

⊢ {Φ} assert (Φpre,Φfuture); 4 {Φ4 }

⊢ {Φ} 41 {Φ1} ⊢ {Φ · Φ1} 42 {Φ2}

⊢ {Φ} 41; 42 {Φ1 · Φ2}
[�'-Seq]

⊢ {1 ∧ Φ} 4★ {Φ′}

⊢ {Φ} while(1) 4 {¬1 ∧ Φ′}
[�'-While]

⊢ {1 ∧ Φ} 41 {Φ1} ⊢ {¬1 ∧ Φ} 42 {Φ2}

⊢ {Φ} if 1 41 else 42 {Φ1 ∪ Φ2}
[�'-If -Else]

⊢ {Φ} 4 {Φ4 }

⊢ {Φ} local G ; 4 {∃G . Φ4 }
[�'-Local]

Fig. 11. Selected forward reasoning rules.

Notice that, the post-states of the basic rules, [�'-Return] and [�'-Assign] are associated with
a completion code :∈{0, 1}, where when :=0, the reasoning can proceed; when :=1, the current
procedure returns. Each completion code is initialized using 0, and only the return statements
update it to 1 as delimiters, marking the end of the local procedure. Anything concatenated after
states with non-zero completion codes will be abandoned. The completion code is essential when
the compositional rules come in, such as [�'-Seq]. Starting from a pre-state Φ, rule [�'-Seq] firstly
computes the behavior of 41, denoted by Φ1; then reasons about 42 with the extended pre-state,
i.e., Φ · Φ1; lastly the final result is a concatenation of Φ1 and Φ2. The concatenation between two
singleton program states is formally defined in Definition 1.

Definition 1 (Program state Concatenation). Given two singleton program states Φ1 =

(c1 ∧ \1, :1) and Φ2 = (c2 ∧ \2, :2), we define:

Φ1 · Φ2 = (c1 ∧ \1, :1) when :1>0,

((c1 ∧ c2) ∧ (\1 · \2), :2) when :1=0.

Next, rule [�'-While] computes the behaviors of loops by unfolding the loop body 4 many
times, i.e., 4★; and in practice, ProveNFix unfolds loops once to balance precision and efficiency.
Rule [�'-If -Else] computes the behaviors from both branches by enforcing the pre-state with
constraints 1 and ¬1, respectively; then, it disjunctively unions the results. Rule [�'-Local] creates
an existential quantifier for the local variable G . For assertions parameterised with Φpre and Φfuture ,

rule [�'-Assert] creates proof obligations (as highlighted ) for the precondition checking and

the future-condition checking regarding the behavior of the rest of code. The proving of proof
obligations is discharged by a term rewriting system, presented in Sec. 5. Each failed assertion is
reported as a bug, and in this paper, we are interested in finding the true bugs, defined in Definition 2.

Definition 2 (Manifest True Bug [23]). There exists a path from the local procedure declaration
that leads to the bug, and for any value of the input, the bug occurs.
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Unchecked Return Value without Handlers. As the example demonstrated in Fig. 7, there
are cases where unchecked return values are caused by having no handlers, also, the future-
condition contains the pattern (c ∧ G(!_(ret))), indicating an error state where the purpose of
calling the function has failed, and the return value should not be used. The rule we present here,
[�'-Call-Handling] (as a special case for [�'-Call]) is designed for such cases. It first generates
a fresh variable to be the temporary handler, here t; then, as usual, checks the precondition,
instantiates the postcondition. Lastly, it synthesizes the handling code based on the future-condition,
and inserts the code as a patch. The synthesize algorithm is presented in Sec. 6.2.

nm(G∗) ↦→ (Φpre,Φpost ,Φfuture) ∈ E (C is fresh)

Φ ⊑ [~∗/G∗]Φpre Φ′post = [C/ret, ~
∗/G∗]Φpost

(c∧G(!_(ret))) ∈ Φfuture c ′=[C/ret]c synthesis(c ′ ∧ G(!_(t)))

E ⊢ {Φ} nm(~∗) {Φ′post ∨ (c
′ ∧ G(!_(t)))}

[�'-Call-Handling]

4.2 Triplet Specification Inference

Relation E |= P denotes the reasoning for program P starting with an environment E. As shown in
[SI -Proc], given any procedure declaration, the rule takes {)∧n, 0} as the initial state, and reasons
about the actual behavior Φactual of the procedure body. Being the strongest postcondition, Φactual

is added as the inferred spec of nm(G∗) into the environment. The notation E[C] .post ↦→ Φ means
to associate the inferred spec Φ with C’s postcondition, and same for pre and future.

[SI -Proc]

P=nm(G∗){4} ; P ′ E, nm(G∗) ⊢ {)∧n, 0} 4 {Φactual}

E[nm(G∗)] .post ↦→ Φactual E |= P ′

E |= P

[(� -Assert]

Φ′pre · Φ ⊑ Φpre Φ4 ⊑ Φfuture · Φ
′
future

E[C] .pre ↦→ Φ′pre E[C] .future ↦→ Φ′
future

E, C ⊢ {Φ} assert (Φpre,Φfuture); 4 {Φ4 }

Moreover, in the rule [(� -Assert] (the spec inference version of [�'-Assert]), if the inclusions
only hold when there exist frames Φ′pre and Φ′

future
needed, we add the frames as the inferred

pre/future-conditions of the current procedure C into the environment. The exact inference applies
to the inclusion checkings in rule [�'-Call] as well, and we omit it here for simplicity.

5 INCLUSION CHECKING

Given IntRE formulae Φ1 and Φ2, the back-end term rewriting system (TRS) decides if the inclusion
Φ1 ⊑ Φ2 is valid through an iterated process of checking inclusions of their derivatives [2].

Definition 3 (Derivatives). Given any formal language ( over a (finite) alphabet Σ and any
string D ∈ Σ∗, the derivative of ( with respect to D is defined as: D-1( = {F ∈ Σ∗ | D ·F ∈ (}.

Definition 4 (Trace Entailment). Given any trace formulae \1, \2 and any traces \ , the inclusion
between \1 and \2 is recursively defined as: \1 ⊑ \2 ⇔ ∀\ . (\

-1\1 ⊑ \ -1\2).

Based on Definition 3, we formally define the inclusion relation ⊑ between trace formulae in
Definition 4, where the derivative function \ -1\1 eliminates a trace \ from the head of \1 and returns
what remains. Intuitively, proving the inclusion \1 ⊑ \2 (presented in Sec. 5.2) amounts to checking
whether all the possible traces in the antecedent \1 are legitimately allowed in the possible traces
from the consequent \1. Next, we define the IntRE inclusion in Definition 5.
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Definition 5 (IntRE Entailment). Given any IntRE formulae Φ1 and Φ2, their inclusion Φ1 ⊑ Φ2

is valid if and only if, ∀(c2∧\2) ∈ Φ2 . ∃(c1∧\1) ∈ Φ1 such that c1⇒c2 and \1 ⊑ \2, where the pure
formulae inclusions, denoted by ‘⇒’, are discharged by the Z3 solver.

Informally, proving the IntRE inclusion is to check that for all the disjoined cases specified in
the consequent, there always exists a compatible case from the antecedent to form a valid trace
inclusion. Then, when the consequent cannot find a witness from the antecedent, we trigger the
patch generation process to synthesize conditional statements accordingly.
Therefore, we have the following top-level rules to decompose the disjunctions. In particular,
[TRS-Base] triggers the including checking between traces by initialising the proof hypotheses
using ∅, cf. Sec. 5.2. Rule [TRS-Missing-Case] triggers the repair process by synthesizing code that
satisfies the required spec, cf. Sec. 6.2.

[TRS-Base]

c1⇒c2 c1, ∅ ⊢ \1 ⊑ \2

c1∧\1 ⊑ c2∧\2

[TRS-Disj]

∃(c1∧\1) ∈ Φ1 . (c1∧\1 ⊑ c2∧\2) Φ1 ⊑ Φ2

Φ1 ⊑ (c2∧\2) ∨ Φ2

[TRS-Missing-Case]

synthesis(c∧\ )

∅ ̸⊑ c∧\

5.1 Auxiliary Functions

To facilitate the inclusion rules in Sec. 5.2, we provide the definitions and core implementations of
the deployed auxiliary functions: 6 Nullable(X), First(fst) and Derivative(D) respectively. Informally,
the Nullable function X (\ ) returns a Boolean value indicating whether \ contains the empty trace;
the First function fst (\ ) computes a set of possible initial events from \ ; and lastly, the Derivative
function DI (\ ) eliminates an event I from the head of \ and returns what remains. The subset
relation I ⊆ J means that, the set of events in I is a subset of the set of events in J.

Definition 6 (Nullable). Given any sequence \ , we recursively define X (\ ) as follows: (false for
unmentioned constructs)

X (n)=true X (\★)=true X (\1·\2)=X (\1)∧X (\2) X (\1∨\2)=X (\1)∨X (\2)

Definition 7 (First). Let fst (\ ) be the set of initial events derivable from sequence \ .

fst (⊥)=fst (n)={} fst (I)={I} fst (\1∨\2)=fst (\1) ∪ fst (\2)

fst (\★)=fst (\ ) fst (\1 · \2)=

{

fst (\1) ∪ fst (\2) if X (\1)=true

fst (\1) if X (\1)=false

Definition 8 (Partial Derivative). The partial derivative DI (\ ) of trace \ w.r.t. an element I
computes the effects for the left quotient, I-1\ , defined as follows:

DI (⊥)=DI (n)=⊥ DI (\
★)=DI (\ ) · \

★ DI (\1∨\2)=DI (\1)∨DI (\2)

DI (J)=

{

n if I ⊆ J

⊥ 4;B4
DI (\1 · \2)=

{

(DI (\1) · \2) ∨ DI (\2) if X (\1)=true

DI (\1) · \2 if X (\1)=false

6The definitions are extended from [2], which were originally used for proving inclusions between regular expressions.
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5.2 Inclusion Rules

Given the well-defined auxiliary functions above, we now present the key rewriting rules in Fig.
12 deployed in inclusion proofs. During the rewriting process, the inclusions are in the form of
c, Γ ⊢ \1 ⊑ \2, a shorthand for: ∃\ . (c, Γ ⊢ \ · \1 ⊑ \ · \2). Here \ is the history traces from the
antecedent that have been used to match the traces from the consequent; c is the path constraint
and Γ is the proof context, which contains a set of inclusion hypothesis.
Rule [Prove] is used when the antecedent has no first elements. Rule [Reoccur] is to prove an

inclusion when there exist inclusion hypotheses in the proof context Γ, where we can soundly
prove the current goal. One of the special cases of this rule is when the identical inclusion is shown
in the proof context; we then prove it valid. Rule [Unfold] is the inductive step of unfolding the
inclusions. Firstly, we make use of the auxiliary function fst to get all the possible initial events
from the antecedent,� . Secondly, we obtain a new proof context Γ′ by adding the current inclusion,
as an inductive hypothesis, into the current proof context Γ. Thirdly, we iterate each event I ∈ �
and compute the derivatives (next-state formulae) of both the antecedent and consequent with
respect to I. The proof of the original inclusion succeeds if all the derivative inclusions succeed.

[Prove]

fst (\1)={}

c, Γ ⊢ \1 ⊑ \2

[Reoccur]

(\1 ⊑ \3) ∈ Γ (\3 ⊑ \2) ∈ Γ

c, Γ ⊢ \1 ⊑ \2

�=fst (\1) c, Γ′=Γ, (\1 ⊑ \2)

∀I ∈�. (c, Γ′ ⊢ DI (\1) ⊑ DI (\2))

c, Γ ⊢ \1 ⊑ \2
[Unfold]

X (\1)∧¬X (\2)

ConstrProp(c, \1 ̸⊑ \2)

c, Γ ⊢ \1 ̸⊑ \2
[Dis-Nullable]

�=fst (\1) ∃I ∈ � DI (\2) = ⊥

ConstrProp(c, \1 ̸⊑ \2)

c, Γ ⊢ \1 ̸⊑ \2
[Failed-Unfold]

Fig. 12. Term rewriting rules.

There are two possible failing cases. Rule [Dis-Nullable] is a heuristic refutation step to disprove
the inclusions early when the antecedent evidently contains more traces than the consequent; and
here, the nullable function X witnesses the empty trace. Rule [Failed-Unfold] captures the situation
where there exists an initial event I from the antecedent such that eliminating I from the consequent
leads to false. When such failed assertions occur, we use ConstrProp to propagate the constraints
for the core buggy code (cf. Sec. 6.1), which intakes the path constraint and the failed inclusion.

Termination of the TRS is guaranteed because the set of derivatives to be considered is finite, and
possible cycles are detected using memorization, i.e., Γ. The term rewriting for regular expression
is proven to be sound and complete [2], and prior TRS-based works [1, 3, 18, 21, 36–39], suggest
that TRS is a better average-case algorithm than those based on the comparison of automata, by
avoiding the complex translation process and disproving invalid inclusions earlier.

6 CONSTRAINT PROPAGATION AND DEDUCTIVE PATCH SYNTHESIS

The repair process incorporates two main components: (1) the constraint propagation when there
are failed inclusions, and (2) the code synthesis when we should insert extra code with a given
spec. In particular, the constraint propagation triggers the synthesis process after it extrapolates
the expected spec for the buggy segments. In other words, (1) deletes code while (2) inserts code.
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6.1 Bi-directional Constraint Propagation

From the previous section, we can now automatically prove or disprove given inclusions. Here, we
are concerned with if an invalid inclusion exists; how to safely uncover the core buggy code, i.e., the
smallest program segment which leads to the failed inclusion, and derive the expected spec for it.

∃\ 5 . rev(\1) = \ 5 · \
′
1

rev(\2) = \ 5 · \
′
2

c, ∅ ⊢ \ ′
1
̸⊑ \ ′

2

ConstrProp(c, \1 ̸⊑ \2) { synthesis(c ∧ rev(\ ′
2
))
[Constr-Prop]

Intuitively, having the path constrain c and the failed inclusion \1 ̸⊑ \2, we do a backward
matching to "sandwich" the buggy segment in the middle. As shown in the rule [Constr-Prop], if
there exists a frame trace \ 5 , such that \ 5 serves as a common prefix of the reversed traces of \1 and
\2 – rev(\1) and rev(\2) respectively – and their postfixes form an invalid inclusion, \ ′

1
̸⊑ \ ′

2
; then

it passes the spec c ∧ rev(\ ′
2
) to the code synthesis process. More specifically, rev(\ ′

1
) represents

the current behavior of the core buggy segment, which failed to entail its intended spec. Therefore,
the patch is generated in the way of firstly deleting 7 the code represented by rev(\ ′

1
), and secondly

inserting the code which is synthesized based on the intended behavior, i.e., c ∧ rev(\ ′
2
). The reverse

function is defined in Definition 9.

Definition 9 (Trace Reversing). Given a trace \ , its reversed trace is defined as follows:

rev(⊥)=⊥ rev(n)=n rev(I)=I rev(\★)=(rev(\ ))★

rev(\1 ∨ \2)=rev(\1) ∨ rev(\2) rev(\1 · \2)=rev(\2) · rev(\1)

Comment. Our repair strategy is more generic as it supports the deletion and insertion of code
blocks instead of only supporting insertions [41] or only supporting single lines’ repair [17, 24].

6.2 Source-level Patch Synthesis

Given the intended behavior c ∧ \target , the synthesis function searches through the environment
E – including both primitive specs and inferred specs, and composes an expression 4' in the target
language grammar – that effects the following state transition: E ⊢ {) ∧ n} 4' {c ∧ \target}.

We present a deductive synthesis algorithm in Algorithm 1. The procedure takes the target spec
as the input; recursively searches through the environment E; and finally returns a source code
block 4' .
In line 1, it initializes the accumulator 4acc using unit. From line 2, it iterates E; and for each

procedure signature, denoted by=<(G∗), it tries to exploit if a function call to=< forms a progressive
step towards the target trace. The base case is presented in line 3, where the target trace is
n , indicating no more synthesis obligations are needed. In this case, the procedure returns a
conditional statement if c then 4acc else (). Otherwise; we try to find a set of program variables
~∗ to instantiate the generic postcondition of =<(G∗), and obtains the next-step target trace \ ′target
by subtracting =<’s postcondition from the head of \target . If the subtraction does not lead to false,
in line 7, it extends the current patch accumulator with a function call to nm, parameterized with
~∗. Lastly, in line 10, if there are no satisfactory expressions after iterating all the ingredients from
the program, the synthesis terminates with no patches.

7The fault localization is done by a mapping from line numbers to the generated events.
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Algorithm 1 Algorithm for the Deductive Synthesis

Require: E, (c ∧ \target )

Ensure: An expression 4' such that E ⊢ {) ∧ n} 4' {c ∧ \target }

1: 4acc = ()

2: for each nm (G∗) ↦→ [Φpre,Φpost ,Φfuture] ∈ E do

3: if \target = n then return if c then 4acc else ()

4: else

5: // there exist a set of program variables ~∗

6: \ ′target = (c ∧ [~
∗/G∗]Φpost )

-1\target

7: 4acc = 4acc ; =<(~
∗)

8: end if

9: end for

10: return without any suitable patches

Limitations. Since the ingredi-
ents in E are only procedure signa-
tures, the synthesis only composes
function calls. To mitigate this, we
ought to dynamically extend the en-
vironment with mappings from state-
ments to their effects. The current
synthesis only uses the postcondi-
tions; therefore, inserting the func-
tion calls could lead to failed as-
sertions introduced by these calls.
Nevertheless, our approach generates
sound patches, which resolve the tar-
geted violated entailments, i.e., the
current violations will no longer ex-
ist. While it is not trivial to have a repair without re-verification, we take it as a future work.
Nevertheless, the following section shows that the current design serves a promising experimental
result.

7 IMPLEMENTATION AND EVALUATION

We prototype our proposal into a program analysis and repair tool ProveNFix, using approximately
5,000 lines of OCaml code, leveraging on the AST structures produced by the Infer front-end. Our
implementation includes a lightweight parser, which inputs the user-defined temporal specs. To
show the effectiveness of our approach in analyzing and fixing a wide variety of bugs, we design
the experimental evaluation to answer the following research questions (RQ):

• RQ1:What is the effectiveness and efficiency of ProveNFix compared to Infer?
• RQ2: What is the performance of ProveNFix in fixing memory usage bugs compared to SAVER,
and fixing resource leaks compared to FootPatch?
• RQ3: Can ProveNFix automatically find/fix generalized temporal bugs, such as unchecked return
values and properties involving execution orders, that prior works either cannot find or fix?
• RQ4: Is it practical to use ProveNFix as a specification inference tool to find desirable behaviors
of internet-facing protocol implementations?

We ran experiments on an Ubuntu 22.04 LTS server with Intel Xeon E-2278G CPUs and 20GB of
RAM. The source code and evaluation benchmarks are openly accessible from [46].

7.1 Primitive Specification Annotation

To facilitate the RQ 1-3 for comparison with older results, Table 1 presents the minimal efforts
(in 54 lines of code) we took for annotating the temporal specs. The marks ✓ and ✗ in columns
Pre, Post, and Future represent if the corresponding spec is needed for the given API. Notably,
for different types of bugs, the need for annotations may vary; for example, malloc requirements
pre/post/future conditions for memory bugs but only needs a future-condition for null pointer
dereferences. We show the detailed specs for these 17 APIs in Appendix B.

We use the same dataset as SAVER [17] to evaluate ProveNFix, which raise at least one error by
running the latest release of Infer (v1.1.0, released on Mar 26, 2021). There are ten projects in total,
and the basic information of the benchmarks is shown in the first two columns of Table 2.
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Table 1. Summary of the Annotated API Specifications.

Primitive APIs Pre Post Future Targeted Bug Type

open/socket/fopen/fdopen/opendir ✗ ✗ ✓
Resource Leak

close/fclose/endmntent/fflush/closedir ✗ ✓ ✗

malloc/realloc/calloc/localtime ✗ ✗ ✓
Null Pointer Dereference

→ (pointer dereference) ✗ ✓ ✗

malloc ✓ ✓ ✓ Memory Usage

free ✓ ✓ ✓ (Leak, Use-After-Free, Double Free)

Table 2. Experimental results for analyzing 10 C projects, comparing with Infer-v1.1.0. Columns #NPD, #ML

and #RL record the numbers of null pointer dereferences, memory leaks, and resource leaks, respectively. The

numbers of false positives found by Infer and more true positives found by ProveNFix are represented by +n

and +n respectively. Columns in #Time record the analysis time spent.

#NPD #ML #RL Time
Project kLoC

Infer ProveNFix Infer ProveNFix Infer ProveNFix Infer ProveNFix

Swoole(a4256e4) 44.5 30+7 30+23 16+4 12+16 13+1 13+6 2m 50s 39.54s

lxc(72cc48f) 63.3 7+9 5+19 11+6 10+12 5+1 5+5 55.62s 1m 28s

WavPack(22977b2) 36 23+7 20+21 3 3+9 0+2 0 27.99s 23.77s

flex(d3de49f) 23.9 14+4 14+4 3 3+1 0 0+1 32.25s 47.75s

p11-kit 76.2 3+5 2+2 13+3 12+15 5 5+1 1m 57s 1m 4s

x264(d4099dd) 67.7 0 0 12 11+5 2 2+3 2m 33s 23.168s

recutils-1.8 81.9 25 22+8 13+10 11+29 1 1+7 9m 10s 38.29s

inetutils-1.9.4 117.2 7+4 5+8 9+3 7+10 1 1+5 30.26s 1m 5s

snort-2.9.13 378.2 44+12 33+34 26+4 15+16 1+2 1+1 8m 49s 3m 13s

grub(c6b9a0a) 331.1 13+12 6+5 1 1 0+3 0 3m 27s 1m 1s

Total 1,220.00 166+60 137+124 107+30 85+113 26+9 27+29 31m 12s 10m 44s

7.2 RQ1: Comparison with Infer

As shown in Table 2, we compare the performance in detecting bugs between ProveNFix and
Infer-v1.1.0. For each column, we manually classified the alarms into true and false positives. For
example, for the Swoole project, Infer found 37 null pointer dereferences, which includes 30 true
positives and 7 false positives. In comparison, ProveNFix found the same 30 true positives and 23
more true positives (i.e. actual null pointer dereference bugs). In addition, Infer found 20 memory
leak bugs in the same project, including 16 true positives and 4 false positives; and out of the 16
true positives, ProveNFix found 12 of them (missing out 4 true alarms that Infer has found), and
16 more true positives. In total, Infer found 299 (166+107+26) true bugs, and ProveNFix found 249
(137+85+27) of them. In addition, ProveNFix found 266 (124+113+29) more true bugs, finding 72.2%
( 249+266−299

299
) more true bugs, with a 17% ( 299−249

299
) loss of missing true bugs (w.r.t. what Infer could

find). We discuss all the bugs reported by ProveNFix in Appendix C.
Infer uses heuristics when processing failed proofs and bug patterns to reduce the false positives,

which leads to the loss of many true bugs. This is intuitively why ProveNFix manages to find
significantly more bugs. Moreover, due to the limited support for global variables, ProveNFix chose
to miss out on some true bugs to keep a low false positive rate, cf. an example in Fig. 13.

7.3 RQ2: Comparison with SAVER and FootPatch

To compare the repair abilities between ProveNFix and the state-of-the-art, experimental results
are shown in Table 3. The right-hand side of the table records the performance of SAVER and
FootPatch, done on a virtual machine running Ubuntu-16.04. Both of them are built on top of an
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older version of Infer (v0.9.3, released on Sep 22, 2016). Upgrading the Infer version of SAVER and
FootPatch requires too much effort; hence, we choose to report FootPatch/ SAVER results based on
the older version of Infer. Given Infer’s bug report, SAVER obtains a 73.7% fix rate for fixing true
memory errors, and FootPatch obtains a 60% fix rate for true resource leaks.

Table 3. Experimental results for repairing 10 C projects, comparing with SAVER and FootPatch. Columns

marked as # are numbers of the total true positives found by Infer-v1.1.0 and ProveNFix, summarised from

Table 2. The numbers of false positives reported by Infer-v0.9.3 are marked as +n.

NPD ML RL : : Infer-v0.9.3
Project

# ProveNFix # ProveNFix # ProveNFix
Time

: : #ML SAVER #RL FootPatch

Swoole 53 53 32 28 19 19 4.33s : : 15+3 11 6+1 6

lxc 26 24 23 22 10 10 3.882s : : 3+5 3 2+1 0

WavPack 44 41 12 12 0 0 11.435s : : 1+2 0 2 1

flex 18 18 4 4 1 1 39.38s : : 3+4 0 0 0

p11-kit 5 4 28 27 6 6 2.452s : : 33+9 24 2 1

x264 0 0 17 14 5 5 6.375s : : 10 10 0 0

recutils-1.8 33 30 42 36 8 8 1.261s : : 10+11 8 1 0

inetutils-1.9.4 15 13 19 17 6 6 1.517s : : 4+5 4 2+1 1

snort-2.9.13 78 67 42 13 2 2 10.57s : : 16+27 10 0 0

grub 18 11 1 1 0 0 40.626s : : 0 0 0 0

Total(Fix Rate) 290 261(90%) 220 174 (79%) 57 57 (100%) 2m 2s : : 95+66 70(73.7%) 15+3 9(60%)

The left-hand side of the table shows the repair results from ProveNFix, which has a 90% fix rate
for null pointer dereferences, 79% fix rate for the memory leaks and 100% fix rate for the resource
leaks. The correctness of auto-generated patches are confirmed by human validation.
Although the evaluation is based on different sources of static analysis, the true bugs recorded

in the right-hand side table are fully subsumed by the left-hand side. We compare the fix rates and
find that ProveNFix fixes 5% more memory leaks than SAVER and 40% more resource leaks than
FootPatch. Besides the higher fix rate, SAVER needs a significant pre-analysis time to construct
the whole object control flow, e.g., up to 26.3 seconds for the flex project and 39.5 minutes for the
snort-2.9.13, while ProveNFix only takes several minuets to generate all the patches, averaged 0.25
seconds ( 261+174+57

2< 2B
) per patch.

7.4 RQ3: Capturing General Temporal Bugs

Table 4. Automatically finding/fixing dou-

ble free bugs.

Project
Double Free

Time
SAVER TempFix

lxc 0 0 2m 15s

p11-kit 2 2+1+1 16.75s

grub 2 2+1+1 31.83s

Total 4 4+2+2 3m 4s

ProveNFix can also find and fix generalized temporal bugs.
Here, we use double-free (DF) errors as a case study to
show the effectiveness of ProveNFix in finding and fixing
bugs involving execution orders, and leave the case study
for unchecked return values in Fig. 7.5.
The benchmark shown in Table 4 is taken from SAVER

[17]. SAVER usually relies on other bug detectors to gen-
erate bug report, before their repair. However, there were
no suitable bug detectors for DF. Hence, among the ten
projects shown from Table 2, SAVER manually records the
DF errors by inspecting commit fixes by developers from open-source projects. Note that, Table 4
does not show the exact versions because these bugs are coming from different commit versions of
their projects (lxc, p11-kit, and grub). Therefore, this experiment is done by injecting these errors
into the version we used in Table 2.
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All the true bugs reported in Table 4 can be correctly fixed by SAVER and ProveNFix, respectively.
In total, SAVER fixed four true bugs while ProveNFix automatically found the same four bugs and
two more true bugs, with two false positives. The two more true bugs that were missed out before
are located in the same functions as the recorded bugs. The fixes provided by the developer were
to remove the free statements in the recorded locations, which happened to solve the unrecorded
bugs that ProveNFix discovered. Still, the extra true bugs that ProveNFix discovered seem to have
never been spotted/recorded by people. The two more false positives that ProveNFix generated are
caused by unrolling loops only once and the complex aliasing/re-assignment, which exposes the
limitations of our analysis. Nevertheless, the false positive rate of ProveNFix is still reasonably low.
It takes ProveNFix 3m 4s to find and fix these bugs. All these bugs are documented in Appendix D.

7.5 RQ4: Effectiveness of Specification Inference for Real-world Programs

Table 5. Automatically repairing incorrect SSL API usages.

OpenSSL Applications kLoC Issue ID Target API Github Status ProveNFix Time

1003 SSL_CTX_new ✓ ✓
keepalive(843ffc80) 59.1

1004 SSL_new ✓ ✓
5.62s

28 BN_new ✓ ✓
thc-ipv6(011376c) 30.9

29 BN_set_word ✓ ✗
3.32s

2309 BIO_new ✓ ✓
FreeRADIUS(94149dc) 258.9

2310 i2a_ASN1_OBJECT ✓ ✓
38.89s

4292 SSL_CTX_new ✓ ✓

4293 SSL_new ✓ ✓trafficserver(5ee6a5f) 34.1

4294 SSL_write ✓ ✓

21.55s

224 SSL_CTX_use_certificate ✓ ✓
sslsplit(19a16bd) 18.7

225 SSL_use_PrivateKey ✓ ✓
2.69s

36 SSL_connect ✓ ✓
proxytunnel(f7831a2) 3.1

37 SSL_new ✓ ✓
0.62s

Our approach can generate specifications for real-world programs. We demonstrate the effec-
tiveness of ProveNFix’s specification generation, on an internet-facing protocol implementation
OpenSSL [29]. Correct usage of Secure Socket Layer (SSL) APIs is required to satisfy certain con-
straints, such as call conditions or call orders. Violations of these constraints will lead to severe
security implications. For example, missing error status code validation of SSL APIs will cause a
denial of service by remote attackers (CVE-2016-2182 [10]), and broken SSL certificate validation
[13] will result in man-in-the-middle attacks [9]. Here, we focus on the bugs caused by URV.
There are a lot of security-sensitive URV bugs in OpenSSL applications [14]. Table 5 presents

several real-world bugs that have been confirmed, fixed, and merged into the master branches.
To detect and fix those bugs, we provide 2 predefined primitive specs and rely on ProveNFix

to generate specs for all the exposing APIs by analyzing OpenSSL-3.1.2 source code (3792bd7,
556.3 kLoC). Then, these automatically generated specs are used to analyze the projects shown
in Table 5. Experimental results show that ProveNFix successfully detects and repairs almost all
the reported bugs – one failure case is caused by no spec generated for ‘BN_set_word’ – within 1
minute per project, demonstrating the effectiveness of ProveNFix in inferring correct procedure
specs. Moreover, the generated specs do not leak the implementation details of the APIs apart from
revealing the input-output relations, as it omits all the intermediate variables by annotating them
as existential. Detailed configuration and all the inferred specs are recorded in Appendix E.
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7.6 Discussion: Sources of False Negatives and False Positives

Fig. 13 presents a code snippet simplified from the Swoole project, where the function passes the
pointer “ptr” to a global object “swoole_objects”. For such cases, ProveNFix infers the postcondition
with a special event “consume(ptr)”, which, by design, entails any event, such as free(ptr) or close
(ptr). As ProveNFix is designed for modular reasoning, without capturing the global states, it
assumes global variables are well-managed, i.e., the traces of using them satisfy all the possible
constraints. As a practice of systematically – instead of using heuristics – strengthening the inferred
postconditions, having consume events helps us to reduce false positives effectively; however, such
a design also introduces false negatives. Therefore, generally, in ProveNFix, false negatives are
caused by the pre-defined pre/future-conditions being too weak or the inferred postconditions
being too strong. In duality, false positives occur when the pre-defined pre/future conditions are
too strong or the inferred postconditions are too weak.

void swoole_set_object(zval *object ,void *ptr)

// post: true ∧ (consume(ptr))

{...; swoole_objects.array[handle] = ptr; ...}

Fig. 13. Demonstration for the source of false negatives.

8 RELATED WORK

Analyzing Temporal Properties. Model checking [7] is a well-known verification technique
that can prove temporal properties in finite state systems, usually encoded using automata [6, 16, 20].
Furthermore, model checking is employed to identify counterexampleswhere properties are violated,
such as CMC [27], Java Pathfinder [42], and CPAchecker [4]. While these tools effectively uncover
assertion violations, they encounter challenges like state space explosion and slow logical formula
solving. In contrast, ProveNFix performs a compositional analysis that scales to large real-world
programs while achieving high precision.
Another approach to detecting temporal property violations is runtime verification, such as

JavaMOP[25], MarQ [33] and Mufin [40], which monitors test executions against formal specs. In
particular, our IntRE draws similarities to JavaMOP’s spec language – both explicitly capture the
past-time LTL by putting them into preconditions. Specifically, JavaMOP monitors the manually
written and automatically mined specs against tests in open-source projects and finds hundreds
of bugs. However, those runtime verification tools rely on large numbers of tests, which are not
always available. Although LTLFuzz [26] could automatically generate tests via greybox fuzzing,
the coverage of generated tests is usually low, leading to false negatives. Our method performs
static analysis without requiring test cases, which could complement runtime verification.
The latest Infer release (v1.1.0) introduces a new checker Topl 8, to detect errors based on user-

provided state machines describing temporal properties. Like ProveNFix, Topl aims to encode
different analyzes as temporal properties, such as taint analysis. For example, its analysis can
prevent a value returned by method source() from being sent as an argument to a method sink().
However, Topl is still in the experimental phase and hasn’t shown any potential for automated
program repair; moreover, just like Infer, Topl possibly suffers from many false negatives due to
the heuristics deployed for reducing false positives.

8https://fbinfer.com/docs/checker-topl/
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Repair via ProgramAnalyzer. Recently, several repair techniques based on static analysis tools
have been proposed in the program repair community [17, 19, 24, 28, 41].One of the most relevant
works is FootPatch [41], which relies on separation logic to fix bugs related to resource release,
freeing memory, and null pointer dereference. However, FootPatch may introduce double-free
when fixing a memory leakage. Moreover, to automatically generate patches, it requires templated
annotations for the specs at the bug locations. Another tool MemFix [24] targets safely fixing
memory usage bugs such as: memory leaks, use-after-frees, and double-frees. MemFix works for
small-scale programs (<5kLoC) based on a variant of typestate static analysis and cannot produce
patches with conditional deallocation. In contrast, SAVER [17] targets on the same set of bugs, but
deals with big-scale projects (up to 320kLoC) with the help of Infer. However, SAVER’s patches are
generated by keeping object flow graphs for the buggy programs. In other words, SAVER failed to
make use of the intermediate bugs information generated by Infer. The proposed technique in this
work also draws similarities to Senx [19], which proposes property-based APR. Such properties are
automatically inferred via an access range analysis, which can be used to deal with bugs, including
buffer overflow/integer overflow and bad cast. Although Senx and ProveNFix target different bug
types, the hint highlighted by Senx is valuable: the advantage of the property-based approach is that
a small set of safety properties can be specified once and used on a vast number of programs without
the need to specify anything specific about each of the programs, or collect a comprehensive set of
test cases. Moreover, such properties are inherently precise and complete. Our work is the first
work to deal with different bug types (e.g., memory leaks, unchecked return value, double-free, and
general temporal bugs) via encoding them into temporal properties.

Specification-guided Repair and Deductive Synthesis. Other existing works have also ex-
plored formal specs guided program repair in the form of writing pre/post-conditions [28, 30] or
assertions [15, 34]. Those approaches then utilize verification-based approaches to generate patches,
ensuring the given conditions are satisfied. They can produce precise and complete patches, but
writing formal specs for each function is tedious and time-consuming. Instead of asking users to
provide pre/post-conditions, our approach relies on a future-conditions to modularly enable an
automated spec generation for their callers. Prior work [31] describes a deductive approach to
synthesizing imperative programs with pointers from specs expressed in Separation Logic. Their
synthesis algorithm takes as input a pair of assertions – a pair of pre/post-condition – which
describe two states of the symbolic heap and derives a program that transforms one state into the
other, guided by the shape of the heap. Kneuss et al. [22] explore the problem of automatically
repairing programs written as a set of mutually recursive functions in a purely functional subset of
Scala, evaluated on seeded bugs on small programs. More recently, Nguyen et al. [28] propose a
novel method to automatically repair buggy heap-manipulating programs using constraint solving
and deductive synthesis [31]. All those approaches only target small programs, while our approach
has been shown to scale to large programs.

Temporal Property Inference. Automatically generating temporal specifications is an important
research direction. To enable a compositional analysis, both Infer and ProveNFix vastly reduced
the human effort by automatically inferring the specifications starting from a core set of primitives.
To further reduce the effort of annotating the primitive APIs, one approach is to use data mining
tools to extract the specifications from "good" code. Prior work [44, 45] propose an automatic
approach to inferring a target system’s temporal properties by analyzing its event traces. The core
of this technique is a set of predefined property templates crafted for a set of common events.
These templates form a partial order in terms of their strictness; and it finds the strictest properties
satisfied by a set of events based on the traces. Another approach is to make use of inference tools,
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such as Infer or ProveNFix, to generate specifications from the API implementations (hinted in Sec.
7.5), such as OpenSSL projects, and release the generated specifications for future analysis.

The first approach may be fast but imprecise, while the second is more precise but requires
additional tools to support spec inference. Nevertheless, these other directions are orthogonal to our
current proposal. In this paper, the temporal specs of primitive functions are manually annotated
according to the API documentation for C or descriptions for program functionalities. Our spec
inference uses a compositional analysis to infer the spec of procedures based on its behavior(s)
from given primitive API’s specs.

Realizability Checkers for Reactive Systems. Realizability checking [12] with assume/guaran-
tee contracts has been studied for synthesis and checking temporal logic requirements. A contract
is realizable, if it is possible to synthesize a component such that for any input allowed by the
contract assumptions, the component can produce outputs that satisfy the contract guarantees.
However, such techniques do not enforce the constraints on events occurring after the component,
as we captured via future conditions. We note that realizability checkers focus on synthesis, while
our proposal focuses on temporal bug detection and repair.

9 CONCLUSION

This work is motivated by “how to modularly analyze and repair bugs which can be encoded using
temporal properties?”. Our main contribution is showing the feasibility of finding and repairing
a wide range of bug types using expressive temporal specifications. Specifically, we present a
compositional framework driven by a minimal effort of annotating primitive APIs, which then
incorporates the novel future-conditions. This enables an automatic specification inference and
dynamic constraint generation. We prototype the proposal, present experimental results, and
demonstrate nontrivial case studies to show its utility. ProveNFix is the first program repair tool,
which is guided by temporal properties.

DATA AVAILABILITY

The source code of the tool, the dataset, and the appendix are available from [46].
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