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Abstract—The growing number of students enrolling in Com-
puter Science (CS) programmes is pushing CS educators to their
limits. This poses significant challenges to computing education,
particularly the teaching of introductory programming and
advanced software engineering (SE) courses. First-year program-
ming courses often face overwhelming enrollments, including in-
terdisciplinary students who are not CS majors. The high teacher-
to-student ratio makes it challenging to provide timely and high-
quality feedback. Meanwhile, software engineering education
comes with inherent difficulties like acquiring industry partners
and the dilemma that such software projects are often under or
over-specified and one-time efforts within one team or one course.
To address these challenges, we designed a novel foundational
SE course. This SE course envisions building a full-fledged
Intelligent Tutoring System (ITS) of Programming Assignments
to provide automated, real-time feedback for novice students in
programming courses over multiple years. Each year, SE students
contribute to specific short-running SE projects that improve the
existing ITS implementation, while at the same time, we can
deploy the ITS for usage by students for learning programming.
This project setup builds awareness among SE students about
their contribution to a “to–be–deployed” software project. In
this multi-year teaching effort, we have incrementally built an
ITS that is now deployed in various programming courses. This
paper discusses the Intelligent Tutoring System architecture, our
teaching concept in the SE course, our experience with the built
ITS, and our view of future computing education.

Index Terms—computer science education, software engineer-
ing, CS-1, automated program repair, large language models,
intelligent tutoring.

I. INTRODUCTION

In Computer Science (CS) education, we face the challenge
of increasing student enrollments over the past few years [1].
Consequently, it has become increasingly difficult to provide
high-quality and individualized learning support, particularly
for novice students [2], [3]. Mirhosseini et al. [3] recently
conducted an interview study with CS instructors to identify
their biggest pain points. Among other issues, they found
that CS instructors struggle with limited or no Teaching
Assistant (TA) support and the generally time-consuming task
of providing student feedback and grading assignments. Thus,
CS instructors would greatly benefit from automating tutoring
activities to support TAs in their responsibilities. Another
typical problem in CS education is the provision of Software
Engineering (SE) projects. Software engineering is typically
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a compulsory course in the university’s curriculum for CS
students, and it is often accompanied by development projects,
in which students can collect hands-on experience in software
development in a team going beyond a programming exercise.
Such projects come with inherent difficulties like acquiring
industry partners and the dilemma that such software projects
are often under- or over-specified. Additionally, such projects
are often one-time efforts within one team or one course, and
students cannot experience the evolution of a software system.

In this work, we report our experience in tackling these two
problems in CS education by building an Intelligent Tutoring
System (ITS) with and for students. As a multi-year research
and teaching effort, we combine SE teaching and programming
teaching via a long-term, practical, self-sustained software
system that can be deployed in CS courses with programming
assignments. Specifically, we use the latest research results in
automated program repair (APR) [4]–[6] to generate precise
patches for incorrect students’ solutions. Then, we leverage
the powerful natural language inference ability from large
language models (LLMs) to elaborate the low-level program
patch into conceptual-level feedback guidance.

Intelligent 
Tutoring System Submission

Student/Novice 
ProgrammerFeedback

Reference Program, 
Test Cases

Grading 
ReportsTeacher/Tutor

Fig. 1: General idea of an ITS that supports students and tutors
in programming courses.

Figure 1 shows the general idea of such a system. It
can provide automated and individual feedback for student
code submissions and grading support for tutors and lecturers.
Further, we involve third-year SE students in the incremental
development of such a system. We offer various SE projects
for the students in our advanced SE course. In this course,
the students can choose from a wide range of projects, which
essentially represent the development or extension of ITS
components. Based on the nature of the overall project, we
can conduct requirements engineering activities (e.g., surveys,
interviews, and user studies) in-house because the various
stakeholders are available in the university context. Each
student project has the chance to contribute to the overall long-
running SE project and eventually impact the learning experi-
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ence of hundreds of other CS students. In our experience, this
creates additional motivation because the effort is not lost, and
they can relate to the users because they (at some point in their
studies) also faced the challenges of learning programming.

Based on our experience with around 125 undergraduate SE
students who helped develop the system throughout three years
of teaching, the SE students enjoyed the course project. In par-
ticular, they liked the potential reuse of their implementation
in the real deployment of the ITS. Additionally, they enjoyed
the fact that there is already a system, which they have to
extend (i.e., also the added complexity in understanding the
already existing design and codebase).

We collected the user experience of the built ITS after each
offering of our SE course. Our controlled experiments with
novice students revealed that the ITS can benefit students by
localizing error code snippets and highlighting the error cate-
gories. Our shadow deployment with tutors demonstrates the
generalizability and quality of generated feedback, implying
the potential to reduce the workload for teaching staff.

Our course not only impacts the programming courses in our
university but also has the potential to impact other universities
which adopt a similar teaching concept linking the teaching
of software engineering with the teaching of programming. In
the future, we plan to conduct more user studies to explore
learning success across university boundaries.

In summary, we make the following core contributions:
• We present our approach that facilitates both SE and pro-

gramming teaching, by linking them together via develop-
ing an Intelligent Tutoring System (ITS) for programming
as a multi-semester SE project.

• We present our design and architecture of an extensible
automated feedback system for computing education.

• We present our long-term vision, teaching concept, and
project management in the SE course that involves the
incremental development of ITS.

• We share our experience with the stakeholder’s engage-
ments through two controlled experiments with students
and a large-scale shadow deployment with tutors.

Paper Structure: We first present the research background
and discuss the related work in Section II. Section III explains
the overall architecture of our ITS, particularly Section III-F
and Section III-G highlights the system’s key student-facing
functionalities: feedback and grading. Then we describe our
teaching concept and detailed course arrangement in Sec-
tion IV. In Section V and Section VI, we report our pilot
user study and experience of applying ITS in the teaching
of first-year programming and second-year data structure and
algorithm courses. Finally, we reflect on the challenges in
organizing the course in Section VII and share our future
vision in Section VIII.

II. RELATED WORK

A. Capstone Projects in Software Engineering Teaching

Over the years, project-based courses [7]–[12] have been
applied as common sense in software engineering teaching.

Students are often required to work as a team to develop
software either from industrial partners or simulated real-world
topics via semester-long projects. However, there exist inherent
barriers and challenges to this teaching setting. For instance,
continuously collecting project topics from industry partners
and establishing an efficient communication channel between
stakeholders (students and company clients) are challenging
tasks for the instructor. This leads to further difficulty that
SE students have to either work on repetitive projects or a
different, one-time effort project each year. Therefore they
usually do not have a general picture of the entire system
and rarely have the opportunity to experience the evolution of
a mature software system.

In this work, our focus is presenting the idea of having
an in-house, long-running, sustainable software engineering
project in the university context. This kind of long-running
SE project shares characteristics with other community-driven
course concepts [13]. Our proposed teaching concept is novel
in the sense that it links the teaching of software engineering
courses and the teaching of introductory programming courses,
as well as other courses like data structure and algorithms. This
is done by developing an intelligent tutoring system. Students
not only get training for software development but also gain
exposure to the latest research in the SE community.

B. Automated Feedback Generation

a) APR-based Approach: Automated program repair
(APR) [14]–[16] is a technique that is designed to au-
tomatically provide program patches to reduce developers’
manual debugging burden. Prior research [17] has shown
the possibility of applying APR techniques in introductory
programming courses. Over the last decade, a number of CS-1
specific APR tools have been introduced to rectify program-
ming mistakes and provide feedback for novice programmers.
AutoGrader [18] automatically synthesizes patches for com-
mon mistakes in students’ incorrect programs using manually
curated program error models. Clara and SarfGen [4], [5]
synthesize patches to repair students’ incorrect programs at the
basic-block level by editing students’ faulty statements with
expression ingredients from reference solutions. Refactory [6]
uses refactoring rules to improve repair accuracy and patch
quality. Verifix [19] aims to improve the trustworthiness of
generated patches by performing program equivalence verifi-
cation. There are also works specifically designed for repairing
syntax issues in students’ submissions [20], [21].

b) LLM-based Approach: The emergence of LLMs has
become popular in computer science education. Researchers
have leverage LLMs for feedback generation in programming
education [22]–[31]. For example, Balse et al. [22] and Hellas
et al. [27] found that LLMs struggles to identify all issues
in student’s questions and false positives are common in
the feedback generated by LLM. Many works [24], [25],
[31] focus on generating feedback on syntax problems and
error messages. While [23], [28], [30], [32] tried to build
LLM-based feedback generation systems that are capable of
handling general students’ questions, they heavily rely on
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specifically curated prompts, and it remains unknown how well
these systems can be adapted by worldwide educators.

Despite these tools having shown promising results in CS-
1 teaching, their research outcomes have different focuses
that cannot be best utilized in a single system. In this work,
we present an Intelligent Tutoring System that synergies the
strengths of both APR and LLM for feedback generation of
programming errors. Our modular design makes the ITS a
customizable platform that can be easily adapted and evolve
with the latest relevant research results over time.

III. INTELLIGENT TUTORING SYSTEM (ITS)

Despite prior research [4]–[6], [17], [19], [33] from auto-
mated program repair and synthesis demonstrated their po-
tential of feedback generation and grading in programming
courses, these systems are not yet widely adopted in CS
education. The main reasons include their prototype nature,
difficulty of use, and lack of evolution. Additionally, this line
of work exposes direct fixes of errors to students, which
may hinder the learning process. Recent advancements in
LLMs have also revolutionized automated feedback systems in
computer science education [22]–[30]. These systems typically
focus on prompting large language models (LLMs) for specific
teaching scenarios, such as question-answering for lecture
topics. However, they heavily rely on LLM output, which is
known to be prone to hallucinations [22], [27].

In this section, we introduce the design principles of our
Intelligent Tutoring System (ITS) for programming assign-
ments that synergize the strengths of both approaches. The
ITS first searches for precise bug-fixing patches with a hybrid
program repair engine, and then ITS invokes LLM to use those
patches as guidance to pinpoint students’ conceptual misun-
derstandings and provide more reliable feedback. The key is to
bridge the gap between accurate low-level fixing by program
analysis and knowledgeable high-level explanations by LLMs.
We illustrate the detailed architecture, key components, and
workflow for practitioner adaptation.

A. Design Principles

To build a practical and up-to-date ITS that can be widely
adopted, we adhere to the following three design principles:
• Language-Independent: The ITS must be capable of pro-

cessing multiple programming languages to fit the needs of
various programming courses. Developing and maintaining
a separate ITS for each language is both costly and imprac-
tical. To achieve language independence, the ITS should be
designed with clean interfaces allowing language-specific
plugins or adapters. These plugins handle language-specific
syntax and semantics, while the core system manages the
general logic of tutoring and feedback. This principle en-
sures that the ITS can be utilized across diverse program-
ming courses, easyily adapting to curriculum changes.

• Modular and Extensible: The ITS need to be modular to
incorporate the unique benefits of various research tools,
facilitating maintenance and upgrades. The architecture
should feature well-defined interfaces between modules,

enabling the addition of new components or the replacement
of existing ones without disrupting the overall system.
This principle ensures the system’s ability to evolve by
integrating the latest research findings. For instance, the
core repair engine can incorporate new repair strategies,
and the feedback generator can be enhanced through new
interactions with large language models, such as LLM agent
collaboration, making the ITS a future-oriented solution.

• Scalable: The ITS needs to be scalable to handle a large
number of student submissions and provide feedback in
a timely manner without sacrificing usability. Our design
of independent modules allows the dynamic deployment of
scaling methods like load balancing for all components.

Inspired by prior research in program repair [4]–[6], [19], we
have identified several essential components for the ITS. Fig-
ure 2 illustrates the detailed architecture and workflow of the
ITS. The figure also includes a sample code submission with
an incorrect loop condition and the corresponding generated
feedback. All components are provided via interfaces, allowing
for independent implementation. In the following sections, we
introduce each component in detail and explain the workflow.

B. Language Parser

To support multiple programming languages, we designed
an internal intermediate CFG program representation that
unifies different language syntaxes. This intermediate CFG
program representation is capable of expressing the majority
of syntax and semantics that are required in programming
assignments, such as variable declarations, control structures,
and basic data types. This intermediate representation ensures
that the core functionalities of the ITS can operate indepen-
dently of the programming language used. For example, it
enables lightweight program analyses, such as control flow,
variable usage, and data dependency analysis. As the first step
in the workflow, the ITS runs a grammar checker to identify
the programming language of the current feedback request.
Next, the parser component processes the source code of both
the reference program and the student’s submission. It invokes
the corresponding language-specific parser to generate the in-
termediate representation of the programs. This representation
standardizes the code into a common format used by other
components, which allows the ITS to function consistently
across different languages. Currently, the parser component
includes specific parsers for C, Java, and Python.

C. Syntactic Alignment

One key difference between general program repair for
large software and program repair for educational purposes
is the availability of an expected program specification in the
form of a reference implementation. The Syntactic Alignment
component is designed to align the reference program with
the student’s submission. It processes the intermediate rep-
resentations of both the reference and student programs to
identify matching basic blocks and map the existing variables
for each function within the programs. The alignment algo-
rithms [4], [6], [19] are based on the similarity of control
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#include <stdio.h>
int main(){

int i,j,n,sum=0;
scanf("%d",&n);  
for(i=1;i<=n;i++){

for(j=1;j<=i;j++){
sum+=j;

}}
printf("%d",sum);
return 0;} 

#include <stdio.h>
int main(){

int i,j,N,sum;
sum=0;
scanf("%d",&N);
for(i=1;i<=N;i++){

for(j=1;j<=N;j++){
sum=sum+j;

}}
printf("%d",sum);
return 0;} 

Reference 
Program

The mistake was using an incorrect inner loop 
range, causing an excessive summation. 
Revisit nested loops, loop bounds, and 
summation logic to avoid similar mistakes in 
the future.

Reference and Submitted Program in 
internal Program representation

Fig. 2: Illustrates the general workflow of the Intelligent Tutoring System.

flow and variable usage, specifically using Def-Use Analysis,
to compare the reference and student programs. The results of
this alignment can then be used to pinpoint the locations where
the reference and submitted programs diverge in behavior.
Furthermore, this information is instrumental in attempting
to repair the submitted program by leveraging the data from
the reference solution. Note that, the ITS can take in multiple
reference solutions with different solving strategies to increase
the alignment success rate like existing APR tools [6], [19].

D. Error Localizer and Interpreter

Error localization is a crucial step in APR systems that
aims to identify the buggy locations within the software.
In the context of programming education, error localization
identifies specific basic blocks or expressions that violate
the expected specifications. The Error Localizer component
employs several dynamic execution-enabled localization algo-
rithms to trigger erroneous behavior in the student’s program.
These algorithms include trace-based localization and statisti-
cal fault localization [34]. The dynamic program execution is
facilitated by an Interpreter component. This interpreter allows
the execution of a program in its intermediate CFG-based
representation without the need for compilation or execution
on the actual system. It generates an execution trace with
the sequence of executed basic blocks and a memory object,
which holds the variable values at specific locations. The
Error Localizer component utilizes the Interpreter to execute
test cases while observing the variable values at specific
locations. This process enables the system to detect semantic
differences between the reference and submitted programs,
thereby pinpointing the precise locations of errors.

E. Repair Engines

Given the reference programs, student submissions, and
the identified error locations as input, the Repair component
attempts to fix the submitted programs by generating edits that
transform the student’s program to be semantically equivalent
to the reference program. The Repair component acts as
an engine that can utilize various repair strategies, such as

optimization-based repair [4], synthesis-based repair [6], [19],
and LLM-based repair [2]. Upon receiving a repair request
from the previous components, these repair strategies are
invoked in parallel to search potential repair candidates for all
identified errors (even with multiple errors existing in a student
submission). Then, the repair engine selects the optimal repair
candidate that minimally alters the student’s submission. This
approach aims to rectify students’ mistakes while preserving
their original intentions as much as possible. Note that the
repair candidate is managed at the level of the intermediate
representation of the program, and we convert it back to the
source code before proceeding to the feedback generation
phase.

F. Feedback Generator

With the collected information from previous components,
the Feedback component generates natural language explana-
tions to guide students in correcting their mistakes without
revealing the direct answer. This component incorporates a
common front-end prompt interface with various LLM back-
ends, allowing flexible switching between different LLMs and
easy integration of new LLMs. Currently, it supports both
commercial LLMs like GPT and Claude series, as well as
open-source LLMs like LLaMA [35] from Meta. We use GPT-
3.5-turbo as the default LLM backend to balance performance
and cost. Our example prompt template consists of (1) a
task description, (2) the student submission, and (3) program
patches from the repair engine annotated with error locations:
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You are a teaching assistant for an introductory programming course.

You will be given (1) text description of a programming task (2) a wrong
student submission (3) sample fixes to the wrong submission.

Based on the sample fixes, please explain to the student conceptually
why the mistake exists in this task, and what programming concepts the
students should revisit.

Description of the programming task: {description}

Wrong student submission: {student code}

Fixes to the wrong submission: {patches from repair engine}

These ingredients in the prompt can be seen as a precise
hint that instructs the LLM to generate feedback that high-
lights both assignment-specific mistakes and related general
programming concepts. This dual focus helps students un-
derstand the underlying issues more comprehensively. Note
that, this feedback generator is able to integrate any latest
prompt engineering methods in computing education and is
customizable for specific assignment categories.

G. AutoGrader

Test-suite based automated grading suffers from the problem
that a small mistake by the student can cause many test
cases to fail. To provide better support for tutors, we integrate
recent research in conceptual auto-grading into the ITS. This
technique aims to assess the conceptual understanding of the
student and awards grades accordingly [33]. This is achieved
by constructing a concept graph from the student’s attempt
and comparing it with the concept graph of the instructor’s
reference solution. It automatically determines which of the in-
gredient concepts being tested by the programming assignment
are correctly understood by the student. Given the instructor-
provided reference solutions and students’ incorrect solutions,
the Auto-Grading component generates a grading report for
the tutor. It assesses the student’s submission by their missing
or improperly used programming concepts to address the over-
penalty issue [33] in the conventional test-based assessment.

Overall, the designed ITS serves as a platform that can
continuously integrate the latest research efforts from APR
and LLM for CS education.

IV. DESIGN OF SOFTWARE ENGINEERING COURSE

This section presents the design of our new variant of
SE courses. This course simultaneously enhances SE and
programming teaching by embedding the Intelligent Tutoring
System discussed in Section III as a project within the curricu-
lum. We outline the high-level teaching concept, provide an
overview of the long-running ITS SE project, and detail the
specific course structure and short-running project setup.

A. Teaching Concept

Traditional software engineering (SE) courses teach students
basic SE practices by creating similar small-scale, one-time
effort projects. Instead, our teaching concept highlights the
“foundations” in two dimensions: the foundational research in
SE and the foundational principles of software development.

We aim to provide senior SE students with (1) exposure
to frontier research ideas, such as fuzzing, debugging, static
analysis, and program repair, and (2) an immersive software
development environment of contributing to an existing, func-
tional, in-use codebase that allows the students to go beyond
programming-in-the-small in the course project.

Our SE course achieves this vision by linking software
engineering and programming education together. We embed
real-world Intelligent Tutoring System development as an SE
project within the course curriculum. This project is well-
framed and particularly interesting in the university context
because (1) the demand for programming tutoring support will
exist for a long time, and we can continuously collect feedback
from users to curate new requirements. The user feedback can
serve as project topics for the next iteration of our SE course.
(2) The SE students who contribute to ITS can relate to the
end users since they once had to learn programming, (3) all
the related stakeholders are available in the university, which
enables requirement elicitation and milestone discussions, (4)
the techniques required for ITS is highly relevant to advanced
SE skills. For instance, program analysis, software design,
program verification, and program repair.

B. Overview of Long-running ITS Project

Figure 3 illustrates the overall diagram of the Intelligent
Tutoring System as a self-sustained long-running SE project
that evolved over multiple years in our SE course.

Intelligent Tutoring 
System

each project group focuses on one
component (short-running SE project)

students and tutors in 1st
programming courses

Deploy updated and new 
requirements

Baseline 
Codebase

Initial 
Requirements Maintenance and 

Improvements

Course

1

3

2
4

6

Oversee 
evolutionimproved and new 

components

5

Fig. 3: Concept of the long-running ITS project that is incre-
mentally built and improved by short-running projects inside
SE teaching environment.

1) Initial Requirement Collections: Before we started any
development activities on ITS, we collected initial require-
ments based on the prior research experience of automated
program repair [4]–[6], [18], [33] in educational scenarios
and discussions with first-year programming course lecturers.
At a high level, the initial requirements are tutor-oriented,
which mainly consists of highlighting suspicious error code
snippets, producing precise code patches, and drafting high-
level feedback explanations on behalf of tutors.

5



TABLE I: Course assignments that accompany the major project milestones.

ID Topic Details
1 Requirements Analysis Elicitation Preparations and questions for the interview session with the customer.
2 Requirements Modeling Requirement modeling with UML Use Case and Activity diagrams.
3 Architectural Drivers and Variants Discussion of architecture variants and the requirements that influence architectural design.
4 Strategy and Project Planning Project-specific planning including a Gantt-Chart and a resource plan.
5 Detailed Design Structural and behavioral design of the students’ implementation with UML models

6 Intermediate Deliverable Towards the middle of the course, we ask the students to submit a minimal
project implementation and a report with their project plans and various models.

7 Validation (i.e., Unit Testing) Test case design and test report.
8 Presentation & Final Artifact At the end of the course, all teams need to present their project and submit their code.

9 Final Report After the presentation, the students additionally need to submit a final report,
including a retrospective of their project and design decisions.

2) Codebase and Architecture Design: In step 2, we devel-
oped a baseline codebase, which included designing the arti-
fact and the desired workflow discussed in detail in Section III.
This first version already defined interfaces between com-
ponents and provided common data structures. The baseline
also included a prototypical implementation for most of the
initially planned components to test their feasibility. Having an
initial baseline codebase provides the students with additional
requirements like the existing architecture, which should not
be changed. It also provides them with an environment to work
on a project with partial existing functionalities.

3) Course Projects Setup: For the SE course project (step
3), we design multiple short-running SE projects based on the
feedback from first year course instructor in the requirement
elicitation session of our course, and these projects essentially
represent the implementation variants of existing or new
components. We discuss those short-running projects in detail
in Section IV-D.

4) Deployment and Refinement: After each SE course,
our teaching team evaluates all projects and integrates the
best contributions of each project topic into our baseline
implementation (step 5). Therefore, over the years, the baseline
will grow and improve. At the same time, we also deploy the
increments of the system in real-world programming courses
and collect additional feedback and requirements from stu-
dents and tutors (step 4). To keep the implementation standards
high and to ensure that our architecture and design can
cope with the increasing codebase and the possibly new and
changing requirements, we constantly maintain and improve
the implementation (step 6).

Overall, our Intelligent Tutoring System as a long-running
SE project course is structured so that the teaching of SE
projects is accomplished over multiple years via a real-life SE
project. Over the years, the ITS became more and more robust,
and varied, with the continuous effort of each year’s students’
contributions. It eventually became a full-fledged functioning
automated tutoring system that is being deployed.

C. Overview of SE Course Management

1) Course Curriculum: The course curriculum focuses on
the main activities in SE. Furthermore, we introduce students
to selected relevant SE topics for our project, e.g., automated
program repair, static analysis, and fault localization. Each lec-
ture is separated into two parts: (a) the teaching of foundations

in the aforementioned areas, and (b) the teaching of project-
specific knowledge and corresponding applications.

2) Requirements Analysis and Modeling: The course starts
with a focus on requirements engineering, their elicitation, and
modeling. Therefore, we invite stakeholders like lecturers and
tutors from the first-year programming courses to an interview
session with the third-year students. This interview session
is prepared with corresponding assignments about question
design and followed up with requirements modeling exercises
using UML Use Cases. We also teach other requirements mod-
eling, e.g., with finite state machines and sequence diagrams.

3) Software Architecture and Design: Afterwards, we in-
troduce general principles for software architecture design and
modeling. The project-specific part of the lecture introduces
the existing architecture and its components, including the
available interfaces, which need to be used by the students
in their own implementations. We further discuss architecture
variants of the existing architecture to discuss pro and contra of
the made design decisions. Our baseline Java implementation
already provides the students with elementary classes and
functionalities, which they can and need to reuse. To illustrate
the fine-grained design, we first introduce relevant design
principles and patterns that occur in our implementation. We
do not give a comprehensive introduction to design patterns
because there is another dedicated software design course in
our institution. Instead, we only introduce the most relevant
design aspects to enable the students to work on the projects.

4) Project Planning and Implementation: As part of the
assignments, the students have to submit a project plan.
Therefore, we also introduce the basics of project planning,
work package design, and milestone and resource planning,
including necessary models like Gantt-Charts. The coding
itself is a major part of the project and is mostly supported
by the mentors in project-specific meetings. The lecture in-
troduces general principles like Clean Code and testing and
debugging techniques meant to help the students in their
concrete implementation efforts.

5) Testing, Debugging, and Integration: As automated test-
ing and debugging is a major part of an intelligent tutoring
system, we also introduce several validation concepts and
debugging techniques. In particular, we teach foundations
in test-suite estimation, functional testing, whitebox testing,
structural testing, dataflow testing, and mutation testing. To
this end, we also introduce the basics of static analysis like
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TABLE II: Examples of provided Short-running projects and trained skills in our SE course over the years.

Project Trained Skills
Program Parser Develop an understanding of AST and CFG. Convert program from source language to intermediate representation.
Program Alignment Develop skills in static analysis (e.g., Def-Use) and practice them in aligning two programs.
Interpreter Develop a program interpreter that supports ITS’s intermediate representation. Experience dynamic program analysis.
Error Localization Understand and implement frontier error localization research (e.,g execution-based, statistical-based fault localization.)

Repairing Engines Understand and implement frontier various APR research [4]–[6], [19], the approaches include
program verification, synthesis, ILP optimization, and LLM-assisted repair [2].

Feedback Generation Explore LLM application in explaining low-level program patch to conceptual-level guidance.
Tests Generation Using fuzzing or mutation testing to generate incorrect programs that test the capability of the whole ITS.

control-flow graphs (CFGs) and Define-Use Analysis (DUA).
Furthermore, we discuss the basics of debugging with the
TRAFFIC principle and delta debugging and dive deeper
into the basics of static and dynamic slicing and statistical
fault localization. Towards the end of the curriculum, we also
discuss integration testing strategies and the related challenges.

6) Project-Specific Topics: In addition to the foundations
in general software engineering, we teach the background in
automated program repair and provide an overview of existing
solutions for ITS components. Depending on the advertised
projects, we also discuss more specialized topics like taint
analysis and Worst-Case Execution Time (WCET) analysis to
ensure the students have the relevant background and material
to work on their projects.

7) Labs and Assignments: Each week in our curriculum
is accompanied by a lecture and a lab session. The labs
are used to meet in smaller groups of students and discuss
their assignments. The assignments track the major milestones
in the student’s projects. We share the course assignment
overview in Table I for practitioners.

D. Overview of Short-running Projects

1) Project Preparation: As the key part of the SE course,
we carefully curated a set of short-running projects before
each semester started. Those short-running projects are not
only engineering efforts but also cover different research topics
in the Software Engineering community. Table II shows a few
examples of short-running projects that were provided over the
years. The topics range from program structure understanding,
static analysis practice, replication of error localization, and
automated program repair techniques. In addition, we prepared
a specific testing project that helped students gain fuzzing
and mutation testing experience. In the first year, we mainly
had projects to build program analysis capabilities. We further
designed projects to extend core features like Automated Feed-
back, Automated Grading, and Automated Repair in the second
year. Later, we also encouraged students to integrate LLMs, so
the ITS can synergy existing program analysis artifacts with
generative AI. These projects are inherently different from
traditional SE courses that merely focus on development activ-
ities. The additional context on SE research exposed students
to the fundamental techniques behind software artifacts.

2) Team Management and Project Guidance: To reduce
students’ workload, we ask the students to form groups of
3-4 people to work on the project. We allow them to search
for their team members instead of a random assignment by the

teaching team. We prepare an ungraded Assignment 0 for the
project selection, which provides an overview and additional
references for all available projects for the specific year. Each
team can bid for three projects, while the teaching team
allocates the final project. This is to avoid most of the students
working on the same topics. Additionally, we assigned each
team a graduate-level mentor who are familiar with the project
topics to help students get started on their project smoothly.
Each team was required to meet and discuss weekly with their
mentor focusing on the team’s planning, design, and imple-
mentation progress. Interestingly, those graduate mentors all
had experience in tutoring programming courses. So the deep
involvement of graduate mentors also works like discussion
meetings with stakeholders.

Through the course and project organization, the students
advance their skills in software development, grasp a deeper
understanding of fundamental SE concepts, and expose them
to frontier SE research. All student projects eventually con-
tribute to an ITS, whose details were discussed in Section III.

V. EXPERIENCE IN CS-1 TEACHING

We evaluated the Intelligent Tutoring System (ITS) after
two semesters of development in a first-year programming
course through two methods: (1) a pilot study with 15 novice
students from the course, and (2) a shadow deployment where
we compared ITS-generated feedback to that of human tutors.

A. Pilot Study

No experience

Professional 
Experience

1
2

5
7

0 2 4 6 8

5
4
3
2
1

Students' Programming Experience

Fig. 4: Participants’ Self-Assessed Experience

Study Methodology: In the pilot study, we randomly divided
participants into two groups, Group A and Group B, based
on their self-assessed programming experience (shown in
Figure 4). Group A had access to the ITS, while Group B
did not. All participants were instructed to complete four
programming tasks using our Learning Management System
(LMS), which allowed them to run provided test cases and
submit solutions multiple times within a 20-minute time limit
per task. The study was structured into three parts: (1) a
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background survey, (2) the programming tasks, and (3) a
feedback survey. After completing their tasks, Group B was
introduced to the ITS to offer their feedback, allowing us to
collect input from both groups on the system’s potential impact
on learning experiences.

Programming Tasks: We selected four entry-level program-
ming tasks from past mid-term exams of the CS-1 course,
each covering a fundamental programming concept. The tasks
included: (1) removing duplicates from a tuple, focusing
on loop and tuple manipulation; (2) iteratively reversing a
string, covering loop and string manipulation; (3) recursively
reversing a string, introducing recursion; and (4) iteratively
reversing an integer, practicing while-loop usage. These tasks
were chosen to represent practical challenges that students
commonly encounter in early programming courses.

Result Analysis for Students: We recorded the submitted
solutions and timestamps for each non-duplicate attempt on the
programming tasks. A task was considered solved if a student’s
solution passed all test cases. Across both groups, we received
128 attempts in total — 65 from Group A and 63 from Group
B. For open-ended questions, we applied qualitative content
analysis using coding methods based on Schreier’s approach
[36]. One author conducted the initial analysis, and another
reviewed the codes. After discussion, we finalized the analysis.

TABLE III: The average number of failed attempts, rectifica-
tion rates, average rectifying time of failed attempts in minutes.

Tasks Avg # Failed
Attempts

Rectification
Rate

Avg Rect.
Time (mins)

A B A B A B
Task 1 4.8 4 4/5 0/2 7 -
Task 2 1.9 5.5 7/7 3/4 9.2 9.3
Task 3 2.3 2.8 5/5 2/4 4.6 2.5
Task 4 2.3 3.1 5/6 5/7 4.5 11.3
Total 2.7 3.7 21/23 10/17 6.7 8.9

Fewer attempts, higher accuracy: We then analyzed stu-
dents’ performance, focusing on failed attempts. Table III pro-
vides an overview of the average failed attempts, rectification
rates, and time taken to correct solutions across both groups.
The rectification rate (X/Y) refers to the number of students
(X) who eventually corrected their solutions, out of the total
number of students (Y) who initially failed on a task. As
shown in Table III, students who received assistance from the
ITS (Group A) solved more tasks with fewer overall attempts
compared to those without ITS (Group B). Although Group A
made slightly more attempts on Task 1, it’s important to note
that none of the students in Group B who failed this task were
able to rectify their solutions. This suggests that Group B’s
fewer average attempts may be due to a lack of understanding
of how to correct their mistakes, leading them to give up after
a few tries. On average, Group A made 2.7 failed attempts,
compared to Group B’s 3.7. While this difference is small,
Group A showed a much higher success rate in correcting
their errors, successfully resolving 21 out of 23 failed attempts
(91.3%). In contrast, Group B struggled more after failing their
first attempt, managing to fix only 10 out of 17 failed attempts

(58.8%). This highlights the effectiveness of the ITS in guiding
students through the correction process.

Regarding rectifying time, Group A was also faster, with an
average of 6.7 minutes to fix one incorrect solution, compared
to Group B’s average of 8.9 minutes. The average rectifying
time for task 1 in Group B is unavailable as none of the
students could rectify their incorrect attempts. Moreover, the
average rectifying time for Group B is significantly lower for
Task 3 (2.5 minutes) because the two incorrect solutions were
almost correct (e.g., typos).
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Fig. 5: Students’ feedback of ITS

Usefulness of ITS: Figure 5 presents the feedback from
students on the usefulness of the ITS, focusing on features
such as highlighting potential error lines in the code editor
and providing hints about error categories. The survey results
indicate that most Group A students found the ITS helpful and
were satisfied with its feedback and functionality. Over 80% of
the students responded positively to the highlighted lines and
mistake categories, finding them useful for improving their
code. Additionally, more than 73% would like to have the
ITS deployed in their programming courses.

B. Shadow Deployment with Tutors

In addition to the controlled experiments, we ran a shadow
deployment of ITS in a first-year programming course with
571 students during the fall semester of the 2023/2024 aca-
demic year. The goal is to compare ITS-generated feedback
with the tutor-curated feedback before deliver to students.
In this first-year programming course, students submit their
solutions on an LMS that automatically runs pre-defined test
cases for programming assignments. After the deadline, tutors
manually review incorrect submissions and write personalized
feedback to students who submit incorrect solutions.

We deployed ITS for 30 programming tasks spanning six
weeks of assignments to automatically generate feedback
for submitted solutions that failed test cases. Note that, we
excluded the first two introductory weeks and the final week,
which involves Object-Oriented Programming (OOP) that the
ITS did not support yet. Additionally, we did not generate
feedback for empty solutions.

Throughout the semester, we collected non-empty 1,835
incorrect solutions. The deployed ITS successfully generated
semantically correct patches for 1,758 (95.8%) incorrect sub-
missions by its repair engine. A patch is deemed correct if
it makes the original submission pass all test cases for a
particular programming assignment. Then the feedback com-
ponent generated corresponding natural language comments
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for these submissions. Furthermore, we randomly sampled
10% of ITS-generated feedback to manually evaluate the
quality of ITS’s automated feedback by assessing whether
they were semantically equivalent to the corresponding tutors’
feedback. Our manual analysis shows that 136 (77.2%) of
ITS-produced feedback is semantically equivalent to tutors’
feedback, illustrating its capabilities to assist human tutors.

VI. EXPERIENCE IN DATA STRUCTURES TEACHING

In parallel to the shadow deployment with tutors, we
explored the feasibility of enhancing ITS to handle more
advanced tasks such as Data Structure and Algorithms in
our SE course. Specifically, we provided SE projects to add
support for OOP and advanced LLM-based repair engines [2],
which were initially missing. These additional functionalities
enabled the ITS to define and operate on data structures
and improved its ability to fix complex errors. We share our
experiences through an anonymous controlled experiment with
30 second-year students from a data structure and algorithm
course to demonstrate the evolving status of the ITS project.

This controlled experiment consists of four LeetCode tasks
— two on Tree and two on Graph topics. These tasks (shown
in Figure 6) have similar difficulties and they are closely
relevant to the students’ weekly problem sets. We conducted
the controlled experiment at the end of the semester, and we

Tree Topic

We assess students’ understanding of Binary Search Tree definition and
Pre/In/Post Tree Traversal, which is covered in Week 4.
Task 1: ”Construct Binary Tree from Preorder and Inorder Traversal”
Task 2: ”Construct Binary Tree from Inorder and Postorder Traversal”

Graph Topic

We assess students’ understanding of the Shortest-Path Problem in
Graph, which is covered in Week 8.
Task 3: ”Minimum Cost to Reach City With Discounts”
Task 4: ”Minimum Cost to Buy Apples”

Fig. 6: Overview of the Tasks Used in Control Experiment.

equally divided the 30 student participants into two groups
based on their performance in weekly assignments. Group A
has access to ITS feedback (after finalizing submissions) for
Tasks 1 and 3. Therefore, we explore whether this feedback
helps them to solve Tasks 2 and 4 (which are similar to Tasks
1 and 3, respectively). For example, additional feedback could
strengthen their conceptual understanding of the topic. Group
B has no access to ITS feedback for any of the four tasks.
Each task had a time limit of 25 minutes.

Figure 7 shows the number of correct submissions for each
task. For Task 1 and Task 3, both Group A and Group B
performed similarly, with a 30% correct submission rate. How-
ever, for Task 2 and Task 4, Group A’s correct submission rate
increased to 60%, compared to 40% for Group B. Although
some of this improvement may be attributed to task similarities
and additional given time, the increase in correct submissions
for Group A suggests that the ITS feedback could have had a

positive impact on their understanding. While these differences
are not statistically significant, they indicate a promising trend
in favor of ITS’s potential to support students’ learning.
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Fig. 7: Number of Correct Submissions on the Four Tasks.

We present a case study of a Group B student who was
close to solving Task 1 and Task 2 but ultimately failed both.
The student’s Task 1 submission is shown in Figure 8a. At
first glance, the code appears correct; however, the issue lies
in the “build” helper function at lines 14–15. The redundant
condition (if (high == low)) causes the code to skip recursion
for the root node, resulting in incorrect tree construction.

The student made 8 attempts on Task 1, arriving at a nearly
correct solution that only required a small fix—removing the
redundant condition. Given that Task 2 is isomorphic to Task
1, we expected the student to solve it within the additional 25
minutes provided. However, the student reused their Task 1
solution, submitting 13 attempts without modifying the faulty
condition. This example demonstrates how even students who
are close to the correct solution can struggle without timely
guidance. We show the ITS-generated feedback (Figure 8b)
to this student after the experiment, the student immediately
identified and corrected the error in both tasks. This highlights
the importance of immediate feedback in supporting students
when they are near the correct solution but lack the insight to
make the final adjustment.

VII. CHALLENGES & LESSONS LEARNED

To further share our experience with our combined research
and teaching effort, we report the challenges we faced and
the lessons learned concerning the teaching of our advanced
software engineering course.

A. Incentives for Stakeholders

We have three main user groups: the students who receive
feedback, the tutors who can use the ITS to better understand
the students’ errors and get grading support, and the lecturers
who provide the inputs like assignments and reference imple-
mentations. Lecturers are naturally concerned about deploying
more tools, including the potential negative effects on the
learning outcome caused by inaccurate output. To gradually
convince the lecturers, we decided to first focus on a targeted
shadow deployment for tutors. For tutors, an imperfect output
is less critical and still can provide helpful guidance to them
and help us to get feedback continuously. To engage with
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1 public TreeNode buildTree(int[] preorder, int[] inorder) {
2 if (preorder.length <= 0 || inorder.length <= 0)
3 return null;
4 if (preorder.length != inorder.length)
5 return null;
6 return build(preorder, inorder, 0, inorder.length - 1);
7 }
8
9 public int index = 0;

10 private TreeNode build(int[] preorder, int[] inorder, int low, int high) {
11 if (high < low)
12 return null;
13 TreeNode root = new TreeNode(preorder[index]);
14 --- if (high == low)
15 --- return root;
16
17 int mid = search(low, high, inorder, preorder);
18
19 index++;
20 root.left = build(preorder, inorder, low, mid - 1);
21 root.right = build(preorder, inorder, mid + 1, high);
22
23 return root;
24 }

(a) Example Incorrect Submission from Group B for Task 1.

Feedback from ITS

Mistake on Termination Condition: This submission prematurely skips
the recursive calls and returns the root node before the subtrees are
properly constructed. By returning prematurely, the build function does
not explore the entire preorder or inorder arrays, leading to an incomplete
tree construction.

(b) Feedback for Figure 8a Curated by ITS.

Fig. 8: Example of an Incorrect Submission from a Group B
Student in Task 1 and ITS-generated feedback.

first-year students, we designed a user study that not only
has a monetary reimbursement but also provides additional
programming training and an extra tutorial after the user study
to explain the programming tasks to them individually. The
third-year students who develop the components in our course
showed great interest in our project because it is (or will be)
deployed in a real context and because they like working on
a larger project with existing parts. Overall, it is a valuable
experience for them, as shown by the following student quotes
about the question of what they liked the most in the course:

“As the module is new, its content to be taught may change
but I’m certain the ITS project is here to stay.”

“The project component – It’s really interesting, and I like
that it will actually be used. I think that makes it one of the
most interesting modules I’ve taken so far. It’s very cool to

understand the reasoning for design details with the teaching
team that actually built it.”

“Participation in an actual to–be–deployed software project
is exciting and makes your effort somewhat worthwhile.”

B. Project Preferences

In the first instance of our course, we allowed students to
pick projects on their own. Therefore, we ended up with an
imbalanced selection of projects. Students tended to prefer
a project with more explicit requirements, e.g., a Parser
component, instead of projects that involve more research. In

the second instance, we therefore only allowed bidding on
projects while the teaching team made the final decision.

C. Mentoring support for third-year students

In the second instance of our course, we had dedicated,
experienced mentors (i.e., graduate students) to help student
groups organize their efforts. We experienced that the addi-
tional mentorship helped SE students to quickly hands-on and
get the best out of their projects. This is not only helpful to
improve our system but also creates a better project experience.

D. Capability of built ITS

We also experienced another challenge in our journey, which
was to assist students who were unable to start a task. When
a student lacks a basic understanding of the problem or the
necessary programming constructs, the system struggles to
offer step-by-step guidance because its feedback relies on
existing code structures. To address this challenge, we plan
to integrate more pedagogical research with LLM into ITS to
help students across different stages of learning.

E. Managing Software Evolution

Overall, we experienced that our general approach is feasi-
ble and helps both the third-year and the first-year students.
However, we have also seen that we must invest significant
time from our side in managing the software evolution. This
includes selecting and integrating the best projects, maintain-
ing the code base, and continuously updating the design to
cater to new requirements as projects in the SE course.

VIII. IMPACT AND VISION FOR THE FUTURE

In this work, we presented our concept for linking the
teaching of SE projects with the teaching of programming and
introduced our Intelligent Tutoring System (ITS). Further, we
discussed our experiences and observations of using the ITS
through controlled experiments with first-year and second-year
students and also shadow deployment with tutors.

Based on our experience, the presented ITS impacts sev-
eral aspects of programming. With our long-running teach-
ing effort, we incrementally develop and improve the ITS
into a usable product. We change how students might learn
programming and support teachers in the introductive CS
courses. Furthermore, we provide the platform for senior
students to practice software engineering in a realistic scenario.
Additionally, they are encouraged to work on research-oriented
topics by selecting the corresponding projects. Moreover, the
ITS helps to integrate the latest research in educational APR
and related topics. Our teaching innovation can also impact
students from other universities as they adopt our concept
and join the ITS development team. In fact, we have already
exported the teaching concept to another university.

With the shift from manual programming to AI-assisted
programming, CS education must also be innovated. We think
the ITS represents a well-suited platform to help students learn
an effective way of using AI-based code generation tools like
GitHub Copilot and ChatGPT in the future. Therefore, instead
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of exposing the student directly to the AI assistant, the ITS can
moderate the prompts and explain the generated code with the
support of program analysis byproduct, achieving a three-way
interaction between the student, ITS, and AI assistant.

DATA AVAILABILITY

Our teaching materials and experiment artifacts will be
provided when the paper is accepted (due to double anony-
mous review). Our ITS is available through API requests and
customized deployment via university collaboration.
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