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Cyber-security plays a pivotal role in safeguarding the integrity and reliability of critical systems — spanning
healthcare, commerce, transportation, and power infrastructure. Yet software security teams are often critically
under-funded and under-staffed given the breadth and complexity of our software infrastructure. Recently,
Large Language Models (LLMs) have proven to be a transformative technology that is reshaping how we
interact with software. In this paper, we explore how LLMs can be leveraged to holistically address longstanding
challenges in cybersecurity. We start with a discussion on the structure of a Cyber Reasoning System that can
both detect and repair vulnerabilities in software autonomously. We follow up by examining LLMs’ strengths
in aiding program analysis within such a system, finding that LLM-assisted analyses can accomplish several
difficult analysis tasks such as extrapolating developer intent, filtering or augmenting the output of traditional
analysis tools or even solving complex multilingual constraints. Lastly, we discuss the current challenges and
limitations in constructing a composite system that can leverage these components. We hope that this article
can provide insights into the evolving role of LLMs and inspiration in shaping the future of software security.

CCS Concepts: • Security and privacy→ Software and application security; • Software and its engi-
neering→ Software development techniques.
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Program Vulnerability
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1 Introduction
Software systems control numerous key aspects of society such as government agencies, medical
services, utilities, national defense infrastructure and beyond. A core challenge in protecting these
systems, however, is their diversity and scale. Modern software is composed of components written
by different people, organizations, and increasingly generative AI tools. The resulting systems are
composed of many programming styles, languages, deployment environments, and dependencies.
This complexity can not only lead to additional bugs and vulnerabilities being introduced, but also
increase the difficulty of analyzing and reasoning about these systems. Our software is often so
large that it simply cannot be manually audited effectively, but it is simultaneously so diverse and
convoluted that building automated analysis tools can also present serious practical challenges. As
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Fig. 1. A Cyber-Reasoning System Workflow; Example CRS tools listed with ‘-’s

a result, even the very tools developed to mitigate security issues in our software infrastructure are
not exempt from the perils of growing complexity. This was made abundantly clear by the recent
CrowdStrike incident1, where the security system itself had a bug that caused worldwide outages
across countless industrial sectors.
Many promising approaches have been proposed to improve aspects of software security, but

have proven insufficient to address this issue in isolation. For example, fuzz testing techniques [20]
–i.e. a biased random search over the domain of program inputs to detect vulnerabilities– have
proven to be effective in real-world applications and at scale [24]. Yet the impact of the discovery
of new vulnerabilities through fuzzing is greatly limited by the effectiveness of the engineers that
must manually triage and fix them. Indeed, there is a dire shortage of cyber-security professionals,
and a detected vulnerability may only be fixed in downstream, dependent software 90-150 days
after it is reported [10]. Thus, to ensure that our software is truly secure, a holistic approach is
needed that can automatically progress through all stages of the cyber-security pipeline. How can
we discover and remediate vulnerabilities in complex software, prior to them being encountered in
the field? What opportunities do recent advances in Large Language Models (LLMs) present for
achieving this goal?
In this paper, we articulate in broad-brushes how LLMs can contribute to building so-called

Cyber-Reasoning Systems (CRSs) which attempt to address these issues autonomously. We first
outline the broad structure of a consolidated Cyber-Reasoning System (CRS) along with examples
of the role that LLMs can play in various components of this system. Subsequently, we summarize
the high-level technical challenges and opportunities in this emerging research area. Our article is
partly inspired by the recently completed DARPA AI CyberChallenge2 from which we take the term
Cyber-Reasoning System, and partly also by the recent public interest in autonomous software
engineering, where programs are fixed and improved automatically [11] using LLM agents such
as AutoCodeRover [23, 29]. It is also informed by our research over the past decade in automated
program repair and vulnerability discovery using variety of analysis techniques including search
[5, 9], symbolic reasoning [21] and large language models [19, 29].

2 A Cyber Reasoning System
A Cyber Reasoning System (CRS) is a software system which can both detect and repair software
vulnerabilities autonomously in a given System Under Test (SUT). Ideally, a CRS supports a wide
range of real-world software systems, including those written in different programming languages
and/or containing millions of lines of code. We note that substantial prior research has been
conducted on various subgoals of a CRS [9, 18, 26]. Thus the core challenge of building a CRS lies
in overall flexibility, scale, and the careful combination of disparate techniques into a coherent,
effective system. Despite decades of research and industry interest, building such a CRS using only

1https://www.crowdstrike.com/falcon-content-update-remediation-and-guidance-hub/
2https://aicyberchallenge.com
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traditional program analysis tools has proven to be impractical to the point of impossibility. The
recent emergence of Large Language Models has made the realization of a CRS possible, via a broad
new design space where traditional analysis techniques are replaced or augmented by LLMs.

A CRS Framework. To more clearly illustrate the challenges and opportunities presented by the
construction of a CRS, we decompose it into seven sub-components, shown in Figure 1. A CRS
might first use static analysis ( 1○) to build a broad understanding of the SUT. This component could
include general pre-analyses such as control-flow graph construction or more specific vulnerability
scans to identify potentially buggy program locations. A CRS then needs to identify how to properly
build and execute the SUT with new unit-tests or test inputs which could trigger a vulnerability
( 2○). Once a CRS has a way to test the SUT, it ( 3○) can search the space of possible testcases for
those that may trigger a vulnerability via test generation. If a generated test triggers a vulnerability,
the CRS can then analyze this test ( 4○), along with other triggering and non-triggering tests to
gather information about the vulnerability and determine if it has been previously discovered. This
information can then be passed to patch generation tools ( 5○), which attempt to find a repair for the
given vulnerability. The CRS then selects ( 6○) one or more patches that best fix the vulnerability
without breaking the functionality of the program.

Figure 1 and the prior description presents a CRS as a mostly sequential pipeline. However, there
may be other useful interactions between components; e.g. a crash analysis tool could incorporate
information from a failed patch validation to refine its report ( 6○→ 4○). Additionally, each com-
ponent may need to be scaled up or down dynamically: if a CRS finds many new vulnerabilities
in a short period of time, test generation capacity could be reduced to shift additional resources
towards crash analysis and repair of these vulnerabilities. As such, we identify orchestration ( 7○) as
an additional component of a CRS. The orchestrator determines resource allocation and facilitates
communication between subcomponents. Any of these components, including the orchestrator
itself, may leverage LLMs in lieu of or to complement existing program analysis tools.

The AIxCC Competition. The recent DARPA AI Cyber Challenge (AIxCC) Competition is the
origin of the term Cyber-Reasoning System (CRS) and brought wide attention to this problem. The
competition invited teams to build a CRS which could autonomously find and fix vulnerabilities in
C and Java projects (including the Linux kernel), with the winner receiving a large cash prize. In this
paper, we generalize the definition of CRS beyond the scope of the competition itself. For example,
harness generation ( 2○) was not part of the AIxCC competition, but is important for a CRS to be able
to analyze real systems outside of a competition setting. Additionally, while the AIxCC competition
was restricted to pre-trained models, a true CRS could include custom or fine-tuned models. on
additional data. We also claim an ideal CRS should be able to analyze polyglot, heterogeneous
software, including distributed systems, machine learning components, or embedded systems –
which are were all outside the scope of the original competition.

An Example CRS. To make the concept of CRS more concrete, we present an open source cyber-
reasoning system example in the style of the AIxCC competition: [https://github.com/DARPA-
AIxCC/asc-crs-healing-touch]. The individual components of this CRS are outlined as bullet points
in Figure 1. For input generation ( 3○), it relies on an ensemble of fuzzers. As a baseline, it utilizes the
existing greybox fuzzers LibFuzzer and Jazzer3 for C and Java programs, respectively, in addition to
a custom greybox fuzzer for the Linux kernel built with the LibAFL framework [8]. Additionally, it
leverages LLMs to infer a grammar for the target program’s inputs to allow a specialized fuzzer to
generate well-formed test input. As fuzzers are a relatively mature and widely applied technology
used in industry, we relied less on LLMs for this component. To analyze bugs found by our fuzzers
3https://llvm.org/docs/LibFuzzer.html and https://github.com/CodeIntelligenceTesting/jazzer
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( 4○), the CRS parses the output from common vulnerability detection tools (called sanitizers4) and
determine the bug introducing commit. For this component, we did not utilize LLMs at all, as
the sanitizer output was given in a fixed format, but future work could leverage LLMs to be less
sensitive to different crash reporting mechanisms. For Java programs, the CRS also uses the Joern5
static analysis framework ( 1○) to extract path constraints and then solve these constraints using an
LLM, described in Section 3.2. Given a vulnerable input from a fuzzer, the CRS uses Spectrum-Based
Fault Localization tools (SBFL) [26] to augment crash reports with suspicious lines before passing
them on to be repaired. From a crash report, the CRS attempts to repair ( 5○) the bug with three
different repair tools. The first is a Retrieval Augmented Generation (RAG) [15] repair tool, which
attempts to fix the bug using a single prompt to an LLM that includes similar vulnerability reports
and patches. The second is an LLM agent AutoCodeRover [23, 29], which was adapted to work
on C and Java programs. Lastly, it also includes a repair tool that does not utilize LLMs, instead
using lexical delta-debugging6 [28] on the differing lines between the current and pre-bug versions
of the project. Once a patch is generated by any of the tools, it is selected for submission ( 6○) if
the validation tool Valkyrie determines that both the failing test input and the subject’s functional
test suite are free of crashes and errors. For orchestration ( 7○), the CRS uses a custom Python
framework which used a greedy static resource allocation across available hardware and passes
data between components as shown by the dashed arrows in Figure 1. In the case of our example
CRS, neither 6○ nor 7○ leverage LLMs, although such an integration is eminently feasible.

Example CRS Evaluation. While most of the subject programs from the AIxCC competition
remain undisclosed, one –the nginx web-server– has been publicly released with 14 accompanying
bugs from the semi-final. To assess the capabilities and potential of a CRS in more detail, we
evaluated the example CRS described above on this benchmark in 20 trials of 4 hours each, with 64
allocated CPU cores and 16GB of allocated RAM. This emulates the setup for a single node of the
three provided in the AIxCC semi-final competition. We also ran the CRS both with and without
LLM-integrated components for bug discovery ( 3○) and repair ( 5○), respectively, to assess the impact
of these components on the system as a whole. We used OpenAI GPT-4o (2024-08-06) as the sole
LLM-backend of the CRS7. Overall, we saw that the example CRS is capable of finding and fixing
vulnerabilities in an integrated workflow. This CRS finds more than two unique vulnerabilities
on average per-trial (𝜇 = 2.4) and generates a plausible8 patch for at least one of those discovered
vulnerabilities in nearly half of all trials (9/20). In some instances, the plausible patches were also
identical to the ground-truth patch given by the competition organizers. Additionally, in its best
trial, the CRS found four unique vulnerabilities and generated plausible fixes for all four of these
bugs within the time limit.
We also found that the components integrating LLMs were crucial to the success of the CRS.

Removing the LLM inferred-grammar fuzzer from the CRS ( 3○), the remaining fuzzers, including
LibFuzzer, are unable to discover a single bug within a 4 hour time limit in any of 20 trials. To
confirm these findings, we conducted an additional experiment with the state-of-the-art fuzzer
AFL++, and saw that it also was unable to discover any bugs in any of 20 trials within the time-limit.
We attribute the failure of conventional fuzzing to a lack of initial valid inputs provided in the
competition; these are typically given to grey-box fuzzers to allow them to reach deeper program
behaviors quickly. Similarly, when omitting the LLM-based repair tools ( 5○), the remaining repair

4For example, ASAN detects memory safety bugs during program executions that might otherwise exit without errors
5https://github.com/joernio/joern
6https://security.googleblog.com/2024/06/hacking-for-defenders-approaches-to.html
7https://openai.com/index/hello-gpt-4o/
8Here plausible means the patched program no longer crashes on the PoV input and passes all competition-provided tests
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tool was unable to generate a plausible patch for any of the found bugs, also across 20 trials. The
delta-debugging repair tool struggles here because it is inherently sacrificing efficacy for generality:
in order to be fully agnostic to the source language, it can only fix a small subset of regression
bugs. We believe this difference highlights the importance of integrating LLM-assisted tooling into
automated security workflows to create general and effective tools that can bridge gaps in existing
analyses.

3 Opportunities for LLMs in Software Analysis
Each component of a CRS could leverage LLMs individually: static analysis ( 1○) tools which analyze
source code [1] could use LLMs to reduce the impact of syntactic noise; test harnesses ( 2○) could
be more robustly generated for different build systems and project structures by LLMs; fuzzers
( 3○) could leverage LLMs for constraint solving; crash analysis and triage ( 4○) using LLMs could
respond dynamically to unforseen issues in production that cannot be accounted for a priori; patch
generation ( 5○) and selection ( 6○) are already one of the most ubiquitous use-cases for LLMs; and
lastly orchestration ( 7○) is particularly well suited to agentic AI for making resource allocation and
other planning decisions. There are many such design points, so we present three broad overarching
opportunities for LLMs which generalize or span across multiple components of a CRS.

3.1 Augmenting Individual Analyses with Developer Intent
While LanguageModels can be powerful tools in their own right, prior work [29] and our experience
in the AIxCC has shown us that LLMs can be most effective in combination with existing analyses.

r u l e s :
− i d : hardcoded −openai − token
message :

− A hard −coded c r e d e n t i a l was d e t e c t e d . I t i s
not recommended to s t o r e c r e d e n t i a l s i n

source −code . . .
metada ta :

cwe :
− "CWE−798 : Use o f Hard−coded C r e d e n t i a l s "
v u l n e r a b i l i t y _ c l a s s :
− " Leak ing S e c r e t s "

s e v e r i t y : WARNING
language s :
− python
p a t t e r n : OpenAI ( " . . . " ) ;

(a) Abbreviated SemGrep Rule for CWE-798
...
# Initialize OpenAI and Anthropic API clients
openai_client = OpenAI(api_key="YOUR API KEY")
anthropic_client = Anthropic(api_key="YOUR API KEY")
...

(b) Source Code for False-Positive of SemGrep
Rule for CWE-798

Fig. 2. Example of AnUnsound SemGrep Analysis

Incomplete Analyses. Many algorithms in pro-
gram analysis are incomplete in that they might re-
port false positives, often because precise reasoning
is algorithmically or practically impossible. A key
opportunity for the application of language models
lies in their ability to infer contextual intent, such as
neighboring source code or comments, which can
help filter or re-prioritize an analyzer’s output. As
an example, we used the SemGrep static analysis
( 1○) tool to scan an open-source LLM orchestration
project on Github9 for hardcoded user credentials.
The run of SemGrep generated a warning for the
code shown in Figure 2b. This report is a false pos-
itive because the developer intends for users of the
project to replace the api_key fields, as evidenced
by the contents of the corresponding strings. Indeed,
comments and other natural language artifacts often
contain high-quality information, but this informa-
tion has previously proven difficult to extract and
leverage [13]. If we pass the report and source code context from Figure 2 to GPT-4o, it determines
that the report can be ignored in 26 out of 30 trials.

Unsound Analyses. Many other components of the CRS can be implemented with unsound
program analyses. Such analyses can suffer from a large amount of false negatives. As with their
incomplete counterparts, the usefulness of unsound analyses is often directly tied to the tightness

9https://github.com/Doriandarko/maestro/blob/main/maestro-gpt4o.py
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Picker

p == 0x13

Count
c < 0xFF

Header
h == "x-evil-backdoor" 0

Value

SHA256(v) == SHA256("breakin the law") 0

Sanitizer Check

s == "jazze"

Fig. 3. Input Structure and Constraints for the Jenkins Exemplar Bug from the AIxCC Semi-final Competition

of this approximation; a fuzzer which misses many obvious bugs in the program is unlikely to be
deployed in practice. Here, again, LLMs can leverage approximate developer intent to complement
existing approaches and reduce false negatives. For example, an input grammar represents data
that the program is intended to consume. Using an LLM, a CRS can quickly generate a grammar
from the fuzzing harness. Producing such an input specification allows established techniques in
grammar fuzzing [2] to rapidly explore the intended behavior of a program, as in our example CRS.

3.2 Generalizability and Flexibility of LLMs

Prompting Template
You are a penetration testing engineer tasked with testing a Jenkins application.
Now, we notice there is one or more possible vulnerabilities of {{Vulnerability Class}}.
Note that we have a very different definition of this type of vulnerability. Here is the definition:
{{Sanitizer Definition}}

Please ensure:
{% for c in Path Constraints %} {{c}} \n {%endfor%}

Here are the dataflow slices of the program:
{% for s in Dataflow Slices %} {{s}} \n {%endfor%}

This is a file that is related to the input data:
{{Fuzz-Harness Source Code}}

Generate a Python program that dumps the expected data to the file ‘input.bin‘

Sample Templated Values

"Vulnerability Class": "OsCommandInjection",

"Sanitizer Definition ": "for OSCommandInjection , APIs like `java.
lang.ProcessBuilder ' must contain a magic word named `jazze '
rather than the actual command",

"Path Constraints ": [

"containsHeader(rqst.getHeaderNames () ,\"x-evil -backdoor \")==true",

"MessageDigest.isEqual(sha256 , providedHash)) == true" ],

"Dataflow Slices ": [

"boolean isAllowed=jenkins ().hasPermission(Jenkins.ADMINISTER);",

"byte[] sha256 = DigestUtils.sha256 (\" breakin the law\");",

"String backdoorValue = request.getHeader (\"x-evil -backdoor \");",

"byte[] providedHash = DigestUtils.sha256(backdoorValue);", ...

Fig. 4. Prompting Template and Templated Values

Due to their immense training
datasets, LLMs have been shown
to generalize to a wide variety
of technical tasks with little or
no additional training [4].

Generalizability of Problem
Domains. A CRS covers many
disparate subproblems that pre-
viously required bespoke anal-
ysis tools to solve individually.
LLMs lower the barrier to entry
for writing these tools, allowing
CRS builders to create compo-
nents that are robust to different
software versions, build tools,
and environments while often
remaining as capable as more
fragile, complex analyses. One
such analysis task is to demon-
strate the Proof Of a Vulnerabil-
ity (PoV) in the form of an input which triggers the bug ( 2○). Figure 3 showcases one such PoV
input for an exemplar bug from the Jenkins exemplar program for the AIxCC. In order to reach
the buggy code, a CRS must craft a structured message with several fields exactly matched to
particular byte-strings. The Value field, however, is hashed before it is compared to a desired
byte-string, making it effectively impossible for typical constraint-solving approaches, such as
symbolic execution, to solve analytically as this would amount to reversing a SHA256 hash. Yet,
without additional training, a Language Model is able to generalize enough to attain the effect of a
constraint solver without this limitation. To showcase this capability, we use a component of our
example CRS (Section 2) – this tool gathers path constraints to a particular target location using
static analysis and coalesces them into a prompt, see Figure 4. When querying the language model,
out of 30 prompts, it synthesizes six correct and four nearly correct inputs. The nearly correct
test inputs have only an additional null terminator, but are otherwise an exact match. We also ran
the greybox fuzzer Jazzer for 24 hours, providing it with a “dictionary” file that contains all string
constants present in the source code of the SUT, including the Header and Value strings needed
for triggering the bug. In none of the 20 trials was the fuzzer able to find the vulnerability.
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Flexibility Across Languages. We manually translated the extracted constraints and harness
in Figure 4 from Java to Python, resulting in Figure 5. We then passed these Python constraints to
an LLM in the exact same prompting template with no modifications. In this scenario, the model
was still able to solve the Python program constraints in 8/30 trials. This is remarkable in that the
model did not require any changes to solve these constraints at the source level in both languages.

3.3 Opportunities for Agentic AI
Templated Values Translated to Python

" V u l n e r a b i l i t y C l a s s " : " OsCommandInject ion " ,
" S a n i t i z e r D e f i n i t i o n " :
" f o r OSCommandInjection , APIs l i k e ` s ubp ro c e s s . Popen '

must c on t a i n a magic word named ` j a z z e ' r a t h e r than
the a c t u a l command " ,

" Path Con s t r a i n t s " : [
" \ " x− e v i l −backdoor \ " i n r e qu e s t . h eade r s " ,
c ryp tography . c on s t an t _ t ime . by t e s _eq ( sha256 ,

prov idedHash ) " ,
] ,
" Data f low S l i c e s " : [
" i sA l l owed= j e n k i n s ( ) . h a sPe rm i s s i on ( J e nk i n s . ADMINISTER ) " ,
" sha256= c ryp tography . hashes . Hash ( c r yp to . hashes . SHA256 ( ) )

. upda te ( \ " b r e ak i n the law \ " ) . f i n a l i z e ( ) \ " ) " ,
" backdoorVa lue = r e qu e s t . h eade r s [ \ " x− e v i l −backdoor \ " ] " ,
" prov idedHash = cryp tography . hashes . Hash ( c r yp to . hashes .

SHA256 ( ) ) . upda te ( backdoorVa lue ) . f i n a l i z e ( ) \ " ) " ,
. . .

]

Fig. 5. Python Constraints Passed to an LLM in the Template
of Figure 4 for the Translated Jenkins Exemplar

AI Agents go beyond basic in-context
learning by enabling LLMs to iteratively
plan, reason, and take actions — such as in-
voking program analysis tools. As a result,
they are often able to achieve complex,
multi-step goals fully autonomously.
Agents can reasonably be used to in-

stantiate any individual components of
the CRS. Indeed, our example CRS uses
the AutoCodeRover [23, 29] LLM agent
to fix vulnerabilities ( 6○). This agent uses
code navigation and analysis tools to it-
eratively develop and refine a patch. Au-
toCodeRover has now been integrated in
the widely used SonarQube static analysis
tool to automatically fix detected security
bugs, showing its practicality.
Beyond individual analysis steps, the orchestration layer (Figure 1, 7○) is particularly well-

suited to AI agents; it involves numerous and repeated challenging planning decisions that would
previously have been the purview of a human auditor. For example: If a vulnerability is found,
should the CRS conduct additional static analysis of crash location or should it instead allocate
those resources to further dynamic analysis of the vulnerable execution? What information from
these analyses should be passed as context to the patch generator? As agents have begun to
show significant progress in many individual tasks such as remediation [29], a more general and
comprehensive deployment of LLM Agents as the CRS itself is promising area of future research.

4 Challenges for LLMs in CRSs
Unsoundness. A key strength of many static vulnerability scanners ( 1○) is their soundness;

they can sometimes guarantee a program to be free of particular vulnerabilities. An LLM cannot
guarantee soundness alone [22], so we see determining how to recover these guarantees or increased
assurance of correctness as a key challenge for LLM-based tools in a Cyber Reasoning System.

Incompleteness. As Language Models are statistical models at their core, they can also give false
positive answers to analysis queries, amounting to an incomplete analysis. This may be mitigated in
some situations where an efficient checking oracle exists [25] – for example, the input generation
( 3○) task in Section 3.2 the LLM can be called iteratively until the oracle is passing i.e. the bug is
triggered. Identifying these oracles will be an important area of research in CRSs.

Training and Evaluation Data. Language Models are highly dependent on the data used to train
them. Because of their size, their corresponding training sets must also be extremely large to avoid
over-parameterisation. Assembling large enough datasets for all components of the CRS workflow
without introducing risk of data leakage [6] will be crucial to development and evaluation of CRSs.
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5 Related Work
Vulnerability Repair. Code generation [3] and bug repairs [7] have been some of the applications

of LLMs that can be utilized in a CRS. Early results indicate that LLM-based repair tools tend
to outperform traditional repair tools on established datasets [27]. Similarly, LLMs have begun
to be utilized for localizing the fault [12], with promising initial results. Agentic systems can
automatically explore a project or invoke subtasks via repeated interactions with the LLMs [23, 29].

Vulnerability Discovery. Large Language models have also shown their capability in generating
test harnesses [17] and unit tests [14]. Furthermore, they have been effective in fuzzing network
protocols by providing the fuzzer a grammar for mutating the input messages [19]. In addition to
dynamic analysis, LLMs are also beginning to see success in augmenting static analysis, particularly
for bug discovery [16].

Benchmarks. SWEBench [11] s a widely used benchmark containing natural language description
GitHub issues to be resolved by LLMs. These issues are mostly bug-fixes, but can span multiple
files. Other benchmarks have even been developed to specifically evaluate LLM capabilities and
risks [25]. To date, available benchmarks still only evaluate CRS sub-components, rather than a
complete workflow; we hope that they can provide a starting point for a general CRS benchmark.

6 Threats to Validity
As CRSs are an emerging research area, our study was limited to the only dataset available for end-
to-end CRS evaluation. As such, our results may not generalize beyond this dataset (c.f. Section 4).
We did not evaluate the repair components in our CRS against traditional program repair research
tools — a threat to the internal validity. However, we excluded these tools from the CRS due to their
poor generality (c.f. Section 3.2), and similar comparisons have been published in prior work [27].

7 Perspectives
Innovative technologies often disrupt established sectors in unexpected ways with surprising
speed. We believe that LLMs represent such a change, not just in how we write code, but also
in how we reason about it. Automating this reasoning will be critical to keep up with our ever-
growing, increasingly complex software infrastructure, and its security. While we can already see
concrete benefits in augmenting or replacing existing software analysis with LLMs, such as fuzzing,
symbolic execution or static analysis, many more possibilities remain. Broadly, we believe LLMs
can complement gaps in existing analyses by grasping developer intent, generalizing to different
programming constructs and environments, and providing agentic multi-step reasoning spanning
numerous individual analyses. By focusing on these opportunities, researchers will be able to push
the frontier of what is possible in an integrated Cyber-Reasoning System.
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