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Abstract
Uncovering bugs in concurrent programs is a challenging

problem owing to the exponentially large search space of

thread interleavings. Past approaches towards concurrency

testing are either optimistic — relying on random sampling

of these interleavings — or pessimistic — relying on sys-

tematic exploration of a reduced (bounded) search space. In

this work, we suggest a fresh, pragmatic solution neither

focused only on formal, systematic testing, nor solely on

unguided sampling or stress-testing approaches. We employ

a biased random search which guides exploration towards

neighborhoods which will likely expose new behavior. As

such it is thematically similar to greybox fuzz testing, which

has proven to be an effective technique for finding bugs

in sequential programs. To identify new behaviors in the

domain of interleavings, we prune and navigate the search

space using the “reads-from” relation. Our approach is signif-

icantly more efficient at finding bugs per schedule exercised

than other state-of-the art concurrency testing tools and ap-

proaches. Experiments on widely used concurrency datasets

also show that our greybox fuzzing inspired approach gives

a strict improvement over a randomized baseline schedul-

ing algorithm in practice via a more uniform exploration

of the schedule space. We make our concurrency testing

infrastructure “Reads-From Fuzzer” (RFF) available for exper-
imentation and usage by the wider community to aid future

research.
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1 Introduction
Despite the increasing importance of parallelism and concur-

rency in modern software, reasoning about the exponentially

large space of interleavings in such programs remains a chal-

lenging task today. Consequently, low level issues such as

data races [3], and concurrency-related high level issues such

as memory corruption, undefined behaviors [11] or crashes

often compromise software quality and security. A common

approach adopted in practice is to conduct stress testing

of the software against exceptional workloads. These ap-

proaches can be termed as optimistic approaches since they
hope that applying varied and large workloads will expose

corner cases of the program behavior. Another manifestation

of this optimistic approach towards concurrency testing is

random sampling. Here randomized algorithms sample in

the space of interleavings or partial orders with the goal

of exploring various neighborhoods in the search space of

behaviors evenly.

An alternative category of techniques that have been

widely studied in the research community is systematic test-

ing and exploration – the pessimistic approach. These ap-
proaches insert certain hooks into the program or model the

program to control the scheduling and systematically explore

the space of interleavings [25]. One common observation

to reduce the search space of behaviors is to either employ

partial order reduction [1, 21, 38] or heuristics such as con-

text bounding - where the number of context switches is

bounded by an arbitrary constant. We view the enumerative

approaches such as CHESS [46] or GenMC [38] as pessimistic
since they attempt to go toward exhaustive exploration, al-

beit in a reduced search space.

In this paper, we propose a new direction in concurrency

testing - which is neither optimistic, nor pessimistic. Our

key idea is to conduct a biased, randomized search over a

reduced space of functionally equivalent interleaving parti-

tions, based on their “reads-from” information. The reads-

from relation induced by an execution, maps each read event

to the corresponding write event it observes. This relation

https://doi.org/10.1145/3620665.3640389
https://doi.org/10.1145/3620665.3640389


ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Dylan Wolff, Shi Zheng, Gregory J. Duck, Umang Mathur, and Abhik Roychoudhury

serves as a semantic abstraction for a given execution of a

concurrent program. To effectively explore the reduced space

of reads-from partitions, we leverage a pro-active, controlled

scheduler which drives executions towards or away from

individual partitions. Finally, we also use the reads-from re-

lation as feedback to bias the search towards novel partitions

- if a new reads-from pair is encountered, the execution is

deemed novel and prioritized in the search. In this way we

can use the reads-from relation to effectively pivot our search,

and adapt it towards new and semantically different search

neighborhoods, by mutating previously encountered sched-

ules. Our approach is, thus, neither optimistic nor pessimistic
- we deem it to be pragmatic .

Thematically, our approach can be seen as greybox fuzz

testing, adapted to concurrent programs. Greybox fuzzing

has been extremely successful for finding bugs and vulner-

abilities in sequential programs in practice [5, 12]. Part of

this success comes from the adaptive and non-enumerative

nature of the search, enabling it to scale to sequential applica-

tions such as the PDF readers, multimedia encoders and com-

pression libraries – whose input spaces can be large, encom-

passing all possible byte combinations of multi-Kilobyte to

multi-Gigabyte sized files. Similarly, the concurrency-centric

greybox fuzzer we develop for this work, RFF, does not enu-
merate all possible interleavings or even reads-from parti-

tions, but rather conducts an adaptive, randomized search

of the reduced space of partitions.

While greybox fuzzers for testing concurrent programs

have been developed by prior works [14, 31, 32, 69], our tool,

RFF, advances the state-of-the-art due to fundamental design

and implementation choices. RFF fully controls the schedule,

as relying on intermittent or loose control of the schedule (e.g.

delay injection) [14, 31] could allow the test environment

itself to render some interleavings difficult or impossible to

reach. RFF uses the semantic, reads-from relation as feedback

to bias its search, rather than execution statistics such as

function-call pairs [32] or event-pair orderings [69]. Also,

unlike other concurrency-aware fuzzers, RFF structures its
search in terms of a novel abstraction, again leveraging reads-

from information. Aided by our pro-active scheduler, this

abstraction effectively reduces the exponentially large space

of interleavings.

To conduct this search, RFF must instrument and inter-

cept memory access and synchronization operations. We

do so with a combination of binary rewriting via E9patch

[19] and a user-space scheduling library which overrides

C/C++ threading primitives. Our scheduler implementation

efficiently serializes program execution, allowing our sched-

ule fuzzer to control the program schedule. With this sched-

ule control, our approach is able to find bugs in significantly

fewer schedules than prior work, achieving higher scalability

without sacrificing bug detection ability.

We evaluated RFF against state-of-the-art bug-finding tools
[38, 67] and algorithms [13, 74] on 49 programs containing

concurrency bugs. We find that RFF not only consistently

finds bugs in more programs than any other approach –46

programs on average– it also typically finds these bugs in

fewer schedules. We also show that RFF explores the sched-

uling space as partitioned by the reads-from equivalence

relation evenly, and that a fuzzing-inspired search leverages

this partitioning effectively as compared to a common rein-

forcement learning framework [53].

Contributions. Concretely our contributions are:

• Conceptually, we bring ideas from greybox fuzzing

of sequential programs (such as power schedule or

feedback function) into the exploration of concurrent

program interleavings.

• We structure the schedules as a collection of “reads-

from” constraints to define the fuzzer search space.

This structured search space helps in bug finding effec-

tiveness as shown by our experiments. We addition-

ally utilize the “reads-from” relation as supplementary

feedback function to guide this search.

• We implement our approach as a fuzzer called Reads-

From Fuzzer (RFF). Experiments on well known bench-

marks like SCTbench [58] show the bug-finding ef-

fectiveness of RFF’s biased random search approach

vis-a-vis random search (such as Partial order sam-

pling or POS) as well as vis-a-vis systematic testing

(such as state of the art model checkers like GenMC).

• We make RFF and its associated instrumentation and

execution framework available for usage and research:

https://doi.org/10.6084/m9.figshare.23911299

2 Overview
The central challenge encountered in exposing concurrency

bugs is the sensitivity to thread schedules — even for a fixed

input, a bug may surface only under certain interleavings.

Further, the number of interleavings grow exponentially in

the length of executions. Enumerative search over interleav-

ings is thus difficult even even after employing optimizations

such as partial order reduction [4, 24].

Randomized concurrency testing, often offering probabilis-

tic guarantees [13, 74], has therefore emerged as a promis-

ing paradigm for exposing hard to find interleavings. Ex-

isting state-of-the-art randomized techniques though often

fall short. Consider, for example, the (stripped down) pro-

gram sinppet shown in Figure 1, derived from the SCTBench

benchmark suite [58]. The main thread spawns n = 100 set-
ter threads st1, . . . , stn that each set the value of the shared

variables a and b to 1 and -1 respectively, as well as a single

checker thread ct that asserts that the values of (a, b) are
either (1, -1) or (0, 0). Observe that the assertion in ct gets

violated only when a observes the value written by one of

st1, . . . , stn, while b observes the initial value 0. This hap-

pens when ct is executed after at least one setter thread

 https://doi.org/10.6084/m9.figshare.23911299
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1 static int a = 0, b = 0;
2 void setThread() {
3 a = 1;
4 b = -1;
5 }
6 void checkThread() {
7 if(!((a == 0 && b == 0) || (a == 1 && b == -1))){
8 assert(0); // Bug found
9 }
10 }
11 int main() {
12 const int n = 100;
13 std::vector<std::thread> st;
14 for (int i = 0; i < n; ++i) {
15 st.push_back(std::thread(setThread));
16 }
17 std::thread ct(checkThread);
18 return 0;
19 }

Figure 1. SCTBench subject reorder_100 (repurposed)

executes its first step ‘a = 1;’, and before any setter thread

executes its second step ‘b = -1;’.
Assuming that the read events of a and b in thread ct

happen atomically, the total number of executions of this

program is
(3n+2)!

(n+1)!(3!)n (2!)
1
, while, the number of interleavings,

that hit the assertion violation is

∑n
𝑖=1
(n𝑖) (n+𝑖+1)!(2n−𝑖 )!

(n+1)!2n
2
. A

sampling strategy that uniformly samples each execution

will hit the violation with a probability of about 2.8 × 10−14
making the expected number of steps to hit the violation

prohibitively large. Partial order-aware sampling (POS) [74]

offers a similar guarantee. Randomized sampling strategies

that rely on bug depth hypothesis such as PCT[13] also work

poorly here — needing at least one ordering constraint from

the first step of some setter thread to the checker thread, and

100 ordering constraints to order the checker thread before

the second steps of each setter thread. The depth of this

bug therefore is at least 101, which is beyond the tractable

boundary of PCT given that the probability guarantee of

PCT scales exponentially in the depth. Our experimental

evaluation also confirms this analysis — both POS and PCT

struggle to hit the bug in a reasonable number of trials.

In contrast, our concurrency testing tool RFF exposes the

bug in about 6 iterations in each of the 20 trials we performed.

1
The numerator counts the number of arrangements of (3n + 2) steps (n+1
thread spawning steps of the main thread + 2n steps of the setter threads +

1 step of the checker thread), while the denominator offsets overcounting of

the arrangements of the spawning events, and the total order within each

setter and checker thread (together with their spawn events)

2
The 𝑖th term in the numerator counts the number of interleavings where

thread ct executes after n + 1 (thread spwan) steps + 𝑖 steps (a = -1; of

𝑖 setter threads). The term (n+1)! offsets overcounting the permutations

amongst the spawn events performed by main while the term 2
n = 2

𝑖 · 2n−𝑖
offsets the relative order of first steps of the 𝑖 setter threads w.r.t spawn

events, and the relative order within setter threads for the later n − 𝑖 setter
threads

The effectiveness of RFF stems from two important insights.

The first is the observation that two concurrent executions

that follow the same thread-local control and data flow are

both equally capable of exposing the same assertion viola-

tion; thus exploring one of them suffices. The reads-from
function, mapping each read event of a shared memory loca-

tion to its corresponding writer event, serves as a good proxy

for control and data-flow. More importantly, the number of

different classes induced by reads-from equivalence can be

exponentially fewer than interleavings, partial orders [2] or

even classes induced by bounded-depth ordering constraints.

RFF covers all executions that are reads-from equivalent in
one go, by generating only one of them. In the program from

Figure 1, the assertion violation can be exposed by any exe-

cution that satisfies the following abstract schedule:

𝛼violation = {w(a)@ℓ3
rf−→ r(a)@ℓ7, w(b)@ℓ1

rf−→ r(b)@ℓ7}

The constraints above demand that the read of a in line 7
(in checkThread()) observes the write of a in line 3, while
the read of b observes the the initial write in line 1. While

the total number of different reads-from constraints is just

4 (2 choices for a and 2 choices for b), the chance of gener-
ating 𝛼violation when (almost) uniformly sampling this space

is large. Combined with our proactive reads-from scheduler
that carefully attempts to schedule any given abstract sched-

ule, RFF can successfully uncover the bug with very few

trials.

Our second insight towards the design of a more effective

concurrency testing technique is the introduction of (mod-

erate amount of) statefulness in contrast to the otherwise

unbiased random search techniques. Statefulness in the ex-

ploration can help identify previously explored parts of the

schedule search space and can be leveraged to drive explo-

ration away from them. RFF effectively tracks information

about the set of schedules observed so far, and utilizes it to

generate a new abstract schedule. In the program in Figure 1,

for example, RFF generates 𝛼violation by extracting a list of

events observed in previous schedules and stitching them,

through random mutations, to arrive at the constraints in

𝛼violation. RFF also uses information about when a previously

explored abstract schedule led to novel behavior and uses this
as further feedback to guide what kinds of abstract schedules
to generate next.

We show that these insights can be combined into a grey-
box fuzzing approach. Greybox fuzzers [5, 12] have proven

effective in discovering software vulnerabilities in sequen-

tial programs. While traditional greybox fuzzing techniques

represent a biased random search over the space of program

inputs in a sequential program, the support for exposing rare

concurrency-centric behaviors in such techniques is either

absent or remains rudimentary. Section 3 describes the de-

tails of our approach of formulating concurrency testing as

a greybox fuzzer.
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Algorithm 1: Greybox Concurrency Fuzzing

Input: Initial corpus of schedules 𝑆init
1 𝑆 ← 𝑆init, 𝑆fail ← ∅
2 if 𝑆 = ∅ then 𝑆 ← {Y} /* Empty Schedule */

3 repeat
4 (𝜎, [𝜎 ) ← PickNextAndAssignEnergy(𝑆)

5 for 𝑖 ∈ {1, . . . , [𝜎 } do
6 𝜎mut ← mutateSchedule(𝜎, 𝑆)

7 if 𝜎mut crashes then 𝑆fail ← 𝑆fail ∪ {𝜎mut}
8 if isInteresting(𝜎mut, 𝑆) then
9 𝑆 ← 𝑆 ∪ {𝜎mut}

10 until timeout
11 return 𝑆fail

3 Core Approach behind RFF
As our core approach, we adapt a well-known grey-box

fuzzing algorithm [12] to the space of interleavings/sched-

ules; Algorithm 1 shows our overall template. The algorithm

begins with an initial set of schedules. During each iteration

of the fuzzing loop, an existing schedule 𝜎 is selected from

the working set of schedules (line 4). The algorithm then

mutates 𝜎 to create a new schedule 𝜎mut (line 6), which will

be used to test the program. If the program crashes under

𝜎mut, then 𝜎mut is added to the output set of crashing sched-

ules (line 7). Additionally, if the fuzzer determines that the

execution of 𝜎mut includes new behavior (line 8) then that

schedule is added to the working set of schedules for future

exploration via mutation (line 9). This loop is repeated, mu-

tating each schedule proportionally to its behavioral novelty

score ([𝜎 in line 4) before moving on to the next schedule in

the working set.

A few observations about the greybox fuzzing template

are in order. First, unlike purely random sampling based

approaches such as PCT and partial order sampling [13, 74],

the algorithm maintains state across executions in the form

of the corpus of schedules 𝑆 . It uses this state to guide the

next iteration of schedule generation. Further, instead of

storing all schedules, the algorithm maintains only a subset

of schedules, filtering out schedules with redundant behavior

via the isInteresting() function. In order to determine

what is interesting, the traditional greybox fuzzing algorithm

relies on a notion of (lightweight) code-coverage feedback
that can be collected as the input schedule is being executed.

For more granular feedback, energy assignment (line 4) can

further prioritize some schedules. The mutation generation

works by first randomly chosing members of the existing

corpus and then applying a class of pre-defined operations on

them to obtain a schedule in a neighborhood that is expected

to (but may not) be close to the existing corpus. The mutation

operation is thus responsible for the core randomness in the

exploration, while the feedback and the energy assignment

together bias the otherwise random search towards under-

explored regions in the space. This bias is achieved indirectly

by controlling the frequencies of schedules for mutation.

While the overall fuzzing template is straightforward,

there are several key challenges in adapting this template to

the domain of concurrent-program interleavings: First, the

space of schedules or thread interleavings can be prohibi-

tively large, given that subtle bugs often only manifest in

long executions. Second, traditional feedback metrics such

as code-coverage may not be fine-grained enough to expose

subtle interleavings, warranting a fresh look at the feedback.

Third, unlike the traditional setting where the fuzzing al-

gorithm generates inputs that can always be executed, a

synthetic schedule may not be feasible, leading to many re-

dundant iterations, slowing the overall testing loop. In the

following we give the specifics of how we address these

challenges.

Reads-from relation and equivalence. The key to the

effectiveness of our approach stems from the semantic treat-
ment of concurrent program executions — we identify when

two executions are semantically equivalent and systemati-

cally avoid exploring multiple interleavings from the same

equivalence class, an insight also central to partial order

reduction based model checking techniques [2, 21, 52]. We

choose reads-from information to define this equivalence

relation over schedules. Let us first define events and sched-

ules. An event is a tuple 𝑒 = ⟨𝑖𝑑, 𝑡, 𝑜𝑝 (𝑥)@ℓ⟩, where 𝑖𝑑 is

the unique identifier of 𝑒 , 𝑡 is a thread identifier, 𝑜𝑝 is an

operation such as ‘r’ (read) or ‘w’ (write), 𝑥 is the object

(variable/memory location, etc) that 𝑒 operates upon and ℓ

is the source code location that 𝑒 corresponds to. A schedule

𝜎 is a sequence of events, and we use Events𝜎 to denote the

set of its events. A schedule 𝜎 is said to be feasible for a

program 𝑃 if 𝑃 can execute 𝜎 . The reads-from function of 𝜎 ,

denoted rf𝜎 maps each read event 𝑒 in 𝜎 to the correspond-

ing write event 𝑓 = rf𝜎 (𝑒) it observes its value from. Two

schedules 𝜎1 and 𝜎2 are said to be reads-from equivalent,

denoted 𝜎1 ≡rf 𝜎2 if they both observe the same events (i.e.,

Events𝜎1 = Events𝜎2 ) and the same reads-from function (i.e.,

rf𝜎1 = rf𝜎2 ). If 𝜎1 ≡rf 𝜎2, we note that 𝜎1, 𝜎2 must observe the

same control flow and thus identically expose any given bug.

Abstract events and schedules. To reduce the search space
of program interleavings, we represent schedules by ≡rf-
equivalence class, rather than a concrete sequence of events.

We do so by virtue of generating and mutating only abstract
schedules comprising of abstract events. An abstract event is

a tuple 𝑒𝑎 = 𝑜𝑝 (𝑥)@ℓ containing an operation 𝑜𝑝 , a memory

location 𝑥 and a code location ℓ . We say that an event 𝑒 =

⟨𝑖𝑑, 𝑡, 𝑜𝑝 (𝑥)@ℓ⟩ instatiates abstract event 𝑒𝑎 = 𝑜𝑝′ (𝑥 ′)@ℓ ′

if 𝑜𝑝′ = 𝑜𝑝, 𝑥 ′ = 𝑥 and ℓ ′ = ℓ . An abstract schedule 𝛼 is a set

of positive and negative reads-from constraints: 𝛼 = 𝛼+ ⊎
𝛼− , where 𝛼+ = {𝐶+

1
,𝐶+

2
, . . .𝐶+𝑛1

} and 𝛼− = {𝐶−
1
,𝐶−

2
, . . .𝐶−𝑛2

}.
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Each positive constraint 𝐶+𝑖 is of the form 𝐶+𝑖 = 𝑒𝑎𝑖
rf−→ 𝑒𝑎′𝑖

and each negative constraint is of the form 𝐶−𝑗 = 𝑒𝑎 𝑗
rf
↛ 𝑒𝑎′𝑗

for some read 𝑒𝑎𝑖 , 𝑒𝑎 𝑗 and write abstract events 𝑒𝑎
′
𝑖 , 𝑒𝑎

′
𝑗 (over

the samememory location).We say that a (concrete) schedule

𝜎 is an instantiation of an abstract schedule 𝛼 if it satisfies

the constraints of 𝛼 , i.e.,

1. for every positive constraint 𝐶+𝑖 = 𝑒𝑎𝑖
rf−→ 𝑒𝑎′𝑖 ∈ 𝛼 ,

there are events 𝑒𝑖 and 𝑒
′
𝑖 in 𝜎 that instatiate 𝑒𝑎𝑖 and

𝑒𝑎′𝑖 respectively and satisfy rf𝜎 (𝑒′𝑖 ) = 𝑒𝑖 , and

2. for every negative constraint 𝐶−𝑖 = 𝑒𝑎𝑖
rf
↛ 𝑒𝑎′𝑖 ∈ 𝛼 ,

there are no events 𝑒𝑖 and 𝑒′𝑖 in 𝜎 that instatiate 𝑒𝑎𝑖
and 𝑒𝑎′𝑖 respectively and satisfy rf𝜎 (𝑒′𝑖 ) = 𝑒𝑖

If 𝜎1 ≡rf 𝜎2, then either both or none of them are an instanti-

ation of any given abstract schedule 𝛼 .

Schedule 𝜎 = 𝑒
(1)
main . . . 𝑒

(n+1)
main 𝑒ast1𝑒

b
st1

. . . 𝑒astn𝑒
b
stn

𝑒act𝑒
b
ct, for

example, is a sequence of 3n + 2 events for the program in

Figure 1. Here 𝑒
(𝑖 )
main = ⟨𝑖, main, spawn(st𝑖 )@ℓ15⟩ represents

the event that spawns thread st𝑖 , while 𝑒
a
st𝑖

and 𝑒bst𝑖 repre-

sent the write to a and b respectively by thread st𝑖 . Events
𝑒act and 𝑒bct are read events on a and b in thread ct. This
concrete schedule 𝜎 spawns and executes all setter threads

before executing the checker thread. The reads-from func-

tion maps rf𝜎 (𝑒act) = 𝑒astn and rf𝜎 (𝑒bct) = 𝑒bstn . Now consider

the alternate schedule

𝜎 ′ = 𝑒
(1)
main . . . 𝑒

(n+1)
main 𝑒astn𝑒

b
stn𝑒

a
ct𝑒

b
ct𝑒

a
st1𝑒

b
st1 . . . 𝑒

a
stn−1𝑒

b
stn−1

that performs all events of the setter thread stn and the

checker thread before events of other setter threads. The

reads-from function here also maps rf𝜎 ′ (𝑒act) = 𝑒astn and

rf𝜎 ′ (𝑒bct) = 𝑒bstn , thus 𝜎 ≡rf 𝜎
′
. Thus both concrete schedules

are instantiations of same the abstract schedule

𝛼miss = {w(a)@ℓ3
rf−→ r(a)@ℓ7, w(b)@ℓ4

rf−→ r(b)@ℓ7}

Any instantiation of 𝛼miss will not find the assertion viola-

tion. In contrast, all instantiations of 𝛼violation (outlined in

Section 2) will witness the bug. Overall, there are only 25

abstract schedules (5 options each for the reads-from con-

straint on r(a) and r(b)) despite the exponentially larger

number of concrete schedules.

Mutating abstract schedules. The choice of abstract sched-
ules as the search space also naturally allows us to mutate

them in a structured manner instead of resorting to event-

level mutations. By changing the higher-level abstract sched-

ule constraints, each mutation will definitively result in dif-

ferent reads-from behavior if that schedule can be feasibly

executed. This notion bears semblance to the concept of

structured-input fuzzing [10, 26, 54]. The mutateSchedule()
function in our approach is implemented in two steps. First

we randomly choose one of the four mutation operators:

insert(𝛼,𝐶) = 𝛼 ∪ {𝐶}
swap(𝛼,𝐶1,𝐶2) = (𝛼 \ {𝐶1}) ∪ {𝐶2}
delete(𝛼,𝐶) = 𝛼 \ {𝐶}
negate(𝛼,𝐶) = swap(𝛼,𝐶,¬𝐶)

Here, for constraint 𝐶 = w
rf−→ r (resp. 𝐶 = w

rf
↛ r), we use

¬𝐶 to denote the negated constraint w
rf
↛ r (resp.𝐶 = w

rf−→ r).
Then we randomly pick potentially conflicting events from

𝐸, the set of all events observed, to form constraints𝐶1 . . .𝐶𝑛

which are needed by these mutation operators.

Reads-from feedback. In addition to control-flow feedback

used by greybox input-fuzzers, we employ reads-from infor-

mation as concurrency-aware feedback.We remark that such

feedback is strictly more granular than control flow informa-

tion. Our implementation of isInteresting(𝜎mut, 𝑆) from

Algorithm 1 returns true if either (a) there is a reads-from

pair (𝑒1, 𝑒2) in 𝜎mut such that no other the abstract sched-

ules in 𝑆 instantiates it, or, (b) if the schedule results in a

crash (mirroring the behavior of input-level greybox fuzzers

[5]). Additionally, we utilize a cut-off exponential power-

schedule [12] to further bias exploration towards rarely ob-

served reads-from constraints, discussed in Section 4.2.

Proactive Scheduling of Reads-from Constraints. Our
algorithm RFF utilizes feedback and mutations to arrive at

abstract schedules. However, given such an abstract sched-

ule, it is not trivial to find a concrete execution which satisfies
those scheduling constraints. Indeed, a generated abstract

schedule may not even be feasible in the program at all. We

design a proactive reads-from scheduler to drive the program

tomeet the constraints of the abstract scheduler. The schedul-

ing algorithm works by carefully determining which events

to execute next when multiple enabled events are possible.

To push the execution towards satisfying abstract sched-

uling constraints, we use a greedy scheduling algorithm to

delay or immediately execute events involved in these con-

straints. Such a priority change ensures that the event will

always (or never) be chosen next over other enabled events

that are not in the abstract schedule. For example, to satisfy

w
rf−→ r, we can boost the priority of a write event 𝑒w that

instantiates the (abstract) event w, and then subsequently a

read event 𝑒r that instantiates r, to satisfy the reads-from

constraint. However, simply boosting and lowering the pri-

orities when the relevant events are both enabled is often

inadequate to ensure that a desired abstract schedule con-

straint is met. Relevant events are often widely separated

in execution traces and thus likely will not be simultane-

ously enabled without further intervention. Therefore, we

maintain a succinct state machine for each constraint in the

abstract schedule to determine how priorities of relevant

events should be proactively adjusted. A schematic descrip-

tion of the state machines for positive (w
rf−→ r) and negative
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(a) Scheduling a positive constraint w
rf−→ r. Blue states prioritize

r and deprioritize any write other than w. Red states prioritize w
and deprioritize r. Green states represent no prioritization.

(b) Scheduling a negative constraint w
rf
↛ r Purple states priori-

tize r and deprioritize w. Yellow states prioritize all writes apart

from w and deprioritize r.

Figure 2. State-Transition for scheduling reads-from con-

straints. En and Lw represent the set of enabled events and

last write event on the same location as w. Solid arrows in-

dicate actions that facilitate the constraint. Dashed arrows

indicate actions that inhibit the constraint. Label enable(op)
indicates that op is ready to be executed. Label exec(op)
indicates that the action executes op. Label overwrite(w)
indicates executing another write w′ on same variable as w.

(w
rf
↛ r) reads-from constraints are depicted in Figure 2a and

Figure 2b respectively.

Looking first at Figure 2a, we see that, once r has been

enabled but not yet executed (states q
2
and q

4
in red), we

lower the priority for the thread of the read. This means the

read will not be executed until the corresponding write has

been observed (state q
5
) or all other threads are blocked. If the

scheduler is forced to execute r in this state, it reverts these

priority changes (state q
1
). When r has been enabled, the

scheduler also increases the priority for the corresponding

write w while r is being delayed (states q
2
and q

4
in red).

Once the relevant write w has executed (states q
5
and q

6
in

blue), the scheduler lowers the priority for all w′ which access

the same memory location to avoid overwriting the desired

write. At this point, the scheduler also prioritizes the relevant

read r to satisfy the constraint as soon as r becomes enabled.

Positive constraints are implicitly existentially quantified

— we consider such a constraint satisfied after it has been

executed at least once on any two threads; if so the scheduler

removes it from the abstract schedule for the remainder of

the execution.

In Figure 2b, for a negated constraint, our scheduler gives

the read r higher priority and deprioritizes thewrite w as long
as another write w′ was the last observed (states q

1
, q

2
, q

3
, q

4
,

purple). This will greedily execute the relevant read when-

ever the reads-from can be avoided while prolonging this

window for as long as possible. Once w has been observed

(states q
5
and q

6
, yellow), then the scheduler deprioritizes r

to avoid violating the negated constraint. It also prioritizes

any other write to that location, w′, in an effort to overwrite w
and bring the system back into a state where r can be safely

executed. Negative constraints are universally quantified —

we only consider these constraints satisfied if the entire exe-

cution does not contain the corresponding reads-from pair.

Finally, the REJECT state can occur if a negated constraint is

unavoidably violated, e.g., if only a single thread is actually

runnable.

Our discussion of the pro-active scheduling algorithm so

far describes how to (de)prioritize events relevant to the ab-

stract schedule, but an additionalmechanism is still needed to

make scheduling decisions in the absence of relevant events

or in the case of multiple conflicting constraints. Here we

employ randomization, à la partial order sampling (POS) [74].

The POS algorithm, first assigns each event a random score

if it does not already have one. It then picks the event with

the highest score to execute next, resetting that event’s score

along with the scores of any racing events. POS has shown

promising empirical results [74] [73] and, like PCT, provides

a bound on the probability a particular interleaving will be

exercised. We modify the POS algorithm with our greedy

scheduler, such that we adopt POS only when our greedy

scheduler cannot make a definitive scheduling decision. Our

proactive reads-from scheduler, gracefully degrades to base-

line POS in the absence of abstract schedule constraints or

with multiple competing constraints.

Alternative Design Choices. In initial stages of developing

RFF, we investigated a fuzz-testing like (i.e., partially state-

ful) technique that treats concrete schedules as first class

inputs and generates them using a random search guided

by reads-from “coverage”. Unfortunately, we ruled this ap-

proach out because it was less effective than even random

testing (POS) in our early evaluations. When the schedule

is concrete, large fraction of the mutations of an observed

schedule are infeasible. Further, the space overhead of stor-

ing concrete schedules (or a reasonable subset of them) also

becomes a performance bottleneck. This is one of the key
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challenges that our proposed notion of abstract schedules

aims to address — abstract schedules only partially describe

an execution and thus some feasible instantiation of them

can usually be discovered using our proactive scheduler. Sec-

ond, the space of concrete schedules (or even Mazurkiewicz

partial orders [74]) is much larger than the space of abstract

schedules, allowing us to sample the effective search space

without redundancy.

4 RFF Architecture and Implementation
An overview of system architecture of RFF is shown in Fig-

ure 3. Here, the basic system architecture consists of two

main components: (1) an instrumented Program Under Test
(PUT) in combination with a deterministic user-mode sched-

uler (libsched.so), and (2) a schedule fuzzer (RFF), based
on a modified version of AFL [5]. Unlike traditional fuzzers

over the input space, RFF fuzzes the PUT over the schedule
space for a given fixed input. To do so, the RFF fuzzer main-

tains a corpus of “interesting” abstract schedules {𝛼1, 𝛼2, . . .}.
For each iteration of the fuzzing loop, new abstract sched-

ule 𝛼mut is generated by mutating one (or more) existing

schedules from the corpus. The mutant abstract schedule

consists of a set of (possibly negated) reads-from relations

over the events observed from the corpus, which may or

may not be feasible. Next, the instrumented PUT is executed

using a deterministic user-mode scheduler (libsched.so).
The scheduler attempts to bias the actual thread interleaving

into satisfying the constraints specified by 𝛼mut, based on

the proactive reads-from scheduler (see Figures 2a and 2b).

After the instrumented program executes, a concrete sched-

ule (𝜎mut) representing the actual thread interleaving will be

observed. The trace of this concrete schedule is analyzed for

interesting behavior. If the concrete schedule 𝜎mut is deemed

interesting according to the feedback metrics discussed in

Section 3, its corresponding abstract schedule 𝛼mut is saved

to the schedule corpus. Note that our design assumes that

the thread-interleaving can be sufficiently controlled. Thus

it is necessary to manage thread interleavings at the event

level, including individual memory and thread primitives.

The (default) kernel-mode scheduler is coarse-grained and

non-deterministic, so is not suitable. Instead we implement

our own fine-grained (user-mode) scheduler.

4.1 Schedule Control
In order to control the thread interleaving, we take some in-

spiration from prior works on Deterministic Multi-Threading
(DMT), such as Kendo [48] and CoreDet [9]. Here, the basic

idea is to explicitly serialize the thread interleaving using

instrumentation, as illustrated below:

1 void on_event(event_t id) {
2 mutex_lock (& GLOBAL);
3 thread_t *T = schedule(id);
4 if (T != self()) {
5 cond_signal (&T->wake);
6 cond_wait (&self()->wake , &GLOBAL);
7 }
8 record(self(), id);
9 mutex_unlock (& GLOBAL);
10 }

1 on_event(id); // Instrumentation
2 x = *y or *x = y or (thread primitive)

Here each event (i.e., memory operation, concurrency primi-

tive) of interest is instrumented with a call to a on_event()
which uses a global mutex (GLOBAL) to serialize all threads.

Furthermore, each thread 𝑇 is associated with a thread-local

condition variable (T->wake) to control when 𝑇 can run.

When invoked, the on_event() function determines which

thread to run next via the schedule() routine. The sched-
ule routine implements the scheduler proper, as discussed

below. If a different thread is selected, it will be signalled

(woken) and the current thread will be put to sleep. Although

serialization removes some of the performance benefits of

parallelism (per instance), it is also possible to run multi-

ple instances of the fuzzer in order to achieve full resource

utilization.

The scheduling algorithm is implemented as follows:

1. First, the thread must be runnable (i.e., not blocked).
2. Secondly, over the set of runnable threads, the Figure 2a

and 2b algorithms are used to bias thread selection to-

wards the abstract schedule. If executing 𝑒 on thread 𝑇 vi-

olates the abstract schedule, then a different thread should

be selected if possible.

3. Finally, more than one thread may still be selectable. For

this we revert to partial order sampling (POS) over a pre-

determined random seed.

If no thread is runnable then a deadlock has been detected.

Otherwise, schedule() will return a valid runnable thread

with a bias towards the abstract schedule.

Deterministic Multi-Threading. Reproducibility is a key

challenge in finding and especially fixing concurrency re-

lated bugs, as the default scheduler for all mainstream op-

erating systems is non-deterministic. Unfortunately, Deter-

ministic Multi-Threading (DMT) at the granularity of mem-

ory operations is known to incur high overheads [39]. In

the context of our fork-based fuzz testing driver, however,

the overheads of the fork() system call tends to domi-

nate over instrumentation costs [8, 23, 30]. To determine

the set of runnable threads, we borrow from earlier DMT

works by intercepting operations that can potentially block

(mutex_lock, cond_wait, read, poll, etc.). Our runtime also
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Figure 3. Overall system architecture of RFF. The two main

components are (1) the instrumented Program Under Test
(PUT), and (2) the schedule fuzzer. The workflow takes in an

uninstrumented program (prog.exe) and a test input, and
outputs a set of observed racey schedules (if any). The PUT

is executed with mutant schedules, with observed schedules

as feedback.

hooks pthread functions to track thread creation and de-

struction. To ensure that events observed by our tool are

deterministic across executions, we disable address space

layout randomization (ASLR) during a fuzz campaign.

Instrumentation. Our implementation uses low overhead

static binary rewriting with E9Patch [19, 23] in order to

instrument the program more efficiently than dynamic in-

strumentation used in prior work [72]. While not a primary

focus of this work, RFF can test concurrent programs without

access to their source code.

Memory Model. Our implementation assumes sequential

consistency, following the recommendations of the SCT-

Bench authors [58], as this benchmark makes up a large

component of our evaluation. We look forward to future

work which can apply principles from RFF to expose bugs

arising from weak memory behaviours [40].

4.2 Schedule Fuzzer
The second main component is the schedule fuzzer itself

(RFF), which is implemented as a modification of AFL [5].

AFL is an industry-strength fuzzing tool which has found

many critical vulnerabilities in prominent open source soft-

ware projects. Asmentioned in Section 4.1, we useAFL’s fork-

based testing driver to efficiently execute the program with-

out expensive execve calls. Additionally, we utilize AFL’s

shared memory region for efficient inter-process commu-

nication between the instrumented program and the test

execution driver. We adapt AFL to the domain of schedules

by changing its fuzzing loop to reflect Algorithm 1.

Power Schedule.
The PickNextAndAssignEnergy() function inAlgorithm 1

additionally also computes an energy value [𝛼 for abstract

schedule 𝛼 to dictate how many times 𝛼 will be used as a

base to create additional schedules via mutateSchedule().
As a result, it allows for a more fine-grained prioritization

of particular schedules as compared to the binary feedback

of isInteresting(). This function is shown below:

𝑝 (𝛼) =
{
0 if 𝑓 (𝛼) > `

𝑚𝑖𝑛(𝛾 (𝛼 )
𝛽
∗ 2𝑠 (𝛼 ) , 𝑀) otherwise

` =

∑
𝛼∈𝑆+ 𝑓 (𝛼)
|𝑆+ |

For example, even if both schedule 𝛼1 and 𝛼2 observe new

interesting behavior, we can prioritize the neighborhood

around 𝛼1 over that surrounding 𝛼2. In the preceding, 𝑠 (𝛼)
is the number of times the abstract schedule 𝛼 has been

chosen since it was last skipped, 𝛾 (𝛼) is the performance

score for the schedule, 𝛽 is a hyperparameter, and 𝑓 (𝛼) is
the frequency that the reads-from combination exercised

by 𝛼 has been observed. 𝑀 is the maximum iterations per

fuzzing stage. 𝑆+ is the working set of schedules deemed

interesting by the fuzzer. According to this energy distribu-

tion, schedules which produce combinations of reads-froms

which are more common than average are given zero energy

(i.e. skipped entirely). Under-explored reads-from combina-

tions are given exponentially increasing energy until they are

skipped. In doing so, we explore under-explored regions of the
scheduling space rapidly until they become over-explored.

5 Evaluation
In this section, we discuss how we evaluate our concurrency

testing approach. RFF is inherently a randomized testing ap-

proach and its efficacy can be best determined by the diver-

sity of the behaviors it explores. Specially, its ability to cover

the search space as quickly and evenly as possible. To quan-

tify this exploration we use RFF to find bugs in real-world

applications and examples from existing concurrency-bug

benchmarks; we also examine the distribution of schedules

explored over a given partitioning of the schedule space.

Research Questions. The main goal of our evaluation is to

answer the following three research questions (RQ).

1. Is our tool more effective at finding bugs than other

state-of-the-art concurrency testing techniques?

2. How does our focus on the abstract schedule space

contribute to the effectiveness of our approach?

3. How evenly distributed is our search in the space of

reads-froms?

4. Is an an alternative approach leveraging reads-from

information as effective as our fuzzing-inspired biased

random search?

5.1 Experimental Setup

Benchmarks. To evaluate the effectiveness of our approach,
we utilize two widely used benchmarks of (pthread) concur-

rent programs: SCTBench [58] and ConVul [17]. We choose

these benchmarks for their availability and breadth, covering

a wide variety of bug-types, workloads, and applications. Ad-

ditionally, we selected our evaluation benchmarks based on

the standards established in the concurrency testing commu-

nity, to allow fair comparison with prior work. The programs
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in SCTBench are derived from existing concurrency-bug

benchmarking suites and real-world programs containing

concurrency bugs. SCTBench encompasses several smaller

benchmarks used in prior work such as file downloading

and compression tools [71], implementations of work steal-

ing queues [46], small multi-threaded algorithms from [16],

JavaScript engines for modern web browsers [29], parallel

numeric computing applications [68], and other sample pro-

grams [70]. Some programs, such as the RADBench programs

or CB/pbzip2 consist of several thousand lines of produc-

tion C/C++ code. We use the version of SCTBench from [67],

omitting two programs due to incompatibilities with our in-

strumentation framework. The ConVul benchmark contains

10 programswith criticalmemory and pointer related concur-

rency vulnerabilities in real-world programs [17]. Together

these benchmarks provide a large, diverse set of programs

for evaluation.

Bugs. Of the 49 programs evaluated in these benchmarks,

most (34) bugs are manifested as assertion violations. Four

programs contain deadlocks. Lastly, 13 programs contain

memory safety issues related to concurrency. Our evaluation

criteria is the number of schedules needed to find the first

instance of a bug in each program. We choose this as our

criteria to avoid issues with bugs masking other failures that

might occur later in that same execution. For bug detection,

we use only RFF’s built-in deadlock-detector and a simple

crash oracle (e.g. assertion failure, segmentation fault etc.),

following the advice of [58].
3

Baselines. To determine whether our approach is competi-

tive with the state-of-the-art in controlled concurrency test-

ing and model checking, we compare with PERIOD [67], PCT

[13] and GenMC [37, 38]. PERIOD is a systematic testing

tool that explores schedules in parallel using Linux deadline-

based task scheduling andGenMC is a statelessmodel checker

that enumerates all possible behaviors of a program to find

bugs. PCT is a well known randomized concurrency test-

ing algorithm with probabilistic bounds for finding bugs

based on the bug’s depth. We implement PCT (𝑑𝑒𝑝𝑡ℎ = 3)
4

within our framework to provide a fair comparison in terms

of number of instrumented events and execution overhead.

We also conduct an ablation study of RFF without its key

components: abstract schedule constraints and reads-from

feedback. This includes a comparison with our own imple-

mentation of Partial Order Sampling [74] as a baseline. In

addition, we implement a custom Q-Learning [53] algorithm

within our concurrency testing framework to evaluate an

alternative approach for leveraging reads-from information

for concurrency testing

Unfortunately the implementations for state-of-the-art

concurrency-aware fuzzers, MUZZ[14] and CONZZER[32],

3
Many of the programs in SCTBench contain multiple data-races which

would otherwise mask more challenging bugs if considered.

4
A depth of 3 provided the best results for PCT in [58]

are not publicly available. We reached out to the authors

of these works during the early development of RFF, but
were not able to obtain access to either implementation.

Other available concurrency fuzzers [27, 31, 69] are specific

to the Linux kernel and thus incompatible with the user-

space benchmark programs in our evaluation.

We attempted to implement MUZZ’s approach to inter-

leaving exploration, namely (1) changing OS thread priorities

on creation and (2) modifying AFL’s instrumentation to give

per-thread edge coverage on each execution. For (1) we set

each thread priority on entry to a random value with the

sched_setscheduler system call. For (2) we include the

thread ID in the hash for each edge recorded by the coverage

instrumentation of AFL. However, we found that even on

simple benchmark programs, this implementation was not

able to trigger bugs in practice. On the example program

from Figure 1, it was not able to find the bug after millions

of executions on only the three-thread version of this pro-

gram. CONZZER has a far more complex implementation

and we are not confident of re-implementing and replicating

CONZZER system.

Experimental Environment. We conduct all experiments

on a Intel(R) Xeon(R) Gold 6258R CPU @ 2.70GHz run-

ning Ubuntu 20.04 in a Docker container (kernel 5.4.0-155-

generic). We run each benchmark program for 5 minutes

as this is sufficient for at least one tool to discover a bug

on 47/49 benchmark programs. This departs from prior con-

currency testing evaluations in favor of recommendations

found in literature for input-space exploration in greybox

fuzzing [34]. Using a timeout rather than a bounded num-

ber of schedules allows us to compare each approach while

taking into account the overhead introduced by instrumenta-

tion, schedule serialization and more sophisticated analyses.

We repeat each run 20 times for each tool to account for

variance in the results, excepting GenMC, which is deter-

ministic. We did observe some variance in the output of

PERIOD, and we incorporate this variance across runs into

our analysis. We attribute the variance to a timeout for each

period inherent in their deadline-based scheduling imple-

mentation, which may result in missed orderings if it expires.

Despite this, results from our evaluation of PERIOD agree

strongly reported results on these benchmarks in [67]. We

make our experimental data and infrastructure available via

our artifact (Appendix A):

https://doi.org/10.6084/m9.figshare.23911299

5.2 RQ1: Comparison with the State-of-the-Art
We applied PERIOD, Partial Order Sampling (POS), GenMC

and RFF on SCTBench [58] and ConVul benchmarks [17].

Our primary metric for assessing the effectiveness of our

tool is the number of schedules to the first bug found in

each program. We include a table with the mean number

schedules-to-bug for each tool and program in Appendix B.

 https://doi.org/10.6084/m9.figshare.23911299
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Figure 4. Total Bugs Discovered After Log(# Schedules)

Across All Trials (higher is better)
5

Unfortunately, GenMC does not run on 36 of the evaluated

programs. In most cases, this seems to be a limitation of the

GenMC implementation, which supports only a subset of

valid LLVM IR programs. On the programs which GenMC is

able to check, it explores fewer schedules than RFF’s aver-
age schedules-to-bug on 5 programs. However, RFF explores

fewer schedules on average relative to GenMC on 7 programs.

Overall, RFF appears to be competitive with state-of-the-art

model checkers in terms of bugs found per schedule, while

also being more broadly applicable to real-world programs.

PCT performs well, finding approximately 37 bugs on av-

erage. However, RFF finds bugs in the most programs on

average (` = 46.1), followed closely by PERIOD (` = 44.6).

Despite the narrow gap, this difference in the number of bugs

found over 20 trials is statistically significant by the Mann-

Whitney U-test (p-value < 0.001). RFF consistently finds bugs
in 46/49 programs and finds bug in the 47th program in some

fuzz campaigns (hence ` = 46.1). To visualize the bugs found

per schedule executed for each tool, we plot the cumulative

bugs found as the (log) number of total schedules increases

across all programs in Figure 4. This graph shows the number

of bugs found by each tool after a certain number of sched-

ules, rather than only counting the number of bugs found at

the end of our timeout. For each of our 20 trials, we track the

schedule number𝑀 at which the Nth bug was computed on

each benchmark. This figure plots a point at (𝑀 , 𝑁 ) for each

bug found, in ascending order.
5
Here we see that RFF consis-

tently finds more bugs per schedule than either PERIOD or

5
For example, using only two trials and three programs, we might find bugs

after [3, 5, 7] schedules and [3, 6, 9] schedules respectively. We then plot

a point for the cumulative number of bugs found within each trial. In this

case, a point at (3, 1) , (5, 2) and (7, 3) for the first trial and (3, 1) , (6, 2)
and (9, 3) for the second trial.

POS at all schedule counts measured in our evaluation. In

other words, apart from finding more bugs than prior work,

RFF generally finds those bugs in fewer schedules. In fact, our
tool finds bugs in significantly fewer schedules than PERIOD

on 30/49 programs, whereas PERIOD finds bugs in fewer

schedules for only 9/49 programs.
6
We attribute the success

of our tool over PERIOD to our abstract schedule structure.

PERIOD explores all possible orderings of synchronization
and shared-access events below a given depth bound. Many

different orderings of these events correspond to the same

“reads-from” relations.

RFF finds more bugs in fewer schedules than state-of-
the-art concurrency testing tools.

5.3 RQ2: Contribution of the Abstract Schedule
We compare RFF with Partial Order Sampling POS because

our scheduling algorithm leverages POS on the space of

abstract scheduleswhile the original POS operates on concrete
schedules. We show the results of this comparison on the

SCTBench [58] and ConVul benchmarks in Figure 4. We can

see from the average number of bugs found by each tool that

the abstract schedule structure improves the bug-finding

ability of our tool significantly. By searching the space of

reads-froms, we are able to find approximately six more bugs

on average! The cumulative plot in Figure 4 similarly shows

a strong effect from the schedule structure. Here we can see

that our tool with abstract schedule constraints (green) finds

slightly more bugs relative to POS (red) after exploring a

small number of schedules. This initial gap widens as the

number of schedules explored increases. In other words,

POS is comparable in efficacy to our more structured search

for finding relatively easy bugs (found in small numbers of

schedules). For harder bugs, however, POS fails to find them

as quickly or at all.

We observed that POS alone fails on several programswith

larger number of threads, such as reorder_100, reorder_50
and twostage_50, etc. As discussed in Section 2, the prob-

ability for POS to trigger a particular interleaving in these

examples is exponentially low in the number of threads.

RFF overcomes this problem by defining events in terms of

their effects (reads-from) rather than which thread executed

them. Looking more closely at each approach, we find that

a structured random search finds the bug in significantly

fewer schedules on 16/49 programs (via the log-rank test).

In contrast POS does not find the bug in significantly fewer

schedules on any of the benchmark programs. This implies

that our tool gracefully degrades to POS in the absence of

abstract schedule constraints, and the schedule structure

improves POS.

6
Significance determined by the log-rank test [41] (p < 0.05)
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Figure 5. Log-scale frequency of reads-from sequences ob-

served by POS (top) and RFF (bottom) in 10000 executions

of the SafeStack program

Searching over the reduced space of abstract reads-
from schedules is crucial for RFF’s bug-finding effective-
ness. RFF provides a strict improvement over Partial
Order Sampling in practice.

5.4 RQ3: Exploration of the Schedule Space
To assess RFF’s ability to evenly explore the space of mean-
ingfully different interleavings, we examine the number of

times each unique combination of “reads-from” relation is

observed by RFF during a fuzz campaign. We ran RFF both
with and without grey-box feedback. Figure 5 shows the (log)

frequency each combination of reads-from in the SafeStack
program was executed after 10000 schedules. We choose this

program because it is the most complex in either benchmark

suite evaluated, both in terms of bug depth and difficulty. If

we expect a bug to be equally likely to occur in any of the

reads-from combinations, then a strategy which explores

each individual combination evenly will be more success-

ful. Here we can see that without grey-box feedback (top),

there is a heavily skewed distribution. A single reads-from se-

quence comprises more than 50% of all executions! Including

grey-box feedback (bottom) results in a more even explo-

ration of the reads-from space. We attribute this success to

our prioritization of rarely observed reads-from sequences

via a suitable power-schedule, which was described in Sec-

tion 4.2.

Figure 5 (top) shows that random exploration alone results

in a tendency to execute some reads-from sequences expo-

nentially more than others. By incorporating feedback via

our power schedule, we can bias the search towards under-

explored sequences.

Greybox feedback promotes an even exploration of
the schedule space and can lead to significant im-
provements on certain programs.

5.5 RQ4: Reads-from Testing via Q-Learning
To further evaluate the effectiveness of our fuzzing-inspired

approach, we compare it with a different framework lever-

aging the same reads-from information: Q-learning [53].

Q-Learning is a well-understood reinforcement learning

technique which maximizes the reward over several actions

which can be taken from each of a many successive states.

To do so, a Q-function maps each state-action pair to a score:

𝑄 : 𝑆 × 𝐴 → R. This score, 𝑄 (𝑠𝑡 , 𝑎 𝑗 ) represents the prob-
ability with which the action 𝑎𝑖 should be taken from the

state 𝑠𝑡 . After sampling over these probabilities to determine

the next action, the algorithm updates the Q-score for the

state-action pair via a reward function. This technique can be

applied to the problem of concurrency testing by considering

each scheduling decision to be an action.

Our goal is to investigate Q-Learning as an alternative
framework to leverage the reads-from relation, which is criti-

cal in uncovering both bugs and new control flows in concur-

rent programs. Thus, in contrast to prior applications of Q-

Learning to concurrency testing [45], we use the reads-from

relation to distinguish states in our Q-Learning implemen-

tation. More specifically, we represent the state of a partial

execution of the first 𝑡 events in a concrete schedule 𝜎1...𝑡
as a running commutative hash of the 𝑁 reads-from event

pairs observed so far in that execution:

ℎ((𝑒𝑤1
, 𝑒𝑟1 ), ℎ((𝑒𝑤1

, 𝑒𝑟1 ), . . . , (𝑒𝑤𝑁
, 𝑒𝑟𝑁 ) )))

for each pair (𝑒𝑤𝑖
, 𝑒𝑟𝑖 ) such that rf (𝑒𝑟𝑖 ) = 𝑒𝑤𝑖

. We utilize a

constant negative reward function for observed state-action

pairs, as in [45]. Looking at Figure 4, we can see that our

instantiation of “Reads-From Q-Learning” (Q-Learning RF)

is not as effective in utilizing the reads-from relation to find

bugs on our two datasets as RFF. In total it finds only about

30.2 bugs on average relative to RFF’s 44 bugs. Additionally,
RFF finds bugs in significantly fewer schedules on 30 of the

49 programs evaluated. However, we do note that the Q-

Learning RF approach consistently finds the bug on the first

trial in more instances than any other tool (13 programs). We

attribute this one-shot success to the reinforcement learning

taking place on partial traces. In comparison, RFF considers

its greybox feedback only after a complete execution.

Greybox schedule fuzzing provides an effective frame-
work to leverage the reads-from relation, as com-
pared to our instantiation of a reads-from based Q-
Learning approach.
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6 Related Work
Concurrency-Aware Fuzzers. Concurrency-aware fuzz

testing tools attempt to explore interleavings in addition

to searching the input space of user space programs [14],

kernels [27, 31] and file systems [69]. AutoInter-fuzzing [35]

employs static analysis to generate concurrent memory ac-

cess pairs, executing two operations from each pair in dif-

ferent orders to trigger concurrent bugs. Some works also

combined fuzzing with symbolic execution to conduct con-

colic testing on concurrent programs [20, 56, 61]. MUZZ [14]

emphasizes extremely low-overhead, exploring the interleav-

ing space in an uncontrolled manner by randomly changing

the OS thread priorities only at thread creation time. It also

leverages threading events as feedback to find and favor

inputs which trigger concurrent executions. Conzzer [32]

exercises intermittent control at runtime, using concurrent-

function-call feedback to determine if it should trigger a

delay in an adjacently executed function in a future execu-

tion. It only conducts a fine-grained, controlled analysis on

demand for race detection between two functions on two

threads. This means that it cannot detect races involving

more than two threads or more than two functions, and that

the fine grained analysis will not run for issues not involving

data-races (or not detected as data races by their incomplete

race detector). The design of RFF is backed by the insight

that control flow and data flow can be altered only when the

reads-from information changes; thus a fuzzer that directly

mutates this semantic information and uses it as feedback

can avoid redundant exploration. RFF also fully controls the

schedule throughout each execution, rather than an uncon-

trolled or intermittently controlled exploration as is typical

for concurrency-aware fuzzers. This control over schedule

is very fine grained (e.g. individual loads/stores), allowing

RFF to find very intricately interleaved schedules. RFF also
uses a proactive scheduler which attempts to coerce abstract

(reads-from) constraints, rather than rely entirely on ran-

domization.

Randomized Concurrency Testing.Many approaches em-

ploy a randomized thread scheduler to expose bugs, fore-

going exhaustive enumeration for performance, and often

probabilistic guarantees. Randomized approaches recognize

that while the interleaving space is vast, many interleavings

exhibit similar concurrent behaviors. A prominent strategy

to design such schedulers is to identify a reduced search

space, often backed by a hypothesis about the existence of

bug patterns. Randomized schedulers categorize interleav-

ings into distinct classes and sample one execution per class.

PCT[13, 47] exemplifies this, grouping interleavings with

the same preemption behaviors and randomly selects ex-

ecutions across diverse preemption behaviors. PPCT [47]

the multi-core counterpart of PCT, accelerates fuzzing cam-

paigns without compromising exploration efficiency. Par-

tial Order Sampling (POS) [74] improves on its predecessor

RAPOS [59] by uniformly sampling executions across dif-

ferent partial orders. Tools such as Coyote [18, 45] employ

reinforcement learning to improve the search space diver-

sity. Randomized testing approaches focusing on likely error

prone partial orders have also been proposed [60]. Our ap-

proach mitigates the explosion of number of partial orders

faced by such approaches, by directly working on abstract

schedules representing reads-from pairs. Recent extensions

of randomized methodologies encompass weak memory pro-

grams [22, 40] and distributed systems [49, 50, 73], building

on the foundation of PCT and POS.

Systematic Concurrency Testing.Many systematic con-

currency testing methods focus on shared memory access

patterns, or program contexts. Approaches such as [46, 55]

explore preemption or context-bounded program executions.

Maple [72] predefines a set of shared memory access patterns

and dynamically explores unvisited yet feasible patterns dur-

ing run-time. PERIOD [67] treats schedule representations

as a sequence of code pieces with thread-sensitive informa-

tion. We have presented experimental comparison of RFF
with PERIOD (Fig. 4); RFF finds bugs in fewer schedules as

compared to PERIOD.

ModelChecking. In the realm of concurrency testing, model

checking assumes a deterministic stance and meticulously

searches all possible program executions. GenMC [37, 38] is a

prominent tool applied to diversememorymodels within this

category. CBMC [15] encodes executions into SAT/SMT for-

mulas, harnessing solvers to assess satisfiability. The scalabil-

ity of model checking is hampered by the exponential growth

of the state space with program size. Dynamic partial-order

reduction (DPOR) help reduce the set of program executions

by categorizing executions into equivalent classes and con-

sidering one interleaving from each equivalence class [1, 21].

DPOR techniques have further been improved to be optimal
with respect to coarser equivalence classes [2, 4, 7, 36]. Our

experiments show favorable comparison of RFF w.r.t. state-
of-the-art (stateless) model checker GenMC [37, 38]. This

is because of the large number of program executions any

enumerative search approach needs to consider. RFF uses a
biased random search, and is not enumerative. Thus RFF will
not necessarily exhaustively explore the search space. How-

ever, by using a random search augmented with reads-from

information, RFF explores the space of interleavings rela-

tively evenly in practice with respect to witnessing different

reads-from relations.

Dynamic Analyses. Tools such as ThreadSanitizer [62,

63] aim to detect traditional concurrency bugs such as data

races, and deadlocks by analyzing executions of concurrent

software. While their detection ability may be limited to

the observed interleaving, predictive methods for data race

detection [33, 42, 43, 51, 57], deadlocks [66] and atomicity

violations [44] have been developed. Such techniques gener-

alize the execution observed during testing to a larger class
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of correct reorderings [64] and look for bugs in these, thereby

enhancing the coverage of dynamic analysis without having

to rerun the underlying program. Predictive analyses have

also been developed for more properties beyond races, dead-

locks and atomicity violations [6, 28]. We remark that despite

the enhanced coverage, runtime predictive analyses do not

consider executions that fall outside of the causal purview of

the observed execution. In the setting of full system testing,

we believe predictive testing can be used in conjunction with

other concurrency techniques such as RFF to achieve faster

convergence.

7 Threats To Validity
We mitigate selection bias in our choice of tools and bench-

marks, a threat to internal validity by evaluating the reported

state-of-the-art tools on the most widely used benchmarks in

this domain. There is a risk that these results do not general-

ize beyond our evaluated dataset, a threat to external validity.
We believe that our evaluation of 49 programs –real-world

and hand-crafted– on two well-known benchmarks mini-

mizes this risk. Our approach is intended to effectively search

the space of interleavings for bugs in concurrent programs.

We reduce the threat of construct validity by directly measur-

ing the number of bugs found in the benchmarks evaluated.

Finally, we conduct an ablation study against POS and a com-

parison with another algorithmic framework in Q-Learning

to confirm the impact of key aspects of our approach and

avoid threats to conclusion validity.

8 Discussion
In this paper, we have proposed a new approach which ef-

fectively searches the interleaving space of concurrent pro-

grams for bugs. To formulate this approach, we took inspira-

tion from the success of biased random search approaches

such as greybox fuzzing in sequential programs. By leverag-

ing the reads-from relation, our approach both reduces the

search space and guides the search towards under-explored

regions of the search space (of interleavings). We believe that

biased-random search presents a pragmatic middle ground

between purely randomized search algorithms and heavy-

weight systematic testing via model checkers.
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A Artifact Appendix
A.1 Abstract
The RFF tool includes (1) a dynamic library that wraps

pthread functions to serialize a concurrent programs exe-

cution (2) a scheduler within that library that implements

the RFF scheduling algorithm as well as other scheduling

algorithms such as PCT (3) binary instrumentation to inject

pre-emptions into a program at individual memory opera-

tions and (4) a modified version of AFL which executes a

program in a loop while making structured mutations to its

schedule. The relevant code for these components is mostly,

but not exclusively, a mix of C, C++ and Python. This artifact

also contains the setup in Docker for nearly 50 benchmark

programs used in the paper evaluation, as well as some ad-

ditional curated examples not discussed in the paper. We

additionally directly include all raw data used to generate

figures and tables in the paper.

The core results of this paper can be reproduced with two

main experiments. The first experiment compares RFF to

various alternative approaches on two widely used bench-

mark suites in terms of schedules-to-first-bug. This exper-

iment generates the data for Figure 4 and in Appendix B.

The latter experiment counts the frequency of various reads-

from sequences in a run of RFF and Partial Order Sampling

(POS), generating the data for Figure 5. The steps for each

experiment have been encapsulated into corresponding con-

venience bash scripts. By reading the convenience scripts for

these experiments and benchmarks, it should be possible to

run RFF with different parameters or on different programs.

A.2 Recommended Dependencies
The recommended software dependencies are a native (not

WSL), recent version of Ubuntu as the host OS with Docker,

Python3, bash, and GNU Parallel [65]. Additional Python de-

pendencies can be installed via pip and a requirements.txt

file. Before each experiment, make sure all Python dependen-

cies are installed using e.g. an activated virtual environment

and that ASLR is disabled on the host system.

The experiments in this paper use the E9Patch [19, 23]

binary instrumentation framework, which requires a ma-

chine with the x86_64 architecture. While no other hardware

is strictly necessary, experiments can be run with up to 50

cores – fewer cores will mean slower reproduction times for

the experiments. A 16 core machine should be able to run

the largest experiment in about 24 hours.

A.3 Access and Details
Our artifact has been archived at:

https://doi.org/10.6084/m9.figshare.23911299

We have included a complete artifact appendix PDF with

detailed documentation and reproduction steps in the latest

version of the artifact. Please also see the README.md file for

information regarding all configuration options for RFF.

 https://doi.org/10.6084/m9.figshare.23911299
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B Mean Number of Schedules to 1st Bug

PCT3 PERIOD RFF POS QLearning RF GenMC

Benchmark/program

CB/aget-bug2 1 ± 0 9 ± 0 1 ± 0 1 ± 0 1 ± 0 Error

CB/pbzip2-0.9.4 - 45 ± 6* 2 ± 0* - - Error

CB/stringbuffer-jdk1.4 195 ± 174 27 ± 37 15 ± 18 18 ± 23 1405 ± 1592 Error

CS/account 9 ± 7 10 ± 0 1 ± 0 1 ± 0 6 ± 8 5

CS/bluetooth_driver 161 ± 162 9 ± 0 45 ± 35 72 ± 79 155 ± 154 4

CS/carter01 5 ± 4 4 ± 1*
†

2 ± 1 2 ± 1 1 ± 0 4
†

CS/circular_buffer 5 ± 4 3 ± 0 2 ± 1 2 ± 1 2 ± 1 8

CS/deadlock01 20 ± 20 3 ± 0
†

5 ± 4 4 ± 3 1 ± 0 3
†

CS/lazy01 10 ± 6 7 ± 2 6 ± 6 5 ± 4 12 ± 15 5

CS/queue 12 ± 14 4 ± 1 1 ± 0 1 ± 0 1 ± 0 22

CS/reorder_10 2356 ± 2302 27 ± 0 6 ± 4 - - Error

CS/reorder_100 7447 ± 0* 297 ± 0 6 ± 4 - - Error

CS/reorder_20 2128 ± 2284 39 ± 0 6 ± 4 - - Error

CS/reorder_3 241 ± 336 6 ± 0 7 ± 5 223 ± 166 45843 ± 32338* Error

CS/reorder_4 395 ± 320 9 ± 0 6 ± 5 1464 ± 1829 - Error

CS/reorder_5 1126 ± 1045 12 ± 0 6 ± 4 4377 ± 4208* - Error

CS/reorder_50 12346 ± 6682* 129 ± 0 6 ± 4 - - Error

CS/stack 2 ± 2 8 ± 0 2 ± 1 2 ± 2 1 ± 0 20

CS/token_ring 8 ± 6 2 ± 0 5 ± 5 7 ± 5 12 ± 12 14

CS/twostage 9 ± 9 4 ± 0 8 ± 7 15 ± 16 336 ± 501 3

CS/twostage_100 3888 ± 3473* 690 ± 0 56 ± 71 - - Error

CS/twostage_20 188 ± 168 76 ± 0 22 ± 19 185 ± 215 - Error

CS/twostage_50 849 ± 870 286 ± 0 35 ± 27 1984 ± 1238* - Error

CS/wronglock 88 ± 98 4 ± 2 1 ± 0 1 ± 0 37 ± 32 3

CS/wronglock_3 40 ± 36 5 ± 1 1 ± 0 1 ± 0 37 ± 32 Error

Chess/InterlockedWorkStealQueue 24 ± 19* 57 ± 0 1 ± 0 1 ± 0 - Error

Chess/InterlockedWorkStealQueueWithState 16 ± 0* 224 ± 80 7 ± 6 9 ± 9 16 ± 14 Error

Chess/StateWorkStealQueue 12 ± 0* 249 ± 101 1 ± 0 1 ± 0 - Error

Chess/WorkStealQueue 12 ± 14 57 ± 0 10 ± 8 10 ± 9 - Error

ConVul-CVE-Benchmarks/CVE-2009-3547 6 ± 5 2 ± 0 1 ± 0 1 ± 0 1 ± 0 Error

ConVul-CVE-Benchmarks/CVE-2011-2183 9 ± 9 3 ± 0 2 ± 2 2 ± 1 1 ± 0 Error

ConVul-CVE-Benchmarks/CVE-2013-1792 87 ± 65 13 ± 0 23 ± 43 50 ± 62 388 ± 361 1

ConVul-CVE-Benchmarks/CVE-2015-7550 8 ± 7 3 ± 0 6 ± 5 7 ± 7 1 ± 0 Error

ConVul-CVE-Benchmarks/CVE-2016-1972 - 3 ± 0* 39 ± 29 86 ± 78 74 ± 39* Error

ConVul-CVE-Benchmarks/CVE-2016-1973 8 ± 5 6 ± 0 3 ± 3 7 ± 6 5947 ± 6063 Error

ConVul-CVE-Benchmarks/CVE-2016-7911 16 ± 13 3 ± 0 13 ± 10 12 ± 11 1 ± 0 Error

ConVul-CVE-Benchmarks/CVE-2016-9806 4 ± 3 6 ± 0 11 ± 8 14 ± 10 554 ± 577 Error

ConVul-CVE-Benchmarks/CVE-2017-15265 - 11 ± 0 36 ± 39 - - Error

ConVul-CVE-Benchmarks/CVE-2017-6346 15 ± 11 5 ± 0 5 ± 4 13 ± 14 1 ± 0 Error

Inspect_benchmarks/boundedBuffer 15 ± 16 8 ± 7* 8 ± 7 6 ± 5 14 ± 13 Error

Inspect_benchmarks/ctrace-test 1 ± 0 3 ± 0 1 ± 0 1 ± 0 1 ± 0 1

Inspect_benchmarks/qsort_mt 3838 ± 4458 27 ± 0 322 ± 344 646 ± 753 - Error

SafeStack - - - - - Error

Splash2/barnes - 2 ± 0 3 ± 3 2 ± 2 2 ± 1 Error

Splash2/fft 1 ± 0 2 ± 0 1 ± 0 1 ± 0 1 ± 0 Error

Splash2/lu - 2 ± 1 1 ± 0 1 ± 0 47 ± 38 Error

RADBench/bug4 15599 ± 9907* - 163 ± 151 216 ± 209 - Error

RADBench/bug5 - - - - - Error

RADBench/bug6 61 ± 49 24 ± 0
†

4 ± 3 11 ± 8 1 ± 0 Error

Each cell shows the (mean ± standard deviation) number of schedules to first bug across 20 trials

* indicates the tool did not find the bug in at least one trial

† indicates the tool does not explicitly detect deadlocks

- indicates the tool did not find the bug in any trials

bold indicates the statistically significant (by the log-rank test [41], p < 0.05) best result on that program

Error indicates we were unable to successfully run the tool on this program
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