Program Repair Competition

Ridwan Shariffdeen
National University of Singapore
ridwan@comp.nus.edu.sg

Abstract—Automated Program Repair(APR) is a rapidly de-
veloping technology that can assist developers in fixing software
system errors. An essential part of any scientific work is a fair
and comprehensive evaluation of the state-of-the-art techniques.
At present there is no publicly available standard mechanism
to perform comparisons for program repair. In this paper, we
propose such a standardization in the form of a competition to
foster comparability, advancing the state-of-the-art capabilities
and to pave the path for the next-generation repair technology.

Index Terms—automated program repair, competition

I. INTRODUCTION

Improving the productivity of software developers by reliev-
ing the burden of manually fixing the ever-increasing amount
of software bugs has been the goal of automated program
repair technology [1]. The past decade has seen a significant
growth in Automated Program Repair (APR) expanding into
various tasks in Software Engineering including but not limited
to fixing functional errors, repairing security vulnerabilities,
assisting educators in teaching programming languages and
collateral evolution of software systems [2].

In general, the repair problem can be formulated as a search
problem where; given a buggy program P and a program
specification o (i.e. a test-suite) which P does not satisfy, find
an edit to the program such that it satisfies o. In practice, o
can be represented in various different forms. For example,
the program specification o could be presented as a set of
test-cases or as a program assertion that should hold true for
all inputs of the program. The property being specified by the
specification could capture correct functionality of the program
or a security property. Repair techniques [2] proposed in the
literature assume different types and formats to the inputs
albeit attempting the same repair task.

A recent study [3] showed appreciable interest from the
software practitioners to incorporate repair technology in their
development processes, provided the tools can be integrated in
a non-disruptive manner. In order for a repair tool to be used it
is important that the existing repair tools improve its usability
such that users can easily operate the tools and is provided
with documentation support on how to configure/extend its
capabilities. The benefits of developing the tools beyond an
academic prototype has little-short term reward but longer-
term benefits for wide adoption of repair technology. However,
such considerations are generally not included when develop-
ing repair techniques, creating an entry barrier for developers
to familiarize with the repair technology.

Martin Mirchev
National University of Singapore
mmirchev@comp.nus.edu.sg

Abhik Roychoudhury
National University of Singapore
abhik@comp.nus.edu.sg

Furthermore, there is no widely adopted set of benchmark
programs that remains relevant with the development of the
field. Most of the benchmark subjects quickly become obsolete
either due to the use of deprecated dependent libraries or sim-
ply because the code is no longer maintained. Such programs
make it difficult to use to assess the advancement made in
the technology and irrelevant for state of the art comparisons.
Using out-dated subjects as benchmark programs makes it
challenging for researchers to compare the performance of
their techniques, with no reward for the effort. It is also
important for the standardized benchmark programs to evolve
over time in order to prevent repair techniques from being
over-fitting for a given set of benchmark programs.

Finally, the recent emergence of large language models
(LLMs) [4] has the potential to automatically generate code
and will change the traditional processes in software engineer-
ing. Traditional program repair technology mainly focused on
fixing human-errors in programs by learning fix-patterns from
fixes written by developers themselves. In future, software may
comprise of code generated by humans and machines, hence
it is important as a community to develop techniques that can
co-exist with Al-driven Software Development. Thus, we can
explore how automatic program repair can deliver last-mile
improvement to automatically generated code from LLMs with
the vision of trusted automated programming.

We propose a Program Repair Competition that provides
additional incentive to the community to setup and maintain
repair tools and benchmarks relevant for the current needs
in practice. A competition can foster the development of
standards, tools and benchmarks that can be used to assess
the advancement of the technology. It can also provide reward
for technical improvements while providing a platform for
researchers to compare with state-of-the-art techniques. A
competition could also enforce requirements / standards for
repair tools to agree on. Such a standard can specify how the
input and output for the repair problem will be specified, the
qualitative / quantitative measures used to compare techniques
and the types of different program specifications that can be
repaired. These standards should make it easy to generate
and compare new repair techniques. A common platform with
tool-agnostic, user-friendly interfaces allows to even add new
software programs to be repaired with dynamic workflows.

II. METHODOLOGY

The program repair competition will be designed to evalu-
ate state-of-the-art repair tools with respect to effectiveness,



efficiency and quality of the results. Effectiveness will be
measured using its repair capabilities on different repair tasks
while efficiency is measured with respect to usability aspect
(i.e. time latency, resource usage) of the tool. Quality of the
results (i.e. generated patches) will be evaluated. The main
goals of the competition are:
1) mechanism to generate data for the advancement of
program repair technology
2) provide incentives for researchers to improve their tech-
niques beyond academic prototypes;
3) provide visibility for the state-of-the-art repair tools to
the software practitioners;
4) establish an evolving community standard to evaluate
new repair techniques (i.e. quality vs quantity);

Organization: : The competition is designed in a manner
inspired by the successful model used in SV-COMP [5],
the International Competition on Software Verification. The
organizing committee would comprise of a ‘core’ team and a
‘jury’ committee. The ‘core’ team would be responsible for
conducting the evaluations in an automated, reproducible and
fair manner. The jury committee is formed with a representa-
tive of each of the participating teams. The jury committee
would serve as an advisory board for decision making on
qualification of tools, benchmarks and setting up standards.

Timeline: The competition will be announced at the
International Workshop on Automated Program Repair co-
hosted with International Conference on Software Engineering
(ICSE) 2023. The tool developers will submit their intention
to participate in the competition and provide an initial version
of their tool which can be used in pre-runs by the organizing
committee and report preliminary results to the jury committee
and the tool developers. Once the jury committee approves
the final list of benchmarks for evaluation, the tool developers
will submit the final versions which will be independently
evaluated by the organizing committee. Final results will be
reported to the team for inspection and approval, and the
results will be announced on the competition website. The
competition organizers write the final competition report with
reviews / approval from the jury committee. These tentative
plans will be firmed up during the process.

Standards: The organizing committee will announce the
rules and regulations for the competition along with the
metrics used to evaluate the repair tools. The rules will define
the minimum qualification for a repair tool to participate in
the competition, the standard interfaces it should implement
and the expected inputs for the repair task. In addition, a
clear definition of the categories and sub-categories used to
determine different capabilities of repair will be announced to
the participants. Finally, the scoring criteria will be approved
by the running jury committee before the evaluation.

Competition Tracks: : Several tracks run in parallel cap-
turing different repair tasks including but not limited to fixing
logical-errors, vulnerability repair, last-mile fixes on novice
programs and auto-generated code, fixing reports generated
by static code analysers and generating feedback for student
programming assignments. Each track consists of repair tasks

from multiple different languages extracted from real-world
applications. Each iteration of the competition will update
the tasks in each track to include new challenges in order
to circumvent the risk of tools that over-fit.

Evaluation: : The scoring criteria should be designed to
identify techniques that generate high-quality patches to be
ranked higher, while detecting tools that generate undesirable
outputs to be ranked lower. Using an approved scoring criteria
by the running jury committee preliminary results would
be provided to the participating teams. The final evaluation
is an adversarial competition between participating teams.
Competing teams may provide proof of incorrectness for the
patches generated by a team, to dispute their scores.

III. CONCLUSION

Automated program repair can improve the trustworthiness
of both manually written and automatically generated code.
Due to the rapid advancements in repair technology and the
fast-changing landscape in software engineering there is a
need to setup a continuously improving set of standards.
Inspired by the success in the fields of software verification
and testing, we propose a Program Repair Competition. At
the end of the evaluation all repair tasks, results and tools will
be published for reproducibility purposes. Infrastructure, data
and all components will be made available for public access.

The potential benefits of participating includes high-
visibility of the technology among software practitioners,
acknowledgement for technical improvements and advancing
the state of the art research in program repair. We invite the
community to participate in this program repair competition,
which will hopefully play a significant role in shaping the
next-generation of repair technology.

ACKNOWLEDGMENT

The work is partially supported by a Singapore Ministry of
Education (MoE) Tier 3 grant “Automated Program Repair”,
MOE-MOET32021-0001.

REFERENCES

[1] C. Le Goues, M. Pradel, and A. Roychoudhury, “Automated program
repair,” Commun. ACM, vol. 62, no. 12, p. 56-65, nov 2019. [Online].
Available: https://doi.org/10.1145/3318162

[2] M. Monperrus, “The Living Review on Automated Program Repair,”
HAL Archives Ouvertes, Technical Report hal-01956501, 2018. [Online].
Available: https://hal.archives-ouvertes.fr/hal-01956501

[31 Y. Noller, R. Shariffdeen, X. Gao, and A. Roychoudhury,
“Trust enhancement issues in program repair,” in Proceedings
of the 44th International Conference on Software Engineering,

ser. ICSE ’22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 2228-2240. [Online]. Available:
https://doi.org/10.1145/3510003.3510040

[4] T. B. Brown et al, “Language models
arxiv:2005.14165, 2020.

[5] D. Beyer, “Software verification: 10th comparative evaluation (sv-comp
2021),” in Tools and Algorithms for the Construction and Analysis
of Systems, J. E. Groote and K. G. Larsen, Eds. Cham: Springer
International Publishing, 2021, pp. 401-422.

are few-shot learners,”



