
Crafting the AI Software
Engineer of the Future

Artificial intelligence (AI) technologies,
particularly large language models,
are transforming software
engineering by automating coding
tasks. However, software engineering
extends beyond code generation to
maintenance, architecture and
collaborative development. The
emergence of AI software engineers
raises fundamental questions about
their role, capabilities and integration
into human software teams.

Abhik Roychoudhury1, National University of Singapore, Singapore
1Abhik Roychoudhury is also a Senior Advisor at SonarSource

Provost's Chair Professor Abhik
Roychoudhury examines
AI’s evolving role in software
engineering, from LLM-driven
automation to unified AI developers
and human-AI collaboration.

Crafting the AI Software Engineer of the Future

The Evolution of Software Engineering

Software Engineering stands at the intersection of science and engineering. It
integrates principles from programming languages, formal methods and other fields
to provide rigour in how we design, build, maintain and evolve software systems. Over
the past fifty years, it has evolved into a discipline grounded in robust engineering
practices — particularly in the management of large-scale software systems through
continuous integration and continuous deployment (CI/CD).

Indeed, fifty years is a long time in
computing. This milestone coincides with the
rise of artificial intelligence (AI), particularly
large language models (LLMs), which have
demonstrated significant capabilities in
automated coding. But software engineering
is not just about coding. It is multifaceted —
encompassing various aspects like design,
maintenance, evolution, architecture and the
broader human and social dimensions of
software development.

The crucial, and perhaps multi-million-dollar,
question, then, is this: How will AI shape the
role of software engineers beyond coding?

And what does it mean to be an AI software engineer?

AI Agents in Software Engineering

To envision the future of software engineering, we must examine its present
trajectory. Significant efforts are underway to develop LLM agents capable of handling
software engineering tasks such as bug fixes, feature additions and performance
optimisations. But what precisely constitutes an agent, and to what extent does it fulfil
the role of an AI software engineer?

At a fundamental level, an LLM agent for issue remediation follows a structured
process (see Figure 1). When presented with a problem — be it a bug fix or a feature
enhancement — the agent processes it via an LLM-based front-end. This, in turn,
interacts with a back-end capable of invoking analysis tools, navigating program
structures and generating potential solutions. The agent’s goal is not only to propose
patches, but also to validate them against tests and other software artifacts. This
ensures quality and reliability.

Software engineering
is not just about coding.
It is multifaceted —
encompassing various
aspects like design,
maintenance, evolution,
architecture and the
broader human and
social dimensions of
software development.

Crafting the AI Software Engineer of the Future

Figure 1: Thinking behind an LLM agent for issue remediation

LLM WITH
WRAPPER

ISSUE BACK END

(ANALYSIS)
TOOLS

PROGRAM REPRESENTATIONS
 & FILES

AutoCodeRover:
A Step Towards AI Software Engineering

An LLM-based issue remediation agent embodies an early prototype of an AI software
engineer. Many human software engineers spend their time reviewing issue trackers,
resolving assigned problems and committing fixes to a codebase. If an AI system can
autonomously remediate issues, it could reasonably be considered a “junior” AI
software engineer.

AutoCodeRover [1,2] is a step change in this direction. Its architecture (see Figure 2)
includes key capabilities essential for AI-driven software development. Given an
issue, AutoCodeRover first reproduces the problem through test cases. It then
retrieves relevant code through autonomous search, where it leverages program
analysis tools to debug the issue. This process culminates in a code edit or patch,
which is subsequently validated against various testing and review mechanisms
before integration.

Figure 2: High-level design of AutoCodeRover

TASK

FINISH

REPRODUCTION CODE RETRIEVAL

EDIT CODEREVIEW PATCH

1

6

2

4

5

35

Crafting the AI Software Engineer of the Future

Towards a Unified AI Software Engineer

Where do we go from the current burst of interest in LLM agents? Will AI agents remain
specialised tools, or will they morph into more comprehensive software engineers?
How can we close the chasm between current AI capabilities and the many workflows
managed by human counterparts?

Current AI-driven software development is fragmented, with different agents tackling
specific tasks such as bug fixes, code generation and testing. The next logical step is to
unify these capabilities into a comprehensive AI software engineer capable of handling
complex software development scenarios.

A seasoned, human software engineer does far more than isolated tasks; they manage
interdependent workflows. Consider the following scenarios:

Implementing a new feature while pre-emptively addressing potential bugs

Completing a fix that was initially incomplete, while ensuring robustness
across the codebase

Taking over the code of a developer who has left the organisation, running
tests to understand its functionality and then extending it with confidence

Achieving this level of competence
requires moving beyond primitive task
execution. AI software engineers will
need to operate within a structured
action space, wherein all tasks —
debugging, patching, testing,
refactoring — are accessible through a
unified interface (see Figure 3). Such
an approach enables AI agents to
autonomously select and sequence
actions while maintaining awareness of
system state.

In the near future, we can reasonably
anticipate unified AI agents functioning
as junior members in software teams,
working alongside human developers.

Nevertheless, for widespread, and confident, adoption, it will require high-quality
training datasets spanning real-world software engineering tasks, extending beyond
current benchmarks such as SWE-bench [3].

Current AI-driven software
development is fragmented,
with different agents tackling
specific tasks such as bug
fixes, code generation and
testing. The next logical step
is to unify these capabilities
into a comprehensive AI
software engineer capable
of handling complex software
development scenarios.

Crafting the AI Software Engineer of the Future

AI in Formal Methods and Verification

While AI-driven software engineering is gaining traction in activities such as
maintenance and debugging, its potential extends to more formal facets of software
engineering. For instance, mathematical verification of program properties. In this
regard, can AI agents contribute meaningfully to formal verification?

Let’s take a look at recent advancements such as Alphaproof [4], an AI system capable
of solving International Mathematics Olympiad problems at a silver-medal standard.
This suggests promising avenues. What implications does this have for those of us in
software engineering? Is it merely an interesting lunch-time conversation to lazily
partake in with our colleagues? Or does it have some lessons for us with respect to
program verification?

If AI can construct mathematical proofs, might it also aid in program verification?
One emerging approach involves integrating LLM-based agents with automated
theorem provers in a feedback loop, where the AI proposes proofs, and formal tools
validate them.

But what could be novel is the role of lemmas in proofs. For general mathematical
proofs, a critical challenge lies in identifying the right lemmas — intermediate steps
crucial to constructing a proof. If AI agents like AutoCodeRover can extend their
code-search capabilities to intelligently and intuitively identify proof obligations, this
could revolutionise program verification. Figure 4 illustrates a potential architecture
for such AI-driven verification agents.

Figure 3: Thinking behind a Unified Software Engineering Agent

Finish

Execute Tests

Test Retrieval

Action Space

Task

Initial State

Task

StateState

Finish

Meta-Agent
1

3

5 4

2

6

Code Retrieval

Review Patch

Reproduction

Edit Code

Chosen Action

Crafting the AI Software Engineer of the Future

Figure 4: AI generated schematic for Program Verification Agents

The Future of AI in Software Teams

So far, I have explored the growing capabilities of individual AI-driven software
engineers. However, as a human software engineer, my output is not entirely my
output. It is also triggered by a conversation that I had with a colleague over a coffee
break. It is also influenced by an architectural diagram another colleague showed me in
a group meeting. In other words, real-world software development is inherently
collaborative. A software engineer’s work is not limited to siloed problem-solving — it
is shaped and influenced by team discussions, informal exchanges, shared
architectural insights and much more.

The integration of AI into software teams raises
questions about team dynamics. How will human
developers interact with AI agents? How should
AI systems collaborate with one another?
Traditional cognitive theories of cooperative
work, which focus on human goal influence,
may not fully encapsulate the nuances of
software-engineering collaboration [5]. Unlike
environments where game-theoretic incentives
prod behaviour, software development is driven
by long-term design considerations, iterative
improvements and architectural vision [6].

Addressing these challenges will be the next
frontier in AI-driven software engineering. Before we can fully welcome AI software
engineers into teams, we must first refine their individual competencies. The future of
software engineering is ever-evolving — but the journey towards truly intelligent,
collaborative AI engineers is only just beginning!

A software engineer’s
work is not limited to
siloed problem-solving
— it is shaped and
influenced by team
discussions, informal
exchanges, shared
architectural insights
and much more.

Crafting the AI Software Engineer of the Future

Acknowledgements

I would like to acknowledge discussions with attendees at three recent meetings:
(a) Dagstuhl Seminar on Automated Programming and Program Repair (Oct 2024);
(b) Shonan Meeting on Trusted Automatic Programming (Jan 2025); and
(c) IFIP Working Group 2.4 meeting (Feb 2025).

References

[1] AutoCodeRover: Autonomous Program Improvement, Zhang, Ruan, Fan, Roychoudhury,
 International Symposium on Software Testing and Analysis, 2024.
[2] SpecRover: Code Intent Extraction via LLMs, Ruan, Zhang, Roychoudhury, International Conference
 on Software Engineering, 2025.
[3] SWE-bench: Can Language Models Resolve Real world GitHub issues? Jimenez et al, International
 Conference on Language Representations, 2024.
[4] AI achieves silver-medal standard solving International Mathematical Olympiad problems,
 Alphaproof and AlphaGeometry teams, Google Deepmind, 2024.
[5] Bayesian Theory of Mind: Modeling Joint Belief Desire Attribution, Baker, Jara-Ettinger, Saxe,
 Tennebaum, Annual Meeting of Cognitive Science Society, 2011.
[6] AI Software Engineer: Programming with Trust, Roychoudhury, Pasareanu, Pradel, Ray,
 [2502.13767] AI Software Engineer: Programming with Trust, 2025.

https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://arxiv.org/abs/2502.13767

