
PROGRAM REPAIR FOR INTELLIGENT TUTORING AND
PROGRAMMING EDUCATION

ZHIYU FAN
(B.E., Southern University of Science and Technology)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2024

Advisor:
Professor Abhik Roychoudhury

Declaration

I hereby declare that this thesis is my original work and it has
been written by me in its entirety. I have duly

acknowledged all the sources of information which have
been used in the thesis.

This thesis has also not been submitted for any
degree in any university previously.

Zhiyu Fan

November 27, 2024

First and foremost, I would like to express my deepest gratitude to my PhD
advisor, Prof. Abhik Roychoudhury, for his generous and consistent support, rigorous
training, and invaluable guidance over the past several years. Abhik taught me the
importance of impactful research and how to think with a long-term vision. His
imagination has always inspired me to pursue influential research. Beyond this,
his wisdom has greatly enhanced my communication skills, critical thinking, and
professional attitude. I am profoundly grateful for his patience and valuable advice,
which have been instrumental in my achievements.

I would like to especially thank my undergraduate advisor, PhD co-advisor, and
friend, Prof. Shin Hwei Tan. Shin Hwei introduced me to the world of research and
encouraged me to pursue an academic path. She is a talented educator who imparted
essential knowledge and concepts in Software Engineering, significantly improving
my research abilities. Her guidance helped me navigate the most challenging periods
of my early PhD. Without her support, I would not have reached this stage.

I am also grateful to Prof. Damith Chatura Rajapakse and Prof. Olivier Danvy
for their valuable time and insights as members of my thesis committee.

I extend my heartfelt thanks to my fantastic collaborators Yannic Noller, Umair
Z. Ahmed, Xiang Gao, Jooyong Yi, Omar I. Al-Bataineh, Sergey Mechtaev, Martin
Mirchev, Yuntong Zhang, Haifeng Ruan, Zhenxin Huang, Ashish Dandekar, and
others for their brilliant minds, fruitful discussions, and significant help. Their
contributions have been invaluable to my work.

I sincerely thank Xiang Gao and Ruijie Meng for their kind support and useful
suggestions during tough times. I am also grateful to my friends and colleagues
Ridwan Shariffdeen, Huan Zhao, Robbie Lin, Dylan Wolff, Jiang Zhang, Jinsheng Ba,
Andreea Costea, Gregory J. Duck, Jiawei Wang, Yu Liu, Xiao Liang Yu, Mingyuan
Gao, Zhen Dong, Bo Wang, and Lanfeng Liang for making my journey at NUS and
Singapore memorable.

I would like to thank my parents and family for their unwavering support and
guidance throughout my life. Their encouragement has enabled me to pursue my
academic interests. I also thank my childhood friends Kai Guo and Jiyue Tu for
their lifelong companionship.

Last but not least, I express my deepest love and sincere thanks to my wife,
Qing Xiao, for her unconditional love. Her understanding, support, patience, and

i

encouragement have been my strongest shields and driving force. Her luminous
presence has graced my life ever since we met, and I am profoundly grateful for
her.

ii

Contents

Abstract vii

List of Figures viii

List of Tables xi

1 Introduction 1

2 Background 7
2.1 Automated Program Repair . 7

2.1.1 Search-Based Repair . 7
2.1.2 Semantic-Based Repair . 8
2.1.3 Learning-Based Repair . 8
2.1.4 Overfitting in Program Repair 8

2.2 Automated Feedback Generation 9
2.2.1 Debugging-Based Feedback Generation 9
2.2.2 Program Equivalence based Feedback Generation 10
2.2.3 Program Repair based Feedback Generation 10
2.2.4 Large Language Model based Feedback Generation 11

3 Verified Repair of Programming Assignments 12
3.1 Introduction . 12
3.2 Overview . 15

3.2.1 Setup Phase . 18
3.2.2 Verification Phase . 19
3.2.3 Repair Phase . 20

3.3 Program Model . 22

iii

3.3.1 Abstract Syntax Tree (AST) 22
3.3.2 Control Flow Graph (CFG) 22
3.3.3 Control Flow Automaton (CFA) 23

3.4 Aligned Automata . 24
3.4.1 Structurally Aligning AS and AR 24
3.4.2 Inferring Variable Alignment Predicates 27

3.5 Verification and Repair Algorithm 28
3.5.1 Edge Verification . 29
3.5.2 Edge repair . 30
3.5.3 Properties preserved by Verifix 33

3.6 Experimental Setup . 36
3.6.1 Research Questions . 36
3.6.2 Dataset . 37
3.6.3 Implementation . 39

3.7 Evaluation . 40
3.7.1 RQ1: Repair success rate . 40
3.7.2 RQ2: Running time . 40
3.7.3 RQ3: Reasons for repair failure 41
3.7.4 RQ4: Minimal repair . 42
3.7.5 RQ5: Overfitting . 44
3.7.6 RQ6: Repair success rate with multiple reference implementa-

tions . 46
3.8 User Study . 48

3.8.1 User Study Questionnaire 48
3.8.2 User Study Setup . 49
3.8.3 User Study Results . 50

3.9 Threats to Validity . 50
3.10 Discussion . 51

4 Concept-based Automated Grading 53
4.1 Introduction . 53
4.2 Overview . 56
4.3 Programming Concept Abstraction 59

iv

4.4 Graph Matching and Grading . 62
4.4.1 Concept Graph Matching 64
4.4.2 Automated Concept Unfolding 65
4.4.3 Concept Based Grading . 66

4.5 Evaluation . 68
4.5.1 RQ1: Overall Grading Accuracy 71
4.5.2 RQ2: Relation with Test Failure Rate 73
4.5.3 RQ3: Limitations of ConceptGrader 74

4.6 User Survey . 76
4.7 Threats to Validity . 78
4.8 Conclusion . 79

5 Design of Intelligent Tutoring System for Programming 80
5.1 Introduction . 80
5.2 Intelligent Tutoring System (ITS) 82

5.2.1 Design Principles . 82
5.2.2 Language Parser . 83
5.2.3 Syntactic Alignment . 84
5.2.4 Error Localizer and Interpreter 84
5.2.5 Repair Engines . 85
5.2.6 Feedback Generator . 85
5.2.7 AutoGrader . 86

5.3 Pre-Deployment in CS-1 Teaching 87
5.3.1 Study Methodology . 87
5.3.2 Result Analysis for Students 88

5.4 Deployment Experience . 90
5.5 Lessons Learned and Prospects . 92
5.6 Conclusion . 93

6 Linking Software Engineering Teaching with Programming Teaching 94
6.1 Introduction . 94
6.2 Design of Software Engineering Course 96

6.2.1 Teaching Concept . 96

v

6.2.2 Overview of Long-running Project 98
6.2.3 Overview of CS3213 Course Management 99

6.3 Experience of ITS in Data Structures 103
6.3.1 Demonstration . 103
6.3.2 User Study in CS2040S . 105

6.4 Challenges & Lessons Learned . 107
6.4.1 Incentives for Stakeholders 108
6.4.2 Project Preferences . 109
6.4.3 Managing Software Evolution 109

6.5 Impact and Vision for the future 109
6.5.1 Impact: Teachers, Students, Research 109
6.5.2 Intelligent Tutoring in AI Era 110

7 Related Work 111
7.1 Automated Program Repair . 111

7.1.1 Test-based Program Repair 111
7.1.2 Program Repair of Programming Assignments 112
7.1.3 Program Equivalence Verification 114

7.2 Automated Grading. 114
7.3 Capstone Software Engineering Projects 115

8 Conclusion 117
8.1 Summary of Contributions . 117
8.2 Future Work . 118

Publication Appeared 120

Bibliography 121

vi

Abstract

Automated program repair is a technology for automated rectification of errors
and vulnerabilities in programs. This technology can be used for intelligent tutoring
of programming – where student assignments are compared with reference assign-
ments to compute feedback to students. In this thesis, we report on the design,
implementation, and real-life evaluation, as well as the experience of hundreds
of students, for such an intelligent tutoring system. We also show how the core
program repair technology can combined with grading rubrics to provide automated
grading of programming assignments. Such a grading goes beyond test-suite based
grading since the aim is to find concepts which are not understood by students. The
intelligent tutoring system has been conducted as a real-life project in the course of
teaching and has been used by tutors / students of a first-year programming course
at the National University of Singapore. In the last part of the thesis, we report on
the experience of using the intelligent tutoring system in conjunction with Large
Language Models (LLMs) to teach data structure and algorithms in a second-year
course. Since well-known data structures have been ingested by LLMs – this could
provide a forward-looking perspective about the teaching of algorithms in the future.
The intelligent tutoring system powered by program repair is aided by LLMs to
provide algorithm level feedback.

vii

List of Figures

3.1 Motivating example for the Prime Number programming assignment.
Existing tools such as Clara [41] and Sarfgen [99] cannot repair the
incorrect student program in Fig 3.1(b) since its Control-Flow Graph
(CFG) differs from the CFG of instructor designed reference program in
Fig 3.1(a). Our tool Verifix generates the repaired program in Fig 3.1(c),
which is verifiably equivalent to the reference implementation, due to
superior Control-Flow Automata (CFA) based abstraction. 15

3.2 Control Flow Graph (CFG) of the reference and incorrect program listed
in Fig 3.1. Incorrect program CFG in Fig 3.2(b) differs from reference
program CFG in Fig 3.2(a) due to a missing return node. Existing tools
like Clara [41], Sarfgen [99] cannot repair the incorrect program. 16

3.3 Control Flow Automata (CFA) of the reference and incorrect program
listed in Fig 3.1. CFAAR of reference program in Fig 3.3(a) is structurally
aligned with CFAAS of student program in Fig 3.3(b) to obtain an aligned
CFA AF in Fig 3.3(c). 16

3.4 Example demonstrating Abstract Syntax Tree (AST) transformation to
retain nodes labelled as function and loop entry. 24

3.5 Example demonstrating edge alignment. Given node alignment V :
{q1q

′
1, q2q

′
2}, the edges are aligned based on type. The single break

transitions c and c′ are aligned with each other, while the multiple
normal edges are aligned combinatorially to produce two unique aligned
automata. 24

3.6 Kernel Density Estimate (KDE) plot of Relative Patch Size (RPS) by
Verifix and Clara on 132 common successful repairs. 43

viii

3.7 Example from a Lab-5 Prime Number assignment. The main function
contains two errors, both of which are fixed by Verifix, while Clara’s
repair overfits given test-suite by ignoring first error. 43

3.8 Repair accuracy of Clara and Verifix on various test case samplings. . . 44
3.9 Repair success rates and structural mismatch rates across different sam-

pling rates of multiple reference solutions. The X and Y axes represent
the sampling rate of the reference solutions and the observed repair
success rate, respectively. 46

3.10 Boxplot of the responses–with the scales from 1 (very low) to 5 (very
high)–collected from 14 tutors. Red line represents the median value
and green triangle represents the mean value. The whiskers denote the
minimum/maximum value, and the rectangle denotes the first/third
quartile. 50

4.1 Examples from the Duplicate Elimination assignment 55
4.2 Examples from the Duplicate Elimination assignment 57
4.3 Caption for LOF . 60
4.4 Average grading performance of all incorrect student submissions across

different test failure rates. 74
4.5 The boxplot of average rating of all user study questions. Green triangle

represents the mean value. The whiskers denote the minimum/maximum
value, and the rectangle denotes the first/third quartile. 77

5.1 General idea of an ITS that supports students and tutors in CS-1 pro-
gramming courses. 81

5.2 Illustrates the general workflow of the Intelligent Tutoring System. . . 82
5.3 Participants’ Self-Assessed Experience 88
5.4 Students’ feedback of ITS . 88
5.5 Example of two semantic equivalent feedback given by ITS and tutor for

missing the edge case at lines 7–8. 92

6.1 Concept of a long-running software engineering project that is incremen-
tally improved by short-running projects inside a teaching environment. 97

6.2 Example of Data Structure Example from Leetcode. 104

ix

6.3 Overview of Data Structure Tasks used in Control Experiment. 105
6.4 Comparison of Correct Submissions on the Four Tasks. 106
6.5 Case Study of an Example Incorrect Submission from Group B Participant

for Task 2. 107
6.6 Envisioned three-way interaction between Student, ITS, and AI Assistant.110

x

List of Tables

3.1 Programming assignment repair tools comparison. Most existing APR
tools are completely automated and rely on test case evaluation (generate
unverified repair). 13

3.2 Incorrect student blocks and their corresponding repairs generated by
Verifix, after multiple rounds of edge verification-repair of Figure 3.3
aligned automaton. The blocks a′ and e′ are created in the automata,
while the block h′ is removed. 20

3.3 Lab-wise repair success rate (shown in the Repair column) of our tool
Verifix and Clara [41]. Time column represents the average runtime in
seconds for all successfully repaired programs. The number of assignments
in each lab is shown in the #Assignments column, and the number of
incorrect student submissions in each lab is shown in the #Programs
column. 39

3.4 The distribution of the four reasons for repair failure, i.e., structural
mismatch (4th column), timeout (5th column), unsupported language
constructs (6th column), and SMT issues (7th column). The first three
columns are copied from Table 3.3. 41

4.1 Human-Readable Abstraction Rules . 60

xi

4.2 Automated grading results of four approaches for incorrect student sub-
missions on five assignments from the Refactory dataset[47]. The columns
Test and CFG denote test-based grading and CFG-based grading, and
CG and CG’ show ConceptGrader and ConceptGrader without concept
unfolding. The column “# of Inc. Sub.” shows the number of incorrect
submissions for each assignment, whereas the column “# of TC” denotes
the number of test cases for each assignment, the column LoC represents
the line of code. The columns “Cos-sim”, “RMSE”, and “MAE” repre-
sent the cosine similarity, root means squared error, and mean absolute
error between automatically generated and ground truth scores. The
columns “Average Time Taken (s)” denotes the average time taken in
seconds to produce the score and feedback for a student submission in
each assignment. We highlight the best result in bold. 71

4.3 The test failure rate distribution for evaluated submissions. 72
4.4 The impact of different number of reference solutions in ConceptGrader

(CG) and ConceptGrader without unfolding (CG-wo-f). 76

5.1 Subjects of programming tasks in our experiments 87
5.2 The average number of failed attempts, rectification rates, average recti-

fying time of failed attempts in minutes. 89

6.1 Course assignments that accompanies the major project milestones. . . 101
6.2 Example of Short-running Projects provided in the first CS3213 102

xii

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Computer Science education has experienced a tremendously increasing number of
enrolments in the past decade, and there is no sign of slowing down the process. This
phenomenon might occur because of various reasons. For example, the attractive
compensation in the job market as a software developer, the high demand for
programming and data analytic skills for professional career development, the
inevitable trend of AI applications in every domain, etc. As a consequence, the
enrolments imposed significant stress on computer science education, especially
programming teaching, despite the advancements in digital technology. Online
learning platforms (e.g., Coursera, Khan Academy, EdX, and Udacity) are one
of the earliest attempts to scale the teaching capability. These platforms provide
programming courses known as Massive Open Online Courses (MOOC) taken by
thousands of learners worldwide. Learners can register for a MOOC at any time,
anywhere to learn about programming with a lower entry barrier. However, MOOCs
still struggle with the inherent challenge: Lack of individual learning feedback for
students, particularly novice students. Automatically providing high-quality learning
support for individual students and alleviating the workload of teaching teams have
become more crucial in computer science education than ever.

Automated program repair (APR) [38] is a well-studied technology that automat-
ically rectifies bugs in large software. Given a buggy problem Pb, and a test-suite
T . APR aims to find a set of edit changes, such that Pb passes all tests in T after
applying those edits. The changes made to Pb are referred as fixing patches. In
addition to fixing bugs in large software codebases, a prior study [107] has shown
that APR can also be applied in the computer science education context to generate

1

feedback for students’ programming assignments automatically. Given an incorrect
student’s solution for a particular programming assignment and a test suite for
assessment, the fixing patches generated by APR techniques for the incorrect solution
can be seen as basic barebone feedback/suggestions that guide the student toward
the correct solution. However, the existence of a complete set of high-quality test
cases to validate the repairs as feedback cannot be assumed. Over-fitting the repair
to an incomplete specification is a well-known problem of test-based APR tools [35].
The overfitted repairs may pass the given test suite for validation, but still be buggy
on the input outside the test suite. Generating complex incorrect feedback that
merely passes explicit tests can potentially confuse the end-users, particularly in the
computer science education context, where the end-users are often novice students.

In addition to trustworthy programming feedback for individual students, the
huge enrolments also place significant strain on teaching resources such as manpower
to grade students’ programming assignments. Hence, there is also an urgent need to
scale up the grading procedure both efficiently and accurately. One widely adopted
common practice in existing programming assessment systems (e.g., online judge
system) evaluates student’s performance based on the number of passing tests in a
given test suite (i.e., test-based automated grading). However, test-based systems
are not ideal, because of the fact that a manual inspection of students’ attempts that
fail the majority of the test suite which is deemed as severely incorrect can reveal
some conceptually correct understanding of the students. This strict assessment
may discourage students from improvement.

Beyond the scope of supporting first-year programming courses, another typical
challenge in computer science education is the design of software engineering develop-
ment projects. Software engineering is one of the foundation courses for a Computer
Science student. It provides students with hands-on software development opportu-
nities as a team project, which helps them get experience and be prepared before
entering the job market. Despite the importance, software engineering projects are
often a one-time effort to build a toy software for a specific course. Students can
hardly get the accomplishment of contributing to a mature software codebase and
experience the software evolution, which is more crucial in the industrial context.

To handle the above limitations in computer science education, the goals of this
thesis are to design and implement a full-fledged, ready-to-use Intelligent Tutoring

2

System that scales high-quality programming teaching by generating trustworthy
feedback to students as well as producing precise automated programming assignment
assessments for instructors and tutors. Furthermore, the Intelligent Tutoring System
can serve as an in-house software engineering project framework that iteratively
evolves over time. To achieve this goal, we propose a series of tightly connected
high-level ideas and techniques:

• Verified Repair as Programming Feedback. To provide trustworthy
feedback for student programming assignments, we propose a general approach
to verified repair. Verified repair engenders greater trust in the output of the
automatic repair tool, which has been identified to be a key hindrance in the
deployment of automated program repair [83]. In this work, we developed
a tool Verifix, and we show that verified repair from Verifix is feasible and
achievable in a reasonable time scale for student programming assignments at
a large public university. This shows the promise of using verified repair to
generate high-confidence live feedback in programming pedagogy settings.

• Conceptual Programming Assignment Assessment. Since test-based
grading may not adequately capture the student’s understanding of the pro-
gramming concepts needed to solve a programming task, we propose the
notion of a concept graph which is essentially an abstracted control flow graph.
Given the concept graphs extracted from a student’s solution and a reference
solution, we define concept graph matching and comparing differing concepts.
Specifically, the concept-based grading is (experimentally) shown to be closer
to the grade manually assigned by the tutor. Apart from grading, the concept
graph used by our approach is also useful for providing feedback to struggling
students, as confirmed by our user study among tutors. In this work, we
present and implement ConceptGrader, a new automated grading approach
that uses the differences between the student concept graph and reference
concept graph to generate a score for a given incorrect student submission.

• Design of Intelligent Tutoring System for Programming. Based on the
research advances in recent years, specifically in automated program repair
and synthesis, we have designed and built an intelligent tutoring system that

3

has the capability to provide automated personalized feedback for students.
The main techniques rely on the precise low-level patches from automated
program repair and high-level conceptual explanation by the natural language
description capability from large language models. We discuss the design
principles and architecture of the Intelligent Tutoring System and show its
effectiveness in CS-1 educational settings through a live deployment. The
previously developed Verifix and ConceptGrader are included as essential
components that provide program repair and autograding capability in our
Intelligent Tutoring System.

• Linking Software Engineering and Programming Teaching. Further, on
top of the built Intelligent Tutoring System, we designed a software engineering
course that naturally links software engineering and programming teaching.
The development projects in the SE course guide third-year undergraduate
students in incrementally developing more features for the Intelligent Tutoring
System over several years. Each year, students will make contributions that
improve the current implementation, while at the same time, we can deploy
the current system for junior students to use for learning programming. This
work describes our teaching concept and our experience in the advanced
computing course CS2040S at the National University of Singapore. This
software engineering project for the students has the key advantage that
the users of the system are available in-house (i.e., students, tutors, and
lecturers from the first-year programming courses). This helps to organize
requirements engineering sessions and builds awareness about their contribution
to a "to–be–deployed" software project. In this multi-year teaching effort, we
have incrementally built a tutoring system for first-year programming courses.

Contributions. The proposed approaches in this thesis are delivered as an
Intelligent Tutoring System for Programming (ITS). It impacts the current computer
science education by improving the quality of auto-generated feedback and providing
precise assessments for programming assignments. Specifically, the ITS can efficiently
and confidently repair students’ incorrect programming submissions with a formal
guarantee and high success rate, which is essential for practical usage. Moreover, the
ITS can assess students’ performance in programming based on high-level conceptual

4

understanding to produce positive learning feedback with the proposed concept
graphs and automated program repair engines. Finally, the ITS can be seen as
a mature software engineering project framework that computer science students
can contribute to, which facilitates software engineering education and eventually
benefits the teaching of other CS courses. The ITS has been deployed in CS1010S
Programming Methodology at the National University of Singapore, and Monash
University. In summary, this thesis can scale the capability and reduce the burden
of computer science education.

Research Scope. This thesis aims to provide trustworthy and conceptual
feedback to students and instructors for programming assignments in computer
science education. Although the presented feedback generation approaches are
explored specifically for first-year introductory programming courses, they present
high-level research ideas that have the potential to be extended in programming
assignments of more advanced CS courses. For example, data structure, database
management, and networking. To provide constructive feedback to students, while
the proposed approaches do not guarantee to generate feedback for all incorrect
submissions, but they do guarantee that every generated feedback is trustworthy
from the pedagogy perspective. In addition to feedback generation, we also applied
the presented techniques in automated programming assignment assessment to
alleviate the high workload of the teaching team. These two usage scenarios
are oriented at different stakeholders but target common goals, which is to scale
the programming teaching capability and provide a better programming learning
environment. Moreover, we also integrated the proposed approaches into a self-
sustained Intelligent Tutoring System that can be evolved and evaluated iteratively
over a longer period. This ITS has been deployed at the National University of
Singapore to gain practical experience in a real-world context. Beyond first-year
(CS-1) programming courses, we believe the proposed ideas can also be generalized
to other computer science courses.

Thesis Organization. The remainder of this thesis is organized as follows. We
first provide an overview of the existing technical background in automated intelligent
programming education, including automated program repair/synthesis, feedback
generation, and automated assignment assessment in Chapter 2. In Chapter 3, we
present our approach that addresses the overfitting problem of program repair in

5

computer science education via the program equivalence checking technique. Chap-
ter 4 introduces a conceptual-level automated grading mechanism for programming
assignments based on our novel concept graph that assesses students’ conceptual
understanding. Chapter 5 describes the design principles and architecture of our
Intelligent Tutoring System for programming education and our experience of using
it in CS1010S Programming Methodology. Chapter 6 describes our novel idea of
linking software engineering and introductory programming teaching via the gradual
implementation and improvement of our Intelligent Tutor System for Programming
which is designed in Chapter 5. Chapter 7 presents the related work of our proposed
techniques. Chapter 8 concludes this thesis and discusses the potential research
directions for future improvement. The detailed introduction of our Intelligent
Tutoring System (ITS) for Programming and Algorithms Education can be found at
https://nus-its.github.io/index.html.

6

https://nus-its.github.io/index.html

CHAPTER 2. BACKGROUND

Chapter 2

Background

In this chapter, we introduce the background knowledge for this thesis, including
automated program repair, programming feedback generation.

2.1 Automated Program Repair
Automated program repair (APR) is an emerging area for automated rectification

of programming errors [38]. APR techniques take as inputs a buggy program and a
correctness specification (often provided in the form of a test suite). APR techniques
aim to produce a fixed program by slightly changing the buggy program to satisfy
the given specification (i.e., passing all given tests). There are a few well-studied
automatic program repair techniques in the literature to generate patches for buggy
programs.

2.1.1 Search-Based Repair

Search-based repair tools (e.g., GenProg [58], Prophet [64], TBar [61]) search for
correct patches that can pass all the given tests among a pre-defined patch space S.
Typically, the patch space S is curated with a set of program repair operators [58]
or manually-summarized repair templates [61]. These repair operators define how
we can mutate or change the buggy programs to derive different program variants
that form the patch space S. Once the patch space S is determined, different
search algorithms can be leveraged to find the correct patches from S. For example,
evolutionary search [58, 109], random search [80] and enumeration search [61, 55].
The patch search procedure terminates when a patch makes the buggy program pass

7

all tests is found, or the entire patch space S is evaluated.

2.1.2 Semantic-Based Repair

Semantic-based repair tools (e.g., SemFix [75], Angelix [69]) generate patches
by formulating a repair constraint that needs to be satisfied based on a given test
suite specification by leveraging symbolic execution and then solving the repair
constraint to generate patch via program synthesis. Semantic-based repair tools
first replace the suspicious expressions (usually identified by fault localization [1]) of
a program with symbolic expressions, then execute each test from the beginning.
When the execution reaches the suspicious location, it then starts to execute the
program symbolically. This symbolic execution process produces a set of symbolic
formulas representing the program specification inferred from the test suite. Then
the program synthesis techniques e.g., component-based synthesis [49], are used to
find a concrete program expression that satisfies the inferred constraints which were
collected from the given test suite.

2.1.3 Learning-Based Repair

The application of deep learning techniques in program repair has been explored
in the past few years. This line of techniques [101, 42, 20, 60, 65, 50, 115] formulates
the automated program repair as a next token prediction problem. They often
train a deep learning model by collecting corresponding bug-inducing and bug-fixing
commits from open-source software repositories with the goal of generating the
correct patch for any unseen bug. During the training process, the patch generation
is often guided by a specific representation of code syntax (e.g., abstract syntax tree)
and semantics to predict the next tokens that are most likely to be a correct patch.
Different from search-based repair tools, the learned repair strategies from historical
human bug-fixing experiences tremendously enrich the patch space so that can go
beyond the predefined repair operators.

2.1.4 Overfitting in Program Repair

Overfitting is one of the well-known and challenging issues in automated repair
tools that rely on test suite to serve as intended program behavior (i.e., test-based

8

APR tools). This is because the test suite is often limited and incomplete program
specifications, which only represents an input-output relationship of a given program.
It is possible that the patched program passes all given tests by generating incomplete
program fixing patches, yet the patched program still fails test cases outside the
given test suite. We call those incorrect program patches that pass the validation
test suite as plausible patches. There are a few lines of work targeted to alleviate
the overfitting problem in program repair because it is critical for APR systems to
be deployed in real-world codebase. One typical approach [64, 106] is to rank the
generated patches with heuristics or machine learning algorithms so that the correct
patches are more likely to be found and suggested to developers earlier. Another
approach [91] introduces the Anti-Pattern concept, which disabled the generation
of specific incorrect program patches in search-based APR tools. There are also
attempts to combine fuzzing [16] strategies to enhance the given test suite and filter
out more potentially plausible patches.

2.2 Automated Feedback Generation
The typical high student-to-teacher ratio in computer science education makes it

challenging to manually write personal feedback to guide students’ learning processes
for programming assignments. This high time latency (usually 1-2 weeks) between
finalizing submission and receiving feedback may have a negative effect on student’s
learning motivation. Given a programming assignment and a student’s submission.
We wish to automatically generate constructive personalized feedback regarding
specific students’ submissions in a short period so that the student can identify their
mistakes and further improve.

2.2.1 Debugging-Based Feedback Generation

The debugging-based approach is a systematic method to provide basic feedback
for students. There are a few different typical debugging-based feedback generation
systems that leverage program debugging output as feedback to guide students
to rectify their programming assignments. For example, one common strategy is
to predefine a comprehensive test suite for each programming assignment, when
the student submits an incorrect solution, the failed test cases can be seen as a

9

hint and shown to students. This test-based approach is widely adopted in online
judge platforms such as LeetCode and online programming teaching platforms such
as Coursemology [85]. There are also other approaches that suggest syntax-level
feedback to students, which is often based on compiler or static analyzer output
(e.g., warning messages, etc). They focus on postprocessing the complex compiler
output into easy-to-read natural language hints for students to resolve syntactical
errors. For example, incorrect function usage, use of undefined variables, unexpected
return types, etc. This is often achieved by manually defining natural language
templates and parsing rules for specific warning/error types.

2.2.2 Program Equivalence based Feedback Generation

Program equivalence checking [22] is a technique that formally proves whether two
programs are semantically equivalent, and it is applied in CodeAssit [53] to find the
behavioral difference between the instructor’s reference solution Pr and the student’s
solution Ps. The identified discrepancies in input-output relations are then reported
as feedback to students. CodeAssit [53] manually inspects correct reference solutions
and repairs incorrect student’s solutions at program contract granularity instead
of generating a concrete expression that the student needs to change. Moreover,
CodeAssist was specifically designed to work for dynamic programming assignments,
which further limits its capability.

2.2.3 Program Repair based Feedback Generation

Automated program repair techniques are originally designed to fix bugs in large
codebases for experienced software developers. Prior work [107] has shown the
potential of applying general-purpose APR tools to fix introductory programming
assignments and provide the generated program patches as feedback for students.
After that, new automated program repair techniques have been proposed to specifi-
cally help novice programmers to fix their programming mistakes. Different from
general-purpose APR tools, those APR tools that specialize in fixing programming
assignments often assume the existence of reference solutions as additional program
specifications in addition to test suites, which are available in the computer science
education context. Typical APR-based feedback generation tools e.g., Refactory [47],

10

Clara [41] and Sarfgen [99] take in the reference solution Pr and incorrect solutions Pi
for a particular programming assignment. Then they try to align the program struc-
ture between Pr and Pi based on control-flow structure or basic-block similarity to
extract fine-grained program specification that Pi needs to satisfied from Pr. Further,
they leverage the code snippet in Pr as available patch ingredients to fix the bugs in
Pi, which is often done by program synthesis [39]. In addition to program synthesis
based patch generation, there are also approaches to repair student’s programming
assignments. For example, learning-based repair systems [42, 82] used deep learning
and programming-by-example [43] respectively to learn program transformation
rules to fix incorrect submissions from historical data, whereas error model based
system [87] requires course instructor to define how an incorrect solution can be
changed for each specific programming task, then search for a correct modification
efficiently.

2.2.4 Large Language Model based Feedback Generation

The emergence of powerful LLMs has gained popularity in the computer science
education field due to their ability in code generation and code explanation. Re-
searchers have proposed various methods to leverage LLMs for feedback generation
in programming education [12, 66, 59, 92, 19, 44, 54, 56, 62, 77]. For example, Balse
et al [12] and Hellas et al [44] found that LLMs struggles to identify all issues in
student’s questions and false positives are common in the feedback generated by
LLM and many works [92, 59, 77] focus on generating feedback on syntax problems
and error messages. While [66, 62, 54] tried to build LLM-based feedback generation
systems that are capable of handling general students’ questions. These systems
heavily rely on specifically curated prompts, and it remains unclear how effectively
they can be adopted by educators worldwide.

11

CHAPTER 3. VERIFIED REPAIR OF PROGRAMMING ASSIGNMENTS

Chapter 3

Verified Repair of Programming As-
signments

3.1 Introduction
CS-1, the introductory programming course, is an undergraduate course offered

by Universities and Massive Open Online Courses (MOOCs) across disciplines.
Several programming assignments are typically attempted by the students as a part
of this course, which are evaluated and graded against pre-defined test-cases. Given
the importance of programming education and the difficulty of providing relevant
feedback for the massive number of students, there has been increasing interest in
automated program repair (APR) techniques for providing automated feedback to
student assignments [107, 41, 99, 47, 53, 87].

Existing approaches and their limitations Table 3.1 provides a summary of
state-of-the-art APR works for introductory programming assignment, and compares
them with our approach Verifix. The repair rate of the state-of-the-art techniques [41,
99, 47] is around 90%. However, different from general test-based APR technique,
these works make certain assumptions such as the presence of multiple reference
programs and a high quality tests.

Many student assignment feedback generation approaches [41, 99, 47] assume
the existence of a complete set of high quality test-cases to validate their repairs.
Over-fitting the repair to an incomplete specification is a well known problem of
test-based APR tools [38, 81, 108]. Prior studies have shown that trivial repairs
such as functionality deletion alone can achieve ~50% repair success rate on buggy

12

Tool Completely Beyond Identical Verified Target Tool Dataset
Automated Reference CFG Repair Language Availability Availability

Clara [41] ✓ ✗ ✗ C, Python ✓ ✗
SarfGen [99] ✓ ✗ ✗ C# ✗ ✗
ITSP [107] ✓ ✓ ✗ C ✓ ✓

Refactory [47] ✓ ✓ ✗ Python ✓ ✓
CoderAssist [53] ✗ ✓ ✓ DP for C ✓ ✗

Verifix ✓ ✓ ✓ C ✓ ✓

Table 3.1: Programming assignment repair tools comparison. Most existing
APR tools are completely automated and rely on test case evaluation (generate
unverified repair).

student programs given a weak oracle [21]. Generating complex incorrect feedback
that merely passes all tests can potentially confuse novice students more than expert
programmers. Indeed, a prior study [107] shows that novice students when provided
with incorrect/partial repair feedback that merely passes more tests, have been
shown to struggle more, as compared to expert programmers given the same feedback.
Hence, we suggest that the feedback given to novice students needs rigorous quality
assurance, whenever possible.

In a related vein, some approaches, in particular recent ones [41, 99], assume the
existence of multiple reference programs. This assumption is made to overcome the
difficulty of generating feedback when the Control-Flow Graph (CFG) structure of
the student program is different from the instructor provided reference program.1

Using multiple reference programs can also diversify the solution space, and thereby
a feedback can be made more customized to a student solution [40]. However, the
problem is that the existing approaches collect multiple reference programs manually
or based on testing (student submissions that pass all tests are considered correct),
without formally verifying their correctness. Automatic equivalence checking remains
challenging despite recent advances [22].

Insight Many of the aforementioned problems of the existing APR techniques can
be addressed with a verified repair. We assume the presence of at least one reference
solution, which is always available in educational settings and can be given by an
instructor. This setting is simpler than most existing approaches [41, 99, 47] requiring
both multiple reference solutions and a test-suite. We then create a verifiably correct

1SarfGen [99] and Clara [41] require that the control-flow structure of student and reference
programs should be exactly the same. Clara also demands aligned variables to be evaluated into
the same sequence of values at runtime.

13

repair of the student assignment. In other words, the repaired student assignment
will be semantically equivalent to the reference assignment given by the instructor.
In terms of workflow, the repair engine indicates when it can generate a verified
repair as feedback, and when it does, the students can receive a feedback which is
guaranteed to be correct. In other words, we can have greater confidence or trust on
the feedback generated by the repair tool. Furthermore, student programs that are
verified to be correct after repair can be used as additional trustworthy reference
programs in future.

Contribution: Verified repair In this chapter, we propose a general approach to
verified repair. Verified repair engenders greater trust in the output of the automatic
repair tool, which has been identified to be a key hindrance in deployment of
automated program repair [83]. We show that verified repair is feasible and achievable
in a reasonable time scale (on average 29.5 seconds) for student programming
assignments of a large public university. This shows the promise of using verified
repair to generate high confidence live feedback in programming pedagogy settings.2

To the best of our knowledge, ours is the first work to espouse verified repair for
general purpose programming education. The only previous attempt on verified
repair [53] is tightly tied to a specific structure of programs implementing dynamic
programming.

Repair tool: Verifix We build our verified-repair technique by extending the
existing program equivalence checking technique. Although automatically proving
the equivalence between two programs remains challenging (mainly due to the
difficulty of automatically finding loop invariants), we found that student programs
are in many cases amenable for equivalence checking. This is because there is
usually a reference program whose structure is similar to the student program,
as shown in earlier works [41, 99]. Exploiting this, Verifix produces a verified
repair. Note that, Verifix performs repair and equivalence checking at once. More
concretely, Verifix aligns the incorrect student program with the reference program
into an aligned automaton, derives alignment relation to relate the variable names

2According to an earlier user study [107], students spend about 100s on average to resolve
semantic errors.

14

1 int check_prime(int n)
2 {
3 i f (n == 1)
4 return 0;
5 int j ;
6 for (j=2; j<n; j++)
7 {
8 i f (n%j == 0)
9 return 0;

10 }
11 return 1;
12 }

(a) A reference program

1 int check_prime(int n)
2 {
3
4
5 int i ;
6 for (i=1;i<=n−1; i++)
7 {
8 i f (n%i == 0)
9 break ;

10 }
11 return 1;
12 }

(b) An incorrect student
program

1 int check_prime(int n)
2 {
3 if (n == 1)
4 return 0;
5 int i ;
6 for (i=2; i<=n−1; i++)
7 {
8 i f (n%i == 0)
9 return 0;

10 }
11 return 1;
12 }

(c) The Verifix-generated re-
pair

Figure 3.1: Motivating example for the Prime Number programming assign-
ment. Existing tools such as Clara [41] and Sarfgen [99] cannot repair the
incorrect student program in Fig 3.1(b) since its Control-Flow Graph (CFG)
differs from the CFG of instructor designed reference program in Fig 3.1(a).
Our tool Verifix generates the repaired program in Fig 3.1(c), which is verifi-
ably equivalent to the reference implementation, due to superior Control-Flow
Automata (CFA) based abstraction.

of the two programs, and suggests repairs for the code captured by the edges of
the aligned automaton via Maximum Satisfiability-Modulo-Theories (MaxSMT)
solving. We use MaxSMT to find a minimal repair. Our approach can generate
a program behaviourally equivalent to the reference program while preserving the
original control-flow of the student program as much as possible. This leads to
smaller patches/feedback which we believe are easier to comprehend, in general. We
evaluate our approach on student programming submissions curated from a widely
used intelligent tutoring system. Our approach produces small-sized verified patches
as feedback, which, whenever available, can be used by struggling students with
high confidence. Our tool Verifix is available at https://github.com/zhiyufan/

Verifix.

3.2 Overview
Consider a simple programming assignment for checking whether a given number

n is a prime number. Figure 3.1(a) shows a reference implementation prepared by
an instructor, and Figure 3.1(b) shows an incorrect program submitted by a student.

Limitations of the Existing Approaches The state-of-the-art approaches such
as Clara [41] and Sarfgen [99] make the same-control-flow assumption described as

15

https://github.com/zhiyufan/Verifix
https://github.com/zhiyufan/Verifix

Func
Entry

Func
Exit

False

True

True
False

False

True

Loop
Entry

Loop
Exit

(a) CFG of the reference program in
Fig 3.1(a)

Func
Entry

Func
Exit

TrueFalse

Loop
Entry

Loop
Exit

False

True

(b) CFG of the incorrect student program
in Fig 3.1(b)

Figure 3.2: Control Flow Graph (CFG) of the reference and incorrect program
listed in Fig 3.1. Incorrect program CFG in Fig 3.2(b) differs from reference
program CFG in Fig 3.2(a) due to a missing return node. Existing tools like
Clara [41], Sarfgen [99] cannot repair the incorrect program.

(a) Reference CFA AR (b) Student’s CFA AS (c) Aligned CFA AF

Figure 3.3: Control Flow Automata (CFA) of the reference and incorrect
program listed in Fig 3.1. CFA AR of reference program in Fig 3.3(a) is
structurally aligned with CFA AS of student program in Fig 3.3(b) to obtain
an aligned CFA AF in Fig 3.3(c).

follows.

To perform a repair, a given incorrect program and its reference implementation
should have the same control-flow structure.

Clara fails to repair the incorrect program shown in Figure 3.1(b) when the
reference implementation shown in Figure 3.1(a) is used, reporting that the structures
of these two programs do not match. The CFGs of this incorrect program and
its reference program are shown in Figure 3.2(b) and Figure 3.2(a), respectively.
Notice that that in the reference CFG (Figure 3.2(a)), the LoopExit node has one
incoming edge, whereas in the student program’s CFG (Figure 3.2(b)) the matching
LoopExit node has two incoming edges where the additional edge of Figure 3.2(b)
comes from “n′%i′ == 0”. The problem is that “n′%i′ == 0” does not match “n %

16

j ==0” since the downward edge of node “n % j ==0” does not reach LoopExit,
unlike in “n′%i′ == 0”, and hence the structures of the two CFGs do not match.
The fact that Clara treats a loop-free segment of the code as a single block does not
help. In Clara, two adjacent nodes, “n % j ==0” and “ret = 0”, of Figure 3.2(a) are
grouped together, but the outgoing edge of this group still does not reach LoopExit.

A common approach that has been used to overcome this problem is to use mul-
tiple reference programs of diverse control-flow structures [41, 99, 53]. Since it would
be labor-intensive for an instructor to prepare multiple reference implementations,
recent works (e.g., [41, 99]) gets around this problem by using student submissions.
That is, student submissions that pass all tests are added into a pool of reference
implementations. However, this approach exposes students to the risk of getting
wrong feedback generated based on an incorrect program that happens to pass all
tests.

Our Approach We show how we address the aforementioned limitations. Es-
sentially, we do not make the same control-flow-structure assumption. Instead, we
conduct repair with Control Flow Automata (CFA) where its nodes represent pro-
gram locations and its edges represent guarded actions. Figure 3.3 shows examples
of CFAs, as will be described shortly in Section 3.2.1. Also, we extend the existing
equivalence checking technique into a verified repair technique. We traverse each edge
of the CFA obtained from a student submission and check its semantic equivalence
with the corresponding edge of the CFA obtained from a reference program. Note
that each edge represents a loop-free segment of a program. Equivalence checking is
performed by encoding the problem into an SMT (Satisfiability Modulo Theories)
formula. If equivalence checking fails, we reformulate the equivalence checking
problem into a repair problem; we allow the expressions of the student submission to
be replaced with the expressions of the reference program (after converting variable
names). The number of replacements is minimized by encoding the repair problem
into a MaxSMT (Maximum Satisfiability Modulo Theories) formula.

In the following, we show how our repair algorithm works through the following
three phases: the setup phase, the verification phase, and the repair phase. The last
two steps occur simultaneously as explained in the following.

17

3.2.1 Setup Phase

In the setup phase, we model the given reference and student programs as
Control Flow Automata (CFA) with the nodes representing control-flow locations
and the edges representing guarded actions. Figure 3.3(a) and 3.3(b) show the
CFA for the reference program (AR) and the CFA for the student program (AS),
respectively. Notice that each edge of a CFA is annotated with a sequence of guarded
actions. For example, in Figure 3.3(a), the edge between q1 and q2 is annotated with
“[n != 1] j = 2” where an assignment command j = 2 is guarded with the conditional
expression n != 1. In the figure, we label this guarded action with “b”. As another
example, the self-edge of node q2 is annotated with a sequence of two guarded
actions, c and d, which indicates that c and d should be executed in sequence. As
in the case of c, a guarded action can have only a conditional expression φ, which
means that the NOP command is guarded with φ.

To perform verification/repair in the next phase, we build an aligned CFA AF

by aligning the nodes and edges of AR and AS . Figure 3.3(c) shows the aligned
CFA for our running example. Notation q1q

′
1 used in the entry node of Figure 3.3(c)

denotes that node q1 of AR and node q′
1 of AS are aligned with each other. The

other nodes of AF are interpreted similarly. Meanwhile, notation cd; c′d′ used in the
edge between q2q

′
2 and q2q

′
2 denotes that guarded-command-sequence cd of AR is

aligned with guarded-command-sequence c′d′ of AS . To align nodes and edges, we
use lightweight syntax-based approaches, as will be detailed in Section 3.4.1. Recall
that the existing approaches [41, 99] fail to handle our running example, due to their
same-CFG assumption. We relax this assumption by conducting node alignment and
edge alignment separately. In our running example, after aligning node q1 with q′

1

and q4 with q′
4, we conduct edge alignment for the edge between q1 and q4 (annotated

with guarded action a) by creating a fresh edge between q′
1 and q′

4 (annotated with
a′ in Figure 3.3(c)). Similarly, a new edge c′e′ is constructed between q′

2 and q′
4,

corresponding to the edge ce between q2 and q4, during the alignment stage since no
such edge exists in the student automata. Conversely, the edge c′h′ between q′

2 and
q′

3 of the student’s CFA is removed because no matching edge exists in the reference
automata. Our experimental results show that this simple extension alone reduces
the structural alignment mismatch rate by 13% (see Table 3.4).

18

While in our example, only one aligned automaton can be constructed, there can
be multiple ways to align AR and AS when multiple edges exist between two aligned
nodes (Figure 3.5 shows an example). In such a case, we construct all possible aligned
CFAs, and in the next phase (verification/repair phase), each aligned automaton is
investigated to generate a minimal repair.

To conduct verification/repair, we also need to align variables used in AR and
AS . To align variables, we use a syntax-based approach similar to [99]. For each
edge of AF , we align variables whose usage patterns are similar to each other (see
Section 3.4.2). For example, Verifix infers the following variable alignment predicate
for the edge q1q

′
1 → q2q

′
2: {ret↔ ret′, n↔ n′, j ↔ i′} where ret is a special variable

holding the return value of the function under verification/repair.

3.2.2 Verification Phase

We perform verification for all aligned automata AF . If verification succeeds for
AF or its repaired variation, semantic equivalence between student and reference
programs is guaranteed (see Theorem 1). Verification is performed inductively for
individual edge, starting from the outgoing edges of the initial node of AF (a; a′ and
b; b′ for our Figure 3.3(c)). More specifically, we perform verification by checking
whether q ∼ q′ (i.e., q is bisimilar to q′) holds for each aligned nodes q and q′ of AF .

Consider the edge q1q
′
1

b;b′
−→ q2q

′
2. Given this edge, we should prove the following:

when q1 ∼ q′
1 is assumed, q2 ∼ q′

2 holds after executing b; b′. We achieve this by
checking

φ1
edge : ϕq1q′

1
∧ ψr ∧ ψ1

s ∧ ¬ϕq2q′
2

where ϕq1q′
1

and ϕq2q′
2

denote the variable alignment predicates at node q1q
′
1 and q2q

′
2,

respectively.

ϕq1q′
1
: (ret0 = ret′0) ∧ (n0 = n′

0) ∧ (j0 = i′0)
ϕq2q′

2
: (ret1 = ret′1) ∧ (n1 = n′

1) ∧ (j1 = i′1)

Meanwhile, ψr and ψ1
s denote the guarded actions of b and b′, respectively, in a

Single Static Assignment (SSA) form, where

ψr: (n0 ̸= 1 =⇒ j1 = 2) ∧ (¬(n0 ̸= 1) =⇒ j1 = j0)
ψ1
s : (True =⇒ i′1 = 1) ∧ (¬True =⇒ i′1 = i′0)

19

Block Student Transition Repaired Transition
a′ ∅ [n′ == 1] ret′ = 0
b′ [True] i′ = 1 [n′! = 1] i′ = 2
c′ [i′ <= n′ − 1] [i′ <= n′ − 1]
d′ [n′%i′! = 0] i′ = i′ + 1 [n′%i′! = 0] i′ = i′ + 1
e′ ∅ [n′%i′ == 0] ret′ = 0
f ′ [i′ > n′ − 1] [i′ > n′ − 1]
g′ [True] ret′ = 1 [True] ret′ = 1
h′ [n′%i′ == 0] ∅

Table 3.2: Incorrect student blocks and their corresponding repairs generated
by Verifix, after multiple rounds of edge verification-repair of Figure 3.3 aligned
automaton. The blocks a′ and e′ are created in the automata, while the block
h′ is removed.

If φ1
edge is satisfiable, then q2 ∼ q′

2 does not hold, indicating verification failure. We
check the satisfiability of φ1

edge using an off-the-shelf SMT solver, Z3 [73].

3.2.3 Repair Phase

For our running example, the SMT solver Z3 finds that φ1
edge is satisfiable under

a certain assignment ϕ1
ce which is

ϕ1
ce : n0 = n′

0 = 1, j0 = i′0 = 0

where ϕ1
ce can be viewed as a counter-example to the edge verification. When ϕ1

ce

holds, variable j1 of the reference program has a value 0 (since ¬(n0 ≠ 1) =⇒
j1 = j0) by ψr), whereas variable i′1 of the student program (aligned with j1) has
a different value 1 (since True =⇒ i′1 = 1 by ψ1

s), violating ϕq2q′
2
. Using this

counter-example, we perform a repair based on counter-example-guided inductive
synthesis or CEGIS strategy [89] (see Section 3.5.2). Following CEGIS strategy, we
look for a repair of ψ1

s which rules out the counter-example ϕ1
ce. Verifix returns two

potential repair candidates.

ψ2
s : (False =⇒ i′1 = 1) ∧ (¬False =⇒ i′1 = i′0)

ψ3
s : (n′

0 ̸= 1 =⇒ i′1 = 1) ∧ (¬(n′
0 ̸= 1) =⇒ i′1 = i′0)

When ψ2
s (or ψ3

s) is substituted for ψ1
s in φ1

edge ∧ ϕ1
ce (notice that the original

formula φ1
edge is conjoined with ϕ1

ce), the modified formula is not satisfiable, indicating
that under the context of the counterexample (i.e., ϕ1

ce), ψ2
s (or ψ3

s) is a repair. Notice
how the original formula ψ1

s is repaired. In ψ2
s and ψ3

s , the original expression True

20

is replaced with False and n′
0 ̸= 1, respectively. To obtain n′

0 ≠ 1, we use the
expression n0 ̸= 1 appearing in ψr, the guarded action for the reference program.
This copy mechanism that exploits the existence of a reference program is a de-facto
standard technique in recent works [41, 99].

So far, we only showed that ψ2
s (or ψ3

s) is a repair only in the context of ϕ1
ce. It is

not known yet whether ψ2
s (or ψ3

s) is a repair in a general context. To check this, we
retry edge verification for φ1

edge after replacing ψ1
s with ψ2

s (or ψ3
s) in φ1

edge. In our
example, verification attempt fails again for both ψ2

s and ψ3
s (that is, the repaired

φ1
edge is still satisfiable), and the following new counter-example ϕ2

ce is obtained.

ϕ2
ce : n0 = n′

0 = 2, i0 = i′0 = 0

By considering both ϕ1
ce and ϕ2

ce, Verifix returns a new repair candidate ψ4
s ,

ψ4
s : (n′

0 ̸= 1 =⇒ i′1 = 2) ∧ (¬(n′
0 ̸= 1) =⇒ i′1 = i′0)

As compared with ψ1
s , two sub-expressions of ψ1

s are repaired. As in ψ3
s , True is

replaced with n′
0 ̸= 1. Also, i′1 = 1 is replaced with i′1 = 2 based on j1 = 2 appearing

in ψr. This updated repair candidate ψ4
s rules out all counter-examples seen so

far, and no further satisfying assignments of φ1
edge are found. This completes the

verification and repair, thereby repairing the edge b′ in Figure 3.3(b). The remaining
edges are similarly verified/repaired, and Table 3.2 summarizes the buggy student
automata AS edges and their corresponding repairs generated by our repair tool
Verifix.

We note that Verifix generates a minimal repair for each aligned edge under
consideration. That is, a generated edge repair modifies the minimum number of
expressions required to repair the edge (see Theorem 4). To obtain a minimal edge
repair, we formulate a repair problem as a partial MaxSMT problem, as described
in Section 3.5.2. Essentially, Verifix tries to preserve as many original expressions
as possible, by assigning a higher weight penalty to the original expressions (hence,
replacing an original expression increases the cost of repair). While combining
minimal edge repairs does not necessarily lead to a globally minimal repair, our
experimental results suggest that our greedy approach works well in practice. Verifix
tends to generate smaller repairs than a state-of-the-art tool Clara (see Section 3.7.4).

21

3.3 Program Model
Prior to explaining our alignment and verification-repair procedures, we introduce

the key structures used to model programs.

3.3.1 Abstract Syntax Tree (AST)

An Abstract Syntax Tree (AST) consists of a set of nodes representing the
abstract programming constructs. With the tree hierarchy, or edges, representing
the relative ordering between the appearance of these constructs. We extend the
standard AST with special labels for two node types: Func-Entry and Loop-Entry.
Each AST consists of a root node corresponding to a function definition, which is
labelled as a function-entry node. Similarly, every loop construct in the AST is
labelled as a loop-entry node.

The AST for motivating example shown in Figure 3.1 consists of two labelled
nodes: a Func-Entry node q1 which maps to the check_prime function definition
and a Loop-Entry node q2 which maps to the for-loop construct. We note that some
existing APR techniques for programming assignments, like ITSP [107] which uses
GenProg [58], operate on program ASTs directly.

3.3.2 Control Flow Graph (CFG)

Existing state-of-art APR techniques like Clara [41] and SarfGen [99] operate at
the level of CFG, whose nodes are basic blocks and edges denote control transfer.
We extend the standard CFG by introducing four types of special labelled nodes:
{Func-Entry, Loop-Entry, Func-Exit, and Loop-Exit}; denoting the program states
when control enters a function or a loop, and when control exits a function or a
loop, respectively. The Func-Entry and Loop-Entry CFG nodes correspond with
control entering AST nodes of the same type. The Func-Exit and Loop-Exit CFG
nodes correspond with the program state after control visits the last child of Func-
Entry and Loop-Entry AST node, respectively. These Func-Exit and Loop-Exit
program states can also be reached by altering the control-flow using return and
break statements, respectively.

Figures 3.2(a) and 3.2(b) depict the CFG of the reference and student program
in Figures 3.1(a) and 3.1(b), respectively. These CFGs contain four special nodes

22

denoting Func-Entry (q1/q
′
1), Loop-Entry (q2/q

′
2), Loop-Exit (q3/q

′
3), and Func-Exit

(q4/q
′
4) program states.

3.3.3 Control Flow Automaton (CFA)

Our tool Verifix operates at the level of the control flow automaton (CFA), often
used by model-checking and verification communities [45]. The CFA is essentially
the CFG, with code statements labeling the edges of CFA, instead of code statements
labeling nodes as in CFG. The nodes of our CFA are annotated with the node types
mentioned earlier: Func-Entry, Loop-Entry, Func-Exit, and Loop-Exit. The edges
of our CFA are constructed by choosing all possible code transitions between the
program states in CFG. Depending on the reason for control-flow transition, these
edges can be of three types: normal, return or break. Figures 3.3(a) and 3.3(b)
depict the CFA modeled using the reference and student CFG in Figures 3.2(a)
and 3.2(b), respectively. We provide our precise definition of CFA in the following.

A Control Flow Automaton (CFA) is a tuple of the form ⟨V,E, v0, vt,Ω,Ψ, V ar⟩,
where:

• V : is a finite set of vertices (or nodes) of the automata, representing function
and loop entry/exit program states,

• E ⊆ V ×V , is a finite set of edges of the automata representing normal, break,
and return transitions between program states,

• v0 : is the initial node representing function entry state,

• vt : is the terminal node representing function exit state,

• Ω : {u↔ v | ∀u ∈ V, ∃v ∈ V }, for each function/loop entry node, maintains a
mapping to the corresponding exit node,

• Ψ is a mapping from edge e to ψe for all edges e, where ψe is the set of guarded
actions labeling e, and

• V ar is the set of variables used in ⋃
e ψe.

For edge e in the CFA, ψe is thus the code statements labeling e. How we build a
CFA is described in Section 3.4.

23

Func
Entry

Loop-2
Entry

Loop-1
Entry

Loop-3
Entry

(a) Example AST with labelled and unla-
belled nodes.

Func
Entry

Loop-2
Entry

Loop-1
Entry

Loop-3
Entry

(b) Example ASTL after deletion of unla-
belled nodes.

Figure 3.4: Example demonstrating Abstract Syntax Tree (AST) transforma-
tion to retain nodes labelled as function and loop entry.

b

c

b'

a

c'

a'

(a) Example AR and AS .

bb'
cc'

ba'

aa'

cc'

ab'

(b) Example AF after alignment.

Figure 3.5: Example demonstrating edge alignment. Given node alignment
V : {q1q′

1, q2q′
2}, the edges are aligned based on type. The single break transitions

c and c′ are aligned with each other, while the multiple normal edges are aligned
combinatorially to produce two unique aligned automata.

3.4 Aligned Automata
Our methodology for repairing incorrect student programs relies on constructing

an aligned automaton AF from the given student automaton AS and the reference
automaton AR. The construction of the automaton AF consists of following steps:
(i) modeling the student and reference programs as Control Flow Automaton (CFA)
AS and AR, (ii) the structural alignment of AS and AR, and (iii) the inference of
the variable alignment predicates.

3.4.1 Structurally Aligning AS and AR
To construct an aligned automaton AF , we first conduct node alignment between

the nodes of AS and AR. This step is followed by aligning the transition edges
between AS and AR. A more detailed description is provided below.

Node Alignment Given two CFAs AS and AR, and their corresponding Abstract
Syntax Trees ASTS and ASTR for student and reference program, respectively, we

24

construct node alignment V : VS ↔ VR as follows.

1. Delete all unlabelled nodes from ASTS and ASTR to obtain ASTLS and ASTLR ,
respectively. An ASTL consists of only Func-Entry and Loop-Entry labelled
nodes.

2. If the syntactic tree structures of ASTLS and ASTLR are identical with each
other, align each node of ASTLS with ASTLR and add to V . This step aligns
the Func-Entry and Loop-Entry nodes of AS and AR.

3. For each pair of entry nodes (either Func-Entry or Loop-Entry) that are aligned
with each other, their corresponding exit nodes (either Func-Exit or Loop-Exit)
are aligned with each other.

For constructing node alignment V , we first align the labelled nodes of student
and reference Abstract Syntax Tree (AST). The labelled AST nodes can be of two
types: Func-Entry and Loop-Entry. These labels are same as those in AS and AR,
but we take advantage of the tree structure in the AST. Figure 3.4 demonstrates
unlabelled AST node deletion in step-1 through an example, after which only the
Func-Entry and Loop-Entry labelled nodes are retained. For the reference program
(respectively student program) listed in Figure 3.1, the labelled ASTLR (resp. ASTLS)
consists of two nodes q1 → q2 (resp. q′

1 → q′
2). Since both the ASTL trees are

structurally the same, the node alignment V consists of {q1q
′
1, q2q

′
2} after step-2 of

node alignment, denoting the Func-Entry and the Loop-Entry aligned nodes.
The step-3 of node-alignment finally aligns the function and loop exit nodes.

Given the student and reference automata in Figure 3.3, q4, which is the Func-
Exit node corresponding to q1, is aligned with q′

4, which is the Func-Exit node
corresponding to q′

1. Similarly, the Loop-Exit nodes q3 and q′
3 are aligned, since their

corresponding Loop-Entry nodes q2 and q′
2 were aligned in step-2.

The node alignment constructed thus, if successful, will lead to a bijective
mapping from nodes of AS to nodes of AR. Node alignment fails if the two
programs have different different function/looping structure from each other. While
limited, our approach can handle more diverse programs than the state-of-the-art
approaches [41, 99] which require not only bijective mapping between nodes but
also bijective mapping between edges. In these approaches, q4 and q′

4 of Figure 3.3

25

cannot be aligned with each other, since the edge q2 → q4 of AR does not have a
corresponding edge in AS .

Edge Alignment Given two CFAs AS and AR, and their corresponding node
alignment V : VS ↔ VR, we construct an aligned CFA AF by aligning the edges
of AS and AR. Suppose that uS ↔ uR (i.e., node uS in AS is aligned with uR in
AR) and vS ↔ vR. For each edge of type t ∈ {break, return, normal}, we treat the
following four cases differently.

1. AS has only one edge from uS to vS of type t, and AR has only one edge from
uR to vR of the same type t.

2. Only AR has an edge from uR to vR of type t, while AS has no edge from uS

to vS of type t.

3. Only AS has an edge from uS to vS of type t, while AR has no edge from uR

to vR of type t.

4. None of the above matches, and AS (or AR) has multiple edges from uS to vS
(or from uR to vR) of type t.

In the first case, we simply align the matching edges. For example, in Figure 3.3,
AR contains only one normal edge b between q1 and q2 and AS contains only one
normal edge b′ between q′

1 and q′
2. Hence, the aligned CFA AF has an edge b; b′ as

shown in Figure 3.3(c). An example of the second case is shown with the two nodes,
q1q

′
1 and q4q

′
4, of AF . While AR has one edge a between q1 and q4, AS has no edge

between q′
1 and q′

4. In this case, we insert an edge a; a′ to AF where a′ has an empty
guarded action. The third case is the opposite of the second one. In this case, we
remove the edge between uS and vS since there is no matching edge in the reference
automata.

Lastly, in the fourth case, there exist several possible edge alignments of the order
of

(
M
N

)
×N !, where M is the number of edges from uR → vR and N is the number

of edges from uS → vS. Figure 3.5 demonstrates this case through an example,
resulting in two possible edge alignments. The single break transitions c and c′ are
aligned with each other, while the remaining normal edges (i.e., a, b, a′ and b′) are

26

aligned combinatorially to produce two unique aligned automata. When multiple
aligned automata can be constructed, we choose the edge alignment which maximizes
the number of verified-equivalent edges in the resultant aligned automaton AF . The
formal structure of aligned automaton is described in the following.

The automaton AF that results from aligning the automata AS and AR is a
tuple of the form ⟨V,E, v0, vt,Ω,Ψ, P red⟩, where:

• V : VS ↔ VR, is a finite set of one-to-one bijective mappings between the nodes
of the automata AS and AR,

• E ⊆ V × V , is a finite set of edges representing normal, break, and return
transitions between the aligned nodes,

• v0 : v0
S ↔ v0

R, where v0
S and v0

R are the initial function entry nodes of the
automata AS and AR respectively,

• vt : vtS ↔ vtR, where vtS and vtR are the final function exit nodes of the automata
AS and AR respectively

• Ω : {u↔ v | ∀u ∈ V, ∃v ∈ V }, for each function/loop entry node, maintains a
mapping to the corresponding exit node,

• Ψ is a mapping from edge e to ψe for all edges e, where ψe = ψs ∪ ψr, and
ψs, ψr are the set of guarded actions at the aligned edges es and er of the
automata AS and AR respectively, and

• Pred : V arS ↔ V arR, denoting variable alignment, is a bijective mapping
between variables of AS and AR.

3.4.2 Inferring Variable Alignment Predicates

To infer alignment predicates of AF , we use a syntactic approach based on
variable-usage patterns similar to that of SarfGen [99]. Our approach for computing
a mapping between two sets of variables proceeds as follows.

For each edge ei in AF we collect the usage set for each variable x/x′ in the
reference/student program, namely the sets usage(x, ei) and usage(x′, ei). If the
student automaton has fewer variables than reference automaton (|V arS| < |V arR|),

27

then fresh variables are defined in V arS. The goal is to find a variable alignment, a
bijective mapping between V arR and V arS, which minimizes the average distance
between usage(x, ei) and usage(x′, ei) for each i ∈ [1, n], where n is the number of
edges in AF . This is done by constructing a distance matrixMei

for each edge ei of
size |V arR| × |V arS|, where

Mei
(x, x′) = ∆ (usage(x, ei), usage(x′, ei))

Using the matrices Me1 , . . . ,Men , we construct a global distance matrix Mg for
the entire set of edges in AF , where

Mg(x, x′) =
n∑
i=1

Mei
(x, x′)
n

We then choose to align the variable x in R to the variable x′ in S, denoted as
x ↔ x′, if the pair (x, x′) has the minimum average distance among all possible
variable y aligned with x′, that is among all variable alignment pairs (y, x′).

Mg(x, x
′) ≤ min(∀y∈V arR\x′ (Mg(x, y)))

3.5 Verification and Repair Algorithm
Once the aligned automaton AF is constructed, we can initiate the repair process

of the incorrect student program. Note that a repaired version of the incorrect student
program produced by our algorithm is guaranteed to be semantically equivalent to
the given structurally matched reference program. Our algorithm traverses the edges
of the automaton AF to perform edge verification which basically checks the semantic
equivalence between an edge of the student automaton and its corresponding edge
of the reference automaton.3 In case the edge verification fails, we perform edge
repair after which edge verification succeeds. While the existing approaches [41, 99]
also similarly perform repair for aligned statements/expressions, the correctness of
repair is not guaranteed unlike in our algorithm.

We combine the edge verification and repair into a single step by extending the
well-known SyGuS (syntax-guided synthesis) approach [8] which can be defined as
follows:

3Our implementation performs a breadth-first search, while our algorithm is not restricted to a
particular search strategy.

28

Definition 1 (SyGuS). SyGuS consists of ⟨φ, T, S⟩ where φ represents a correctness
specification expressed assuming background theory T and S represents the space of
possible implementations (S is typically defined through a grammar). The goal of
SyGuS is to find out an implementation that satisfies φ.

While in principle SyGuS can be directly used to perform repair, we have an
additional non-functional requirement not considered in SyGuS—that is, we want
to preserve the student program as much as possible for pedagogical purposes.
To accommodate this additional requirement, we introduce our approach, SyGuR
(syntax-guided repair), formulated as follows:

Definition 2 (SyGuR). Syntax-guided Repair or SyGuR consists of ⟨φ, T, S, implo⟩
where the first three components are identical with those of SyGuS, and implo ∈ S
represents the original implementation that should be repaired. The goal of SyGuR
is to find out a repaired implementation implr ∈ S that satisfies φ. In addition,
differences between implo and implr should be minimal under a certain minimality
criterion.

We realize SyGuR in the context of automated feedback generation for student
programs. In this section, we present the two algorithmic steps we perform to
conduct SyGuR: edge verification and edge repair.

3.5.1 Edge Verification

In this section, we describe how we detect faulty expressions in the given incorrect
student program. Recall that the edges of the automaton AF are constructed by
aligning the edges of the student automaton AS with the edges of the reference
automaton AR. Recall also that the edges of AS can be faulty while the edges of
AR are considered always as non-faulty.

Each edge e : u ψs;ψr−→ v of AF between nodes u and v asserts the following
property:

{ϕu}ψs;ψr{ϕv} (3.1)

where ϕu and ϕv are the variable alignment predicates at the source node u and
target node v of the edge e respectively, and ψr and ψs represent a list of guarded
actions of the reference implementation and student implementation, respectively,

29

expressed in a Single Static Assignment (SSA) form. For example, an original
guarded action, if(x > 1)x+, is converted into its SSA form, ((x1 > 1) =⇒ x2 =
x1 + 1) ∧ (¬(x1 > 1) =⇒ x2 = x1). Note that ψs and ψr do not interfere with each
other, since the variables used in ψs and ψr are disjoint from each other. Also note
that ψr and ψs do not contain a loop (that is, a single edge does not form a loop),
and thus an infinite loop does not occur in the edge.

Edge verification succeeds if and only if property (3.1) holds. In SyGuR, prop-
erty (3.1) expresses a correctness specification φe for edge e. To check property (3.1),
we use an SMT solver by checking the satisfiability of the following formula:

φe = ϕu ∧ ψs ∧ ψr ∧ ¬ϕv (3.2)

The satisfiability of φe indicates verification failure, or showing non-equivalence of
two implementations along edge e. Conversely, the unsatisfiability of φe indicates
verification success. Note that there always exists a model m that satisfies ϕu∧ψr∧ψs
(this is because ϕu is not false, and the SSA forms of ψr and ψs are defined over
disjoint variables), and verification succeeds only when for all such m, ¬ϕv does
not hold. Intuitively, verification succeeds if and only if it is impossible for the
post-condition ϕv to be false after executing ψr and ψs under the pre-condition ϕu.

As for background theories in the SMT solver, we use: LIA (linear integer
arithmetic) for integer expressions, the theory of strings for modeling input/output
stream, theory of uninterpreted functions to deal with user-defined function calls
such as check_prime, and LRA (linear real arithmetic) to approximate floating-point
expressions.

3.5.2 Edge repair

Once φe is found to be satisfiable for an edge e (which indicates that the
edge verification fails), our goal is to repair edge e by modifying the student
implementation encoded in ψs. Algorithm 1 shows our edge repair algorithm based
on the CEGIS (counter-example-guided inductive synthesis) strategy [89]. In step 1,
edge verification is attempted, and verification failure results in a counter-example
ϕce that witnesses verification failure. In the remaining part of the algorithm,
we modify ψs to ψ′

s in a way that {ϕce}ψ′
s;ψr{ϕv} holds. If {ϕu}ψ′

s;ψr{ϕv} also
happens to hold, edge repair is deemed as completed. Otherwise, an SMT solver

30

generates a new counter-example ϕ′
ce, and our algorithm searches for ψ′′

s satisfying
both {ϕce}ψ′′

s ;ψr{ϕv} and {ϕ′
ce}ψ′′

s ;ψr{ϕv}. This process is repeated until either
edge repair is successfully done or it fails. Edge repair can fail either because the
search space is exhausted or timeout occurs.

Let us first consider the case where ψs and ψr have the same number of guarded
actions and all guarded actions have the same number of assignments. To ensure
this requirement is met, we call function Extend (see line 20 of Algorithm 1) which
will be described later. Under the current assumption that ψs and ψr have the same
number of guarded actions, Extend(ψs, ψr) returns ψs, and thus, its return value
ψ+
s equals ψs.

To repair guarded actions ψ+
s , we replace each of the conditional expressions

and the update expressions (RHS expressions) with a unique placeholder variable h.
This makes an effect of making holes in ψ+

s , and filling in a hole for repair amounts
to equating h with a repair expression. Function RepairSketch of the algorithm
performs this task of making holes in ψ+

s and returns ψf defined as ψ+
s [e(i) 7→ h(i)].

In this definition, notation 7→ denotes a substitution operator defined over all
expressions e(i) appearing in ψ+

s and their corresponding placeholder variables h(i).
In the following, we use “hole” to refer to a placeholder variable.

In SyGuR (see Definition 2), the expression space of the holes is defined by
implementation space S. Previous state-of-the-art works [41, 99] use the expressions
of the reference program for repair (generated repairs are not verified in these works
unlike in our approach), and we similarly define the implementation space of each
hole as follows:

Definition 3 (Implementation space of a hole). Let Cs (Cr) and Us (Ur) be
respectively the set of conditional and update expressions of ψ+

s (ψr). Recall that
ψ+
s (ψr) represents guarded actions of the student (reference) program. When a

conditional expression ec is replaced by a hole hc, the implementation space of hc
is defined as Cs | C

′
r | true | false, where C

′
r represents the set of conditional

expressions appearing in ψr with all variables of Cr replaced with their aligned
variables of the student program (see Section 3.4.2 for variable alignment). Similarly,
given an assignment x = hu where hu represents a hole for an update expression
eu, the implementation space of hu is defined as Us | U

′
r | x, where U ′

r represents

31

the set of update expressions of ψr with all variables of Ur replaced with their
aligned variables of the student program. The inclusion of an lhs variable x in the
implementation space is to allow assignment deletion—replacing x = eu with x = x

simulates assignment deletion.

The repair synthesis process for some faulty expression on the edge es relies on
four factors: the discovered counter-examples, the set of suspicious expressions in
ψ+
s , the set of reference expressions in ψr, and the inferred alignment predicates.

These factors collectively determine the set of expressions on the edge er that can
be exploited to repair the buggy expressions on es.

Recall that given a list of counter-examples CE, we search for a repair ψ′
s that

satisfies ∀ϕce ∈ CE : {ϕce}ψ′
s;ψr{ϕv}. When searching for a repair, we preserve

the expressions of the student program as much as possible for pedagogical reasons.
We achieve this by conducting a search for a repair using a pMaxSMT (Partial
MaxSMT) solver. Note that an input to a pMaxSMT solver consists of (1) hard
constraints which must be satisfied and (2) soft constraints all of which may not
be satisfied. Whenever a soft constraint C is not satisfied, cost is increased by
the weight associated with C, and a pMaxSMT solver searches for a model that
minimizes the overall cost. We pass the following formula to a pMaxSMT solver
where hard constraints are underlined.

∀ϕce ∈ CE : (ϕce ∧ ψr ∧ ψf ∧ ϕv∧∧
(h(i),e(i),SJh(i)K)∈holes(ψf)

(h(i) = e(i) ∧ h(i) ∈ SJh(i)K\{e(i)})) (3.3)

where function holes(ψf) returns a set of (h(i), e(i), SJh(i)K) in which h(i) represents
the placeholder variable appearing in ψf (recall that ψf is prepared by making holes
in ψs), e(i) denotes the original expression of h(i) extracted from student program,
and SJh(i)K represents the implementation space of h(i). Our soft constraints encode
the property that each of the original expressions can be either preserved or replaced
with an alternative expression in the implementation space. To preserve as many
original expressions as possible, we assign a higher weight to h(i) = e(i) than
h(i) ∈ SJh(i)K\{e(i)}.

The Extend function. Previously, we consider only the cases where ψs and
ψr have the same number of guarded actions and all guarded actions have the

32

same number of assignments. To ensure this requirement, we invoke the Extend
function which performs the following. First, if ψs has a smaller number of guarded
actions than ψr, then ψ+

s (the return value of Extend) should contain additional
guarded actions, each of which uses the following template: [False] =⇒ x = x,
where x is constrained to be the variables of the student program. Notice that
these additional guards are initially deactivated to preserve the original semantics of
the student program, but they can be activated whenever necessary during repair,
since False is replaced with a hole by RepairSktech. After this step, Extend finds
the guarded action of ψr that has the maximum number of assignments. Given
this maximum number M , we check whether all guarded actions of ψs (including
additional guarded actions with the False guard) also have M assignments. Any
guarded action that has a smaller number of assignments than M is appended with
additional assignments, x = x where x is constrained to be the variables of the
student program. This process makes sure that for each guarded action, the student
program can have as many assignments as the reference program.

3.5.3 Properties preserved by Verifix

Once all the edges of the aligned automaton AF are repaired and verified, it is
straightforward to produce a repaired student automaton A′

S by copying repaired
expressions from the automaton AF to the automaton AS. In this section, we
discuss several interesting properties of our repair algorithm, namely soundness,
completeness, and minimality of generated repairs.

Theorem 1 (Soundness). For all program inputs, A′
S and AR return the same

program output.

Proof. Recall that for each repaired/verified edge u ψs;ψr−→ v of a repaired automaton
A′
F , {ϕu}ψs;ψr{ϕv} holds. By structural induction on the edges of AF , the post-

condition of A′
F ’s final node holds true, and hence out = out′ holds for the outputs

aligned between AS and AR. Note that for introductory programming assignments,
output is clearly known (such as the return value of the program), and we enforce
the post-condition of A′

F ’s final node to contain out = out′.

Our edge repair algorithm (Algorithm 1) always returns a repaired edge as long

33

as the underlying MaxSMT/pMaxSMT solver used in the algorithm is complete
(that is, UNKNOWN is not returned). This can be stated as follows, using the
concept of relative completeness [25]:

Theorem 2 (Relative completeness of edge repair). The completeness of
Algorithm 1 is relative to the completeness of the MaxSMT/pMaxSMT solver.

Proof. Whenever edge verification fails, Algorithm 1 performs repair in step 4 of the
algorithm. In case a repair exists in the repair space, Algorithm 1 reaches line 36,
and a pMaxSMT solver is fed with formula (3.3) to find out a repair. Thus, if the
MaxSMT/pMaxSMT solver is complete, a repair is always generated.

Meanwhile, the overall repair algorithm of Verifix is not complete. If AF is failed
to be constructed, the repair process cannot be started. Theorem 3 identifies the
conditions under which Verifix succeeds to generate a repair. In Theorem 3, we use
the following definition of alignment consistency:

Definition 4 (Alignment Consistency). For each edge e of AF {ϕu}ψs;ψr{ϕv},
modify ψs into the ψ′

s as follows: ψ′
s ≡ ψr[x(i)

r 7→ x(i)
s] where x(i)

r denotes all reference-
program variables appearing in ψr and x(i)

s denotes student-program variables aligned
with x(i)

r . Repeat this for all edges of AF . Then, we say that AF is alignment
consistent when {ϕu}ψ′

s;ψr{ϕv} for all modified edges.

AF is alignment consistent only when the variable alignment predicates are such
that a given student program can be verifiably repaired by edge-to-edge copy of the
reference program (patch minimality is not considered).

Theorem 3 (Relative completeness). Our repair algorithm succeeds to generate
a repair, under the following assumptions:

1. AF is constructed,

2. AF is alignment-consistent, and

3. The MaxSMT/pMaxSMT solver used for repair/verification is complete.

Proof. Assume the three assumptions are met. Since Verifix traverses all edges of
AF one by one without backtracking, it suffices to show that each edge is repaired

34

by Algorithm 1 which at a high level consists of the following two parts: verification
(step 1 of the algorithm) and repair (step 2, 3, and 4).

First, consider the verification part. Verification is performed via a MaxSMT
solver which returns either (a) UNSAT (line 11) or (b) SAT (line 15) for φiedge (see
line 10). Note that the UNKNOWN case is excluded by the third assumption. In
case (a), edge verification is done. In case (b), the algorithm moves to the repair
part which we now consider.

In the repair part, a pMaxSMT solver is invoked at line 31 and 36 of Algorithm 1
and returns either (i) UNSAT or (ii) SAT. The UNKNOWN case is excluded by the
third assumption. Case (i) happens only when the second assumption is violated
(that is, a repair is not in the implementation space), and we exclude this case from
consideration. In case (ii), repair candidates are obtained (line 35), and verification
is re-attempted to see if one of the obtained candidates ψ′

s satisfies {ϕu}ψ′
s;ψr{ϕv}.

The repetition between repair and verification is guaranteed to terminate, since the
implementation space is finite. This concludes the proof.

Lastly, we consider the minimality of repair. In Verifix, use of MaxSMT guaran-
tees the minimality of edge repair.

Theorem 4 (Minimality of edge repair). Suppose that our algorithm repairs edge
e : u→ v of AF by changing F ⊆ Cs ∪ Us (Cs and Us are defined in Definition 3).
There does not exist F ′ s.t. |F ′| < |F | and the pre-/post-conditions of e are satisfied
by replacing the expressions of F ′ with the expressions in Cr ∪ Ur.

Proof. Recall that we pass formula (3.3) to a pMaxSMT solver. In the formula, the
number placeholder variables h(i) defines the maximum size of edge repair, and a
minimal edge repair is obtained when the minimum number of placeholder variables
h(i) are equated with expressions different from their original expression e(i), which
happens when expression h(i) = e(i) in formula (3.3) is ignored by the pMaxSMT
solver. Since a pMaxSMT solver ignores the minimum number of h(i) = e(i), the
stated theorem holds.

Theorem 4 does not necessarily guarantee the global minimality of a generated re-
pair. In the following theorem, we identify the conditions that should be additionally
satisfied to guarantee global minimality.

35

Theorem 5 (Global minimality). A repaired program generated by our algorithm
is minimal if the following conditions hold:

1. Node alignment made in AF is optimal in the sense that there is no alternative
node alignment (other than the one generated by Verifix) that can lead to a
smaller repair.

2. The variable alignment predicates of AF are optimal in the sense that there is
no alternative variable alignment that can lead to a smaller repair.

Proof. Once node alignment and invariants of AF are fixed, repairing a student
program amounts to repairing each edge of AF for which edge verification fails.
Since each edge is repaired minimally (Theorem 4), the stated theorem holds.

Verifix currently does not guarantee the global minimality of repair. Node
alignment and variable alignment made by Verifix are not necessarily optimal.
Instead of considering all possible alignments, we use a heuristics-based approach
for the sake of efficiency. Nonetheless, our experimental results show that Verifix
tends to find smaller repairs than Clara. Note that the existing approaches designed
to generate minimal repairs [99, 41] also do not consider node/edge alignment in the
calculation of the minimality of a repair. Instead, a minimal repair is searched for
only after node/edge alignment is made. In fact, unlike those existing approaches
that do not consider alignment at all, we consider edge alignment by enumerating
all possible edge alignments between aligned nodes.

3.6 Experimental Setup

3.6.1 Research Questions

We address the following research questions in this chapter.

1. RQ1: How does Verifix perform in terms of the repair success rate, as compared
to state-of-the-art approaches? While Verifix generates verifiably correct repair,
is the repairability comparable to the existing approaches?

36

2. RQ2: How does Verifix perform in terms of running time? Given that Verifix
uses heavy-weight SMT techniques to conduct verification, slowdown in running
time as compared to non-verification approaches is expected. How severely is
the time performance affected?

3. RQ3: What are the reasons for repair failure in Verifix? The answers to this
question can be used to identify where to improve in the future work.

4. RQ4: Does Verifix generate small sized repair? In a pedagogical setting, small
repairs are usually desired. While Verifix generates a minimal edge repair,
it does not guarantee to generate a globally minimal repair. What is the
practical consequence of this greedy approach?

5. RQ5: What is the effect of test-suite quality on repair when a test-based
approach is used? We ask this question to compare the existing test-based
approaches with Verifix which does not require a test.

6. RQ6: How is the repair success rate of Verifix affected by the number of
reference solutions? We ask this question to assess the performance of Verifix
when multiple reference implementations are available.

3.6.2 Dataset

Evaluation of a programming assignment feedback tool requires a dataset of
incorrect student assignments. For our dataset, we chose a publicly released dataset
curated by ITSP 4 [107] for evaluating feasibility of APR techniques on introductory
programming assignments. This benchmark consists of incorrect programming
assignment submissions by 400+ first year undergraduate students crediting a CS-1:
Introduction to C Programming course at a large public university. Other datasets
used in previous work are either not publicly available [41, 99, 53] or use different
programming languages than C [47].

We take students’ incorrect attempts from four basic weekly programming labs
in ITSP benchmark, where each lab consists of several programming assignments
that cover different programming topics. For example, the lab in week 3 (Lab-3 in

4https://github.com/jyi/ITSP#dataset-student-programs

37

https://github.com/jyi/ITSP#dataset-student-programs

Table 3.3) consists of four programming assignments which teach students about
floating-point expressions, printf, and scanf. Table 3.3 lists the four programming
labs partitioned by different programming topics. Students had, on average, a
time limit of one hour duration for completing each individual assignment. Our
implementation currently does not support all programming language constructs such
as pointers, multi-dimensional arrays, and struct, which are necessary to support the
remaining labs in the ITSP benchmark. Note that support for more programming
language constructs is orthogonal to our verified-repair generation algorithm. As
more programming language constructs are supported, our repair algorithm can be
used without modification to repair more diverse programs, these are left as future
work.

We use 341 compilable incorrect students’ submissions from 28 various unique
programming assignments as our subject. In addition to the incorrect student
submissions, each programming assignment in the ITSP benchmark contains a single
reference implementation and a set of test cases designed by the course instructor.
Both Verifix and baseline Clara [41] have access to the reference implementation
and test cases to repair the incorrect student programs.

Baseline comparison We compare our tool Verifix’s performance against the
publicly released state-of-art repair tool Clara 5 [41] on the common dataset of 341
incorrect student assignments. A timeout of 5 minutes per incorrect student program
was set for both Verifix and Clara to generate repair. We do not directly compare
our results against CoderAssist [53] tool since it does not work with our dataset
(CoderAssist targets dynamic programming assignments), while Refactory [47]
implementation targets Python programming assignments. About SarfGen, we
could not obtain access to the tool from its authors due to a copyright issue (SarfGen
is commercialized). We instead address these comparisons in our related work
Section 7. Our tool Verifix 6 is publicly released to aid further research.

Our experiments were carried out on a machine with Intel® Xeon® E5-2660 v4 @
2.00 GHz processor and 64 GB of RAM.

5https://github.com/iradicek/clara
6https://github.com/zhiyufan/Verifix

38

https://github.com/iradicek/clara
https://github.com/zhiyufan/Verifix

Lab-ID Topics # Assign- # Prog- Repair (%) Avg. Time (sec)
ments rams Clara Verifix Clara Verifix

Lab-3 Floating point, printf, scanf 4 63 54.0% 92.1% 2.0 39.7
Lab-4 Conditionals, Simple Loops 8 117 71.8% 74.4% 32.9 34.2
Lab-5 Nested Loops, Procedures 8 82 22.0% 45.1% 10.2 12.5
Lab-6 Integer Arrays 8 79 12.7% 21.5% 14.2 8.1
Overall - 28 341 42.8% 58.4% 21.3 29.5

Table 3.3: Lab-wise repair success rate (shown in the Repair column) of our
tool Verifix and Clara [41]. Time column represents the average runtime in
seconds for all successfully repaired programs. The number of assignments in
each lab is shown in the #Assignments column, and the number of incorrect
student submissions in each lab is shown in the #Programs column.

3.6.3 Implementation

Verifix supports repairing compilable incorrect C programs, given a reference
C program and optional test cases. Verifix implementation is composed of three
components: (1) Setup, (2) Verification, and (3) Repair generation.

For the setup phase, we build on top of Clara 5 [41] parser to convert incorrect
and reference C programs into a Control-Flow Graph (CFG) representation. We
then convert the obtained CFGs into its dual Control-Flow Automata (CFA), and
align the reference CFA with incorrect CFA.

In the verification phase, the reference and student program labels on each
aligned edge are converted into a Single Static Assignment (SSA) format using our
custom Verification Condition Generator (VCGen) implementation. We make use of
Z3 [73] SMT solver to verify if the aligned edges are equivalent.

In the repair phase, we encode each repair candidate using Boolean selectors.
Z3 pMaxSMT solver is used to select the repair with minimal cost. The final
repaired CFA/CFG internal representation is converted back into a program using
a custom concretization module (reverse VCGen). After which, we make use of
Zhang-Shasha 7 tree-edit distance algorithm [112] to compute the patch size between
incorrect student program and the repaired student program.

7https://github.com/timtadh/zhang-shasha

39

https://github.com/timtadh/zhang-shasha

3.7 Evaluation

3.7.1 RQ1: Repair success rate

Table 3.3 compares the repair success rate of our tool Verifix against the state-
of-art tool Clara [41] on the common dataset of student submissions. Given a single
reference implementation per assignment, Verifix achieves an overall repair success
rate of 58.4% on the 348 incorrect programs across 28 unique assignments. In
comparison, the baseline tool Clara achieves a lower overall repair success rate of
42.8% on the same assignments, a difference of more than 15%. Note that the repairs
generated by Verifix are verifiably equivalent to the reference implementation, in
addition to passing all the instructor provided test cases. That is, Verifix generates
a verifiably correct feedback for 58.4% of student submissions in diverse assignments,
which is not possible using existing test-based approaches.

The improvement in repair success rate of Verifix over Clara is partly due to the
more flexible structural alignment of Verifix than that of Clara. Recall that Verifix
uses a more relaxed structural alignment, as compared to the stricter structural
alignment used by existing state-of-the-art approaches including Clara, as described
in Section 3.4.1. Verifix requires the reference and incorrect Control-Flow Automata
(CFA) to have the same number of program states or nodes, denoting functions and
loops. While Clara additionally requires the reference and incorrect CFA to have the
same number of edges, denoting return/break/continue transitions. In Section 3.7.3,
we investigate the common reasons for repair failure.

3.7.2 RQ2: Running time

The time column of Table 3.3 shows the average running time of Verifix and
Clara, in seconds. Verifix on average takes 29.5s to successfully repair an incorrect
program, as compared to 21.3s on average by Clara. The running time of Verifix
is particularly high in Lab-3 (39.7s) and Lab-4 (34.2s), whereas in Lab-6, Verifix
runs significantly faster than Clara (8.1s vs 14.2s). The high running time of Verifix
in Lab-3 and Lab-4 seems due to the fact that Lab-3 and Lab-4 programming
assignments involve non-linear arithmetic expressions. For example, one of the Lab-4
assignments is on computing the distance between two co-ordinate points, which

40

Lab-ID # Prog- Repair (%) Struct. Mismatch (%) Timeout (%) Unsupported (%) SMT issues (%)
rams Clara Verifix Clara Verifix Clara Verifix Clara Verifix Clara Verifix

Lab-3 63 54.0% 92.1% 0.0% 0.0% 42.9% 0% 3.2% 3.1% 0% 4.8%
Lab-4 117 71.8% 74.4% 7.7% 7.7% 19.6% 10.3% 0.9% 0.9% 0% 6.8%
Lab-5 82 22.0% 45.1% 75.6% 35.4% 1.2% 11.0% 1.2% 1.2% 0% 7.3%
Lab-6 79 12.7% 21.5% 83.5% 69.6% 2.5% 0% 1.3% 1.3% 0% 7.6%
Overall 341 42.8% 58.4% 40.2% 27.2% 15.5% 6.2% 1.5% 1.5% 0% 6.7%

Table 3.4: The distribution of the four reasons for repair failure, i.e., structural
mismatch (4th column), timeout (5th column), unsupported language con-
structs (6th column), and SMT issues (7th column). The first three columns
are copied from Table 3.3.

involves square-root computation. Note that SMT solvers generally run slow when
non-linear arithmetic expressions are used in the input formula. There has been
an effort to handle non-linear arithmetic more efficiently [32], and Verifix can be
benefited from the improvement of the SMT techniques.

We also note that while Clara runs faster than Verifix across the labs except
for in Lab-6, its repair success rate is always lower than that of Verifix across all
labs. For example, in Lab-3, Clara’s average running time is only 2.0s, but its
repair success rate is only 54.0%, which is 38.1% lower than that of Verifix (92.1%).
Overall, while Verifix, which uses heavy-weight SMT techniques, tends to require
more running time than Clara, the overall results are nuanced by the other facts
such as repair success rate and correctness guarantee.

3.7.3 RQ3: Reasons for repair failure

Table 3.4 shows the distribution of the repair failure reasons for Verifix and
Clara. Structural Mismatch (shown in the 4th column) is the primary reason for
repair failure of Verifix and Clara, accounting for 27.2% and 40.2% of all the 341
incorrect student programs, respectively. Recall that a single reference solution is
used for each assignment in the labs. For simpler programs such as those in Lab-3
and Lab-4, both tools achieve low structural mismatch rate. That is, almost all the
incorrect student programs can be structurally aligned with the reference program.
As the complexity of the programs increases (in our dataset, as the lab ID increases,
the students submissions tend to be more complex), the structural mismatch rate
tends to increase in both tools. However, the rate increases more gently in Verifix
than in Clara. For example, in Lab-5, while the structural mismatch rate of Clara
drastically increases to 75.6%, Verifix maintains a much lower mismatch rate of

41

35.4%. This difference in structural match rate results in a overall higher repair
success rate in Verifix as compared to Clara. For example, 45.1% of Verifix vs 22.0%
of Clara for Lab-5. The high structural mismatch rates in Lab-6 are related to the
following: many incorrect students’ programs use function calls, but the reference
programs often do not have functions with matching function signatures.

The second biggest failure reason is Timeout (5 minutes), accounting for 6.2%
and 15.5% of the dataset for Verifix and Clara, respectively. In Verifix, most of
the running time is spent on SMT and pMaxSMT solving by Z3 solver during
verification and repair stage, respectively. In 1.5% of student programs, repair failure
occurs since our current implementation does not support all programming language
constructs used in our datasets. For example, both Verifix and Clara currently do
not support the GOTO statement. Lastly, in 6.7% of the incorrect programs, Verifix
fails to generate a repair due to the incompleteness of SMT solving. Common cases
of this kind are when the SMT solver returns UNKNOWN result, instead of SAT or
UNSAT, during the verification or repair phase.

3.7.4 RQ4: Minimal repair

To investigate this research question, we compare the sizes of repairs gener-
ated from Verifix and our baseline state-of-art tool Clara [41]. Since the size of
the student programs vary significantly, we normalize patch size with the size
of original incorrect program to obtain Relative Patch Size (RPS), given by:
RPS = Dist(ASTs, ASTf)/Size(ASTs). Where, ASTs and ASTf represents the
Abstract Syntax Tree (AST) of incorrect student program and fixed/repaired pro-
gram generated by tool, the Dist function computes a tree-edit-distance between
these ASTs, and the Size function computes the #nodes in the AST.

In our benchmark of 341 incorrect programs, Verifix can successfully repair
199 student programs, Clara can successfully repair 146 programs, while Verifix
and Clara both can successfully repair 132 common programs. Out of these 132
commonly repaired programs, Verifix generates a patch with smaller RPS in 67 of
the cases, Clara generates a patch with smaller RPS in 47 of the cases, and both
tools generate a patch of the exact same relative patch size in 18 cases. Note that in
the case of Clara, a smaller repair does not necessarily imply better quality repair

42

0.0 0.5 1.0 1.5 2.0
Relative Patch Size (RPS)

0.00

0.25

0.50

0.75

De
ns

ity

Verifix
Clara

Figure 3.6: Kernel Density Estimate (KDE) plot of Relative Patch Size (RPS)
by Verifix and Clara on 132 common successful repairs.

1 void main(){
2 int n1, n2, i ;
3 scanf ("%d %d" , &n1, &n2) ;
4 if(n2 <= 2) // Repair #1: Delete spurious print
5 printf("%d ", n2); // Ver i f ix ✓ , Clara ✗
6 for (i=n1; i<=n2; i++){
7 i f (check_prime(i)==0) // Repair #2: Delete ==0
8 pr intf ("%d " , i) ; // Ver i f ix ✓ , Clara ✓
9 }

10 }
Figure 3.7: Example from a Lab-5 Prime Number assignment. The main
function contains two errors, both of which are fixed by Verifix, while Clara’s
repair overfits given test-suite by ignoring first error.

since these repairs can overfit the test cases (see Section 3.7.5).
Figure 3.6 plots the Kernel Density Estimate (KDE) of Relative Patch Size (RPS)

for these 132 common programs that both Verifix and Clara can successfully repair,
in order to visualize the RPS distribution for these large number of data points.
KDE is an estimated Probability Density Function (PDF) of a random variable,
often used as a continuous smooth curve replacement for a discrete histogram. From
the Figure 3.6 plot we observe that the density of patch-sizes (y-axis) produced by
Verifix is greater than that of Clara when RPS < 0.8 (x-axis). On the other hand,
the density of patch-sizes generated by Clara is greater than that of Verifix when
RPS ≥ 0.8. That is, a large proportion of repairs generated by Verifix have a small
relative patch-size, since the density concentration of repairs is towards lower RPS
(x-axis). In comparison, a significantly larger proportion of Clara’s repairs have
RPS ≥ 0.8, as compared to Verifix.

43

25 50 75 100
Visible Test-Case Sampling %

30

40

50

60
Re

pa
ir

Ac
cu

ra
cy

 %
On

 V
isi

bl
e

+
Hi

dd
en

 Te
st

-C
as

es
58.4

32.3

37.2
41.3 42.8

Verifix
Clara

Figure 3.8: Repair accuracy of Clara and Verifix on various test case samplings.

3.7.5 RQ5: Overfitting

Majority of the programming assignment repair tools [107, 41, 99, 47] generate
repairs that satisfy a given test suite (incomplete specification). Verifix is distin-
guished from these existing test based approaches in that it generates a verifiably
correct repair. Figure 3.7 demonstrates an example from a Lab-5 Prime Number
assignment, where Clara’s [41] repair overfits the test cases. With the help of a
reference implementation, Verifix is able to detect a new counter-example where the
student program deviates from correct behavior, when input stream is "1 2" (n1 = 1,
n2 = 2). Given this new unseen test case, the repair suggested by Clara results in
an incorrect output "2 2 ", while the repair suggested by Verifix results in the correct
behaviour producing output "2 ".

In order to measure the degree of overfitting repairs generated by each tool, we
compare the impact of test case quality on repair accuracy. This is done by running
Clara and Verifix on our common benchmark of 341 incorrect programs under four
different settings, where a percentage of test cases were hidden from tool during
repair generation. For each of the 28 unique assignments, with 6 instructor designed
test cases on average, we randomly sampled X% as "visible" test cases. Once the
repair was successfully generated by a tool on the limited visible test case sample,
we re-evaluated the repaired program on all test cases, including hidden ones. We

44

carried out this experiment under four different settings, with a random sampling
rate of 25%, 50%, 75%, and 100% of the available test cases. This entire experiment
was repeated 5 times, where we randomly sampled test cases each time, and we
report on the distribution of repair accuracy achieved by each tool.

Figure 3.8 displays the result of our overfitting experiment, with the X-axis
representing the visible test case sampling %, and Y-axis representing the repair
accuracy % obtained by APR tool on the entire test-suite (visible and hidden test
cases). Each box plot displays the distribution of repair accuracy per test case
sampling, by showing the minimum, maximum, upper-quartile, lower-quartile and
median values. The median value of each box-plot is shown as text above the
box-plot.

From Figure 3.8 we observe that Verifix’s repair accuracy is constant. That
is, Verifix’s repair does not change based on the percentage of visible test cases
provided, since it does not use the available test cases for repair generation or
evaluation/verification. On the other hand, Clara’s repair accuracy varies from a
median value of 42.8% (when all test cases are made visible) to a median value
of 32.3% (when only 25% of test cases are made available to Clara). In other
words, Clara overfits on 42.8 − 32.3 = 10.5% of our benchmark of 341 incorrect
programs, when 25% of test cases are randomly chosen. Similarly, overfitting of
42.8 − 41.3 = 1.5% is observed when visible test case sampling rate is 75%, or 5
visible test cases (⌈75%× 6⌉ = 5) on average. In other words, when even a single
test case on average is hidden from Clara, its generated repair can overfit the test
cases.

Moreover, the choice of test case sampling has a large effect on Clara’s repair
accuracy, as evident from the variation in box-plot distribution. In the case of 25%
visible test case sampling, Clara’s repair accuracy ranges from a minimum value of
29.9 to maximum of 32.8; depending on which two test cases (⌈25%× 6⌉ = 2) were
made available.

Hence, APR tools such as Clara [41] which rely on availability of good quality
test cases for their repair generation and evaluation can suffer from overfitting. Even
when the instructor misses out on a single important test case coverage during
assignment design. Thereby generating incomplete feedback to students struggling
with their incorrect programs. Verifix on the other hand does not suffer from

45

0% 25% 50% 75% 100%
Sampling rate of multiple reference programs

0%

20%

40%

60%

80%

100%

Re
pa

ir
sc

ue
ss

 ra
te

 o
f i

nc
or

re
ct

 p
ro

gr
am

s

58.4%

42.8%

62.5%

50.7%

65.4%

60.7%

68.9%

62.2%

69.5%

63.0%

Overall Repair Success Rate with Multi-Referene Program

Verifix
Clara

(a) Overall repair success rates for all labs

0% 25% 50% 75% 100%
Sampling rate of multiple reference programs

0%

20%

40%

60%

80%

100%

St
ru

ct
ur

al
 m

ism
at

ch
 ra

te
 o

f i
nc

or
re

ct
 p

ro
gr

am
s

27.2%

40.2%

23.5%

32.8%

19.6%

27.6%

19.6%

27.3%

18.5%

26.7%

Overall Structural Mismatch Rate with Multi-Reference Program

Verifix
Clara

(b) Overall structural mismatch rates for all labs

Figure 3.9: Repair success rates and structural mismatch rates across different
sampling rates of multiple reference solutions. The X and Y axes represent
the sampling rate of the reference solutions and the observed repair success
rate, respectively.

overfitting limitation, due to its sole reliance on reference implementation for repair
generation and evaluation/verification.

3.7.6 RQ6: Repair success rate with multiple reference
implementations

In the previous sections, we conducted experiments with a single reference
implementation for each assignment. Several previous works, including Clara [41]

46

and SarfGen [99], assume the prevalence of multiple reference solutions to help
alleviate structural matching issues. In this section, we compare the repair success
rate of both Verifix and our baseline tool Clara [41], on being provided access to
multiple reference solutions. As additional reference implementations, we use 341
student submissions in the ITSP dataset [107] that pass all test-cases. While passing
all tests does not guarantee the correctness of a program, previous works [41, 99]
used similar approaches.

To evaluate the change in repair success rate on providing access to multiple
reference implementations, we run Verifix and Clara with diverse sampling rates
of 0%, 25%, 50%, 75%, and 100%; for each sampling rate of N%, we randomly
sample N% of all available reference implementations, in addition to the instructor-
provided reference program. For example, 0% sampling rate indicates only the
instructor provided reference solution was used (single-reference program). While
100% indicates that all reference programs were made available for the repair tool,
in addition to the instructor provided reference program. To prevent a student’s
incorrect program P being repaired by his/her own final submission P ′ that passes
all test-cases, we exclude P ′ from the sampled set of multi-reference programs (if it
exists) when P is being repaired. We run our baseline tool Clara [41] in its default
mode for multi-reference programs; its clustering algorithm is first executed on the
set of sampled reference implementations, followed by running its repair algorithm
on each incorrect program using the obtained clusters.

The results of multi-reference experiments are shown in Figure 3.9. Figure 3.9(a)
shows how repair success rate changes as more reference programs are used, while
Figure 3.9(b) shows how structural mismatch rate changes. A student submission S
is considered structurally mismatched with a sampled group of reference programs
G when no program in G structurally matches S. From Figure 3.9(a) we observe
that the repair success rate increases for both Verifix and Clara, as more reference
implementations are made available for repair. From Figure 3.9(b) we note that
this is primarily due to a reduction in structural alignment mismatch between the
set of multiple reference implementations (with more diverse program structures)
and the given incorrect program.8 We note that similar observations have been

8Repair failures may also occur due to reasons other than structural mismatch, as discussed in
Section 3.7.3.

47

made regarding the effect of multi reference programs on repair success rate in prior
work [47].

From Figure 3.9(a) we observe that Verifix achieves a higher success rate over
Clara across all sampling rates. The gap between the repair rate of both tools
reduces as more reference programs are provided, indicating that Clara’s repair
success rate could eventually match that of Verifix’s on being provided a large
number of reference solutions. From Figure 3.9(b) we observe that Verifix maintains
a lower structural mismatch rate over Clara across all sampling rates. When all
reference solutions are used, structural mismatch rate of Verifix and Clara drops
down to 18.5% and 26.7%, respectively. This result demonstrates the benefit of
using Verifix’s CFA (Control-Flow-Automata) based structural alignment algorithm
over Clara’s CFG (Control-Flow-Graph) based alignment algorithm, even in the
case of multi-reference solutions.

3.8 User Study
In order to evaluate the usefulness of the repair generated by Verifix, we conducted

a user study of tutors of introductory programming courses. Note that students
have expressed positive feedback about using feedback generation systems such as
Clara [41] and SarfGen [99]. Verifix uses the same copy mechanism for repair as
these tools (i.e., parts of a reference implementation are copied) and can generate
the same style of feedback. The main difference between Verifix and the existing
tools lies in that Verifix generates verifiably correct repairs. We believe that tutors
can better appreciate the quality of repairs than novice students, and our user
study sheds helpful light on understanding its pedagogical value. A user study with
students is left as future work.

3.8.1 User Study Questionnaire

In this user-study, we explored the practical value of Verifix in aiding tutors in
the task of grading and providing feedback on incorrect student submissions. This
was explored using the following questions:

1. Rate the quality of the generated repair (in terms of semantic correctness, size,

48

etc).

2. Rate the possibility that you would like to use the repair (either complete or
partial) as feedback to the student.

3. Rate the possibility that you would like to use the repair indirectly: to help
formulate your own custom feedback to student.

4. Rate the possibility that these repairs can help you in grading?

5. Will examples of student incorrect submissions and repairs like these help you
in improving the grading policy?

6. If the repair is known to be verifiably (provably) correct, does it give you more
confidence in using it?

3.8.2 User Study Setup

To answer the above questions, we circulated a Google-Form survey among
the tutors of introductory programming courses at NUS (National University of
Singapore) and UNIST (Ulsan National Institute of Science and Technology). After
which, 14 tutors in total volunteered for this survey and completed their responses.
For this survey, we randomly selected 10 incorrect student submissions from our
benchmark of 341 programs, on which Verifix could successfully generate a repair.
For each incorrect student program, the tutors were shown the assignment title,
assignment description, a sample testcase, and the differences between a student-
written buggy program and its repair generated by Verifix. All the volunteered
tutors were shown the same 10 incorrect student submissions in the same order.

The tutors were asked three questions (questions 1–3 listed in Section 3.8.1) for
each buggy student submission, followed by three questions (questions 4–6 listed in
Section 3.8.1) as an overall summary at the end of the user study. The tutors were
asked to provide their ratings on a numeric scale from 1 (very low) to 5 (very high)
for each question.

49

Figure 3.10: Boxplot of the responses–with the scales from 1 (very low)
to 5 (very high)–collected from 14 tutors. Red line represents the median
value and green triangle represents the mean value. The whiskers denote the
minimum/maximum value, and the rectangle denotes the first/third quartile.

3.8.3 User Study Results

The overall result of the 14 tutor responses is summarized using boxplots in
Figure 3.10. From Figure 3.10 we note that the tutors responded with an overall
positive rating for all six of our questionnaire (Q1–Q6), with a mean/median value
of >= 3.8 in all the cases. We observe that the tutors rate the quality of Verifix
generated repairs (Q1) highly, with a mean/median rating of ~4.0. Our tool’s
verification capability improved the tutors’ confidence in accepting our generated
repairs, with a mean/median rating of ~4.4. The tutors, on average, found Verifix’s
repair useful for providing feedback to students, both directly (Q2) and indirectly
(Q3), giving a mean/median rating between 3.5–4.0. While a larger variation is
observed in the case of direct usage of repair as feedback (Q2), this discrepancy
reduces for indirect usage of repair as feedback (Q3), where tutors can quickly design
customized feedback using the generated repair. The tutors agreed on the utility
of Verifix’s repair in grading (Q4) and in improving grading policy (Q5), giving a
mean/median rating between 4–4.5.

3.9 Threats to Validity
Our aligned automata setup phase consists of a syntactic procedure to obtain a

unique edge and variable alignment between the reference and student automata.
Producing an incorrect alignment does not affect our soundness or relative complete-

50

ness guarantees, but can increase the size of a generated patch. This however occurs
rarely in practice, as demonstrated by our RQ4 (Section 3.7.4).

The arithmetic theory of SMT solvers is incomplete for non-linear expressions,
which can affect our relative completeness. However, this issue affects 6.7% of our
dataset of incorrect student programs in practice, as demonstrated by our results in
Table 3.4.

Evaluating repair tools using multiple correct student submissions, instead of
restricting to a single instructor reference solution, could help improve the repair
success rate. We mitigate this risk by noting that such an evaluation has been
undertaken earlier [99, 47], and would benefit both Verifix and our baseline tool
Clara in terms of reduced structural mismatch rate. Furthermore, we cannot always
assume the availability of a large number of reference solutions, in general.

3.10 Discussion
In this chapter, we have presented an approach and tool Verifix, for providing

verified repair as feedback to students undertaking introductory programming as-
signments. The verified repair is generated via relational analysis of the student
program and a reference program. Verifix is able to achieve better repair success
rate than existing approaches on our common benchmark. The repairs produced by
Verifix are of better quality than state-of-art techniques like Clara [41], since they
are often smaller in size, while being verifiably equivalent to the instructor provided
reference implementation.

We feel that technologies like Verifix have a place in intelligent tutoring systems
of the future. Specifically, they may be used to give feedback to struggling students
learning programming. Since Verifix generates verifiably correct repairs, it can
used first for generating feedback. If Verifix is able to generate a feedback, it can
used with confidence. For the cases where Verifix is unable to generate a feedback,
other heuristic based student feedback generation approaches may then be used.
We envision such a workflow for future intelligent tutoring systems for teaching
programming.

51

Algorithm 1 Edge verification-repair
Input: Aligned edge
Output: Verified/Repaired edge
1: Let ϕu ≡ edge.sourceNode.invariants
2: Let ϕv ≡ edge.targetNode.invariants
3: Let ψr ≡ edge.label.reference
4: Let ψs ≡ edge.label.student
5: CEs← [] // List of counter-examples
6: candidates← [ψs]
7: repeat
8: // Step 1: attempt for edge verification
9: for each ψis in candidates do

10: Let φiedge ≡ ¬(ϕu ∧ ψr ∧ ψis =⇒ ϕv)
11: if ̸|= φiedge then // UNSAT
12: edge.label.student← ψis // Update edge
13: return ✓ // Verifiably correct
14: else
15: ϕice |= φiedge // SAT
16: CEs← CEs · ϕice
17: end if
18: end for
19: // Step 2: make holes in ψs
20: Let ψ+

s ≡ Extend(ψs, ψr)
21: Let ψf ≡ RepairSketch(ψ+

s)
22: // Step 3: define implementation space
23: φhard ← []; φsoft ← []
24: for each ϕice in CEs do
25: φhard ← φhard · (ϕice ∧ ψr ∧ ψf ∧ ϕv)
26: end for
27: for each hole, expr, weight in RepairSpace(ψf , ψr, ψs) do
28: φsoft ← φsoft · (hole = expr, weight)
29: end for
30: // Step 4: search for a repair
31: if ̸|= (φhard, φsoft) then // UNSAT or UNKNOWN
32: return ✗ // Repair Failure
33: else
34: // Update candidates using a pMaxSMT solver
35: // There can be multiple candidates
36: candidates |= (φhard, φsoft)
37: end if
38: until timeout

52

CHAPTER 4. CONCEPT-BASED AUTOMATED GRADING

Chapter 4

Concept-based Automated Grading

4.1 Introduction
There has been a growing interest in computer science education in recent years.

Several education initiatives (e.g., Coursera, EdX, and Udacity) provide online
courses that are taken by thousands of students all around the world. These online
courses are known as Massive Open Online Courses (MOOC), which include many
computer science courses that use programming assignments for assessing students’
learning outcomes. With the increasing number of student enrollments, the number
of submitted programming assignments also grows extensively throughout the year.
This motivates the need for an automated grading system that can save the time
and effort spent in grading these assignments. In this chapter, we study the problem
of automated grading of introductory programming assignments, which is common
in first-year programming courses. There exist certain inherent difficulties in grading
introductory programming assignments written by a novice programmer. Part of
the difficulty comes from the fact that these programming attempts are significantly
incorrect, often barely passing any tests [107]. Yet manual inspection of the code
can reveal some degree of understanding of the problem by the student which should
ideally be taken into account. Overall, the test-based automated grading may be too
harsh for introductory programming assignments. In the K-12 computing education
domain, promising results have been shown by using rubrics for grading assignments
written in a visual programming environment to evaluate whether assignments
produced by students demonstrate that they have learned certain algorithms and
programming concepts [9]. Although grading based on rubrics provides a reliable
way of assessing students’ learning, the current rubric-based grading approach in

53

most universities still relies either on manual grading or semi-automated grading [5],
which may be too labor intensive for the instructors and tutors.

Existing approaches in automated programming assignment grading [63, 99, 41,
97] have several limitations. These approaches either (1) generate a patch for the
incorrect student’s submission as feedback or (2) produce binary (Correct/Incorrect)
results via test-based grading, (3) only compare syntactic differences between in-
structors’ reference solution and student solution (CFG-based grading). Although
feedback in the form of patches can be useful for experienced developers or graders,
prior studies show that novice students may not know how to effectively utilize
the generated patches as hints, causing the increase of problem-solving time when
patches are given [107]. Meanwhile, despite the widespread adoption of test-based
grading approaches for online judges, the binary results provided by the test-based
grading approaches may be too coarse-grained and may underestimate students’ ef-
fort. CFG-based grading approach cannot distinguish the syntactically different but
semantic equivalent implementation, which gives inaccurate results if the student’s
solution is syntactically different from instructors’ reference solution. In education
literature, convergent formative assessment (this kind of assessment “determines if
the learners knew, understood or could do a predetermined thing”) has been shown
to enhance student learning by evaluating if a student knows a concept [78, 14]. In
contrast to formative assessment, current test-based grading approaches may be
more suitable for summative assessment (aims to evaluate student learning) instead
of improving learning.

In this chapter, we present ConceptGrader, a novel automated grading ap-
proach that evaluates the correctness of students’ conceptual understanding in their
programming assignments to support convergent formative assessment.

Our key insight is that introductory programming courses usually teach only
a few concepts, and these concepts map well to the topics taught in the course
syllabi. To support convergent formative assessment, we introduce concept graph, a
form of abstracted control-flow graph (CFG) where we (1) select some important
(those that correspond to topics covered in the introductory programming course
syllabi) nodes and edges of a CFG, and (2) translate the selected nodes/edges into
natural-language like expressions (e.g., “insert i to newlist” in Figure 4.1 denotes
the statement “newlist.append(i)”). ConceptGrader also introduces the idea of

54

1 def remove_extras(lst):
2 newlist = []
3 for i in lst:
4 if i not in newlist:
5 newlist.append(i)
6
7
8 return newlist

(a) A reference program

1 def remove_extras(lst):
2 new_lst = [lst[0]]
3 for i in lst:
4 if i in new_lst:
5 continue
6 else:
7 new_lst += [i]
8 return new_lst

(b) An incorrect student program
Test Inputs Expected Outputs Actual Outputs
[1, 1, 1, 2, 3] [1, 2, 3] [1, 2] ✗

[1, 5, 1, 1, 3, 2] [1, 5, 3, 2] [1, 5] ✗

[] [] IndexError ✗

[3, 4, 5, 1, 3]) [3, 4, 5, 1] [3, 4] ✗

(c) Test cases and actual output of incorrect student program

Figure 4.1: Examples from the Duplicate Elimination assignment

automated folding/unfolding of concept nodes for a more abstract level matching of
concept graphs. The proposed concept graph can be used for automated grading
by calculating a score based on the differences between the concept graph for the
reference solution and that for the incorrect solution. Such abstraction allows us to
evaluate students’ efforts from their comprehension to programming concepts.

Overall, our contributions can be summarized as follows:
• We propose concept graph, an abstracted CFG that highlights programming

concepts in submissions of introductory programming assignments. The concept
graph contains expressions translated into natural language to enhance readability,
and make it more suitable as hints to provide feedback to students. To allow
more abstract matching of programs, we introduce concept node folding where
we temporarily hide complex expressions in concept nodes for a fuzzy concept
matching, and unfold (unhide) the expressions for precise concept matching
whenever we detect a likely programming mistake within the folded concept
node. Moreover, it can be used for automated grading to provide more accurate
scores (with scores close to those given by manual grading) for introductory
programming assignments.

• We present and implement ConceptGrader, a new automated grading approach
that uses the differences between the student concept graph and reference concept
graph to generate a score for a given incorrect student submission. The implemen-

55

tation is publicly available at https://github.com/zhiyufan/conceptgrader.

• We evaluate the effectiveness of ConceptGrader on 1540 student submissions
from a publicly available dataset [47]. Our experiments show that compared to
baselines (i.e. test-based approach and CFG-based approach), ConceptGrader
performs better in terms of cosine similarity, root means squared error (RMSE),
and mean absolute error (MAE) score.

• We also conduct a user study to assess the usefulness of the feedback produced by
ConceptGrader. Our user study shows that ConceptGrader outperforms existing
approaches by providing more useful feedback.

4.2 Overview
We give an overview of our concept-based automated grading approach by

presenting a Python programming assignment for removing repeated elements in a
list (Duplicate Elimination). Figure 4.1 shows the reference solution provided by
the instructor, an incorrect solution submitted by a student, and a set of (input,
output) pairs used to verify the correctness of each submission.

In the example in Figure 4.1, the student made two mistakes. First, instead of
initializing an empty list, the student assumed that the input lst is not empty and
initialized the new list with the given value at line 2. This incorrect assumption
causes the third test case in Figure 4.1(c) to fail. Second, the student has an incorrect
indentation of the return statement at line 8, which causes early termination of the
program at the end of the second iteration and fails the other three test cases. As
all test cases fail, a test-based grading approach will give the student a zero score
for the submission. Compared to the tutor’s manual inspection which gives 80%
scores, the test-based grading approach underestimates the student’s effort.

We now describe how we address the problem of inaccurate grading with a
concept-based approach.

Concept Graph Abstraction Given the reference and incorrect student program
in Figure 4.1, we construct the control flow graph (CFG) for each program. For
each CFG, we follow concept abstraction rules described in Section 4.3 to extract

56

https://github.com/zhiyufan/conceptgrader

Func Entry

newlist = []

if i not in
newlist

for i in lst

newlist.append(i)

False
return
newlist

True

1

2

3

4

Func Entry

new_lst = [lst[0]]

if i in
new_lst

for i in lst

new_lst+= [i]

False
return

new_lst

True

1

2

3

4

Func Entry

declare newlist

iterate i
through lst

insert i to newlist

return
newlist

1

2

3

4

Func Entry

declare new_lst

check containment
relation of i and new_lst

iterate i
through lst

insert i to new_lst return
new_lst

1

2

3

4

declare newlist

iterate i
through lst check containment

relation of i and newlist

iterate i
through lst

return
newlist

check containment
relation of i and newlist

insert i to newlist

iterate i
through lst

insert i to newlist

declare newlist

check containment
relation of i and newlist

iterate i
through lst

insert i to newlist

return
newlist

CFG of reference program in Fig 1(a) CFG of incorrect program in Fig 1(b)

Concept Graphs

Common Concept Subgraphs

5 5

1

2

2

2

3

3

4 4

5

1

2

3

4

5

5

5
check containment

relation of i and newlist

(a) CFGs versus concept graphs (CGs) of the reference program and incorrect program
listed in Fig 4.1.

(b) Score and feedback given by the three approaches for the incorrect solution in
Fig 4.1.

Approach Score Feedback
Test-based 0/100 The solution passes 0/4 test cases
CFG-based 20/100 The solution makes mistakes in “new_lst =[lst[0]]”, “i in new_lst”, new_lst += [i]”
Concept-based 87/100 The solution makes mistakes in “declare new_lst” and “return new_lst”

Figure 4.2: Examples from the Duplicate Elimination assignment

the programming concept represented by each basic block. Figure 4.2 shows the
CFG and concept graph of the student program. The student program first declares
a new list in block 1, we abstract it as declare new_lst. Then in block 2, the student
uses a for-loop to iterate through elements in the input list lst in block 2, we use a
concept iterate i through lst to show his/her understanding. In block 3, the reference
program and student program use reverse conditions to check whether i exists in
the previously declared new_lst. Although the operator is different and the exit
edges point to the reverse direction, the two if-conditions represent the common
idea of checking for an element in a list (represented by containment relation of
i and new_list). At a high level, block 4 aims to insert an element into a list.
One can perform the insertion in many ways, including invoke built-in functions
such as append, extend, and insert with different arguments, or directly use the list
concatenation operator “+” to insert elements to end of a list. The student program
in Figure 4.1 concatenates new_lst with i, while we abstract the statement as insert
i into new_list. We construct the reference concept graph using a similar strategy.
Compared to the student solution that uses list concatenation with augmented

57

assignment “+=” at line 7, the reference program invokes the append method at
line 5.

Concept Graph Matching and Grading Before matching student concept
graph and reference concept graph, we build a bijective variable naming relation
of the two programs to avoid mismatch caused by different variable names (e.g.,
{newlist : new_lst, i : i, lst : lst}) using dynamic execution approach proposed
in [47, 2, 99]. Given reference concept graph CGref and student concept graph
CGstu, ConceptGrader searches for their common subgraphs. We first find a mapping
for concept nodes in CGref and CGstu if they represent the same concept. In the
motivating example, the concept node matching result is {1→ 1, 2→ 2, 3→ 3, 4→
4, 5 → 5}. If there exists an edge eref = (ni, nj) in CGref , and estu = (nk, nl) in
CGstu, where ni matches nk and nj matches nl, we consider eref and estu as common
edges. We derive all common edges in CGref and CGstu, and construct common
subgraphs.

The bottom subfigure in Figure 4.2 shows the common subgraphs of the reference
program and the incorrect student program. To improve the accuracy of auto-
grading based on concept graph matching, we employ an auto-folding and unfolding
mechanism of concept graph to detect the differences between the reference program
and the incorrect student program. As seen in Figure 4.2, although the student
implements the declaration concept correctly, the way of new_lst initialization in
concept node 1 is incorrect. Refer to Section 4.4.2 where we describe how we penalize
this mistake via automated concept unfolding.

The concept node 5 in Figure 4.2 is disconnected from the common concept
subgraph because the reference concept graph does not contain any edge from node
4 to node 5. The difference between the two concept graphs (the top subfigure in
Figure 4.2) in the corresponding edges of concept node 5 helps ConceptGrader to
identify the mistake at line 8 of Figure 4.1(b). Considering the mismatched edges of
concept node 5 and the incorrect initialization of concept node 1 (we consider this
as a partially matched node), ConceptGrader assigns 45 points for the matching
concept nodes (4.5 nodes are matched out of 5 concept nodes in total), and 42 points
for the matching concept edge (5 edges are matched out of 6 concept edges in total),
leading to a total score of 87. Compared to the CFG-based approach where only

58

the CFG nodes 2 and 5 are matched, ConceptGrader’s score is more accurate.

4.3 Programming Concept Abstraction

Programming topics and mini-Python. Our main insight to model the input
Python programs is that although different institutions and online learning platforms
offer a great variety of CS-1 introductory programming courses [76, 28, 95, 29], the
programming topics taught in these courses are often the same. Specifically, the com-
mon topics covered in these courses include Expressions (e.g., arithmetic expressions),
Variables, Simple statement (e.g., assignment), Conditional (if -statement), Loops
(for-statement and while-statement), Functions, Lists, and Tuples. Our goal is to
design a concise representation of a Python program that models these programming
topics. Our design is mainly based on: (1) the official Python 3 Abstract Syntax
Grammar [33] that serves as a basis for our syntax rules, and (2) the key CS-1
programming topics that should be included in our concise representation. We select
syntactic elements from the reference grammar that are also included in the common
topics (i.e., we exclude advanced syntactic features such as lambda, yield, async and
await expressions). Figure 4.3 shows the syntax for our Mini-Python grammar that
supports programming topics studied in introductory Python courses. The grammar
includes basic AST node types: Expression, Operators, and Statement. Each node
type consists of multiple programming concepts.

Abstraction rules. Based on the mini-Python grammar in Figure 4.3, we derive a
set of abstraction rules to translate the syntactic elements in the grammar. Table 4.1
shows our set of abstraction rules.

We follow two design principles for designing abstraction rules:

Human readable: We translate each syntactic element to natural language to gen-
erate human-readable feedback that can be used for explaining incorrect programming
concepts. Figure 4.2(b) shows an example feedback generated by ConceptGrader.

Mitigating the program aliasing problem: We mitigate the program aliasing
problem (i.e., semantically equivalent programs having several syntactically different
forms [114]) by mapping several semantically equivalent syntactic elements to the

59

Table 4.1: Human-Readable Abstraction Rules
Rule CategorySub-categoryExample

Expression

BoolOp x and y → logical relation of x and y
BinOp x+ y → arithmetic relation of x and y
UnaryOp not x→ not x

Compare
x == y → equivalence relation of x and y
x > y → relational relation of x and y
x in y → containment relation of x and y

Call len(i)→ call of len
x.append(i)→ insert i to x

Subscript x[2]→ element of x
Slice x[1 : 3]→ subrange of x

Simple
Statement

Assign

x = y → declare x
x = []→ reset x
x = x+ 2→ add x with constant
x = y + z → update x
x = x+ [i]→ insert i to x

AugAssign x+ = 2→ add x with constant
x+ = [i]→ insert i to x

Return return expr→ return abstract(expr)

Control
Statement

If if expr→ check abstract(expr)
For for i in lst → iterate i through lst
While while x < y→ iterate compare relation

same translation. For example, we translate x = x+ [i] and x+ = [i] into “insert i
to x”. Mitigating the program aliasing problem helps in increasing the accuracy in
matching two semantically equivalent concept nodes.

Expression e :: = e boolop e | e op e | uop e | e cop e
| e (e, ..., e) | const | id
| {e : e, ..., e : e} | {e, ..., e} | [e, ..., e] | (e, ..., e)
| e[e] | e : e : e

Statement s :: = e | s; s | e = e | e op = e

| for e in e : s | while e : s | if e : else : s
| continue | break | return e

BoolOp boolop :: = and | or
BinaryOp op :: = + | - | * | / | % | **
UnaryOp uop :: = ~ | not | UAdd | USub

CompareOp cop :: = == | != | < | <= | > | >=
| is | is not | in | not in

Figure 4.3: Syntax of mini-Python based on the abstract Python grammar [33]

60

Concept graph construction. We first define the notion of a concept graph
for a program. The nodes of the concept graph are called concept nodes which are
defined as follows:

Definition 5 (Concept Node). A concept node cn=(c1, c2, . . . , ci) in a program p is
a set of programming concepts, where each concept node cn is abstracted from a basic
block b = (s1, s2, . . . , sj) in control-flow graph of p that ∀c ∈ cn,∃s ∈ b(c ≡ f(s)),
where f is one of the abstraction rules in Table 4.1.

Definition 6 (Concept Edge). A concept edge ce=(cn1, cn2) in a program p is
a transfer of control flow from a concept node cn1 to cn2. Each concept edge ce is
abstracted from the corresponding edge e in the control-flow graph of p. Specifically,
our abstraction preserves the control flow transitions of e but removes the true/false
label from the conditional edges of e.

Definition 7 (Concept Graph). Let CG(p) = (N,E) be the concept graph of
p, CG(p) is an abstracted graph of CFG(p), where each node n ∈ N represents
a concept node, and each concept edge e = (ni, nj) ∈ E corresponds to a possible
transfer of control from concept ni to concept nj.

Given a control-flow graph CFG of program p, we construct a concept graph
CG of p by following Algorithm 2. For each edge e = (bsrc, btgt) ∈ CFG, we abstract
the source and target basic blocks separately, and re-construct a concept edge
ce = (csrc, ctgt). Given a basic block b as input, the abstract(b) procedure produces
the concept node for b by traversing the AST of each statement to convert each
statement to a programming concept. Starting from the parent node of each leaf
node, ConceptGrader uses the corresponding abstraction rules from Table 4.1 (line
19 in Algorithm 2) for all non-leaf nodes via a bottom-up traversal until the AST
node is the root node or it has been previously abstracted.

Abstracting concept edges For each edge e = (bsrc, btgt) ∈ CFG, we abstract
the source and target basic blocks separately, and re-construct a concept edge
ce = (csrc, ctgt). In a traditional control flow graph, the edges are usually annotated
with a label representing the conditional branches (e.g., “True” and “False” in the
CFGs in Figure 4.2). In contrast, in a concept graph CG, we abstract away the

61

true/false label but we still keep the actual predicates in a control flow edge e if
the source node of e includes a conditional statement. This abstraction is based on
our observation that students often implement conditional statements in various
syntactically different but semantically equivalent ways.

Concept node folding Automated source code folding is a technique that au-
tomatically creates a code summary by hiding unimportant code elements in a
program that are not useful and helps developers to get an overview idea of the
program on first viewing. It has shown promising results in the context of source
code summarization to optimize the similarity between the code summary and the
source code [34]. Inspired by the idea of source code folding in code summarization,
we introduce the idea of concept node folding where we temporarily ignore part of
the complex expressions in a concept node. The folded concept nodes are unfolded
until an automated repair engine detects that patches exist for the folded nodes
when matching reference and student concept graphs (refer to Section 4.4.2 for the
details). Given the AST of the expressions in a statement, we define concept depth
as the number of times that abstraction rules are applied such that the AST tree
depth is compressed to 1. Given a CG(p), we say a concept node to be foldable if the
concept node it represents has concept node depth>2. Specifically, ConceptGrader
hides the content of a node if it is foldable (lines 20–21 in Algorithm 2). By hiding
the content of a concept node with complex expressions, our approach is essentially
excluding parts of a complex expression during concept graph matching. In this case,
concept folding helps us to abstract away the irrelevant differences (i.e., different but
correct implementation) between the reference program and the student program.
The folded concept node will be unfolded only when our approach detects that a
difference in the reference program and student program is related to a fix in the
corresponding concept node in the student program (the fix is generated by an
automated program repair engine [47]).

4.4 Graph Matching and Grading
Given concept graphs of reference solution and student solution CGref and CGstu,

we perform graph matching to assess how the intention of a student solution matches

62

Algorithm 2 Concept Graph Construction
Input: Control-flow graph of program p CFG
Output: Concept graph of program p CG
1: procedure ConstructConceptGraph(CFG)
2: Let CG be the concept graph
3: for basic blocks (bsrc, btgt) in CFG.edges() do
4: csrc = abstract(bsrc)
5: ctgt = abstract(btgt)
6: CG.addEdge(csrc, ctgt)
7: end for
8: return CG
9: end procedure

10: procedure abstract(b)
11: Let cn be a concept node, visited be a list of abstracted AST nodes
12: for stmt in basic block b do
13: for l in getLeafASTNodes(stmt) do

▷ abstract non-leaf node
14: pnode = getParent(l)
15: c = abstractNode(pnode, visited)
16: visited.add(pnode)
17: cn.addConcept(c)
18: end for
19: end for
20: return cn
21: end procedure
22: procedure abstractNode(n, visited)
23: Let c be a programming concept
24: c = abstractRules(n) ▷ abstract using rules in Table 4.1
25: if foldable(c) then
26: c = fold(c) ▷ fold by hiding the content of node
27: end if
28: if isRootNode(n) or n ∈ visited then
29: return c
30: end if
31: return abstractNode(getParent(n),visited)
32: end procedure

the reference solution at the concept level. Finding the maximum common subgraphs
between two graphs is a NP-complete problem [18]. However, students’ programs in
CS-1 education context are often small. We find common subgraphs by iterating
all common edges and then connect edges together via connected components to
get all subgraphs. The graph matching algorithm consists of two phases. First, we
construct a set of subgraphs to represent the common concepts of CGref and CGstu

based on their common concept nodes and edges. Second, we introduce the idea

63

Algorithm 3 Concept Graph Matching
Input: Reference concept graph Gr, Student concept graph Gs, Variable mapping of

reference program and student program vM
Output: The matched subgraphs subgraphs
1: procedure GraphMatching(Gr, Gs, vM)
▷ dict of matched concept nodes and list of edges

2: nodeDict, edges = {}, []
3: for ns in Gs.nodes() do
4: nr = findNodeInGraph(Gr, ns, vM)

▷ update dictionary for newly matched nodes
5: if nr /∈ nodeDict.val() then
6: nodeDict[ns] = nr
7: end if
8: end for
9: for (ns, nr) in nodeDict do

10: Ns, Nr = listOfNeighbors(ns), listOfNeighbors(nr)
11: N

′ = findMatchedNodes(Ns, Nr, nodeDict)
12: edges.addEdges(ns, N

′)
13: end for
14: subgraphs = merge(edges)
15: return subgraphs
16: end procedure

of an automated concept unfolding approach to distinguish the minor difference
between two matched concept nodes to improve match accuracy further.

4.4.1 Concept Graph Matching

The goal of concept graph matching phase is to find an initial concept-matching
relation of reference and student solution at a high level. For each concept node
in the student concept graph, we find a concept node from the reference concept
graph that (1) represents the same programming concepts category and (2) involves
mapped variables of the student concept node in the abstraction.

Then, ConceptGrader identifies the neighbor nodes Ns and Nr for matched
concept node pairs (ns : nr) in nodeDict and finds matched nodes of Ns and Nr by
checking nodes n′

s ∈ Ns, whether nodeDict[n′
s] == n

′
r and n

′
r ∈ Nr. For all nodes

n
′
s ∈ Ns that satisfy the condition, we consider e = (ns, n

′
s) as a matched edge

and add it into list of matched edges edges (lines 7–10 in Algorithm 3). For each
pair of edges (i.e., e1=(src1, dst1) and e2=(src2, dst2)) in edges, ConceptGrader
then merges e1 and e2 into a subgraph if src1 == dst2 or dst1 == src2 (line 11

64

in Algorithm 3). Note that standalone concept nodes (e.g., concept node 5 in
Figure 4.2) and edges might exist, which eventually lead to a set of subgraphs.

4.4.2 Automated Concept Unfolding

As mentioned in Algorithm 2, we construct the concept graph at a high level
of abstraction and fold concept nodes to avoid exposing details, which allows more
flexible matching. However, when we match the student concept graph with the
reference concept graph, we may need to unfold certain concept nodes on-the-fly
during the matching. This is because for the concept nodes in student program
which contain mistakes, the folding process may mask those mistakes by showing
only high-level concept.

In the example of Figure 4.2, the reference and incorrect student programs have
the same programming concept declare newlist in folded student concept node cns1,
but the specific values assigned to the two newlist variables are different. In this
case, the folded concept node fails to capture the differences in terms of the declared
values, so ConceptGrader assigns an overestimated score to the student program.

To assess student programs more precisely, the details of concept nodes with
mistakes need to be explored by unfolding. We leverage program repair engine to
get patches for each incorrect student program. Our intuition is that if a patch of
the incorrect student program exists within a folded concept node cn, then this
indicates that cn contains a programming mistake that needs to be fixed, but the
mistake was hidden because of folding.

When a program repair engine detects a patch exists for a student concept node,
the unfolding mechanism is triggered to expand the previously folded content of
both the student concept node and the matching reference concept node. Then,
ConceptGrader deducts scores by performing detailed matching of each mistake
made in the student concept node.

Consider the example in Figure 4.1 where the program repair engine generates a
patch new_lst = [lst[0]]→ new_lst = [] for the concept node declare new_list. As a
patch exists within the concept node of the incorrect student program, ConceptGrader
unfolds the concept node of incorrect program into {“declare new_list”, “element of
lst”}, while the corresponding concept node of the reference program still remains

65

unchanged. Consider another example with incorrect control-flow transition in our
motivating example (Line 8 in Figure 4.1(b)). Unfolding is not triggered in this
example because the patch is meant for fixing a concept edge, and our approach
in Algorithm 3 is able to detect this discrepancy by producing a separate concept
subgraph with only one concept node ("return newlist" in Figure 4.2).

4.4.3 Concept Based Grading

Our goal is to compute score for each matching graph Gmatched between the
student concept graph Gs and the reference concept graph Gr, so as to compute
the total score for the student program. We calculate the score of a matching
graph Gmatched by comparing the concept node similarity and concept edge similarity
between Gs and Gr. Algorithm 4 shows the overall grading workflow. ConceptGrader
first constructs concept graphs Gs for student program Ps and Gr for reference
program Pr, then it matches Gs and Gr with the help of a variable mapping relation of
Ps and Pr to get the list of matched subgraphs matchedList by following Section 4.4.1
(Lines 2–5). runAPR invokes program repair engines to generate patches for the
incorrect student program, which involves automated concept unfolding as described
in Section 4.4.2.

For each Gmatched in matchedList, we traverse all concept node cn and extract
the folded concept node pair (cns, cnr) representing student concept node cns and
reference concept node cnr. Then, ConceptGrader unfolds cns, cnr to get detailed
content if the automated program repair engine has produced patches for the
corresponding cns (Lines 13–15). By comparing all concepts in cns and cnr, we
collect a list of concepts matchC that exist both in cns and cnr, and totalC that
represents a list of all concepts in cnr (Line 16).

Specifically, the score of a matching graph Gmatched consists of two parts: (1)
average concept node similarity and (2) average concept edge similarity. Given
Gmatched, we define average concept node similarity of Gmatched as the average number
of matching concept nodes in the reference concept graph Gr, calculated using the
equation below:

conceptNodeSim(Gmatched) = 1
nodeSize(Gr)

n∑
i=1

matchC(cni)
totalC(cni)

where n denotes the number of matching concept nodes in Gmatched, matchC repre-

66

sents concepts that exist in student concept node cns and reference concept node
cnr, totalC denotes all concepts in cnr, and nodeSize(Gr) denotes the number of
nodes in Gr.

We define average concept edge similarity of Gmatched as the number of matching
concept edge in the reference concept graph Gr, calculated using the equation below:

conceptEdgeSim(Gmatched) = edgeSize(Gmatched)
edgeSize(Gr)

where edgeSize(G) returns the number of edges in a graph G (e.g., edgeSize(Gmatched)
denotes the number of edges in Gmatched).

Finally, we compute the final score of the student program Ps as the sum of scores
for all matched concept subgraphs Gmatched in between Gr and Gs. The equation is
shown below:

score(Ps) = α

2 ×
m∑
i=1

(conceptNodeSim(Gi) + conceptEdgeSim(Gi))

In this equation, α represents the total score of the programming problem (usually
determined by the instructor), m is the number of graphs in the list of matched
subgraphs matchedList and Gi is a matched concept subgraph in matchedList.

Feedback generation. ConceptGrader generates feedback by pointing out (1)
missing concepts, and (2) problematic concepts (“...makes mistakes...” in Figure 4.2).
Specifically, ConceptGrader identifies missing concepts by checking if (1) the concept
nodes exist in reference concept graph, but (2) a matching node cannot be found
in student concept graph. ConceptGrader considers the matched student concept
nodes as problematic concepts if (1) concept nodes exist in reference concept graph
and have matching concept nodes in student concept graph, but the unfolding
mechanism indicates that a programming mistake exists, or the transfer relations of
the matched concept nodes are different (e.g., concept node 5 in Figure 4.2 is shown
as a mistake in the generated feedback). Instead of providing feedback via patches
(prior study show that novice students may not know how to effectively utilize the
generated patches as hints [107]), our feedback highlights the wrong concepts to
promote active learning by asking “how can you fix the code here?”.

67

Algorithm 4 Overall Grading Workflow
Input: Student program Ps, Reference program Pr, Test suite T , Total score α
Output: The final score

1: procedure Grade(Ps, Pr, T, α)
2: Gs = constructConceptGraph(Ps) ▷ Algorithm 2
3: Gr = constructConceptGraph(Pr) ▷ Algorithm 2
4: vM = variableMapping(Ps, Pr, T)
5: matchedList = graphMatching(Gr, Gs, vM) ▷ Algorithm 3
6: patches = runAPR(Ps, Pr, T)
7: score = 0
8: for Gmatchedin matchedList do
9: score += computeScore(Gmatched, Gr)

10: end for
11: return α× score
12: end procedure
13: procedure computeScore(Gmatched, Gr)
14: for concept node cn in Gmatched.nodes do
15: cns, cnr = findConceptNode(cn)
16: if hasPatches(patches, cns) then

▷ unfold by expanding the content of node
17: cns = unfold(cns)
18: cnr = unfold(cnr)
19: end if
20: matchC, totalC = compareConceptNode(cns, cnr)
21: conceptNodeSim += matchC

nodeSize(Gr)×totalC
22: end for
23: conceptEdgeSim = edgeSize(Gmatched)/edgeSize(Gr)
24: return (conceptNodeSim + conceptEdgeSim) / 2
25: end procedure

4.5 Evaluation
We evaluate ConceptGrader by addressing the following research questions:

RQ1: How does ConceptGrader perform in terms of grading accuracy, as compared
to baseline approaches?

RQ2: How does test failure rate affect performance of ConceptGrader and baseline
tools?

RQ3: What are the reasons for ConceptGrader’s incorrect grading?

68

Implementation. We implemented the proposed approach in the tool Concept-
Grader. We choose Refactory [47] as the automated program repair tool invoked
during unfolding because it has shown promising results in fixing introductory as-
signments written in Python, particularly with respect to a reference correct solution.
Similar to prior evaluations of approaches designed for programming assignments
that sample additional reference solutions from correct students’ submissions [41,
2, 47, 99], ConceptGrader follows the procedure of prior work [99] that selects five
programs from correct students’ submissions as additional reference solutions to
mitigate the problem when students’ implementation and reference’s implementation
use a different solving approach. To select five additional reference programs as
representatives of most student programs, we (1) run Clara [41] to cluster correct
student submissions, and (2) select one representative program from the top-5
clusters with most student programs. If an instructor’s reference solution is the
same as one of the five additional reference solutions, we select the instructor’s
reference solution and four other reference solutions. Then, ConceptGrader compares
a student program against all reference solutions and selects the highest score as
the final score. ConceptGrader currently supports programs with Python 3.10. We
construct CFG using staticfg [24] and further customize it to build a concept graph.

Dataset. We evaluate ConceptGrader on five assignments from a CS-1 Python
dataset used in the prior evaluation of introductory programming assignment [47].
For each programming assignment, the instructor prepared a reference solution and
a test suite that evaluates students’ correctness. Other datasets used in previous
work [41, 99, 107] are either not publicly available or use different programming
languages (e.g., C). Our concept abstraction rules currently do not support all pro-
gramming language constructs (e.g., lambda expression). We exclude submissions
with unsupported features, and trivial student programs without any real implemen-
tation (i.e., programs with less than three lines of code) from our evaluation. In
total, we have 1540 incorrect submissions remaining.

Ground truth construction. The Refactory dataset [47] uses execution results
of tests as feedback to students, and it does not have the ground truth score (the
correct score to be assigned for an assignment) for each submission. We invited eight

69

senior Computer Science undergraduate students who have experience working as
teaching assistants to be the annotators for grading those incorrect submissions. We
provide the annotator with the problem description, instructors’ reference solution,
and instructors’ test suite. We asked annotators to run test cases and grade the
submissions by functionality. To provide freedom in grading, we did not mention
any other steps (e.g., using the execution results of tests).

To mitigate potential grading bias, annotators are unaware of the existence of
ConceptGrader, and each submission is graded by two annotators, and we asked
each annotator to grade each submission out of the same total score of 100 (α=100
in the last equation in Section 4.4.3). If the scores given by the two annotators differ
less than 10, we take their average as the ground truth score. Otherwise, a third
annotator participates in the discussion until they reach a consensus. We use the
same ground truth for evaluating RQ1–RQ3.

Baselines. We compare ConceptGrader against two baselines: (1) test-based
approach [48, 7, 102, 96, 52, 46], and (2) CFG-based approach [97]. We compare
with the test-based approach because it is the most widely used approach. To ensure
fair comparison, we provide the same set of test cases to the test-based approach and
the program repair engine used in our unfolding (described in Section 4.4.2). We
do not compare ConceptGrader against the recent CFG-based automated grading
technique [97] because (1) its implementation targets C programming assignments
where ConceptGrader focuses and is evaluated on Python programming assignments,
and (2) their approach can only be used to grade correct programs (passing all tests)
as we confirmed with the authors, where ConceptGrader focuses more on evaluating
incorrect programs. To ensure a fair comparison, we implemented a CFG-based
baseline by removing concept abstraction, concept graph construction, and concept
folding/unfolding from ConceptGrader (i.e., we keep the variable mapping to allow
CFG-based baseline to handle different naming styles). Moreover, we do not compare
with AutoGrader because it only returns a binary correct/incorrect based on path
deviation [63].

The goal of automated grading is to automatically assign a score for a student
program such that tutors can directly accept it or minimally adjust it. We use three
metrics: (1) Cos-sim (cosine similarity), (2) RMSE (root means squared error), and

70

Table 4.2: Automated grading results of four approaches for incorrect student
submissions on five assignments from the Refactory dataset[47]. The columns
Test and CFG denote test-based grading and CFG-based grading, and CG and
CG’ show ConceptGrader and ConceptGrader without concept unfolding. The
column “# of Inc. Sub.” shows the number of incorrect submissions for each
assignment, whereas the column “# of TC” denotes the number of test cases
for each assignment, the column LoC represents the line of code. The columns
“Cos-sim”, “RMSE”, and “MAE” represent the cosine similarity, root means
squared error, and mean absolute error between automatically generated and
ground truth scores. The columns “Average Time Taken (s)” denotes the
average time taken in seconds to produce the score and feedback for a student
submission in each assignment. We highlight the best result in bold.

Assig # of Cos-sim RMSE MAE Average Time Taken (s)
nment Inc. Test CFG CG’ CG Test CFG CG’ CG Test CFG CG’ CG Test CFG CG’ CG
Week 1 544 0.95 0.79 0.93 0.94 26.70 56.91 32.19 30.26 17.41 51.03 25.03 23.62 4.18 1.22 1.23 24.84
Week 2 353 0.84 0.80 0.85 0.87 25.21 27.54 23.25 22.53 17.59 21.91 18.59 16.84 6.91 8.37 9.28 35.19
Week 3 272 0.69 0.80 0.85 0.88 64.41 50.91 38.73 35.18 60.39 43.33 30.97 28.05 4.07 7.85 7.87 37.52
Week 4 263 0.68 0.81 0.92 0.93 49.58 41.00 26.38 23.12 43.77 34.62 20.82 18.35 3.97 10.35 9.00 44.28
Week 5 108 0.62 0.74 0.90 0.90 63.41 53.69 34.92 32.31 58.70 46.66 28.96 26.11 5.07 18.58 17.69 63.70
Total 1540 0.81 0.79 0.91 0.92 42.96 51.73 32.14 30.41 32.56 44.82 25.86 22.93 4.89 6.31 5.94 35.49

(3) MAE (mean absolute error) to evaluate the distance between auto-generated
scores and tutors’ ground truth scores. Given the auto-generated and ground-truth
scores for all incorrect student programs, Cos-sim evaluates their cosine similarity
in the normalized vector space.

Given the ground truth score yi, the auto-generated score ŷi, and N samples,
their equations are: Cos−sim(y, ŷ) = y·ŷ

|y||ŷ| , RMSE(y, ŷ) =
√

1
N

∑N
i=1(ŷi − yi)2, and

MAE(y, ŷ) = ∑N
i=1 |yi − ŷi|

RMSE and MAE are often used to evaluate the differences between values
predicted by a model [103]. They represent the absolute closeness of auto-generated
scores and ground-truth scores by computing their standard deviation and absolute
distance. Lower RMSE and MAE values indicate better performance.

4.5.1 RQ1: Overall Grading Accuracy

Table 4.2 shows the results of all incorrect student programs from the five selected
assignments [47]. On average, ConceptGrader outperforms all baseline approaches
by achieving Cos-sim at 0.92, whereas test-based approach and CFG-based approach
achieve 0.81 and 0.79 for Cos-sim, respectively. Compared to the two baseline
approaches, ConceptGrader produces the lowest RMSE (30.41) and MAE (22.93)
values, which improves the result of test-based approach by 30% and 29% and the

71

result of CFG-based approach by 41% and 49%, in terms of RMSE and MAE. The
low average RMSE and MAE values indicate that ConceptGrader is effective in
predicting the ground truth scores for programming assignments.

It is worthwhile to mention that the grading accuracy of test-based approach
in Sequential search is better than the other four assignments. We analyzed the
reason for the higher accuracy of test-based approach in “Sequential search” task.
Table 4.3 shows that around 59.3% (323/544) student programs pass more than 75%
of test cases in “Sequential search”, whereas the ratio on the other four assignments
is 19.0% on average. Passing more test cases often indicates better quality of a
program. When a program passes majority of test cases, tutors also tend to assign
relatively high scores. However, if a program fails majority of test cases, it does not
necessarily mean the program is completely incorrect because even a subtle mistake
can cause different behavior.

Average time taken. In terms of the average time taken to generate a score
for a student program, test-based grading is the fastest as it only requires running
the student program against all test cases. ConceptGrader is slower than other
approaches because it may need to invoke program repair engine several times to
generate patches for concept unfolding in the final grading process. Overall, the
average time taken 35.49s is acceptable as prior study shows that human tutors
often take 100 seconds to grade one student submission [107].

Table 4.3: The test failure rate distribution for evaluated submissions.
Assignment # Incorrect # of TC Test failure rate (%)

Submissions 0–25 25–50 50–75 75–100
Sequential search 544 11 323 91 59 71
Unique dates/months 353 17 159 54 29 111
Duplicate elimination 272 4 14 9 29 220
Sorting tuples 263 6 10 23 82 148
Top-k elements 108 5 6 3 6 93
Total/Average 1540 9 512 180 205 643

Effectiveness of concept abstraction and concept unfolding. Although Con-
ceptGrader shows better grading accuracy compared to the two baseline approaches,
it is worthwhile to investigate the effectiveness of each component in ConceptGrader.
We implemented another version of ConceptGrader denoted as CG-wo-f by removing

72

concepts unfolding (described in Section 4.4.2). We first compare CFG and CG-wo-f
to show the impact of automated concept abstraction. The difference between CFG
and CG-wo-f is that CFG matches CFG of student’s program and CFG of reference
program by comparing the source code in basic blocks, whereas CG-wo-f first applies
the abstraction rules in Table 4.1 for basic blocks in CFG of student’s program
and CFG of reference program to construct corresponding concept graphs, then
matches nodes in student concept graph and reference concept graph. Table 4.2
shows that with concept abstraction and concept graphs, CG-wo-f improves Cos-sim
over CFG-based approach by 0.12, and reduces RMSE and MAE over CFG-based
approach by 19.59 (38.9%) and 18.96 (42.3%) respectively. In addition, CG-wo-f
has almost no overhead regarding time taken to grade a student program (average
time taken is 5.94s).

Based on CG-wo-f, CG takes advantage of patches generated by automated
program repair engine (Refactory) as hints to identify students’ mistakes that have
been abstracted in automated concept folding process, and unfolds those students’
concepts to compare in detail to capture those minor mistakes. The comparison
between CG and CG-wo-f shows the impact of automated concept unfolding. Overall,
the result of Cos-sim does not change much. This is because ConceptGrader with
folding and unfolding is a fine-tuning procedure. When a folded concept node in
student concept graph finds a matching in reference concept graph but Refactory
reveals that a patch is required for the concept node, ConceptGrader still assigns
partial scores based on the coverage of matching unfolded concepts in the concept
node. The usefulness of folding and unfolding is shown by the lower RMSE and
MAE values (i.e., the values improved by 5.4% and 11.3%, respectively). This means
that CG’s grading has less discrepancy with respect to the tutors’ ground truth
compared to CG-wo-f.

4.5.2 RQ2: Relation with Test Failure Rate

Our intuition of designing ConceptGrader is that in introductory programming
assignments, even a simple mistake could fail many tests within the test suite,
which leads to a test-based grading approach that may underestimate students’
understanding and effort. As Table 4.2 shows the overall grading accuracy of each

73

(a) Average Cos-sim (b) Average RMSE (c) Average MAE

Figure 4.4: Average grading performance of all incorrect student submissions
across different test failure rates.

approach on all incorrect student programs, we are also interested in investigating
the effect of test failure rate (percentage of failing tests in the entire test suite for an
assignment) on grading accuracy. We divide all incorrect student submissions (we
consider a student submission as incorrect if test failure rate > 0) into four groups
based on their test failure rate (0%–25%, 25%–50%, 50%–75%, and 75%–100%).
Figure 4.4 shows the grading accuracy of all four approaches regarding different test
failure rates.

For all the evaluated metrics (Figures 4.4(a), 4.4(b), and 4.4(c)), our results
show that when test failure rate is low (0–50%), test-based grading tends to be
more effective. However, as test failure rate increases, the performance of test-based
grading downgrades. In contrast, the performance of ConceptGrader tends to be
stable as the test failure rate increase. This result indicates that ConceptGrader
preserves the ability to capture students’ misunderstanding, not affected by the
changes in test failure rate. Considering the fact that most students’ programs fail
half of test cases, it illustrates the importance of a concept-based grading approach.

4.5.3 RQ3: Limitations of ConceptGrader

To understand the limitations of ConceptGrader, we manually analyzed (1) the
cases where ConceptGrader performs worse than test-based approach, (2) the quality
of reference solutions to ConceptGrader.
Analyzing Unreasonable Scores: To reduce the manual effort in analyzing
cases where the differences between the scores given by a test-based stest and those
assigned by ConceptGrader sconcept are minor, we only analyze cases where the scores

74

given by ConceptGrader is unreasonable (i.e., the difference between sconcept and
stest is greater than 5 points). In total, we observed 565/1540 (36.7%) scores to be
unreasonable.

Our manual analysis of the 565 unreasonable scores shows that unreasonable
scores occur due to: (1) syntactically different student implementations, and (2)
inaccurate variable mapping. Specifically, although we design the abstraction rules
to mitigate the program aliasing problem by translating different programs to
the same representation, our rules are not exhaustive so ConceptGrader fails to
match correctly when the incorrect student programs are substantially different
from the reference solutions, especially for cases where the test failure rate is
low. When the students’ programs use sub-optimal algorithms or syntactically
different implementations, ConceptGrader could not match the concept nodes
and edges accurately, resulting in a lower score assigned to the incorrect student
programs. Meanwhile, as ConceptGrader relies on the variable mapping mechanism
of Refactory [47], we observe that ConceptGrader may produce inaccurate scores
when the student programs use too many temporary variables which increase the
number of un-mapped variables in the variable mapping.

In the future, a hybrid automated grading tool that combines ConceptGrader
and test-based approach may be interesting to be explored. Using the AST edit
distance between student program and reference program as estimator of the quality
of student program, ConceptGrader suggests scores when AST edit distance is
small but test failure rate is high, while test-based approach can still be used when
test failure rate is low, but AST edit distance is high (indicating there is no good
reference solution for the student program).
Impact of Different Numbers of Reference Solutions: In previous sections,
we conducted experiments for ConceptGrader using multiple reference solutions.
Although using multiple reference solutions from correct student solutions is a recent
trend in other relevant work [99, 41, 47, 2], there may not be sufficient high-quality
reference solutions available for each programming assignment in practice. To address
this concern, we analyze the impact of different numbers of reference solutions to
ConceptGrader by grading with fewer reference solutions. Given the five reference
solutions crafted in Section 4.5, we gradually remove the reference solutions being
used by ConceptGrader, starting from the most less popular reference solution, until

75

there is only instructors’ provided reference solution. Table 4.4 shows the average
results for the five programming assignments as we reduce the number of reference
solutions used in ConceptGrader. From Table 4.2 and Table 4.4, we can observe
that using only two reference solutions, ConceptGrader already performs better than
test-based approach. Compared to only one reference solution, the performance of
ConceptGrader with three reference solutions increases by 7% for Cos-sim, 21.1%
for RMSE, and 23.6% for MAE, which reaches a comparative level of the default
configuration, using all reference solutions (# of Ref. Solutions=5).

Table 4.4: The impact of different number of reference solutions in Concept-
Grader (CG) and ConceptGrader without unfolding (CG-wo-f).

of Ref. Cos-sim RMSE MAE
Solutions CG CG-wo-f CG CG-wo-f CG CG-wo-f

5 0.92 0.91 30.41 32.14 22.93 25.86
4 0.91 0.90 32.05 33.82 23.76 27.05
3 0.91 0.88 33.28 34.97 26.82 28.53
2 0.89 0.85 36.42 37.51 30.46 31.68
1 0.85 0.82 42.23 45.83 35.11 37.32

4.6 User Survey

User Survey Setup. To obtain qualitative data for demonstrating the effectiveness
of ConceptGrader, we conducted a survey among 29 tutors from two semesters
of a large CS-1 introductory programming course. The tutors include both lab
instructors who taught lab sessions and graders who grade programming assignments.
All tutors are undergraduates who have taken the course in previous semesters from
the Computer Science department. Among the 29 tutors with whom we have shared
the survey, we received 16 replies. Participation in the survey is voluntary, and
the authors do not have any personal connection with the participants. To reduce
bias due to personal preference towards a particular approach, we anonymize the
name of each approach. The survey aims to collect tutors’ opinions on the grade
and feedback generated by three automated approaches. In total, it contains ten
incorrect student submissions drawn from five assignments.

76

User Study Questions. Each tutor answers a question about prior teaching
experience. On average, the 16 tutors have served as tutors 2.1 times. We randomly
sampled two incorrect submissions for each assignment from the evaluated dataset (in
Section 4.5). For each incorrect submission, we provide (1) the instructor’s reference
solution, (2) an assignment description, (3) test cases, and (4) the questions below:

Q1. Rate the quality of the automated mark in terms of assessing students’ under-
standing and effort.

Q2. Rate the usefulness of automated feedback to students in terms of improving
their learning outcome, based on your previous learning experience.

Q3. To what extent will the automated feedback be preferable or as good as the
feedback that you would manually give?

The first question (Q1) aims to assess the quality of the generated score, whereas
Q2 and Q3 are designed to assess the quality of the generated feedback (Figure 4.2(b)
shows an example of the generated feedback). For each incorrect student submission,
participants need to rate each item based on a five-point Likert scale (with 1 being
very low and 5 being very high). We allocate 30 minutes for each tutor to complete
the survey.

Figure 4.5: The boxplot of average rating of all user study questions. Green
triangle represents the mean value. The whiskers denote the minimum/maxi-
mum value, and the rectangle denotes the first/third quartile.

User Study Results. Figure 4.5 presents the results of the 16 tutors’ ratings for
all user study questions. Overall, we observe that the tutors show a positive attitude
of ConceptGrader for all questions (Q1 – Q3) with a mean rating of 3.8. Tutors rate
highest (average rating of 3.7) for the quality of ConceptGrader’s generated scores
(Q1), compared to test-based and CFG-based approaches (average rating of 1.3 and

77

3.2, respectively). As those who are invited for the ground truth constructions are
different from tutors for the user study, this further confirms our grading accuracy
experiment in Section 4.5. For the usefulness of automated feedback in terms of
improving students’ learning outcomes (Q2), tutors think that ConceptGrader is the
most useful among all approaches (average rating of 3.9). This indicates that our
approach provides better support for convergent formative assessment. Compared
to the baseline approaches, tutors prefer the quality of the feedback generated
by ConceptGrader (average rating for Q3 is 3.8). This shows that the feedback
constructed via our human-readable abstraction rules may benefit tutors in designing
personalized feedback for students.

Significance of study result. To validate the significance of our study result, we
performed a two-tailed T-test for the difference between the results for CFG-based
approach and ConceptGrader. The result shows that our study has a p-value <
0.001 for Q1 to Q3, indicating that the difference between CFG-based approach
and ConceptGrader in Figure 4.5 is statistically significant. Moreover, the standard
deviation of CFG-based approach and ConceptGrader for Q1 to Q3 is (0.84, 0.77,
0.89) and (0.93, 0.76, 0.86) respectively.

4.7 Threats to Validity

External. Our findings of programming concepts focus on Python introductory
programming courses. Hence, our experiments may not be exhaustive and generalize
to other languages. We evaluate and implement ConceptGrader within the scope
of mini-python, ConceptGrader may produce inaccurate scores if programming
assignments include language features beyond mini-python. We left the extension
of more advanced programming features in Python as future work. (i.e., it does
not currently support advanced programming topics such as lambda expression).
ConceptGrader may produce inaccurate concept matching if the student program
and reference solution solve a programming problem with different algorithms. We
mitigate this by following previous work [47, 2, 41, 99] to include correct students’
programs (i.e., student submissions that pass all test cases) as additional reference

78

solutions.

Internal. Our code and automated scripts may have bugs that can affect our
reported results. To mitigate this threat, we have made our tool and data publicly
available. Our implementation of the CFG-based approach [97] may not be as
effective as the original implementation for C programs. Nevertheless, as our concept
graph uses the same CFG as basis for abstraction, our evaluation that compares the
CFG approach and the abstracted CFG (our concept graph) ensures fair comparison
of the two approaches.

4.8 Conclusion
We propose ConceptGrader, an automated grading approach for programming

assignments to assess students’ understanding via programming concepts. We derive
programming concepts from common programming topics in first-year programming
courses, and design a concept graph that abstracts incorrect student program and
reference solution. Such an abstract representation allows us to identify students’
misunderstanding of a specific problem, so as to generate reasonable scores to reduce
tutors’ workload and improve students’ learning outcomes through convergent
formative assessment. Compared to test-based automated grading and CFG-based
automated grading, our evaluation shows that the scores generated by ConceptGrader
are more accurate in terms of cosine similarity, RMSE, and MAE. Our user study
among tutors also shows that the automated generated scores and feedback can
help tutors in constructing their manual feedback that eventually assists students in
rectifying their mistakes. In the future, we plan to extend ConceptGrader to handle
more advanced programming features. We also plan to integrate ConceptGrader
into an intelligent tutoring system and deploy it for live interactive programming
teaching.

79

CHAPTER 5. DESIGN OF INTELLIGENT TUTORING SYSTEM FOR
PROGRAMMING

Chapter 5

Design of Intelligent Tutoring Sys-
tem for Programming

5.1 Introduction
In Computer Science (CS) education, we face the challenge of increasing student

enrollments over the past few years [86]. Consequently, it has become increasingly
difficult to provide high-quality and individualized learning support, particularly for
novice students [111, 71]. Mirhosseini et al. [71] recently conducted an interview
study with CS instructors to identify their biggest pain points. Among other issues,
they found that CS instructors struggle with limited or no Teaching Assistant (TA)
support and the generally time-consuming task of providing student feedback and
grading assignments. Thus, CS instructors would greatly benefit from automating
tutoring activities to support TAs in their responsibilities.

Despite prior research [107, 2, 47, 99, 41, 31] from automated program repair
and synthesis demonstrating the potential of automated feedback and grading in
programming courses, these systems are not yet widely adopted in CS education. The
main reasons include their prototype nature, difficulty of use, and lack of evolution.
Additionally, this line of work inevitably exposes too many details (i.e., direct fixes
of errors) to students, which may hinder the learning process. Conversely, recent
advancements in large language models have also advanced automated feedback
systems in computer science education [12, 66, 59, 92, 19, 44, 54, 56, 62]. These
systems typically focus on prompting large language models (LLMs) for specific
teaching scenarios, such as question-answering for lecture topics. However, they
heavily rely on LLM output, which is known to be prone to hallucinations and is

80

not always reliable [12, 44]. Such randomness in the generated feedback can lead to
confusion and frustration among students.

In this chapter, we report our design principles and the architecture of an In-
telligent Tutoring System (ITS) for programming education that synergizes the
strengths of both approaches. The ITS first searches for precise bug-fixing patches
with a hybrid program repair engine, and then ITS invokes LLM to use those
patches as guidance to pinpoint students’ conceptual misunderstandings and provide
more reliable feedback. The key is to bridge the gap between accurate low-level
fixing by program analysis and knowledgeable high-level explanations by LLMs.
Figure 5.1 illustrates the general concept of the Intelligent Tutoring System. The
lecturer provides reference programs and test cases as specifications of a program-
ming assignment, and students submit their solutions to the ITS. The ITS then
automatically fixes the student’s code if it is incorrect and elaborates on the fixes to
provide high-level feedback as hints, gradually guiding the student to understand the
foundational reason for the error. Additionally, the ITS provides a grading support
system that automatically grades student submissions for lecturers.

Intelligent
Tutoring System Submission

Student/Novice
ProgrammerFeedback

Reference Program,
Test Cases

Grading
ReportsTeacher/Tutor

Figure 5.1: General idea of an ITS that supports students and tutors in CS-1
programming courses.

We have integrated the Intelligent Tutoring System into the Coursemology
teaching platform of the CS department at the National University of Singapore. We
conducted user studies with 15 students from CS1010S Programming Methodology
to evaluate the ITS’s effectiveness and usability before a live deployment with 571
students. Our user studies and deployment revealed that the current ITS can
help students by generating clear feedback regarding precise error location and
easy-to-understand conceptual hints.

In summary, we make the following core contributions:

• We present our approach to designing and building an extensible automated
feedback system for computer science education.

81

• We highlight the pathway of linking LLMs with program analysis-based techniques
to provide reliable feedback for CS education.

• We share our experience of large-scale deployment of the ITS in a CS-1 program-
ming course with 571 students.

Syntactic
Alignment

Parser

Error
Localizer

RepairFeedback Auto-
Grading

Teacher/
Tutor

Student

Submitted
Program

Aligned
Programs

Error
Locations

Repair Candidates

Tutoring Feedback Generated
Grading

Intelligent Tutoring System1
2 3

45 6

#include <stdio.h>
int main(){
int i,j,n,sum=0;
scanf("%d",&n);
for(i=1;i<=n;i++){
for(j=1;j<=i;j++){
sum+=j;

}}
printf("%d",sum);
return 0;}

#include <stdio.h>
int main(){
int i,j,N,sum;
sum=0;
scanf("%d",&N);
for(i=1;i<=N;i++){
for(j=1;j<=N;j++){
sum=sum+j;

}}
printf("%d",sum);
return 0;}

Reference
Program

The mistake was using an incorrect inner loop
range, causing an excessive summation.
Revisit nested loops, loop bounds, and
summation logic to avoid similar mistakes in
the future.

Reference and Submitted Program in
internal Program representation

Figure 5.2: Illustrates the general workflow of the Intelligent Tutoring System.

5.2 Intelligent Tutoring System (ITS)
In this section, we introduce the design principles of our Intelligent Tutoring

System (ITS) for programming assignments, followed by a detailed presentation of
its architecture, key components, and workflow for practitioner adaptation.

5.2.1 Design Principles

To build a practical and up-to-date ITS that can be widely adopted, we adhere
to the following three design principles:

• Language-Independent: The ITS must be capable of processing multiple
programming languages to fit the needs of various CS-1 programming courses.
Developing and maintaining a separate ITS for each language is both costly and
impractical. To achieve language independence, the ITS should be designed with
clean interfaces allowing language-specific plugins or adapters. These plugins
handle language-specific syntax and semantics, while the core system manages the
general logic of tutoring and feedback. This principle ensures that the ITS can
be utilized across diverse programming courses, easyily adapting to curriculum
changes.

82

• Modular and Extensible: The ITS needs to be modular to incorporate the
unique benefits of various research tools, facilitating maintenance and upgrades.
The architecture should feature well-defined interfaces between modules, enabling
the addition of new components or the replacement of existing ones without
disrupting the overall system. This principle ensures the system’s ability to
evolve by integrating the latest research findings. For instance, the core repair
engine can incorporate new repair strategies, and the feedback generator can be
enhanced through new interactions with large language models, such as LLM
agent collaboration, making the ITS a future-oriented solution.

• Scalable: The ITS needs to be scalable to handle a large number of student
submissions and provide feedback in a timely manner without sacrificing usability.
Our design of independently operating modules allows the dynamic deployment
of scaling methods like load balancing for all components.

Inspired by prior research in program repair [41, 99, 2, 47], we have identified
several foundational components essential for the ITS. Figure 5.2 illustrates the
detailed architecture and workflow of the ITS. The figure also includes a sample
code submission with an incorrect loop condition and the corresponding generated
feedback. All components are provided via interfaces, allowing for independent
implementation. In the following sections, we introduce each component in detail
and explain the workflow.

5.2.2 Language Parser

To support multiple programming languages, we designed an internal intermediate
program representation capable of expressing the majority of first-year-level syntax
and semantics, such as variable declarations, control structures, and basic data
types. This intermediate representation ensures that the core functionalities of the
ITS can operate independently of the programming language used. For example, it
enables lightweight program analyses, such as control flow, variable usage, and data
dependency analysis. As the first step in the workflow, the ITS runs a grammar
checker to identify the programming language of the current feedback request. Next,
the parser component processes the source code of both the reference program and
the student’s submission. It invokes the corresponding language-specific parser

83

to generate the intermediate representation of the programs. This representation
standardizes the code into a common format used by other components, which allows
the ITS to function consistently across different languages. Currently, the parser
component includes specific parsers for C, Java, and Python.

5.2.3 Syntactic Alignment

One key difference between general program repair for large software and program
repair for educational purposes is the availability of an expected program specification
in the form of a reference implementation. The Syntactic Alignment component is
designed to align the reference program with the student’s submission. It processes
the intermediate representations of both the reference and student programs to
identify matching basic blocks and map the existing variables for each function
within the programs. The alignment algorithms [41, 47, 2] are based on the similarity
of control flow and variable usage, specifically using Def-Use Analysis, to compare
the reference and student programs. The results of this alignment can then be used
to pinpoint the locations where the reference and submitted programs diverge in
behavior. Furthermore, this information is instrumental in attempting to repair
the submitted program by leveraging the data from the reference program. Note
that, the ITS takes in multiple reference solutions with different solving strategies
as input which increases the alignment success rate like existing APR tools [2, 47].

5.2.4 Error Localizer and Interpreter

Error localization is a crucial step in APR systems that aims to identify the
buggy locations within the software. In the context of computer programming
education, error localization identifies specific basic blocks or expressions that
violate the expected specifications. The Error Localizer component employs several
dynamic execution-enabled localization algorithms to trigger erroneous behavior
in the student’s program. These algorithms include trace-based localization and
statistical fault localization [105]. The dynamic program execution is facilitated
by an Interpreter component. This interpreter allows the execution of a program
in its intermediate CFG-based representation without the need for compilation or
execution on the actual system. It generates an execution trace with the sequence

84

of executed basic blocks and a memory object, which holds the variable values
at specific locations. The Error Localizer component utilizes the Interpreter to
execute test cases while observing the variable values at specific locations. This
process enables the system to detect semantic differences between the reference and
submitted programs, thereby pinpointing the precise locations of errors.

5.2.5 Repair Engines

Given the reference programs, student submissions, and the identified error
locations as input, the Repair component attempts to fix the submitted programs by
generating edits that transform the student’s program to be semantically equivalent
to the reference program. The Repair component acts as an engine that can utilize
various repair strategies, such as optimization-based repair [41], synthesis-based
repair [47, 2], and LLM-based repair [111]. Upon receiving a repair request from
the previous components, these repair strategies are invoked in parallel to search
for potential repair candidates. The repair engine then selects the optimal repair
candidate that minimally alters the student’s submission. This approach aims to
guide students in correcting their mistakes while preserving their original intentions
as much as possible. Note that, the repair candidate is represented at the level of
the intermediate representation of the program, and we convert it back to the source
code before proceeding to the feedback generation phase.

5.2.6 Feedback Generator

With the collected information from previous components, the Feedback com-
ponent generates natural language explanations to guide students in correcting
their mistakes without revealing the direct answer. This component incorporates a
common front-end prompt interface with various LLM backends, allowing flexible
switching between different LLMs and easy integration of new LLMs. Currently, it
supports both commercial LLMs like GPT and Claude series, as well as open-source
LLMs like LLaMA [94] from Meta. We use GPT-3.5 as the default LLM backend
to balance performance and cost. Our prompt template consists of (1) a task
description, (2) the student submission, and (3) program patches from the repair
engine annotated with error locations:

85

You are a teaching assistant for an introductory programming course.

You will be given (1) text description of a programming task (2) a wrong student submission (3)
sample fixes to the wrong submission

Based on the sample fixes, please explain to the student conceptually why the mistake exists in
this task, and what programming concepts should the students revisit.

Description of the programming task: {description}

Wrong student submission: {student code}

Fixes to the wrong submission: {patches from repair engine}

These prompt ingredients can be seen as a precise hint which replaces the
reasoning step in popular Chain-of-Thought [100] prompting. The prompt also
instructs the LLM to generate feedback that highlights both assignment-specific
mistakes and related general programming concepts. This dual focus helps students
understand the underlying issues more comprehensively.

5.2.7 AutoGrader

Test-suite based automated grading suffers from the problem that a small mistake
by the student can cause many test cases to fail. To provide better support for
tutors, we integrate an auto-grading capability in the ITS, which aims to test
the conceptual understanding of the student and awards grades accordingly [31].
This is achieved by constructing a concept graph from the student’s attempt and
comparing it with the concept graph of the instructor’s reference solution. The
aim is to automatically determine which of the ingredient concepts being tested by
the programming assignment are correctly understood by the student. Given the
instructor-provided reference solutions and students’ incorrect solutions, we apply
the abstraction rules to convert students’ concrete implementation to conceptual
understandings and compare them against the conceptual requirements in reference
solutions. Based on the result, the Auto-Grading component generates a grading
report for the tutor. It assesses the student’s submission by their missing or
improperly used programming concepts to address the over-penalty issue [31] in the

86

conventional test-based assessment.

5.3 Pre-Deployment in CS-1 Teaching
We conducted an IRB-approved pre-deployment control experiment and study

with 15 students from CS1010S before launching the ITS in a live setting. The
self-assessed programming experience of the participants is shown in Figure 5.3. All
participants were compensated with a small amount of cash as an incentive for their
involvement. The user study was conducted anonymously.

5.3.1 Study Methodology

The students were divided into two groups with balanced levels of programming
experience: one group had access to the ITS (group A), while the other did not
(group B). User feedback was collected from both groups to assess the potential
impact of the ITS on students’ learning experiences. Participants were instructed
to solve programming tasks using an institution-internal submission system that
allowed them to run provided test cases. Each task had a time limit of 20 minutes,
and students were allowed to make an unlimited number of submission attempts.
Overall, the study was structured in three parts: (1) a background survey, (2) the
programming tasks, and (3) a feedback survey. We provided group B with a brief
introduction to the ITS after they solved their programming tasks, so they can also
provide feedback on ITS.

5.3.1.1 Programming Tasks

We have chosen four entry-level programming tasks covering various programming
topics. Table 5.1 shows the details of each task and their respective topics. We
selected these programming tasks from past mid-term exams of the CS-1 course,
which represent the practical challenges students may face.

Table 5.1: Subjects of programming tasks in our experiments

Tasks Description Topic
Remove Extras Remove duplicates from tuple For loop, Tuple manipulation
Reverse String I Iteratively reverse a string For loop, String manipulation
Reverse String II Recursively reverse a string Recursion
Reverse Numbers Iteratively reverse an integer While loop

87

No experience

Professional
Experience

3
4
1

1
2

5
7

0 2 4 6 8

5
4
3
2
1

Tutoring Experience Students' Programming Experience

Figure 5.3: Participants’ Self-Assessed Experience

7

10

8

4

2

5

2

2

1

2

1

1

0 2 4 6 8 10 12 14

Practial Deployment

Show Error Categories

Highlight Error Lines

Strong Positive Positive Neutral Negative Strong Negative

Figure 5.4: Students’ feedback of ITS

5.3.2 Result Analysis for Students

We recorded the submitted solutions and their timestamps for each programming
task of non-duplicate students’ attempts. Students were considered to have solved a
task if their attempts passed all test cases. In total, we received 128 attempts for
the four programming tasks; 65 by Group A and 63 by Group B. For all open-ended
questions, we conducted a qualitative content analysis coding [84] that summarizes
the themes and opinions.

5.3.2.1 Students’ Expectations

Based on the Background (Part 1) survey, we identified the main challenges for
novice programmers and their expectations for an ITS. Their general underlying
difficulties in learning programming are (1) understanding programming tasks and
starting to program, (2) debugging the code and rectifying identified errors, (3)
translating their solution strategy into actual code. In addition, we asked the
students more specifically about the difficulties the ITS can address. Generally, they
confirmed that their main difficulties are with (1) figuring out what goes wrong in
the program and (2) finding the error location.

88

5.3.2.2 Students’ Performance

Table 5.2 presents the quantitative results of the students’ performances in the
two controlled groups. Specifically, we focus on students who failed on their first
attempt. The second column represents the average number of students’ attempts for
each task if their first attempt failed. The third column represents the rectification
rate (X/Y) of students who failed to solve a particular task on the first attempt; X
represents the number of students who eventually rectified their solutions, and Y
represents the number of students who failed to solve a task on the first attempt.
The column "Avg Rectifying Time" indicates the duration taken by a student to
correct an incorrect solution for a programming task.
Table 5.2: The average number of failed attempts, rectification rates, average
rectifying time of failed attempts in minutes.

Tasks Avg # Failed Attempts Rectification Rate Avg Rect. Time (mins)
A B A B A B

Task 1 4.8 4 4/5 0/2 7 -
Task 2 1.9 5.5 7/7 3/4 9.2 9.3
Task 3 2.3 2.8 5/5 2/4 4.6 2.5
Task 4 2.3 3.1 5/6 5/7 4.5 11.3
Total 2.7 3.7 21/23 10/17 6.7 8.9

5.3.2.3 Fewer attempts, higher accuracy

As shown in Table 5.2, students who received assistance from ITS (Group A)
solved more programming tasks with fewer attempts compared to students without
ITS (Group B). Although Group A made more attempts than Group B for Task 1,
it is important to note that the two students in Group B who failed Task 1 could
not rectify their solution. Therefore, the fewer average attempts made by Group B
may be due to a lack of knowledge on how to fix their solutions after a few attempts,
resulting in giving up on the task. On average, Group A made 2.7 failed attempts
compared to 3.7 for Group B, indicating that Group A submitted slightly fewer
attempts during the experiment. Even though the difference in attempts is not very
significant, Group A had a higher success rate in rectifying their solutions; they
successfully fixed 21 (91.3%) out of the 23 failed attempts. While Group B had
a higher success rate on their first attempt, they struggled more when they failed
on their first attempt, only succeeding in fixing 10/17 (58.8%), demonstrating the
effectiveness of ITS guidance.

89

Regarding rectifying time, Group A was faster, with an average of 6.7 minutes
to fix one incorrect solution, compared to Group B’s average of 8.9 minutes. The
average rectifying time for task 1 in Group B is unavailable since no student could
rectify their incorrect attempts. Moreover, the average rectifying time for Group B
is significantly lower for Task 3 (2.5 minutes) because the two incorrect solutions
were almost correct (e.g., typos).

5.3.2.4 Usefulness of ITS

Figure 5.4 shows feedback survey results for students, where we queried their
satisfaction with the ITS regarding the usefulness of the features, such as highlighting
the potential error lines in the code editor and showing hints about error categories
for their mistakes. The results of the questions indicated that most Group A
students found the ITS helpful and were satisfied with its feedback and current
shape. For example, over 80% of the students responded positively to the usefulness
of highlighted lines and mistake categories for their code. Furthermore, over 73% of
the students would like the ITS deployed in their programming course. However,
we found that one student showed negative feedback toward all questions. This
student failed to solve any tasks with correct syntax and struggled to find proper
solution strategies. As a result, the ITS could not generate any feedback, as it could
not explain the student’s intuition at this stage. While this particular experience
highlights the limitations of the ITS, the overall positive feedback from the other
students supports the potential of ITS in enhancing CS-1 programming education.

5.4 Deployment Experience
In addition to our user studies, we share our experience of deploying the ITS in

CS1010S during the fall semester of the 2023-2024 academic year, which involved
571 students. CS1010S covers topics such as recursion, higher-order functions,
abstract data types, basic data structures, sorting algorithms, and object-oriented
programming through nine weekly assignments. In CS1010S, students submit their
solutions into Coursemology, which automatically runs pre-defined test cases for
programming assignments. They can make multiple attempts to revise their solutions
before the deadline. After the deadline, tutors manually review incorrect submissions

90

and write personalized feedback to students who submit incorrect solutions.
We integrated our ITS with Coursemology and deployed it for 30 programming

tasks spanning six weeks of assignments. We excluded the first two introductory
weeks and the final week, which involves OOP that the current ITS does not
support. In addition to the traditional assignment workflow, Coursemology invokes
the ITS to automatically generate feedback when a student submits a solution
that fails test cases. As a first step towards a complete deployment, the current
deployment generates feedback visible only to the human tutors to support their
manual feedback and grading efforts. Throughout the semester, we kept track
of all students’ submissions, and eventually, a total of 571 students submitted
3,117 incorrect solutions that failed the test cases of programming assignments
in Coursemology. The deployed ITS successfully generated semantically correct
patches for 1,758 (56.4%) incorrect submissions by its repair engine. A patch is
deemed correct if it makes the original submission pass all test cases for a particular
programming assignment. Then the feedback component generated corresponding
natural language comments for these submissions. The remaining 43.6% of incorrect
submissions that failed to be fixed consist of two main reasons.

Lack of Substantial Content: Some students either submitted empty files or
attempted to brute-force the public tests without finding a correct solution strategy.
These incomplete submissions lacked the necessary content for the repair engine to
generate meaningful repairs to represent students’ thinking.

Non-functional Restrictions: Some submitted solutions passed all test cases but
violated non-functional requirements not covered by the tests. For example, in an
abstract data types assignment, students were required to reuse a specific abstract
function. These violations needed manual checking by tutors. Failing to do so
resulted in non-functional penalties that the current ITS could not fix.

In the current deployment, we chose to not generate feedback on incorrect
submissions that our ITS cannot fix to avoid misleading or incorrect guidance to
students. However, failures by the repair engine often imply the student requires
additional guidance. It can serve as an indicator to promptly alert tutors about
students who need help. Nevertheless, we acknowledge these limitations and discuss
possible solutions as future work in Section 5.5. Additionally, we randomly sampled
10% of ITS-generated feedback to manually evaluate the quality of ITS’s automated

91

feedback by assessing whether they were semantically equivalent to the corresponding
tutors’ feedback. Our manual analysis shows that 136 (77.2%) of ITS-produced
feedback is semantically equivalent to tutors’ feedback, illustrating its capabilities
to assist human tutors. Figure 5.5 shows an example of two feedbacks given by ITS
and the tutor for a student’s mistake of not handling an edge case in a task that
simulates DNA transcript.

1 def find_transcription_region(dna_strand):
2 if not "TATA" in dna_strand or not "CGCG" in dna_strand:
3 return None
4 else:
5 tata_box_index = dna_strand.find("TATA")
6 stop_sequence_index = dna_strand.find("CGCG")
7 +++ if tata_box_index > stop_sequence_index:
8 +++ return None
9 return ...

10 -------
11 #ITS’s Feedback:
12 Your program does not handle the case where the TATA box appears after the stop sequence CGCG
13 #Tutor’s Feedback:
14 [-1] doesn’t check if TATA is before CGCG

Figure 5.5: Example of two semantic equivalent feedback given by ITS and
tutor for missing the edge case at lines 7–8.

5.5 Lessons Learned and Prospects
Despite the promising results of ITS deployment in CS1010S, human tutors

remain essential to address specific limitations of the ITS. We acknowledge these
limitations and offer insights for future research.

First, the ITS is not capable of generating step-by-step feedback for students who
are stuck at the beginning or middle of a task. This is because the APR techniques
employed in the repair engine are designed to and cannot fix a partial solution.
To address this limitation, we plan to develop APR techniques that can handle
finer-grained code changes within incomplete programs. Fortunately, the modular
design of the ITS allows us to easily integrate such new APR techniques into the
system once available.

Second, the ITS currently does not support feedback for non-functional require-
ments such as code style, readability, and efficiency. To address this, we consider
integrating code style checkers and code quality analyzers into the ITS as additional

92

components. These components can deliver their analysis results to the feedback en-
gine, which can then utilize the built-in LLM to generate feedback on non-functional
requirements.

Finally, the feedback engine in the ITS uses LLMs in a zero-shot manner, which
may not fully utilize their capabilities. Recently, LLM-based code agents have
shown promising performance in solving real-world software development tasks. We
consider exploring computer science education-specific LLM agents to provide more
accurate feedback as a future research direction. The program patches generated by
the repair engine can still guide these LLM agents, and all other components of the
ITS can remain the same.

5.6 Conclusion
In this work, we present the idea of synergizing the strengths of program repair

and large language models to create a precise and knowledgeable Intelligent Tutoring
System for programming education. We systematically illustrate the architecture and
workflow of the ITS to engage practitioners in adapting the system. Our modular
design ensures that the ITS can be widely adopted and continue evolving with
the latest research breakthroughs. Indeed, the ITS has been delivered to Monash
University and also IIT Kanpur. Moreover, our deployment results in CS1010S
indicate that the ITS is proficient at providing high-quality instructional feedback
similar to human tutors, with 77.2% of the sampled feedback being semantically
equivalent to that of human tutors. This demonstrates the potential of the ITS in
supporting CS instructors to provide individualized feedback.

The rapid advancements in automated programming and program repair tech-
niques are gradually shifting from manual programming to AI-assisted programming,
which may reshape programming education. Consequently, advanced foundational
CS courses will become more important, and we envision that future automated
tutoring systems need to cover advanced topics such as data structures, algorithms,
and database management. We believe that the ITS represents a well-suited plat-
form for future research while serving as a practical tool for current programming
education.

93

CHAPTER 6. LINKING SOFTWARE ENGINEERING TEACHING WITH
PROGRAMMING TEACHING

Chapter 6

Linking Software Engineering Teach-
ing with Programming Teaching

6.1 Introduction
The remarkable capability in generative AI and computing has attracted un-

precedented interest and enrollments in computer science and also interdisciplinary
students to learn programming. This poses a significant demand on teaching staff,
who must maintain high teaching quality through tasks such as tutorials, recitations,
assignment comments, and grading. On the other hand, another typical problem in
CS education is the provision of Software Engineering (SE) projects. Software engi-
neering is typically a compulsory course in the university’s curriculum for computer
science students, and it is often followed or accompanied by development projects,
in which students can collect hands-on experience in software development in a team
going beyond a programming exercise. Such projects come with inherent difficulties
like acquiring industry partners and the dilemma that such software projects are
often under- or over-specified. Additionally, such projects are often one-time efforts
within one team or one course, and students cannot experience the evolution of a
software system.

Recent research [27, 30, 113] has shown that existing LLMs can already help to
build a fully autonomous workflow in software development of real-world software
projects [113] (e.g., bug-fixing, feature addition), and simple prompt engineering
strategies to LLMs can achieve promising results in solving and fixing introductory
programming assignments. As automatic programming is gradually becoming a
reality, we wonder that in the future, the first-year CS programming teaching might

94

be replaced, and the educational focus will shift to cultivating a deep understanding
of foundational knowledge in advanced computer science courses such as data
structure and algorithms, operating systems, database management, and software
engineering will become more important than ever. Unfortunately, in contrast to
the fast-evolving research advancements in generative AI and the increased public
interest, the pace of adjusting computer science education curriculums to fit the
GenAI technologies remains slow.

We tackle these two problems (1) scaling programming teaching, (2) innovating
SE projects in CS education by building an Intelligent Tutoring System (ITS) with
and for students. In chapter 5, we already discussed the design and principles of our
Intelligent Tutoring System that can provide automated and individual feedback
for student code submissions and grading support for tutors and lecturers. In this
chapter, we discuss how we assist the education of both novice and senior CS students
in the generative AI era through a long-running capstone software engineering project.
This foundational software engineering course provides an opportunity for senior
CS students to dive deeply into the foundational SE skills with hands-on project
experience. On the other hand, the outcome of the long-running project serves
as a platform to facilitate the teaching of various computer science courses. As
a multi-year research and teaching effort, we combine third-year SE teaching and
programming teaching via a long-term, practical, self-sustained software system.

Figure 5.1 in Chapter 5 describes the high-level idea of our ITS that provides
automated and individual feedback for student code submissions and grading support
for tutors and lecturers. Further, we involve third-year undergraduate students in
the incremental development of such a system. We offer various SE projects for the
students in our CS3213 - Foundations of Software Engineering course. In CS3213,
the students can choose from a wide range of projects, which essentially represent
the development or extension of ITS components.

Based on the nature of the overall Intelligent Tutoring System project, we can
conduct requirements engineering activities (e.g., surveys, interviews, and user
studies) in-house because the various stakeholders are available in the university
context. Each student project has the chance to contribute to the overall long-
running SE project and eventually impact the learning experience of hundreds of
other CS students. In our experience, this creates additional motivation because the

95

effort is not lost, and they can relate to the users because they (at some point in
their studies) also faced the challenges of learning programming.

Based on our experience with around 125 undergraduate students who helped
develop the system throughout two years of teaching, the students enjoyed the
course project. In particular, they liked the potential reuse of their implementation
in the real deployment of the ITS. Additionally, they enjoyed the fact that there
is already a system, which they have to extend including the added complexity in
understanding the already existing architecture, design, and codebase.

Our course not only impacts the programming courses at the National University
of Singapore but also has the potential to impact other universities which adopt
a similar teaching concept linking the teaching of software engineering with the
teaching of programming such as Monash University. In the future, we plan to
conduct more user studies to explore learning success across university boundaries.

We demonstrate the effectiveness of this workflow in a second-year data structure
and algorithm course (CS2040S) at the National University of Singapore.

6.2 Design of Software Engineering Course
To achieve our vision of linking software engineering and programming teaching.

We collaborated with a new variant of software engineering course, “CS3213 -
Foundations of Software Engineering” at the National University of Singapore that
provides the students with foundational knowledge and understanding of different
aspects of software engineering.

6.2.1 Teaching Concept

Unlike traditional software engineering (SE) courses that teach students basic
SE practices through creating similar small-scale one-time effort projects. The
teaching concept of CS3213 instead highlights the “foundation”. The foundation
is rooted in two key aspects. The foundation research in SE and the foundation
principles of software development. Our goal is to deepen students’ understanding
of software engineering and practice the already learned principles in a realistic
environment of developing an in-house Intelligent Tutoring System. By integrating
cutting-edge research with core development practices, we aim to provide senior

96

SE students with (1) exposure to frontier ideas from the research community, such
as fuzzing, debugging, static analysis, and program repair, and (2) an immersive
software development environment of contributing to an existing, functional, in-use
codebase that allows the students to go beyond programming-in-the-small in the
course project.

The development of “Intelligent Tutoring System for Computing Education”
especially for programming tasks to handle the increasing enrollments provides a
well-framed and particularly interesting scenario for software engineering projects in
the university context. This is because (1) the demand for programming tutoring
support will exist for a long time, and we can continuously collect feedback from
users to curate new requirements. The user feedback can serve as project topics for
the next iteration of CS3213. (2) the SE students who contribute to ITS can relate
to the end users since they once had to learn programming, and (3) all the related
stakeholders are available in the university, which makes the requirement elicitation
and milestone discussion become possible.

Intelligent Tutoring
System

each project group focuses on one
component (short-running SE project)

students and tutors in 1st
programming courses

Deploy updated and new
requirements

Baseline
Codebase

Initial
Requirements Maintenance and

Improvements

Course

1

3

2
4

6

Oversee
evolutionimproved and new

components

5

Figure 6.1: Concept of a long-running software engineering project that is
incrementally improved by short-running projects inside a teaching environ-
ment.

97

6.2.2 Overview of Long-running Project

Figure 6.1 illustrates the overall diagram of the Intelligent Tutoring System as a
self-sustained long-running SE project that evolved over multiple years in CS3213.

Initial Requirement Collections. Every software development project starts
with a high-level coarse-grain requirement drafting phase, which is then refined and
detailed over time. In our case, before we started any development activities on ITS,
we collected initial requirements based on our research experience of automated
program repair [2, 31, 47] in educational scenarios and also from a few discussions
with the lecturers of some first-year programming courses. At a high level, the initial
requirements are oriented to tutors. They mainly consist of highlighting suspicious
error code snippets, producing precise code patches, and drafting high-level feedback
explanations on behalf of tutors.

Architecture Design. After the initial requirements, we designed the architecture
of the Intelligent Tutoring System which is discussed in detail in chapter 5. We
also developed an initial codebase, which included the interface definition between
each component. Having an initial baseline codebase provides the students with
additional requirements like the existing architecture, which should not be changed.
On the other hand, it also provides them with existing functionalities similar to a
real-world long-running SE project.

Course Projects Setup. For the CS3213 course project (step 3), we design
multiple short-running SE projects based on the feedback from first year course
instructor in the requirement elicitation session of our course, and these projects
essentially representing the implementation variants of existing or new components.
For example, in the first year, we mainly had projects to build program analysis
capabilities. We further designed projects to extend core features like Automated
Feedback, Automated Grading, Automated Repair in the second year. We further
designed projects to extend core features like Automated Feedback and Automated
Grading in the second year. based on the existing program analysis artifacts. We
discuss those short-running projects in detail in Chapter 6.2.3.

98

Deployment and Refinement. After each CS3213, our teaching team evaluates
all projects and integrates the best contributions of each project topic into our
baseline implementation (step 5). Therefore, over the years, the baseline will grow
and improve. At the same time, we also deploy the increments of the system in real-
world programming courses (e.g., CS1010S, CS2040S), and collect additional feedback
and requirements from students and tutors (step 4). To keep the implementation
standards high and to ensure that our architecture and design can cope with the
increasing codebase and the possibly new and changing requirements, we constantly
maintain and improve the implementation (step 6).

Overall, our Intelligent Tutoring System as a long-running SE project course is
structured so that the teaching of SE projects is accomplished over multiple years
via a real-life SE project. Over the years, the Intelligent Tutoring System became
more and more robust, and varied, with the continuous effort of each year’s student’s
contribution. It eventually became a full-fledged functioning automated tutoring
system that is being and ready to be widely deployed.

6.2.3 Overview of CS3213 Course Management

6.2.3.1 Course Curriculum

The course curriculum focuses on the main activities in SE. Furthermore, we
introduce selected relevant SE topics for our project, e.g., automated program repair,
static analysis, and fault localization. Each lecture is separated into two parts: (a)
the teaching of foundations in the aforementioned areas, and (b) the teaching of
project-specific knowledge and corresponding applications.

Requirements Analysis and Modeling The course starts with a focus on
requirements engineering, their elicitation, and modeling. Therefore, we invite
stakeholders like lecturers and teaching assistants from the first-year programming
courses to an interview session with the third-year students. This interview session
is prepared with corresponding assignments about question design and followed up
with requirements modeling exercises using UML Use Cases. We also teach other
requirements modeling, e.g., with finite state machines and sequence diagrams.

99

Software Architecture and Design Afterwards, we introduce general principles
for software architecture design and modeling. The project-specific part of the lecture
introduces the existing architecture and its components, including the available
interfaces, which need to be used by the students in their own implementations. We
further discuss architecture variants of the existing architecture to discuss pro and
contra of the made design decisions.

Our baseline Java implementation already provides the students with elementary
classes and functionalities, which they can and need to reuse. To illustrate the
fine-grained design, we first introduce relevant design principles and patterns that
occur in our implementation. We do not give a comprehensive introduction to design
patterns because there is another dedicated software design course in our institution.
Instead, we only introduce the most relevant design aspects to enable the students
to work on the projects.

Project Planning and Implementation As part of the assignments, the students
have to submit a project plan. Therefore, we also introduce the basics of project
planning, work package design, and milestone and resource planning, including
necessary models like Gantt-Charts. The coding itself is a major part of the project
and is mostly supported by the mentors in project-specific meetings. The lecture
introduces general principles like Clean Code and testing and debugging techniques
meant to help the students in their concrete implementation efforts.

Testing, Debugging, and Integration As automated testing and debugging is
a major part of an intelligent tutoring system, we also introduce several validation
concepts and debugging techniques. In particular, we teach foundations in test-suite
estimation, functional testing, whitebox testing, structural testing, dataflow testing,
and mutation testing. To this end, we also introduce the basics of static analysis
like control-flow graphs (CFGs) and Define-Use Analysis (DUA). Furthermore, we
discuss the basics of debugging with the TRAFFIC principle and delta debugging
and dive deeper into the basics of static and dynamic slicing and statistical fault
localization. Towards the end of the curriculum, we also discuss integration testing
strategies and the related challenges.

100

Project-Specific Topics In addition to the foundations in general software
engineering, we teach the background in automated program repair and provide an
overview of existing solutions for ITS components. Depending on the advertised
projects, we also discuss more specialized topics like taint analysis and Worst-
Case Execution Time (WCET) analysis to ensure the students have the relevant
background and material to work on their projects.

Labs and Assignments Each week in our curriculum is accompanied by a lecture
and a lab session. The labs are used to meet in smaller groups of students and discuss
their assignments. The assignments track the major milestones in the student’s
projects. We share the course assignment and major milestone in Table 6.1 for
practitioners.
Table 6.1: Course assignments that accompanies the major project milestones.

ID Topic Details
1 Requirements Anal-

ysis & Elicitation
Preparations and questions for the interview session with
the customer.

2 Requirements
Modeling

Requirement modeling with UML Use Case and Activity
diagrams.

3 Architectural Drivers and
Architecture Variants

Discussion of architecture variants and the requirements
that influence architectural design.

4 Strategy and
Project Planning

Project-specific planning including a Gantt-Chart and a
resource plan.

5 Detailed Design Structural and behavioral design of the students’ implemen-
tation with UML models

6 Intermediate Deliv-
erable

Towards the middle of the course, we ask the students to
submit a minimal project implementation and a report with
their project plans and various models.

7 Validation (i.e.,
Unit Testing) Test case design and test report.

8 Presentation & Fi-
nal Artifact

At the end of the course, all teams need to present their
project and submit their code.

9 Final Report
After the presentation, the students additionally need to
submit a final report, including a retrospective of their
project and design decisions.

6.2.3.2 Overview of Short-running Projects

Project Preparation As the key part of the CS3213 course, we carefully curated
a set of short-running projects before each semester started. Those short-running
projects are not only engineering efforts but also cover different research topics in the
Software Engineering community. Table 6.2 shows a few examples of short-running
projects that were provided in the first CS3213 course. The topics range from program

101

structure understanding, static analysis practice, replication of error localization,
and automated program repair techniques. In addition, we also prepared a specific
testing project that helps students gain fuzzing and mutation testing experience.
These short-running projects are inherently different from traditional SE courses
that merely focus on development activities. The additional context on SE research
exposed students to the fundamental techniques behind software artifacts.
Table 6.2: Example of Short-running Projects provided in the first CS3213

ID Project Trained Skills
1 Parsing Develop an understanding of abstract syntax tree and control

flow graph and how a parser in compiler works.
2 Program

Alignment
Develop skills in static analysis (e.g., Def-Use) and practice
them in aligning two programs.

3 Error Lo-
calization

Understand and implement frontier error localization research
(e.,g execution-based, statistical-based fault localization.)

4 Repairing
Programs

Understand and implement frontier various APR research [2,
41, 99, 47], the approaches include program verification, syn-
thesis, and ILP optimization.

5 Tests Gen-
eration

Using fuzzing or mutation testing to generate incorrect pro-
grams that test the capability of the whole ITS.

Team Management and Project Guidance To reduce students’ workload, we
ask the students to form groups of 3-4 people to work on the project. We allow
them to search for their team members instead of a random assignment by the
teaching team. We prepare an ungraded Assignment 0 for the project selection,
which provides an overview and additional references for all available projects for
the specific year. Each team can bid for three projects, while the teaching team
allocates the final project.

Additionally, we assigned each team a graduate-level mentor who are familiar
with the project topics to help students get started on their project smoothly. Each
team was required to meet and discuss weekly with their mentor focusing on the
team’s planning, design, and implementation progress. Interestingly, those graduate
mentors all had experience in tutoring programming courses. So the deep involvement
of graduate mentors also works like discussion meetings with stakeholders.

Through the course and project organization, the students advance their skills
in software development, grasp a deeper understanding of fundamental SE concepts,

102

and expose them to frontier SE research. All student projects eventually contribute
to an intelligent tutoring system, whose details were discussed in Chapter 5.

Our teaching materials and detailed short-running course project description can
be found at: https://nus-its.github.io/courses/cs3213/

6.3 Experience of ITS in Data Structures
To demonstrate the effectiveness of the long-running ITS project outcome in

practical usage. We present one complex data structure example from the Leetcode
platform and our latest experience through an anonymous control experiment with
30 students from CS2040S - data structure and algorithm. Prior experience with ITS
in the first-year programming course CS1010S was already discussed in Chapter 5.4.

6.3.1 Demonstration

Figure 6.2(a) presents a data structure task of “Construct Binary Tree from
Preorder and Inorder Traversal”. Unlike most CS-1 tasks that illustrate a straight-
forward programming goal. This task is a variation application of teaching the tree
traversal strategies. This problem examines a set of data structure definitions and
algorithm usage. To solve this problem, students at least need to understand (1)
the concept of binary tree and its traversal strategies, (2) the unique tree properties
preserved after preorder and inorder tree traversal, and (3) the recursive approach
to building a tree.

Figure 6.2(b) shows an example of an incorrect submission from a student who
has finished a data structure course. Despite this submission looking correct at first
glance, it has an issue with the “build” helper function at lines 14 – 15. Because
of the additional condition checker, the code skips the recursion for the root node
and leads to an incorrect tree construction. The mistake is subtle in terms of fixing,
but it reflects an inadequate understanding of the recursive termination condition.
Interestingly, ChatGPT is difficult to confidently detect and explain this mistake,
possibly because the code logic is mostly correct.

Repair and Feedback Generation. Driven by the automated program repair
engines, the ITS easily identifies this issue and provides a correct patch that fixes

103

https://nus-its.github.io/courses/cs3213/

the problem. Moreover, the patch is post-processed by the integrated LLMs to
elaborate a detailed explanation as shown in Figure 6.2(c).

Construct Binary Tree from Preorder and Inorder Traversal
Given two integer arrays preorder and inorder where preorder is the preorder
traversal of a binary tree and inorder is the inorder traversal of the same tree,
construct and return the binary tree.

(a) Problem Statement of the Tree Traversal Task

1 public TreeNode buildTree(int [] preorder , int [] inorder) {
2 if (preorder . length <= 0 | | inorder . length <= 0)
3 return null ;
4 if (preorder . length != inorder . length)
5 return null ;
6 return build(preorder , inorder , 0 , inorder . length − 1) ;
7 }
8
9 public int index = 0;

10 private TreeNode build(int [] preorder , int [] inorder , int low, int high) {
11 if (high < low)
12 return null ;
13 TreeNode root = new TreeNode(preorder [index]) ;
14 − if (high == low)
15 − return root ;
16
17 int mid = −1;
18 for (int i = low; i <= high ; i++) {
19 if (inorder [i] == preorder [index]) {
20 mid = i ;
21 break ;
22 }
23 }
24 index++;
25 TreeNode le f t = build(preorder , inorder , low, mid − 1) ;
26 TreeNode right = build(preorder , inorder , mid + 1, high) ;
27 root . l e f t = le f t ;
28 root . right = right ;
29
30 return root ;
31 }

(b) One Example of Incorrect Submission

Feedback from ITS
Mistake on Termination Condition: This submission prematurely skips the recur-
sive calls and returns the root node before the subtrees are properly constructed.
By returning prematurely, the build function does not explore the entire preorder
or inorder arrays, leading to an incomplete tree construction.

(c) Example Feedback for Figure 6.2(b) Curated by ITS
Figure 6.2: Example of Data Structure Example from Leetcode.

104

6.3.2 User Study in CS2040S

CS2040S Data Structures and Algorithms is a follow-up course to the first-year
programming course (CS1010S) at the National University of Singapore (NUS)
School of Computing. The course introduces students to the fundamental concepts
of data structures and algorithms using Java. CS2040S includes topics such as basic
data structures (e.g., arrays, linked lists, stacks, queues, trees, graphs), sorting and
searching algorithms, and algorithm analysis. We conducted a controlled experiment
of solving four LeetCode tasks among 30 students at the end of the semester to
evaluate ITS’s impact on their learning experience. We selected two programming
tasks relevant to Tree and two programming tasks relevant to Graph, which are
two very important data structure topics, both tasks are taken from LeetCode
with similar difficulty and the required programming concepts are closely related to
weekly problem sets. The detailed four tasks are presented in Figure 6.3.

In the control experiment, we equally divided the 30 student participants into
two groups based on their programming expertise. Group A participants have access
to ITS feedback for Task 1 and 3 (after finalizing submissions), whereas Group B
participants do not have access to ITS feedback for all four tasks. The goal is to
confirm our hypothesis that the students in Group A should perform better than
students in Group B for Task 2 and Task 4 even without ITS. If the feedback they
have received on Task 1 and Task 3 has strengthened their conceptual understanding
of the topic. The students were given 25 minutes to solve each task, after which they
should move to the next task.

Tree Topic
We assess students’ understanding of Binary Search Tree definition and
Pre/In/Post Tree Traversal, which is covered in Problem Set 4 of CS2040S.
Task 1: "Construct Binary Tree from Preorder and Inorder Traversal"
Task 2: "Construct Binary Tree from Inorder and Postorder Traversal"

Graph Topic:
We assess students’ understanding of the Shortest-Path Problem in Graph,
which is covered in Problem Set 8 of CS2040S.
Task 3: "Minimum Cost to Reach City With Discounts"
Task 4: "Minimum Cost to Buy Apples"

Figure 6.3: Overview of Data Structure Tasks used in Control Experiment.

105

Experiment Result Figure 6.4 reports the number of final correct submissions
for each task. For Task 1 and Task 3, group A and Group B both do not have access
to ITS feedback at the beginning, and the number of correct submissions is thus
similar in both groups (Task 1: 6 vs 5, Task 3: 3 vs 4). During the gap between
Task 1, 2 and Task 3, 4, we presented the ITS feedback to group A students whose
final submissions were incorrect. This led to a substantial increase in the number of
correct submissions for Task 2 and Task 4 in Group A compared to Group B. For
Group A, 4 out of 9 students who failed Task 1 successfully passed Task 2, and 5
out of 12 students who failed Task 3 successfully passed Task 4. For Group B, only
2 out of 10 students who failed Task 1 successfully passed Task 2, and only 2 out of
11 students who failed Task 3 successfully passed Task 4.

Despite there might be some students solved follow-up tasks because they got
additional time to work on a similar task, the improvement difference between Group
A and Group B indicates the positive impact of ITS feedback on students’ learning
experience.

Figure 6.4: Comparison of Correct Submissions on the Four Tasks.

Case Study. We present one case study of a Group B student who was almost
correct but still failed Task 1 and Task 2. The student’s submission for Task 1 is
explained in Figure 6.2(b), and we show the student’s submissions for Task 2 in
Figure 6.5. The student submitted 8 attempts for task 1 and reached an almost
correct solution which only needs a last-mile repair to remove the redundant condition
if (high == low) in the build helper method. Ideally, the student is expected to solve

106

task 2 in the additional 25 minutes since the two tasks are isomorphic. However,
the student started with a task 1 identical solution in task 2 and later submitted 13
attempts, and none of them touched the erroneous condition. This example further
demonstrates how struggling students can be even if they are close to the correct
solution and highlights the importance of immediate feedback. Interestingly, after
we presented the feedback in Figure 6.2(c), the student immediately realized his
mistake and successfully rectified the error in both Task 1 and Task 2.

1 # Example Student Submission for Task 2 (Incorrect)
2 public TreeNode buildTree(int [] inorder , int [] postorder) {
3 if (inorder . length <= 0 | | postorder . length <= 0 | | inorder . length != postorder . length) {
4 return null ;
5 }
6
7 if (inorder . length == 1)
8 return new TreeNode(inorder [0]) ;
9

10 return build(postorder , inorder , 0 , inorder . length − 1) ;
11 }
12
13 public int index = 0;
14 private TreeNode build(int [] postorder , int [] inorder , int low, int high) {
15 if (high < low | | curr < 0)
16 return null ;
17
18 TreeNode root = new TreeNode(postorder [index]) ;
19
20 if (high == low)
21 return root ;
22
23 int mid = −1;
24 for (int i = low; i <= high ; i++) {
25 if (inorder [i] == postorder [index]) {
26 mid = i ;
27 break ;
28 }
29 }
30 index++;
31 TreeNode le f t = build(postorder , inorder , mid + 1, high) ;
32 TreeNode right = build(postorder , inorder , low, mid − 1) ;
33 root . l e f t = le f t ;
34 root . right = right ;
35
36 return root ;
37 }

Figure 6.5: Case Study of an Example Incorrect Submission from Group B
Participant for Task 2.

6.4 Challenges & Lessons Learned
To further share our experience with our combined research and teaching effort,

we report the challenges we faced and the lessons learned concerning the teaching of

107

CS3213 - Foundations of Software Engineering.

6.4.1 Incentives for Stakeholders

We have three main user groups: the students who receive feedback, the tutors
who can use the ITS to better understand the students’ errors and get grading
support, and the lecturers who provide the inputs like assignments and reference
implementations. Lecturers are naturally concerned about deploying more tools,
including the potential negative effects on the learning outcome caused by inaccurate
output. To gradually convince the lecturers, we decided to first focus on a targeted
deployment for tutors. For tutors, an imperfect output is less critical and still
can provide helpful guidance to them and help us to get feedback continuously.
In contrast to the lecturers, the tutors have a generally more positive attitude
regarding the ITS; they are willing to join longer interviews to share their experience
in the tutoring process and their requirements. As a result, we have been able to
successfully invite tutors to our requirements elicitation sessions as well as to our
user studies. To engage with first-year students, we designed a user study that
not only has a monetary reimbursement but also provides additional programming
training and an extra tutorial after the user study to explain the programming tasks
to them individually. The third-year students who develop the components in our
course showed great interest in our project because it is (or will be) deployed in a
real context and because they like working on a larger project with existing parts.
Overall, it is a valuable experience for them, as shown by the following student
quotes about the question of what they liked the most in the course:

“As the module is new, its content to be taught may change but I’m certain the ITS
project is here to stay. (iterative building of the system)."

“The project component – It’s really interesting, and I like that it will actually be
used. I think that makes it one of the most interesting modules I’ve taken so far.

It’s very cool to understand the reasoning for design details with the teaching team
that actually built it."

“Participation in an actual to–be–deployed software project is exciting and makes
your effort somewhat worthwhile."

108

6.4.2 Project Preferences

In the first instance of our course, we allowed students to pick projects on their
own. Therefore, we ended up with an imbalanced selection of projects. Students
tended to prefer a project with more explicit requirements, e.g., a Parser component,
instead of a Repair project that involves more research. In the second instance, we
therefore only allowed bidding on projects while the teaching team made the final
decision.

6.4.3 Managing Software Evolution

Overall, we experienced that our general approach is feasible and helps both the
third-year and the first-year students. However, we have also seen that we must invest
significant time from our side in managing the software evolution. This includes
selecting and integrating the best projects, maintaining the code base, updating the
design to cater to new requirements, and implementing new components to check
their feasibility before we can offer them as a project in the course.

6.5 Impact and Vision for the future
In this chapter, we presented our concept for linking the teaching of software

engineering projects with the teaching of programming and introduced our intelligent
tutoring system (ITS). Further, we discussed our experiences using the ITS in
CS2040S through a controlled experiment. In the following two sections, we discuss
the observed impact of our work and provide a concluding outlook for intelligent
tutoring in the AI era.

6.5.1 Impact: Teachers, Students, Research

Based on our experience, the presented ITS impacts several aspects of program-
ming. With our long-running teaching effort, we incrementally develop and improve
the ITS into a usable product. We change how first-year students learn programming
and support teachers in the introductive CS courses. Furthermore, we provide the
platform for senior students to practice software engineering in a realistic scenario.
Additionally, they are encouraged to work on research-oriented topics by selecting

109

the corresponding projects. Overall, we received positive feedback in our user studies:
from the 15 students and tutors, more than 78% would like to see the ITS deployed
in their next programming course. Moreover, the ITS helps to integrate the latest
research in educational APR and related topics. Our teaching innovation can also
impact students from other universities as they adopt our concept and join the
ITS development team. In fact, we have already exported the teaching concept to
another university.

6.5.2 Intelligent Tutoring in AI Era

Student/Novice
Programmer AI Assistant

Intelligent
Tutoring System

Learn a model of the
student’s understanding

and problems

3

Guided Formulation of
Prompts1

Help to understand the
auto-generated code2

Figure 6.6: Envisioned three-way interaction between Student, ITS, and AI
Assistant.

With the shift from manual programming to AI-assisted programming, CS
education must also be innovated. We think the ITS represents a well-suited
platform to help students learn an effective way of using AI-based code generation
tools like GitHub Copilot and ChatGPT. Therefore, instead of exposing the student
directly to the AI assistant, the ITS can moderate the prompts and explain the
generated code, achieving a three-way interaction between the student, ITS, and
AI assistant (see Figure 6.6). Based on the student’s performance, mistakes, and
interaction with the AI assistant, the ITS can learn a model of the student’s current
mental model. This can be achieved by mapping the student’s mistakes and questions
to the underlying programming concepts.

110

CHAPTER 7. RELATED WORK

Chapter 7

Related Work
This chapter discusses the existing work related to this thesis in the research area

of program repair, programming feedback generation, program equivalence checking,
and capstone software engineering projects.

7.1 Automated Program Repair
Automated Program Repair (APR) [38, 72] is an enabling technology which allows

for the automated fixing of observable program errors thereby relieving the burden
of the programmers. General purpose APR techniques such as GenProg [58], SemFix
[75], Prophet [64] and Angelix [69], require an incomplete correctness specification
typically in the form of a test-suite.

7.1.1 Test-based Program Repair

Test-suite based automated program repair (APR) has attracted significant
attention in the last decade [38]. These techniques aim to generate a patch for
a buggy program to pass a given test-suite. APR techniques typically include
search-based, semantic-based, and pattern/learning-based APR. Search-based APR
techniques like GenProg [58] take a buggy program and generate patches using
predefined code mutation operators, or search for a patch over the patch space
that passes the given test suite. Semantics-based APR techniques [75, 69] generate
patches by formulating a repair constraint that needs to be satisfied based on a given
test suite specification, and then solving the repair constraint to generate patches.
Learning-based APR techniques [65, 50, 115] often train a deep learning model with
large code repositories and are guided by a specific representation of code syntax
and semantics to predict the next tokens that are most likely to be correct patch.

111

APR techniques have been successfully deployed in industries for domain-specific
bug fixing [104, 67, 11]. However, these techniques achieve low repair success rate
on student programs that suffer from multiple mistakes, since they can scale to
large programs but not necessarily to large repair search spaces [107]. As student
programs are substantially incorrect, the search space for repairs is typically large.

ITSP [107] reports positive results on deploying general APR tools for grading
purpose by expert programmers, and negative result when used by novice pro-
grammers for feedback. Their low repair success rate and reliance on test-cases
(overfitting) can be seen as a motivator for our work.

S3 [57] synthesizes a program using generic grammar and user-defined test-cases.
Semgraft [68] uses simultaneous symbolic execution on a buggy program and a
reference program to find a repair, which makes the two program equivalent for a
group of test inputs; this class of test inputs is captured by a user-provided input
condition. Our work shifts away from test inputs and instead constructs verification
guided repair. Furthermore, for our application domain of pedagogy, we seek to
build minimal repairs by retaining as much of the buggy program as possible.

7.1.2 Program Repair of Programming Assignments

Autograder [87] is one of the early approaches in this domain. In Autograder, the
correctness of generated patches is verified only in bounded domains (e.g., the size
of a list in the program is bounded to a constant number), and thus the verification
result is generally unsound. Autograder also requires instructors to manually provide
an error model that specifies common correction patterns of student mistakes, which
is not needed in Verifix.

Clara [41] also performs bounded unsound verification. Clara checks whether
each concrete execution trace of the student program matches that of the reference
program, and performs a repair on mismatch. Since a concrete execution trace
is obtained from test execution, the correctness of a generated patch cannot be
guaranteed. We have provided a detailed experimental comparison with Clara.
Clara assumes the availability of multiple correct student submissions with matching
control-flow to the incorrect submissions, limiting their applicability, unlike Verifix.
Sarfgen [99] generates patches based on a lightweight syntax-based approach and

112

assumes the availability of previous student submissions. Both Clara and SarfGen
require strict Control-Flow Graph (CFG) similarity between the student and reference
program. In comparison, Verifix requires a matching function and loop structure
between the student and reference program. Unlike Clara and SarfGen, Verifix can
recover from differences in return/break/continue edge transitions due to its usage
of Control-Flow Automata (CFA) based abstraction.

Refactory [47] handles the CFG differences by mutating the CFG of the student
program to that of the reference program by using a limited set of semantics-
preserving refactoring rules, designed manually. For example, refactoring a while-
loop by replacing it with a for-loop structure. Note that Verifix, unlike Refactory,
keeps the original CFG of the student program as much as possible, as shown
in Fig 3.1. Our goal is to produce small feedback of high quality. We cannot
experimentally compare with Refactory since its implementation targets Python
programming assignments.

CoderAssist [53], to the best of our knowledge, is the only APR approach that
can generate verified feedback. CoderAssist clusters submissions based on their
solution strategy followed by manual identification (or creation) of correct reference
solutions in each cluster. After the clustering phase, CoderAssist undertakes repair
at the contract granularity rather than expression granularity — that is, while
CoderAssist can suggest which pre-/post-condition should be met for a code block,
CoderAssist does not have the capacity to suggest a concrete expression-level patch.
CoderAssist repair algorithm and evaluation results focus on dynamic programming
assignments. In contrast, Verifix is designed and evaluated as a general-purpose
APR.

There have been several attempts to use neural networks [15, 98, 42, 79, 21, 3]
for program repair. These approaches typically target syntactic/compilation errors,
and the repair rate for semantic/logical errors is low [79]. Such machine learning
based techniques do not offer any relative completeness guarantees, and the repair
is evaluated against incomplete specification (e.g. tests).

There has been prior work on live deployment of APR tools for repairing student
programs [107, 4]. The work of ITSP [107] shows negative results on providing
semantic repair feedback to students on their programs. At the same time, the
work of Tracer [4] demonstrates positive results for repair based feedback, albeit on

113

simpler (compilation) errors. In this thesis, we present an approach for repairing
complex logical errors in student programs. Our tool Verifix can generate verified
feedback for 58.4% of incorrect student submissions from 28 diverse assignments,
collected from an actual CS-1 course offering. The human acceptability of our
verified feedback can be further investigated via future user-studies.

7.1.3 Program Equivalence Verification

Verifix performs program equivalence verification which itself is a separate long-
standing research area [13, 110, 22, 74]. In program equivalence verification, it
is proved whether given two programs are semantically equivalent to each other.
Program equivalence verification is usually performed by first constructing a product
program (similar to our aligned CFA) where the loops of the two programs are
aligned with each other [13, 110]. Aligning loops is considered as one of the major
challenges in program equivalence verification [22]. In the traditional application
areas of program equivalence verification such as optimized-code verification [74, 23],
the original code and its optimized code often have different program structures, and
thus alignment is challenging in those programs. This problem is much less severe in
introductory programming assignments, as shown in our experiments, where Verifix
fails to obtain a repair due to structural mismatch between the student and reference
program in 27.2% of our dataset. The main difference of our work from program
equivalence verification is that we add a CEGIS (counter-example-guided inductive
synthesis) loop inside the verification procedure, so that repair and verification can
take place hand in hand.

7.2 Automated Grading.
Many approaches have been proposed for automatic assessment of programming

assignments [7, 102, 96, 52, 46, 63]. These systems rely either on (1) test cases
[48, 7, 102, 96, 52, 46], (2) formal semantics [63], or (3) syntactic differences (e.g.,
in the form of CFG) between reference solution and student solution [70, 6, 97]
to grade introductory programming assignments. Test-based grading approaches
(e.g., AutoGrader [7]) assign scores to programming assignments by relying on
program’s outputs on a set of test inputs [102, 96, 52]. These test inputs can either

114

be manually designed by course instructors or automatically generated [36, 63].
These test-based approaches have several limitations, including: (1) they cannot
reflect the students’ effort and mastery of knowledge because a minor mistake could
fail many test cases which lead to a large portion of marks being deducted, (2)
students may struggle to identify their mistake using only the failing test cases
as feedback. Different from these approaches, ConceptGrader grades a student’s
submission using programming concepts, and generates intuitive feedback which
points out the missing or wrongly used programming concepts. Another popular
approach to automated grading is calculating the similarity between different program
representations (e.g., control flow graph) of a student’s submission and corresponding
reference implementation [70, 6, 97]. However, these approaches do not support
convergent formative assessment as they only grade student’s submissions without
providing feedback. Liu et al. [63] proposed an approach based on formal semantics
for automated grading of programming assignments. They use symbolic execution
techniques to explore the semantic difference between instructor’s reference solution
and students solution in the form of path deviations. However, their approach only
produces a binary correct or incorrect result, while our approach gives a quantitative
evaluation of student submissions.

Prior work focuses on fixing introductory programming assignments using au-
tomated program repair techniques, and providing the automatically patches as
feedback [107, 88, 41, 99, 47, 53]. Although ConceptGrader uses patches generated
by a program repair engine (Refactory [47]) to trigger the unfolding mechanism to
improve the accuracy of the score calculation for incorrect student submissions, Con-
ceptGrader does not use the automatically generated patches directly as feedback.
As we design the abstraction rules to be human readable, the feedback generated by
ConceptGrader can provide explanation of student mistakes to support convergent
formative assessment. Different from existing repair approaches, ConceptGrader is
designed for automated grading of introductory programming assignments.

7.3 Capstone Software Engineering Projects
Project-based software engineering courses are essential for students to get

training for professional software development skills like architecture design, team

115

management, software maintenance, etc. Students are often required to work as
a team to develop software either from industrial partners or simulated real-world
topics via semester-long projects [51, 90, 17, 93, 26, 37]. However, there exist certain
barriers and challenges to this teaching setting. For example, continuously collecting
project topics from industry partners and establishing an efficient communication
channel between stakeholders (students and company clients) are challenging tasks
for the instructor. More importantly, the students work on different project topics
each year, which means they usually do not have a general picture of the entire
system, therefore they cannot experience the evolution of a software system.

In this thesis, our focus is presenting the idea of having an in-house, long-running,
sustainable software engineering project in the university context. This kind of
long-running SE project shares characteristics with other community-driven course
concepts [10]. Our proposed teaching concept is however novel in the sense that it
links the teaching of software engineering courses and the teaching of introductory
programming courses. This is done by developing an intelligent tutoring system.
Students not only get training for software development but also gain exposure to
the latest research in the software engineering community.

116

CHAPTER 8. CONCLUSION

Chapter 8

Conclusion
Automated programming tutoring system aims to provide constructive sugges-

tions on students’ programming mistakes and precisely assess students’ effort in an
automated way. To achieve this vision, prior work utilized program repair / synthesis
and symbolic analysis to automatically fix students’ assignments and use the corre-
sponding patch as the feedback returned to students. Although these techniques
have shown high accuracy in fixing incorrect student submissions, they use test suites
as incomplete specifications and suffer from overfitting issues and the assessment
does not always reflect student’s conceptual understanding. Moreover, these works
are not being used or maintained because of the nature of the research prototype.
In this thesis, we propose a series of techniques to scale the intelligent tutoring of
programming. Those proposed techniques all revolve around the topic of automated
program repair. Overall, we assist teaching staff and students in the Computer
Science department by providing guaranteed repair for programming assignments,
conceptual level automated grading, building a full-fledged Intelligent Tutoring
System (ITS), and a self-sustained Software Engineering course that continuously
evolves the ITS. The contributions of this thesis are summarized as follows.

8.1 Summary of Contributions
• We propose Verifix, which uses program equivalence checking techniques along

with pMaxSMT-based automated program repair to provide a trustworthy
guarantee as well as high-quality, minimal program patches as feedback for
students’ programming assignments. Our evaluation of 341 real-world incorrect
solutions from students shows significant improvement compared to prior work.
(Chapter 3)

117

• We propose ConceptGrader, which provides conceptual-level feedback and
precise assessment for programming assignments. ConceptGrader is based on
concept graph, an abstracted CFG that highlights programming concepts in
submissions of introductory programming assignments. The concept graph
contains expressions translated into natural language to enhance readability,
and make it more suitable as hints to provide feedback to students. To allow
more abstract matching of programs, we introduce concept node fold- ing
where we temporarily hide complex expressions in concept nodes for fuzzy
concept matching, and unfold (unhide) the expressions for precise concept
matching whenever we detect a likely programming mistake within the folded
concept node. (Chapter 4)

• We designed and implemented a full-fledged, ready-to-use Intelligent Tutoring
System for Programming, and deployed it in the programming courses (e.g.,
CS1010S and CS2040S) at NUS. This development process involves the iteration
of improving the teaching of software engineering by providing a realistic, self-
sustained software engineering project in the university context, and also
an improved ITS is ready to provide personalized feedback that facilitates
students’ learning of programming. (Chapter 5 and Chapter 6)

8.2 Future Work
Although program repair has proved its effectiveness in educational settings,

especially for first-year programming courses. There is a long journey toward widely
adopting those techniques in everyday teaching. We believe there are still plenty
of opportunities and challenges for aiding computing education. Reflecting on our
findings and observations throughout this thesis, we envision the following research
directions.

Practical Assessment on Learning Outcomes. The ultimate goal of having
an intelligent tutoring system is not to merely repair students’ mistakes but to
enhance student’s learning outcomes. In our preliminary investigation through both
user study and live deployment, we have seen our Intelligent Tutoring System is

118

effective, but the evidence we have shown is mainly technical perspective. To push
a wider integration of the Intelligent Tutoring System, we believe further study
is required to fairly assess the Intelligent Tutoring System’s long-term impact on
student learning outcomes from a pedagogy perspective. For instance, establishing
a controlled experiment environment to observe student’s behavior and performance
with/without ITS can help us gain further insights into the both positive and
potential negative impacts in real-pedagogy scenarios.

Early-staged Assisting Mechanism Even though my thesis shows promising
results in providing last-mile repair as feedback to students, there are still many
students who cannot benefit. One of the other key challenges for students who
struggle with learning programming is how to correctly interpret the problem and
start the thinking process. We believe a proactive repair approach that accompanies
step-by-step problem-solving guidance from scratch is desired for those relatively
weaker students to get familiar with programming fast. This would enable ITS to
help more characteristics of student’s difficulties and increase its applicability.

Application in Advanced Computing Courses. The rapid development of
generative AI powered automatic programming might reduce the importance of
programming activities in those entry-level programming courses. These paradigm
changes may indicate that the fundamental concept in advanced computing courses
will always stay and become more important for Computer Science students in the
GenAI era. We believe that the idea of program repair can be adapted with the
knowledge within large language models to better facilitate advanced computing
topics such as algorithms, databases, operating systems, etc.

In conclusion, this thesis not only attempts to address the trustworthy issue
in program assignment repair and conceptual assessment, but also opens many
opportunities for future research works. The Intelligent Tutoring System built in
this thesis also serves as a well-established platform for conducting and integrating
future research to enrich its trustworthiness, generalizability, and applicability for
wider populations in learning computing.

119

PUBLICATION APPEARED

Publication Appeared

[1] U. Z. Ahmed, Z. Fan, J. Yi, O. I. Al-Bataineh, and A. Roychoudhury, “Verifix:
Verified repair of programming assignments”, ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 31, no. 4, pp. 1–31, 2022.

[2] Z. Fan, S. H. Tan, and A. Roychoudhury, “Concept-based automated grading
of cs-1 programming assignments”, in Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2023, pp. 199–
210.

[3] Z. Fan, Y. Noller, A. Dandekar, and A. Roychoudhury, “Intelligent tutor-
ing system: Experience of linking software engineering and programming
teaching”, arXiv preprint arXiv:2310.05472, 2023.

[4] Z. Fan, X. Gao, M. Mirchev, A. Roychoudhury, and S. H. Tan, “Auto-
mated repair of programs from large language models”, in 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE), IEEE, 2023,
pp. 1469–1481.

[5] Z. Fan, H. Ruan, S. Mechtaev, and A. Roychoudhury, “Oracle-guided program
selection from large language models”, in Proceedings of the 33rd ACM
SIGSOFT International Symposium on Software Testing and Analysis, 2024,
pp. 628–640.

Note that, the research presented in paper [1] was done as a joint first-author with
Umair Z. Ahmed, and the CS3213 teaching activities presented in [3] were organized
by Yannic Noller.

120

BIBLIOGRAPHY

Bibliography
[1] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy of spectrum-

based fault localization”, in Testing: Academic and industrial conference prac-
tice and research techniques-MUTATION (TAICPART-MUTATION 2007),
IEEE, 2007, pp. 89–98.

[2] U. Z. Ahmed, Z. Fan, J. Yi, O. I. Al-Bataineh, and A. Roychoudhury, “Verifix:
Verified repair of programming assignments”, ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 31, no. 4, pp. 1–31, 2022.

[3] U. Z. Ahmed, P. Kumar, A. Karkare, P. Kar, and S. Gulwani, “Compilation
error repair: For the student programs, from the student programs”, in
Proceedings of the 40th International Conference on Software Engineering:
Software Engineering Education and Training, 2018, pp. 78–87.

[4] U. Z. Ahmed, N. Srivastava, R. Sindhgatta, and A. Karkare, “Characteriz-
ing the pedagogical benefits of adaptive feedback for compilation errors by
novice programmers”, in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: Software Engineering Education and
Training (ICSE), 2020, pp. 139–150.

[5] T. Ahoniemi and T. Reinikainen, “Aloha-a grading tool for semi-automatic
assessment of mass programming courses”, in Proceedings of the 6th Baltic
Sea conference on Computing education research: Koli Calling 2006, 2006,
pp. 139–140.

[6] K. Ala-Mutka, T. Uimonen, and H.-M. Jarvinen, “Supporting students in c++
programming courses with automatic program style assessment”, Journal of
Information Technology Education: Research, vol. 3, no. 1, pp. 245–262, 2004.

[7] C. S. for ALL Students, “Autogradr”, https://www.csforall.org/members/
autogradr _ automated _ grading _ for _ programming _ assignments/, Ac-
cessed: 2020-10-06, 2022.

121

https://www.csforall.org/members/autogradr_automated_grading_for_programming_assignments/
https://www.csforall.org/members/autogradr_automated_grading_for_programming_assignments/

[8] R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A.
Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa, “Syntax-guided
synthesis”, in Proceedings of the International Conference on Formal Methods
in Computer-Aided Design (FMCAD), Oct. 2013, pp. 1–17.

[9] N. d. C. Alves, C. G. von Wangenheim, J. C. R. Hauck, and A. F. Borgatto,
“A large-scale evaluation of a rubric for the automatic assessment of algo-
rithms and programming concepts”, in Proceedings of the 51st ACM technical
symposium on computer science education, 2020, pp. 556–562.

[10] B. Anderson, M. Henz, and K.-L. Low, “Community-driven course and tool
development for cs1”, in Proceedings of the 54th ACM Technical Sympo-
sium on Computer Science Education V. 1, ser. SIGCSE 2023, Toronto ON,
Canada: Association for Computing Machinery, 2023, pp. 834–840, isbn:
9781450394314. [Online]. Available: https://doi.org/10.1145/3545945.
3569740.

[11] J. Bader, A. Scott, M. Pradel, and S. Chandra, “Getafix: Learning to fix
bugs automatically”, Proceedings of the ACM on Programming Languages,
vol. 3, no. OOPSLA, pp. 1–27, 2019.

[12] R. Balse, B. Valaboju, S. Singhal, J. M. Warriem, and P. Prasad, “Investigat-
ing the potential of gpt-3 in providing feedback for programming assessments”,
in Proceedings of the 2023 Conference on Innovation and Technology in Com-
puter Science Education V. 1, 2023, pp. 292–298.

[13] G. Barthe, J. M. Crespo, and C. Kunz, “Relational verification using product
programs”, in International Symposium on Formal Methods, Springer, 2011,
pp. 200–214.

[14] B. Bell, N. Bell, and B. Cowie, “Formative assessment and science education”,
Springer Science & Business Media, 2001, vol. 12.

[15] S. Bhatia, P. Kohli, and R. Singh, “Neuro-symbolic program corrector for
introductory programming assignments”, in 2018 IEEE/ACM 40th Inter-
national Conference on Software Engineering (ICSE), IEEE, 2018, pp. 60–
70.

122

https://doi.org/10.1145/3545945.3569740
https://doi.org/10.1145/3545945.3569740

[16] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based greybox
fuzzing as markov chain”, in Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security, 2016, pp. 1032–1043.

[17] B. Bruegge, S. Krusche, and L. Alperowitz, “Software engineering project
courses with industrial clients”, ACM Transactions on Computing Education
(TOCE), vol. 15, no. 4, pp. 1–31, 2015.

[18] H. Bunke, P. Foggia, C. Guidobaldi, C. Sansone, and M. Vento, “A comparison
of algorithms for maximum common subgraph on randomly connected graphs”,
in Joint IAPR International Workshops on Statistical Techniques in Pattern
Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR),
Springer, 2002, pp. 123–132.

[19] D. Cambaz and X. Zhang, “Use of ai-driven code generation models in teaching
and learning programming: A systematic literature review”, in Proceedings
of the 55th ACM Technical Symposium on Computer Science Education V. 1,
2024, pp. 172–178.

[20] Z. Chen, S. Kommrusch, M. Tufano, L.-N. Pouchet, D. Poshyvanyk, and
M. Monperrus, “Sequencer: Sequence-to-sequence learning for end-to-end
program repair”, IEEE Transactions on Software Engineering, vol. 47, no. 9,
pp. 1943–1959, 2019.

[21] D. Chhatbar, U. Z. Ahmed, and P. Kar, “Macer: A modular framework
for accelerated compilation error repair”, in International Conference on
Artificial Intelligence in Education, Springer, 2020, pp. 106–117.

[22] B. Churchill, O. Padon, R. Sharma, and A. Aiken, “Semantic program align-
ment for equivalence checking”, in Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation, 2019,
pp. 1027–1040.

[23] B. Churchill, R. Sharma, J. Bastien, and A. Aiken, “Sound loop superopti-
mization for google native client”, ACM SIGPLAN Notices, vol. 52, no. 4,
pp. 313–326, 2017.

[24] coetaur0, “Python3 control flow graph generator”, https://github.com/
coetaur0/staticfg, Accessed: 2022-10-09, 2019.

123

https://github.com/coetaur0/staticfg
https://github.com/coetaur0/staticfg

[25] S. A. Cook, “Soundness and completeness of an axiom system for program
verification”, SIAM Journal on Computing, vol. 7, no. 1, pp. 70–90, 1978.

[26] D. Delgado, A. Velasco, J. Aponte, and A. Marcus, “Evolving a project-based
software engineering course: A case study”, in 2017 IEEE 30th Conference
on Software Engineering Education and Training (CSEE&T), IEEE, 2017,
pp. 77–86.

[27] P. Denny, J. Prather, B. A. Becker, J. Finnie-Ansley, A. Hellas, J. Leinonen,
A. Luxton-Reilly, B. N. Reeves, E. A. Santos, and S. Sarsa, “Computing
education in the era of generative ai”, Commun. ACM, vol. 67, no. 2, pp. 56–
67, Jan. 2024, issn: 0001-0782. [Online]. Available: https://doi.org/10.
1145/3624720.

[28] B. EECS, “Cs 9h: Python for programmers”, https://selfpaced.bitbucket.
io/#/python/calendar.

[29] S. Engineering, “Cs106a - programming methodology”, https : / / web .

stanford.edu/class/archive/cs/cs106a/cs106a.1206/schedule.html.

[30] Z. Fan, X. Gao, M. Mirchev, A. Roychoudhury, and S. H. Tan, “Auto-
mated repair of programs from large language models”, in 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE), IEEE, 2023,
pp. 1469–1481.

[31] Z. Fan, S. H. Tan, and A. Roychoudhury, “Concept-based automated grading
of cs-1 programming assignments”, in Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2023, pp. 199–
210.

[32] P. Fontaine, M. Ogawa, T. Sturm, X. T. Vu, et al., “Wrapping computer al-
gebra is surprisingly successful for non-linear SMT”, in SC-square 2018-Third
International Workshop on Satisfiability Checking and Symbolic Computation,
2018.

[33] P. S. Foundation, “Abstract syntax trees”, https://docs.python.org/3/
library/ast.html, 2022.

124

https://doi.org/10.1145/3624720
https://doi.org/10.1145/3624720
https://selfpaced.bitbucket.io/#/python/calendar
https://selfpaced.bitbucket.io/#/python/calendar
https://web.stanford.edu/class/archive/cs/cs106a/cs106a.1206/schedule.html
https://web.stanford.edu/class/archive/cs/cs106a/cs106a.1206/schedule.html
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html

[34] J. Fowkes, P. Chanthirasegaran, R. Ranca, M. Allamanis, M. Lapata, and
C. Sutton, “Autofolding for source code summarization”, IEEE Transactions
on Software Engineering, vol. 43, no. 12, pp. 1095–1109, 2017.

[35] X. Gao, S. Mechtaev, and A. Roychoudhury, “Crash-avoiding program repair”,
in Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2019, pp. 8–18.

[36] L. Gong, “Auto-grading dynamic programming language assignments”, Uni-
versity of California, Berkeley, Tech. Rep, 2014.

[37] A. Goold and P. Horan, “Foundation software engineering practices for
capstone projects and beyond”, in Proceedings 15th Conference on Software
Engineering Education and Training (CSEE&T 2002), 2002, pp. 140–146.

[38] C. L. Goues, M. Pradel, and A. Roychoudhury, “Automated program repair”,
Communications of the ACM, vol. 62, no. 12, pp. 56–65, 2019.

[39] S. Gulwani, V. A. Korthikanti, and A. Tiwari, “Synthesizing geometry con-
structions”, ACM SIGPLAN Notices, vol. 46, no. 6, pp. 50–61, 2011.

[40] S. Gulwani, I. Radicek, and F. Zuleger, “Feedback generation for performance
problems in introductory programming assignments”, in FSE, 2014, pp. 41–
51.

[41] S. Gulwani, I. Radicek, and F. Zuleger, “Automated clustering and program
repair for introductory programming assignments”, in Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2018, pp. 465–480.

[42] R. Gupta, S. Pal, A. Kanade, and S. Shevade, “Deepfix: Fixing common c
language errors by deep learning”, in Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, 2017, pp. 1345–1351.

[43] D. C. Halbert, “Programming by example”, University of California, Berkeley,
1984.

[44] A. Hellas, J. Leinonen, S. Sarsa, C. Koutcheme, L. Kujanpää, and J. Sorva,
“Exploring the responses of large language models to beginner programmers’
help requests”, in Proceedings of the 2023 ACM Conference on International
Computing Education Research-Volume 1, 2023, pp. 93–105.

125

[45] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Lazy abstraction”,
in ACM SIGPLAN SIGACT Symposium on Principles of Programming
Languages (POPL), 2002.

[46] J. B. Hext and J. Winings, “An automatic grading scheme for simple program-
ming exercises”, Communications of the ACM, vol. 12, no. 5, pp. 272–275,
1969.

[47] Y. Hu, U. Z. Ahmed, S. Mechtaev, B. Leong, and A. Roychoudhury, “Re-
factoring based program repair applied to programming assignments”, in
Proceedings of the 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE), IEEE, 2019, pp. 388–398.

[48] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppälä, “Review of recent
systems for automatic assessment of programming assignments”, in Proceed-
ings of the 10th Koli calling international conference on computing education
research, 2010, pp. 86–93.

[49] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari, “Oracle-guided component-
based program synthesis”, in ICSE, 2010, pp. 215–224.

[50] N. Jiang, T. Lutellier, and L. Tan, “Cure: Code-aware neural machine trans-
lation for automatic program repair.” In 43rd IEEE/ACM International
Conference on Software Engineering, ICSE 2021, Madrid, Spain, 22-30 May
2021, IEEE, IEEE, May 2021, pp. 1161–1173. [Online]. Available: https:
//arxiv.org/pdf/2103.00073.

[51] L. Johns-Boast and S. Flint, “Simulating industry: An innovative software
engineering capstone design course”, in 2013 IEEE Frontiers in Education
Conference (FIE), IEEE, 2013, pp. 1782–1788.

[52] M. Joy, N. Griffiths, and R. Boyatt, “The boss online submission and assess-
ment system”, Journal on Educational Resources in Computing (JERIC),
vol. 5, no. 3, 2–es, 2005.

[53] S. Kaleeswaran, A. Santhiar, A. Kanade, and S. Gulwani, “Semi-supervised
verified feedback generation”, in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2016,
pp. 739–750.

126

https://arxiv.org/pdf/2103.00073
https://arxiv.org/pdf/2103.00073

[54] M. Kazemitabaar, R. Ye, X. Wang, A. Z. Henley, P. Denny, M. Craig,
and T. Grossman, “Codeaid: Evaluating a classroom deployment of an llm-
based programming assistant that balances student and educator needs”, in
Proceedings of the CHI Conference on Human Factors in Computing Systems,
2024, pp. 1–20.

[55] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation learned
from human-written patches”, in ICSE, 2013, pp. 802–811.

[56] C. Koutcheme, N. Dainese, S. Sarsa, A. Hellas, J. Leinonen, and P. Denny,
“Open source language models can provide feedback: Evaluating llms’ ability
to help students using gpt-4-as-a-judge”, arXiv preprint arXiv:2405.05253,
2024.

[57] X.-B. D. Le, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser, “S3: Syntax-
and semantic-guided repair synthesis via programming by examples”, in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering (FSE), 2017, pp. 593–604.

[58] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A generic
method for automatic software repair”, Ieee transactions on software engi-
neering, vol. 38, no. 1, pp. 54–72, 2011.

[59] J. Leinonen, A. Hellas, S. Sarsa, B. Reeves, P. Denny, J. Prather, and
B. A. Becker, “Using large language models to enhance programming error
messages”, in Proceedings of the 54th ACM Technical Symposium on Computer
Science Education V. 1, 2023, pp. 563–569.

[60] Y. Li, S. Wang, and T. N. Nguyen, “Dlfix: Context-based code transformation
learning for automated program repair”, in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, 2020, pp. 602–614.

[61] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “Tbar: Revisiting template-
based automated program repair”, in Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2019, pp. 31–42.

[62] M. Liu and F. M’hiri, “Beyond traditional teaching: Large language models
as simulated teaching assistants in computer science”, in Proceedings of the

127

55th ACM Technical Symposium on Computer Science Education V. 1, 2024,
pp. 743–749.

[63] X. Liu, S. Wang, P. Wang, and D. Wu, “Automatic grading of programming
assignments: An approach based on formal semantics”, in 2019 IEEE/ACM
41st International Conference on Software Engineering: Software Engineering
Education and Training (ICSE-SEET), IEEE, 2019, pp. 126–137.

[64] F. Long and M. Rinard, “Automatic patch generation by learning correct
code”, in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL), 2016, pp. 298–
312.

[65] T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan, “Coconut:
Combining context-aware neural translation models using ensemble for pro-
gram repair.” In ISSTA ’20: 29th ACM SIGSOFT International Symposium
on Software Testing and Analysis, Virtual Event, USA, July 18-22, 2020,
S. Khurshid and C. S. Pasareanu, Eds., ACM, Jul. 2020, pp. 101–114.

[66] S. MacNeil, A. Tran, A. Hellas, J. Kim, S. Sarsa, P. Denny, S. Bernstein, and
J. Leinonen, “Experiences from using code explanations generated by large
language models in a web software development e-book”, in Proceedings of
the 54th ACM Technical Symposium on Computer Science Education V. 1,
2023, pp. 931–937.

[67] A. Marginean, J. Bader, S. Chandra, M. Harman, Y. Jia, K. Mao, A. Mols, and
A. Scott, “Sapfix: Automated end-to-end repair at scale”, in 2019 IEEE/ACM
41st International Conference on Software Engineering: Software Engineering
in Practice (ICSE-SEIP), IEEE, 2019, pp. 269–278.

[68] S. Mechtaev, M.-D. Nguyen, Y. Noller, L. Grunske, and A. Roychoudhury,
“Semantic program repair using a reference implementation”, in Proceedings
of the 40th International Conference on Software Engineering (ICSE), 2018.

[69] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline
program patch synthesis via symbolic analysis”, in Proceedings of the 38th
International Conference on Software Engineering (ICSE), 2016, pp. 691–701.

128

[70] G. Michaelson, “Automatic analysis of functional program style”, in Software
Engineering Conference, Australian, IEEE Computer Society, 1996, pp. 38–
38.

[71] S. Mirhosseini, A. Z. Henley, and C. Parnin, “What is your biggest pain
point? an investigation of cs instructor obstacles, workarounds, and desires”,
in Proceedings of the 54th ACM Technical Symposium on Computer Science
Education V. 1, ser. SIGCSE 2023, Toronto ON, Canada: Association for
Computing Machinery, 2023, pp. 291–297, isbn: 9781450394314. [Online].
Available: https://doi.org/10.1145/3545945.3569816.

[72] M. Monperrus, “Automatic software repair: A bibliography”, ACM Computing
Surveys, vol. 51, 1 2018.

[73] L. Moura and N. Bjørner, “Z3: An efficient SMT solver”, in TACAS, 2008,
pp. 337–340.

[74] G. C. Necula, “Translation validation for an optimizing compiler”, in Pro-
ceedings of the ACM SIGPLAN 2000 conference on Programming language
design and implementation, 2000, pp. 83–94.

[75] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix: Program
repair via semantic analysis”, in 2013 35th International Conference on
Software Engineering (ICSE), IEEE, 2013, pp. 772–781.

[76] M. OpenCourseWare, “6.0001 introduction to computer science and program-
ming in python”, https://ocw.mit.edu/courses/.

[77] T. Phung, J. Cambronero, S. Gulwani, T. Kohn, R. Majumdar, A. Singla,
and G. Soares, “Generating high-precision feedback for programming syntax
errors using large language models”, arXiv preprint arXiv:2302.04662, 2023.

[78] J. Pryor and B. Crossouard, “A socio-cultural theorisation of formative
assessment”, Oxford review of Education, vol. 34, no. 1, pp. 1–20, 2008.

[79] Y. Pu, K. Narasimhan, A. Solar-Lezama, and R. Barzilay, “Sk_p: A neural
program corrector for moocs”, in Companion Proceedings of the 2016 ACM
SIGPLAN International Conference on Systems, Programming, Languages
and Applications: Software for Humanity, 2016, pp. 39–40.

129

https://doi.org/10.1145/3545945.3569816
https://ocw.mit.edu/courses/

[80] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The strength of random search
on automated program repair”, in Proceedings of the 36th International
Conference on Software Engineering, 2014, pp. 254–265.

[81] Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch plausibil-
ity and correctness for generate-and-validate patch generation systems”, in
Proceedings of the 2015 International Symposium on Software Testing and
Analysis (ISSTA), 2015.

[82] R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi, R.
Suzuki, and B. Hartmann, “Learning syntactic program transformations from
examples”, in 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE), IEEE, 2017, pp. 404–415.

[83] T. J. Ryan, G. M. Alarcon, C. Walter, R. Gamble, S. A. Jessup, A. Capiola,
and M. D. Pfahler, “Trust in automated software repair”, in International
Conference on Human-Computer Interaction, Springer, 2019, pp. 452–470.

[84] M. Schreier, “Qualitative content analysis in practice”, Sage publications,
2012.

[85] N. U. of Singapore, “Coursemology, gamified online education platform”,
https://coursemology.org/, Accessed: 2022-10-06, 2022.

[86] N. Singer, “The Hard Part of Computer Science? Getting Into Class”, T. N. Y.
Times, Ed., Accessed: 16-March-2023, Jan. 2019. [Online]. Available: https://
www.nytimes.com/2019/01/24/technology/computer-science-courses-

college.html.

[87] R. Singh, S. Gulwani, and A. Solar-Lezama, “Automated feedback generation
for introductory programming assignments”, in Proceedings of the 34th ACM
SIGPLAN conference on Programming language design and implementation
(PLDI), 2013, pp. 15–26.

[88] R. Singh, S. Gulwani, and A. Solar-Lezama, “Automated feedback generation
for introductory programming assignments”, in Proceedings of the 34th ACM
SIGPLAN conference on Programming language design and implementation,
2013, pp. 15–26.

130

https://coursemology.org/
https://www.nytimes.com/2019/01/24/technology/computer-science-courses-college.html
https://www.nytimes.com/2019/01/24/technology/computer-science-courses-college.html
https://www.nytimes.com/2019/01/24/technology/computer-science-courses-college.html

[89] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat, “Combina-
torial sketching for finite programs”, in Proceedings of the 12th international
conference on Architectural support for programming languages and operating
systems, 2006, pp. 404–415.

[90] M. Spichkova, “Industry-oriented project-based learning of software engi-
neering”, in 2019 24th International conference on engineering of complex
computer systems (ICECCS), IEEE, 2019, pp. 51–60.

[91] S. H. Tan, H. Yoshida, M. R. Prasad, and A. Roychoudhury, “Anti-patterns
in search-based program repair”, in FSE, 2016, pp. 727–738.

[92] A. Taylor, A. Vassar, J. Renzella, and H. Pearce, “Dcc–help: Transforming
the role of the compiler by generating context-aware error explanations with
large language models”, in Proceedings of the 55th ACM Technical Symposium
on Computer Science Education V. 1, 2024, pp. 1314–1320.

[93] S. Tenhunen, T. Männistö, M. Luukkainen, and P. Ihantola, “A systematic
literature review of capstone courses in software engineering”, Information
and Software Technology, p. 107 191, 2023.

[94] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix,
B. Rozière, N. Goyal, E. Hambro, F. Azhar, et al., “Llama: Open and efficient
foundation language models”, arXiv preprint arXiv:2302.13971, 2023.

[95] C. M. University, “Cmu 15-122 fundamentals of programming and computer
science”, https://www.cs.cmu.edu/~112/schedule.html.

[96] U. Von Matt, “Kassandra: The automatic grading system”, ACM SIGCUE
Outlook, vol. 22, no. 1, pp. 26–40, 1994.

[97] M. Vujošević-Janičić, M. Nikolić, D. Tošić, and V. Kuncak, “Software verifica-
tion and graph similarity for automated evaluation of students’ assignments”,
Information and Software Technology, vol. 55, no. 6, pp. 1004–1016, 2013.

[98] K. Wang, R. Singh, and Z. Su, “Dynamic neural program embedding for
program repair”, arXiv preprint arXiv:1711.07163, 2017.

131

https://www.cs.cmu.edu/~112/schedule.html

[99] K. Wang, R. Singh, and Z. Su, “Search, align, and repair: Data-driven feedback
generation for introductory programming exercises”, in Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2018, pp. 481–495.

[100] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou,
et al., “Chain-of-thought prompting elicits reasoning in large language models”,
Advances in neural information processing systems, vol. 35, pp. 24 824–24 837,
2022.

[101] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning code
fragments for code clone detection”, in 2016 31st IEEE/ACM International
Conference on Automated Software Engineering (ASE), IEEE, 2016, pp. 87–
98.

[102] M. Wick, D. Stevenson, and P. Wagner, “Using testing and junit across the
curriculum”, ACM SIGCSE Bulletin, vol. 37, no. 1, pp. 236–240, 2005.

[103] Wikipedia contributors, “Root-mean-square deviation — Wikipedia, the free
encyclopedia”, [Online; accessed 10-November-2022], 2022. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Root-mean-square_

deviation&oldid=1117272661.

[104] D. Williams, J. Callan, S. Kirbas, S. Mechtaev, J. Petke, T. Prideaux-Ghee,
and F. Sarro, “User-centric deployment of automated program repair at
bloomberg”, arXiv preprint arXiv:2311.10516, 2023.

[105] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on software
fault localization”, IEEE Transactions on Software Engineering, vol. 42, no. 8,
pp. 707–740, 2016.

[106] Y. Xiong, X. Liu, M. Zeng, L. Zhang, and G. Huang, “Identifying patch cor-
rectness in test-based program repair”, in Proceedings of the 40th international
conference on software engineering, 2018, pp. 789–799.

[107] J. Yi, U. Z. Ahmed, A. Karkare, S. H. Tan, and A. Roychoudhury, “A feasibil-
ity study of using automated program repair for introductory programming
assignments”, in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, 2017, pp. 740–751.

132

https://en.wikipedia.org/w/index.php?title=Root-mean-square_deviation&oldid=1117272661
https://en.wikipedia.org/w/index.php?title=Root-mean-square_deviation&oldid=1117272661

[108] J. Yi, S. H. Tan, S. Mechtaev, M. Böhme, and A. Roychoudhury, “A cor-
relation study between automated program repair and test-suite metrics”,
Empirical Software Engineering, vol. 23, no. 5, pp. 2948–2979, 2018.

[109] Y. Yuan and W. Banzhaf, “Arja: Automated repair of java programs via multi-
objective genetic programming”, IEEE Transactions on software engineering,
vol. 46, no. 10, pp. 1040–1067, 2018.

[110] A. Zaks and A. Pnueli, “Covac: Compiler validation by program analysis of
the cross-product”, in International Symposium on Formal Methods, Springer,
2008, pp. 35–51.

[111] J. Zhang, J. Cambronero, S. Gulwani, V. Le, R. Piskac, G. Soares, and G.
Verbruggen, “Repairing bugs in python assignments using large language
models”, arXiv preprint arXiv:2209.14876, 2022.

[112] K. Zhang and D. Shasha, “Simple fast algorithms for the editing distance
between trees and related problems”, SIAM journal on computing, vol. 18,
no. 6, pp. 1245–1262, 1989.

[113] Y. Zhang, H. Ruan, Z. Fan, and A. Roychoudhury, “Autocoderover: Au-
tonomous program improvement”, in Proceedings of the 33rd ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2024, pp. 1592–
1604.

[114] Z. Zhong, J. Guo, W. Yang, J. Peng, T. Xie, J.-G. Lou, T. Liu, and D. Zhang,
“Semregex: A semantics-based approach for generating regular expressions
from natural language specifications”, in Proceedings of the 2018 conference
on empirical methods in natural language processing, 2018.

[115] Q. Zhu, Z. Sun, Y.-a. Xiao, W. Zhang, K. Yuan, Y. Xiong, and L. Zhang, “A
syntax-guided edit decoder for neural program repair.” In ESEC/FSE ’21:
29th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, Athens, Greece, August 23-28,
2021, D. Spinellis, G. Gousios, M. Chechik, and M. D. Penta, Eds., ACM,
Aug. 2021, pp. 341–353. [Online]. Available: https://arxiv.org/pdf/2106.
08253.

133

https://arxiv.org/pdf/2106.08253
https://arxiv.org/pdf/2106.08253

	Contents
	Abstract
	List of Figures
	List of Tables
	Introduction
	Background
	Automated Program Repair
	Search-Based Repair
	Semantic-Based Repair
	Learning-Based Repair
	Overfitting in Program Repair

	Automated Feedback Generation
	Debugging-Based Feedback Generation
	Program Equivalence based Feedback Generation
	Program Repair based Feedback Generation
	Large Language Model based Feedback Generation

	Verified Repair of Programming Assignments
	Introduction
	Overview
	Setup Phase
	Verification Phase
	Repair Phase

	Program Model
	Abstract Syntax Tree (AST)
	Control Flow Graph (CFG)
	Control Flow Automaton (CFA)

	Aligned Automata
	Structurally Aligning AS and AR
	Inferring Variable Alignment Predicates

	Verification and Repair Algorithm
	Edge Verification
	Edge repair
	Properties preserved by Verifix

	Experimental Setup
	Research Questions
	Dataset
	Implementation

	Evaluation
	RQ1: Repair success rate
	RQ2: Running time
	RQ3: Reasons for repair failure
	RQ4: Minimal repair
	RQ5: Overfitting
	RQ6: Repair success rate with multiple reference implementations

	User Study
	User Study Questionnaire
	User Study Setup
	User Study Results

	Threats to Validity
	Discussion

	Concept-based Automated Grading
	Introduction
	Overview
	Programming Concept Abstraction
	Graph Matching and Grading
	Concept Graph Matching
	Automated Concept Unfolding
	Concept Based Grading

	Evaluation
	RQ1: Overall Grading Accuracy
	RQ2: Relation with Test Failure Rate
	RQ3: Limitations of ConceptGrader

	User Survey
	Threats to Validity
	Conclusion

	Design of Intelligent Tutoring System for Programming
	Introduction
	Intelligent Tutoring System (ITS)
	Design Principles
	Language Parser
	Syntactic Alignment
	Error Localizer and Interpreter
	Repair Engines
	Feedback Generator
	AutoGrader

	Pre-Deployment in CS-1 Teaching
	Study Methodology
	Result Analysis for Students

	Deployment Experience
	Lessons Learned and Prospects
	Conclusion

	Linking Software Engineering Teaching with Programming Teaching
	Introduction
	Design of Software Engineering Course
	Teaching Concept
	Overview of Long-running Project
	Overview of CS3213 Course Management

	Experience of ITS in Data Structures
	Demonstration
	User Study in CS2040S

	Challenges & Lessons Learned
	Incentives for Stakeholders
	Project Preferences
	Managing Software Evolution

	Impact and Vision for the future
	Impact: Teachers, Students, Research
	Intelligent Tutoring in AI Era

	Related Work
	Automated Program Repair
	Test-based Program Repair
	Program Repair of Programming Assignments
	Program Equivalence Verification

	Automated Grading.
	Capstone Software Engineering Projects

	Conclusion
	Summary of Contributions
	Future Work

	Publication Appeared
	Bibliography

