
MEMORY OPTIMIZATIONS FOR

TIME-PREDICTABLE EMBEDDED SOFTWARE

VIVY SUHENDRA

NATIONAL UNIVERSITY OF SINGAPORE

2009

MEMORY OPTIMIZATIONS FOR

TIME-PREDICTABLE EMBEDDED SOFTWARE

VIVY SUHENDRA

(B.Comp.(Hons.), NUS)

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2009

Acknowledgements

My gratitude goes to both of my supervisors, Dr. Abhik and Dr. Tulika, for their firm and

attentive guidance throughout my candidature. Their joint supervision has enabled me to

see from different perspectives and to adopt different styles, lending breadth and depth

to our research work. Their advices have also led me into many valuable experiences in

the form of projects, internship, teaching.

I am also fortunate to have interacted with wonderful and fun labmates, from my first

years with the Programming Languages Lab to my final years with the Embedded Sys-

tems Lab. They have truly been great company at work and at play.

Lastly, I dedicate this thesis to my parents, the very personification of love and the ever

most important presence in my life.

i

Contents

Acknowledgements i

Contents ii

Abstract vii

Related Publications ix

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Motivation . 1

1.1.1 Real-Time Systems . 2

1.1.2 Memory Optimization . 3

1.2 Thesis Statement . 7

1.3 Thesis Organization . 8

ii

CONTENTS iii

2 Background 10

2.1 Cache . 10

2.1.1 Cache Mechanism . 10

2.1.2 Cache Locking . 12

2.1.3 Cache Partitioning . 13

2.2 Scratchpad Memory . 14

2.3 Worst-Case Execution Time . 16

2.4 Integer Linear Programming . 17

3 Literature Review 21

3.1 Cache Analysis . 21

3.2 Software-Controlled Caching . 23

3.3 Scratchpad Allocation . 25

3.4 Integrated Cache / Scratchpad Utilization 29

3.5 Memory Hierarchy Design Exploration 29

3.6 Worst-Case Optimizations in Other Fields 31

4 Worst-Case Execution Time Analysis 32

4.1 Overview . 32

4.1.1 Flow Analysis . 33

4.1.2 Micro-Architectural Modeling 34

CONTENTS iv

4.1.3 WCET Calculation . 36

4.2 WCET Analysis with Infeasible Path Detection 37

4.2.1 Infeasible Path Information . 38

4.2.2 Exploiting Infeasible Path Information in WCET Calculation . . 43

4.2.3 Tightness of Estimation . 48

4.3 Chapter Summary . 52

5 Predictable Shared Cache Management 53

5.1 Introduction . 53

5.2 System Settings . 56

5.3 Memory Management Schemes . 57

5.3.1 Static Locking, No Partition (SN) 58

5.3.2 Static Locking, Core-based Partition (SC) 59

5.3.3 Dynamic Locking, Task-based Partition (DT) 60

5.3.4 Dynamic Locking, Core-based Partition (DC) 60

5.4 Experimental Evaluation . 61

5.5 Chapter Summary . 67

6 Scratchpad Allocation for Sequential Applications 68

6.1 Introduction . 68

6.2 Optimal Allocation via ILP . 70

CONTENTS v

6.3 Allocation via Customized Search . 72

6.3.1 Branch-and-Bound Search . 75

6.3.2 Greedy Heuristic . 78

6.4 Experimental Evaluation . 79

6.5 Chapter Summary . 85

7 Scratchpad Allocation for Concurrent Applications 86

7.1 Introduction . 87

7.2 Problem Formulation . 92

7.2.1 Application Model . 92

7.2.2 Response Time . 94

7.2.3 Scratchpad Allocation . 95

7.3 Method Overview . 98

7.3.1 Task Analysis . 100

7.3.2 WCRT Analysis . 101

7.3.3 Scratchpad Sharing Scheme and Allocation 103

7.3.4 Post-Allocation Analysis . 104

7.4 Allocation Methods . 106

7.4.1 Profile-based Knapsack (PK) 108

7.4.2 Interference Clustering (IC) 113

7.4.3 Graph Coloring (GC) . 115

CONTENTS vi

7.4.4 Critical Path Interference Reduction (CR) 117

7.5 Experimental Evaluation . 122

7.6 Extension to Message Sequence Graph 126

7.7 Method Scalability . 131

7.8 Chapter Summary . 136

8 Integrated Scratchpad Allocation and Task Scheduling 137

8.1 Introduction . 137

8.2 Task Mapping and Scheduling . 138

8.3 Problem Formulation . 141

8.4 Method Illustration . 144

8.5 Integer Linear Programming Formulation 147

8.5.1 Task Mapping/Scheduling . 148

8.5.2 Pipelined Scheduling . 151

8.5.3 Scratchpad Partitioning and Data Allocation 156

8.6 Experimental Evaluation . 159

8.7 Chapter Summary . 165

9 Conclusion 166

9.1 Thesis Contributions . 166

9.2 Future Directions . 167

Bibliography 169

Abstract

Real-time constraints place a requirement on systems to accomplish their assigned func-

tionality in a certain timeframe. This requirement is critical for hard real-time applica-

tions, such as safety device controllers, where the system behavior in the worst case

determines the system feasibility with respect to timing specifications. There is often a

need to improve this worst-case performance to realize the system with efficient use of

system resources. The rule remains, however, that all impacts of performance enhance-

ment done to the system should not compromise its timing predictability — the property

that its performance can be bounded and guaranteed to meet its timing constraints under

all possible scenarios.

Due to the yet-to-be-resolved gap between the performance of processor and memory

technology, memory accesses remain the reigning performance bottleneck of most ap-

plications today. Embedded systems generally include fast memory on-chip to speed

up execution time. To utilize this resource for optimal performance gain, it is crucial

to design a suitable management scheme. Popular approaches targeted at enhancing

average-case performance, typically done via profiling, cannot be directly adapted to ef-

fectively improve worst-case performance, due to the inherent possibility of worst-case

execution path shift. There is thus a need for new approaches specifically targeted at

optimizing worst-case performance in a time-predictable manner.

vii

ABSTRACT viii

With that premise, this thesis presents and evaluates memory optimization techniques to

improve the worst-case performance while preserving timing predictability of real-time

embedded software. The first issue we discuss is time-predictable management schemes

for shared caches. We examine alternatives for combined employment of the popular

mechanisms cache locking and cache partitioning. The comparative evaluation of their

performance on applications with various characteristics serves as design guidelines

for shared cache management on real-time systems. This study complements existing

researches on predictable caching that have been largely focused on private caches.

The remaining of the thesis focuses on the utilization of scratchpad memory, which

has inherently time-predictable characteristics and is thus particularly suited for real-

time systems. We present optimal as well as heuristic-based scratchpad allocation tech-

niques aimed at minimizing the worst-case execution time of sequential applications.

The techniques address the phenomenon of worst-case execution path shift and target

the global, rather than local, optimum. The discussion that follows extends the concern

to scratchpad allocation for concurrent multitasking applications. We design flexible

space-sharing and time-multiplexing schemes based on task interaction patterns to opti-

mize overall worst-case application response time while ensuring total predictability.

We then widen the perspective to the interaction among scratchpad allocation and other

multiprocessing aspects affecting application response time. One such dominant aspect

is task mapping and scheduling, which largely determines task memory requirement.

We present a technique for simultaneous global optimization of scratchpad partitioning

and allocation coupled with task mapping and scheduling, which achieves better perfor-

mance than that resulting from separate optimizations on the two fronts.

The results presented in this work confirm our thesis that explicit consideration of timing

predictability in memory optimization does safely and effectively improve worst-case

application response time on systems with real-time constraints.

Related Publications

V. Suhendra, A. Roychoudhury, and T. Mitra. Scratchpad Allocation for Concurrent

Embedded Software. In Proc. ACM International Conference on Hardware/Software

Codesign and System Synthesis (CODES+ISSS), 2008.

V. Suhendra and T. Mitra. Exploring Locking & Partitioning for Predictable Shared

Caches on Multi-Cores. In Proc. ACM Design Automation Conference (DAC), 2008.

V. Suhendra, C. Raghavan, and T. Mitra. Integrated Scratchpad Memory Optimiza-

tion and Task Scheduling for MPSoC Architectures. In Proc. ACM/IEEE International

Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES),

2006.

V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen. Efficient Detection and Ex-

ploitation of Infeasible Paths for Software Timing Analysis. In Proc. ACM Design

Automation Conference (DAC), 2006.

V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen. WCET Centric Data Allocation

to Scratchpad Memory. In Proc. IEEE Real-Time Systems Symposium (RTSS), 2005.

T. Chen, T. Mitra, A. Roychoudhury, and V. Suhendra. Exploiting Branch Constraints

without Explicit Path Enumeration. In Proc. 5th International Workshop on Worst-Case

Execution Time Analysis (WCET), 2005.

ix

List of Tables

4.1 Benchmark statistics . 48

4.2 Comparison of observed WCET, WCET estimation with and without
infeasibility information . 49

4.3 Efficiency of our WCET calculation method 51

5.1 Design choices for shared cache . 57

5.2 Benchmarks comprising the task sets 62

6.1 Benchmark characteristics . 80

6.2 Running time of allocation methods for scratchpad = 10% of data memory 84

7.1 Code size and WCET of tasks in the PapaBench application 125

7.2 Code size and WCET of tasks in the DEBIE application 133

8.1 Benchmark characteristics . 161

8.2 Best-case and worst-case algorithm runtimes for the benchmarks 165

x

List of Figures

2.1 Way-based and set-based cache partitioning 13

2.2 Scratchpad memory . 14

3.1 Classification of scratchpad allocation techniques 25

4.1 An example program and its control flow graph (CFG) 41

5.1 Different locking and partitioning schemes for the shared L2 cache . . . 59

5.2 Effects of shared caching schemes SN, DT, SC, and DC on task sets with
various characteristics . 64

6.1 Non-constant WCET reduction due to variable allocation 74

6.2 Pruning in the branch-and-bound search tree 77

6.3 Original and reduced WCET after scratchpad allocation by ILP, greedy
(Grd), and branch-and-bound (BnB) for various benchmarks and scratch-
pad sizes . 82

6.4 Original and reduced WCET after ILP, greedy (Grd), branch-and-bound
(BnB), and ACET-based (Avg) scratchpad allocation for the fresnel
benchmark . 83

7.1 Message Sequence Chart model of the adapted UAV control application 87

7.2 A sample MSC extracted from the UAV control application case study . 88

7.3 Naive memory allocation strategies for the model in Figure 7.2 89

7.4 Choices of scratchpad overlay schemes for the model in Figure 7.2: (a)
safe, (b) unsafe, and (c) optimal . 90

xi

LIST OF FIGURES xii

7.5 Workflow of WCRT-optimizing scratchpad allocation 91

7.6 A simple MSC running on multiple PEs with scratchpad memories . . . 92

7.7 Task lifetimes before and after allocation, and the corresponding inter-
ference graphs . 99

7.8 Motivation for non-increasing task interference after allocation 105

7.9 Four considered allocation schemes with varying sophistication 107

7.10 Welsh-Powell algorithm for graph coloring 116

7.11 Mechanism of slack insertion for interference elimination — (a) task
lifetimes without introducing slack, and (b) the corresponding lifetimes
after introducing slack . 120

7.12 WCRT of the benchmark application after allocation by Profile-based
Knapsack (PK), Interference Clustering (IC), Graph Coloring (GC),
and Critical Path Interference Reduction (CR), along with algorithm
runtime . 124

7.13 Message Sequence Graph of the PapaBench application 127

7.14 WCRT of the complete PapaBench application after allocation by Profile-
based Knapsack (PK), Interference Clustering (IC), Graph Coloring
(GC), and Critical Path Interference Reduction (CR), along with algo-
rithm runtime . 129

7.15 Message Sequence Graph of the DEBIE application 132

7.16 WCRT of the DEBIE application after allocation by Profile-based Knap-
sack (PK), Interference Clustering (IC), Graph Coloring (GC), and Crit-
ical Path Interference Reduction (CR), along with algorithm runtime . . 134

8.1 Embedded single-chip multiprocessor with virtually shared scratchpad
memory . 141

8.2 Task graph of LAME MP3 encoder . 144

8.3 Optimal pipelined schedule for the task graph in Figure 8.2 without con-
sidering data allocation . 144

8.4 Optimal pipelined schedule for the task graph in Figure 8.2 through in-
tegrated task scheduling, scratchpad partitioning and data allocation . . 146

8.5 An example task graph . 147

LIST OF FIGURES xiii

8.6 An optimal non-pipelined schedule for the task graph in Figure 8.5 on
four processors . 151

8.7 An optimal pipelined schedule for the task graph in Figure 8.5 with (a)
single-instance execution view, and (b) steady-state execution view . . . 152

8.8 Initiation interval (II) for the different benchmarks with EQ, PF, and
CF strategies given varying on-chip scratchpad budgets on a 2-processor
configuration . 163

8.9 Improvement in initiation interval (II) due to PF and CF over EQ for
benchmark lame . 164

Chapter 1

Introduction

Safety first.

And yet—

quality, quality, quality.

1.1 Motivation

The omnipresence of computers in this era owes much to the existence of embedded sys-

tems — specific-purpose applications running on customized, typically compact devices

varying in size and complexity from cell phones to automated aircraft controllers. Com-

petitive manufacturers are concerned about tuning the execution platform to maximize

the system performance, a term that covers many facets at once: speed, accuracy, energy

requirement, and other aspects that define the level of customer satisfaction. Certainly,

the optimization effort needs only be catered to the single target application. Never-

theless, with the advanced features ready for exploitation given present-day technology,

this alone is a non-trivial matter, and often involves thorough modeling, analysis, and/or

simulation of the program.

1

CHAPTER 1. INTRODUCTION 2

1.1.1 Real-Time Systems

Performance measure in terms of execution speed is closely related to the concept of

real-time (or timing) constraints. These are expectations of how much time an applica-

tion may take to respond to a request for action. They form a part of the specifications

of real-time systems, whose functioning is considered correct only if tasks are accom-

plished within the designated deadlines. For instance, cell phone users expect to see the

characters they type on the keypad appear on the screen “instantly”, which, given hu-

man perception limits, may translate to microseconds of system time. On a more serious

note, a car anti-lock braking system (ABS) has to react within a short time to prevent

the wheel from locking once the symptoms are detected, so that the driver does not lose

steering control over the vehicle under heavy braking.

The cell phone example describes a soft real-time system, where exceeding the promised

response time amounts to poor quality but does not cause system failure; while the ABS

is a hard real-time system, where missing the deadline means the system has failed to

accomplish the mission. For both types of systems, timing constraints are an impor-

tant part of the system specification, and it is mandatory to verify those properties by

bounding the application response time in the worst possible scenario. In other words,

the execution time of a real-time system should be predictable in all situations – it is

guaranteed to be within the stipulated deadlines under any circumstances.

An application generally consists of one or more processes, logical units each with a des-

ignated functionality that together achieve the application objective. A process, in turn,

consists of one or more tasks, complete implementations of a subset of the objective. It

is sometimes the case that the various tasks in the application have differing deadlines to

meet in order for the application deadline to be met in the whole. For example, for the

ABS to prevent the wheel from locking in time, the detection of symptoms should be

conducted with sufficiently tight period, the signals must be relayed within sufficiently

CHAPTER 1. INTRODUCTION 3

short interval, and the actuation of the anti-lock mechanism must be sufficiently prompt.

As tasks may share dependencies and also resources, it is vital to schedule their exe-

cution in a way that enables them to meet their respective deadlines. The analysis that

verifies whether a real-time system under development satisfies this requirement is the

schedulability analysis.

Obviously, the schedulability analysis is primarily concerned with the worst-case re-

sponse time (WCRT) of tasks, that is, the maximum end-to-end delay from the point of

dispatch until the task is completed. This delay should account for the time needed for

all computations, including the time to access system resources such as memory and

I/O devices, and possible contention with other tasks in a concurrent environment. If it

is not feasible for the application to meet the timing constraints given the required task

response times, or if it costs too much system resource for it to be feasible, then some

optimizations are in order. Optimizations can be employed at many levels and in many

different forms; however, one important rule to observe in the real-time context is that

the optimization effort should be analyzable in the interest of schedulability analysis, so

that a safe timing guarantee can still be produced.

1.1.2 Memory Optimization

The performance gap between memory technology and processor technology affects all

computer systems even today. This is also true for embedded systems. The task ex-

ecution time is typically dominated by the time needed to access the memory, termed

memory access latency. As such, memory remains the major bottleneck in system per-

formance, and consequently, memory optimization is one of the most important classes

of optimization for embedded systems. While this thesis focuses on the aspect of ex-

ecution speed, another reason for the significance of memory optimization is the fact

that conventional memory systems typically make up 25%–45% of the power consump-

CHAPTER 1. INTRODUCTION 4

tion as well as the chip area in an embedded processor [15]– which are the two other

important measures for the quality of a real-time embedded software.

The memory system is organized in a hierarchy, where the lower level is faster, smaller,

and resides closer to the processing unit than the level above it. The lowest levels usually

reside on the same chip as the processor (“on-chip”).

Traditionally, on-chip memories are configured as caches. At any time, caches keep a

subset of the memory blocks in the program address space that are stored in full in the

main memory. A requested memory block is first sought in the caches, starting from the

lowest level, by comparing its address to the cache tags. If it is not found in the cache,

it will be loaded from the main memory. At the same time, a copy of the block is kept

in the cache. This block will then remain accessible from the cache for reuse until its

occupied space is needed by later blocks.

The procedure for loading and replacement of cache contents is managed dynamically

by hardware, conveniently abstracted from the point of view of the programmer and/or

compiler. However, this abstraction introduces complications in accurately determining

the execution time. The timing analysis has to model the workings of the cache and

predict the latency reduction for memory requests that can be fulfilled from the cache.

Factoring in external influences such as bus contention or preemption by other processes,

the analysis can get extremely complex. In order to provide reliable timing guarantee,

one solution is to bring down the extent of abstraction and impose software control over

the cache operation, thus making the access behaviour more predictable at the cost of

sub-optimal cache utilization. Popular approaches in this direction are cache locking

[106, 22], which fixes the subset of memory blocks to be cached, and cache partitioning

[65, 120], which eliminates contention for cache space among multiple tasks.

Recent years have seen the surge of popularity of scratchpad memory, a design alterna-

tive for on-chip memory [16]. In contrast to caches, which act as a “copy”, the scratch-

CHAPTER 1. INTRODUCTION 5

pad memory is configured to occupy a distinct subset of the memory address space vis-

ible to the processor, with the rest of the space occupied by main memory (Figure 2.2).

This partitioning is typically decided by the compiler, and the content is fully under

software control. Memory accesses in a scratchpad-based system are thus completely

predictable. This feature has been demonstrated to lead to tighter timing estimates [139]

and hence especially suited for real-time applications.

Scratchpad memory also consumes less area and energy compared to caches, because it

is accessed only for the pre-determined address range, voiding the need for a dedicated

comparison unit at each access. Empirical evaluation [15] has shown that scratchpad

usage can offer an average of 34% area reduction and up to 82% energy saving compared

to cache usage, making it attractive for embedded applications in general. The down side

is that the utilization of scratchpad memory requires additional programming effort for

memory blocks allocation.

Multiprocessing Impact In a multiprocessing environment, which is often the case

in today’s computer systems, lower levels of the memory hierarchy are typically shared

among the multiple processing cores. A widely encountered memory architecture is

a two-level cache system consisting of privately accessible Level-1 (L1) caches close

to each core, and a shared Level-2 (L2) cache placed between the L1 cache and the

main memory. Inevitably, resource sharing gives rise to issues such as contention and

interference among concurrently executing processes, which leads to higher timing un-

predictability. Modeling all of these aspects in addition to memory optimization effects

in a complete timing analysis framework is a tremendous task that has not been fully

resolved to date. Conventional multiprocessor systems have been relying on simulation

to measure computation speed [73]. This method is obviously not strict enough to give

performance guarantees in hard real-time systems.

CHAPTER 1. INTRODUCTION 6

Memory optimization is affected by inter-processor interactions as well, as processors

may share on-chip memory and communication channels in various ways, introducing

additional delays that need to be factored into the timing analysis. In addition, task divi-

sion among processors affects overall utilization of memory and other system resources,

which in turn affects the effectiveness of memory optimization methods. These should

certainly be factored into our optimization effort when targeted at such platforms.

Worst-case Performance Optimization Most optimization efforts have been focused

on improving the application performance in the most-encountered scenarios (average

case), as they are typically taken as the measure of service quality. It is also the case

in the field of memory optimization, either for cache-based [106, 132, 111, 120] or

scratchpad-based [8, 14, 100, 101] systems. For real-time systems, however, it is often

more important to improve the worst-case performance, on which the feasibility of the

system depends.

While the average-case and worst-case performance may be closely related, a memory

management decision that is optimal for the average case may not necessarily be optimal

for the worst case. The issue lies in the fact that average-case guided optimizations rely

on the profiling of the application execution, which collects the information along the

execution path triggered by the most encountered input set. The main concern in this

context is indeed more focused on the problem of discovering such input sets.

However, the path discovered via profiling is only a single path among all possible

execution paths. As the “longest” of these paths defines the worst-case performance

of the application, a straightforward extension to worst-case optimization is to simply

profile this longest path (deduced from path analysis) and perform the same procedure

as in the average-case optimization. However, once the optimization is applied, we can

expect a reduction in execution time along this path, which may now render it shorter

than some other execution path. We say that the worst-case execution path has shifted.

CHAPTER 1. INTRODUCTION 7

Thus, the effort we have spent on the former worst-case path only achieves a local

optimum in application performance. To aim for the global optimum, the method needs

to factor in the shifting of the worst-case path.

Our work tackles the challenge of performing memory optimizations targeted at im-

proving the worst case application performance, in order to meet real-time constraints

of embedded software in both uniprocessing and multiprocessing environments. In ev-

ery optimization effort, the timing predictability of the system is maintained in order to

retain safe timing guarantees.

1.2 Thesis Statement

The thesis of this research is that real-time concerns affect the effectiveness of memory

hierarchy optimization in embedded real-time systems, and therefore need to be fac-

tored in to achieve optimal memory utilization. Conversely, it is important to develop

optimization methods that do not compromise the timing predictability of the system, in

order to safely meet the system requirements.

In this thesis, we discuss the following connected facets of memory optimization for

real-time embedded software.

• How can we accurately bound the effects of memory hierarchy utilization on ap-

plication response time?

• From the other end of the perspective, how may we guide our optimization effort

based on the quantification of its effect on the worst-case performance?

• In situations where it is necessary, what is the point of balance where optimality

should be compromised to respect timing predictability without leading to signif-

icant performance degradation?

CHAPTER 1. INTRODUCTION 8

• How can we use the knowledge of application characteristics and platform fea-

tures in making design decisions for the memory hierarchy management?

• What other system features affect task response times and/or the effectiveness of

memory optimizations? How can we model the interaction among them?

1.3 Thesis Organization

We have introduced the motivation and thesis of our research in this chapter. Following

this, Chapter 2 will first lay the foundation for discussion by presenting the basics of

cache and scratchpad memory, along with an introduction to worst-case execution time

(WCET) analysis and integer linear programming. The last concept provides a precise

way to formulate optimization problems in our framework.

Chapter 3 further surveys state-of-the-art optimization techniques related to memory

hierarchy management and real-time constraints. We look at cache-based techniques,

scratchpad-based techniques, as well as the integration of both. Broadening our per-

spective, we proceed to survey multiprocessor memory management and design space

exploration. The chapter concludes with a brief review of worst-case performance en-

hancement techniques in aspects other than memory optimization, which are still rele-

vant due to their interaction on the execution platform.

As timing analysis is an issue that is inseparable from predictable memory optimiza-

tions, Chapter 4 details the key points and techniques for analysing the WCET of tasks.

We present an efficient WCET analysis method with enhanced accuracy that, when inte-

grated into our memory allocation framework, enables us to obtain immediate feedback

and finetune optimization decisions.

We open our discussion on predictable memory optimizations in Chapter 5 by address-

ing the problem of utilizing shared caches in a manner that preserves timing predictabil-

CHAPTER 1. INTRODUCTION 9

ity. This study complements the existing researches on predictable cache management

that have been largely focused on private caches.

We then proceed to describe optimization methods targeted at scratchpad memory as a

better choice for real-time systems, and dedicate two chapters for the treatment of the

issue. We start by presenting scratchpad allocation aimed at minimizing the WCET of

a single task or sequential application in Chapter 6. After that, we proceed to discuss

scratchpad allocation for concurrent multitasking applications in Chapter 7.

Following these, we extend our view and look at how scratchpad allocation may interact

with other multiprocessing aspects that also influence task response times. One such

dominant aspect is task mapping/scheduling, which largely determines task memory

requirement. Chapter 8 thus studies scratchpad memory partitioning and allocation cou-

pled with task mapping and scheduling on multiprocessor system-on-chips (MPSoCs).

Finally, we conclude our thesis with a summary of contributions and examine possible

future directions in Chapter 9.

Chapter 2

Background

In this chapter, we first look into the details of caches and scratchpad memories as the

basis for discussion on memory optimization techniques in later chapters. The operating

principles and features relevant to real-time requirements are discussed. We then present

an intuitive overview on the concept of worst-case execution time and its determination,

as a prelude to a more detailed treatment in Chapter 4. Finally, we give an introduc-

tion to the concept of integer linear programming, which we utilize significantly in the

formulation of the optimization problem.

2.1 Cache

2.1.1 Cache Mechanism

A cache is a fast on-chip memory that stores copies of data from off-chip main memory

for faster access [49]. The small physical size of caches allows them to be implemented

from the faster, more expensive SRAM (Static Random Access Memory) technology,

as compared to DRAM (Dynamic Random Access Memory) used to build the main

10

CHAPTER 2. BACKGROUND 11

memory. In addition, they are positioned close to the processor, so that bit signals need

to travel only a short distance. Most of all, a cache is effective because memory access

patterns in typical applications exhibit locality of reference. In a loop, for example, data

are very likely to be used multiple times. If these data still remain in the cache after the

first fetch, the next request to them can be fulfilled from the cache without the need for

another fetch, thus saving the access time. This is the temporal locality property.

To a lesser extent, caches also benefit from spatial locality: nearby data are fetched

along with the current requested data, as it is anticipated that they will be required soon

in the future. This type of locality is especially applicable to instruction caches, as the

sequence by which program code blocks are stored in memory largely corresponds to

the sequence by which they are executed.

The unit of transfer between different levels of cache hierarchy is called block or line.

The size of a cache line commonly ranges from 8 to 512 bytes. The cache is divided into

a number of sets. In a cache of N sets, a memory block of address Blk can be mapped

to only one cache set given by bBlk
N
c. If a cache set (“row”) contains S cache lines, then

we say the cache has associativity S, or the cache has S ways (“columns”). A block

mapped to a set can occupy any column in the set. The total size of the cache is thus

N × S multiplied by the cache line size.

Each datum in the cache has a tag to identify its address in main memory. Upon a

processor request for a datum at a certain address, the cache is searched first. If a

valid tag in the cache matches the requested address, the access is a cache hit and the

corresponding datum is delivered to the processor. Otherwise, it is a cache miss and the

datum is sought in the next memory level. The access latency of a block of data that is

found at level L in the cache hierarchy thus includes the time taken to search the cache

levels up to L in addition to the time needed to bring the block from level L all the way

to the processor. In the event of a cache miss where the datum is brought in from the

CHAPTER 2. BACKGROUND 12

main memory, a copy of the datum is also loaded into the cache, possibly replacing an

old block that maps to the same cache set.

2.1.2 Cache Locking

Cache locking is a mechanism that loads selected contents into the cache and prevents

them from being replaced during runtime. This mechanism is enabled in several com-

mercial processors, for example IBM PowerPC 440 [53], Intel-960 [54], ARM 940 [10],

and Freescale’s e300 [57]. If the entire cache is locked, then accesses to memory blocks

locked in the cache are always hits (except for the obligatory load or cold misses),

whereas accesses to unlocked memory blocks are always misses. That is, knowing the

cache contents allows the timing analysis to account for the exact latency taken by each

memory access. In practice, designers may provide the options of locking the entire

cache or locking a set of individual ways within the cache (“way locking”) [57], leaving

the remaining unlocked ways available for normal cache operation.

The selected content may remain throughout system run in the static locking scheme,

or be reloaded at chosen execution points in the dynamic locking scheme. Dynamic

cache locking views the application or task as consisting of multiple execution regions.

Regions are typically defined based on natural program division such as loops or pro-

cedures, each of which utilizes a distinct set of memory blocks, thus “isolating” the

memory reuse. An offline analysis selects memory blocks to be locked corresponding

to each region. As the execution moves from one region to another, the cache content

is replaced with blocks from the new region. Instructions are inserted at appropriate

program points to load and lock the cache. Certainly, the delay incurred by the reloads

has to be factored in the execution time calculation.

CHAPTER 2. BACKGROUND 13

2.1.3 Cache Partitioning

Cache partitioning is applied to multitasking (or multiprocessing) systems to eliminate

inter-task (inter-processor) interference. Each task (processor) is assigned a portion of

the cache, and other tasks (processors) are not allowed to replace the content. Cache

analysis can then be applied to each cache partition independently to determine the

WCET of the task (processor). Cache partitioning is less restrictive than cache locking,

as dynamic behavior is still present within the individual partitions.

…………

PE2PE1

(a) Way-based partitioning

set 1
2
3
4
5

.

.

.

2k

4-way cache

PE2PE1

…………

(b) Set-based partitioning

set 1
2
3
4
5

.

.

.

2k

4-way cache

Figure 2.1: Way-based and set-based cache partitioning

There are two schemes in which cache partitioning can be performed. Way-based parti-

tioning [27] allocates a number of ways (“columns”) to each task (Figure 2.1a). As the

number of ways in caches is quite restricted (typically 4 and at most 16), this scheme

does not support fine-grained partitioning. In practice, way-based partitioning can be

configured so that a task/processor may still read and update cache lines belonging to

another task/processor, though it is not allowed to evict them [131]. A more flexible

scheme is set-based partitioning [66], which allocates a number of sets (“rows”) to each

task (Figure 2.1b). This partitioning scheme translates the cache index (in hardware) so

CHAPTER 2. BACKGROUND 14

that each task addresses a restricted part of the cache. For efficient hardware translation,

the number of sets in a partition should be a power of 2.

Molnos et al. [88] compare both partitioning options when applied to compositional

multimedia applications, and show experimentally that the greater flexibility of set-

based partitioning works well in that particular setting to yield less cache misses com-

pared to way-based partitioning. They also observe that it is technically possible to

implement both set- and way-based partitioning in a single configuration, but both im-

plementation overhead will add up, slowing down the cache too much to be practical.

2.2 Scratchpad Memory

Scratchpad memories are small on-chip memories that are mapped into the address

space of the processor (Figure 2.2). Whenever the address of a memory access falls

within a pre-defined address range, the scratchpad memory is accessed.

CPU
SRAM

Scratchpad

(on-chip)

DRAM

Main memory

(off-chip)

Memory

address

space

Figure 2.2: Scratchpad memory

Scratchpad memory is available on a wide range of embedded CPUs, including IBM

Cell [52], Motorola M-CORE M210 [41], Texas Instruments’ TMS-470R1x [126], Intel

IXP network processors [54], and others. In general, it can be employed as an alternative

CHAPTER 2. BACKGROUND 15

to caches, or on top of caches. Several classes of embedded processors (ARM Cortex-

R4 [9], most ARM11 family [10], TigerSHARC ADSP-TS20x [6], Blackfin ADSP-

BF53x [5]) have both scratchpad memory and caches built into the chip.

The predictable timing behaviour of scratchpad memory has led to a growth in its uti-

lization for real-time systems. Wehmeyer [139] demonstrates that much tighter WCET

estimations can be obtained when employing scratchpad memory instead of caches,

leading to better system predictability. Other advantages of scratchpad memory include

reduced area and energy consumption compared to caches [16], because it does not need

to employ a dedicated comparison unit to check if each access is a hit or miss. How-

ever, now the burden of allocating memory objects to scratchpad memory lies with the

compiler or programmer.

Scratchpad memory can be used to store program code [8, 34, 58, 109, 135], program

data [14, 32, 33, 101, 130], or a combination of both [119, 136, 138]. The granularity

of allocation unit is also a compiler decision, in contrast to fixed line sizes in caches. In

the case of code scratchpad, it is reasonable to allocate in units of basic blocks, whole

loops, or whole functions. Data scratchpad space can be allocated to scalar variables

with little or no issue, but finer considerations may be needed for large arrays and heap

variables whose sizes are unknown at compile time.

The different access patterns to code and to data give rise to different concerns as well.

Allocating program code requires additional care to maintain program flow [119], while

allocating program data generally calls for specific considerations depending on the

type of the data (global, stack, or heap) and the different nature of their access. The

allocation schemes are often coupled with supporting techniques such as data partition-

ing [40], loop and data transformations [64] or memory-aware compilation [86] to make

the access pattern more amenable for allocation.

CHAPTER 2. BACKGROUND 16

We shall look at scratchpad allocation strategies in more details when we survey the

state of the art in Chapter 3.

2.3 Worst-Case Execution Time

The worst-case execution time (WCET) of a program is the upper bound on the time

it takes to execute from start to termination, on the given architectural platform, in the

intended environment. This notion is meaningful mainly in the context of (1) providing

the guarantee that the program output (computation result, event response, and so on)

will be available after a certain amount of time, or (2) ensuring reservation of sufficient

system resources for the duration of execution.

For a deterministic program with known and manageable input ranges, a reasonably

accurate WCET value can easily be determined by actually running the program with

all possible inputs and environment parameters, and observing the longest time taken.

Such a case is unfortunately extremely rare in real-life applications, for which some

methods for estimation thus need to be developed. The methods will also need to take

into account the execution platform and environment, which affect the execution time

significantly. The resulting WCET estimation is required to be safe, so that it does not

underestimate the actual time needed to complete the program. Optionally, it is desired

to be tight, thus giving a good gauge of the actual running time to be expected in the real

execution.

WCET estimation is generally achieved via a static analysis method, that is, by exam-

ining the executable code produced at compile time. First, the architectural features

determine the time taken to execute each instruction, which is usually the basic build-

ing unit of the program code. For instructions that perform memory accesses, the time

should include the access latency, accounting for the presence of caches or other mem-

CHAPTER 2. BACKGROUND 17

ory optimization schemes. The time taken by a sequence of instructions is not a direct

summation of this, but rather should be computed considering the way instructions flow

in the datapath and processor pipeline. The analysis at this level is referred to as the

micro-architectural modeling stage of the WCET analysis.

At the next level, sequences of instructions form basic blocks in the logical flow of

the program, related by conditional branching, procedure calls, and so on. The flow

analysis stage handles the analysis at this level, examining all possible paths that may

be followed in an execution of the program and calculating the total time taken from the

program entry to any program exit. As the running time of each basic block is already

determined in the micro-architectural modeling stage, the final WCET calculation stage

is able to combine the information and report the maximum execution time over all

possible execution paths and behaviors at the micro-architectural level.

The dual of this procedure, which seeks to determine the minimum instead of the max-

imum execution time, is termed the best-case execution time (BCET) analysis. The

resulting two metrics together determine the execution time window of the program.

This information is important when more than one programs interact within an applica-

tion, as the total application response time may vary with various interaction patterns

that depend heavily on the execution time windows of each program.

As the notion of WCET is central to our optimization effort, we shall further discuss the

pragmatic as well as technical aspects of WCET analysis in Chapter 4.

2.4 Integer Linear Programming

We now give a quick introduction to the concept of linear programming and integer

linear programming, which is central to our problem formulation in the majority of the

thesis.

CHAPTER 2. BACKGROUND 18

Linear programming is a technique for optimization of a linear objective function, sub-

ject to linear equality and linear inequality constraints. In practical uses, it determines

the way to achieve the best outcome in a given mathematical model, given requirements

represented as linear equations.

The most intuitive form of describing a linear programming problem consists of the

following three parts.

• A linear function to be maximized, e.g.

maximize (aX + bY)

where X and Y are variables to be determined, while a and b are known constant

coefficients.

• Problem constraints in linear form, e.g.

cX + dY ≤ e

• Variable bounds, e.g.

X ≥ 0

This thesis adopts the common convention of using names starting with capital letters

for the variables (to be solved), and names starting with small letters for constants.

A minimization problem is a dual of the maximization problem, and can always be

written into an equivalent problem in the above form. Certain constraints in alternative

forms, for example those involving conditionals, can be linearized with the help of

auxiliary variables as long as they do not contain multiplication of variables, and thus

can still be expressed using linear programming.

CHAPTER 2. BACKGROUND 19

Illustration As an illustration, let us model a simple knapsack problem. Suppose a

store owner sells three types of beverage products: soft drinks, fruit juice, and milk. The

soft drinks come in aluminum cans with the gross weight of 650 g per can and earn him

the profit of 30 cents per can. The fruit juice is sold in 1.1 kg bottles priced to yield

a profit of 45 cents each, while each carton of milk weighs 1.2 kg and earns 55 cents

profit. The store owner drives an open-top truck with 500 kg load capacity to transport

the beverages from the warehouse to his store. All three types of beverages are in equal

demand, and he makes sure to supply a minimum quantity of 100 each with every trip.

Given these requirements, the store owner wants to calculate the quantity of each type

of beverage he should take in one trip in order to maximize his profit.

This problem can be expressed as a linear program as follows. Let us represent the soft

drink quantity, the juice quantity and the milk quantity using the variables Xs, Xj , and

Xm respectively. The objective function is the total profit maximization, that is

maximize (30Xs + 45Xj + 55Xm)

The problem constraint is that the total weight of all products to be transported should

not exceed the load capacity of the truck. (We assume that the open-top truck does not

impose a volumetric limit.)

0.65Xs + 1.1Xj + 1.2Xm ≤ 500

The bounds on the variables are provided by the minimum supply requirement:

Xs ≥ 100; Xj ≥ 100; Xm ≥ 100

Since the quantities of products should be whole numbers, we require that Xs, Xj , and

Xm are integer-type variables.

CHAPTER 2. BACKGROUND 20

The optimal solution to the above linear program gives Xs = 408, Xj = 100, and

Xm = 104, which achieves the objective value of 224.6. The interpretation in the

original context is that the store owner will make the maximum profit of $224.6 by

taking 408 cans of soft drink, 100 bottles of fruit juice, and 104 cartons of milk.

We can see how the memory allocation or partitioning problem is closely related to the

knapsack problem, as we can view the memory blocks as “items” to be placed in the

fast-access memory, with the “gain” being the expected reduction in latency and the

“cost” being the area they occupy in the limited memory space. Certainly, we shall need

to extend this basic formulation to handle other concerns in the worst-case performance

optimization.

If the unknown variables are all required to be integers as in the above example, then the

problem is an integer linear programming (ILP) problem. While linear programming

can be solved efficiently in the worst case, ILP problems are generally NP-hard. 0-

1 (binary) integer programming is the special case of integer programming where the

value of variables are required to be 0 or 1, and is also classified as NP-hard. Solving

integer linear programs is a whole field of research by itself, where advanced algorithms

have been invented including cutting-plane method, branch and bound, branch and cut,

and others. The solution process of the ILP formulations in our problem model is an

orthogonal issue and is thus not discussed in detail here; this aspect of our framework is

delegated to an external ILP solver, ILOG CPLEX [29].

Chapter 3

Literature Review

This chapter presents an overview of existing research on memory optimization tech-

niques as well as related worst-case performance enhancements targeted at real-time

systems.

3.1 Cache Analysis

Caches have been the traditional choice for memory optimization in high-performance

computing systems. Cache management is handled by hardware, transparent to the soft-

ware. This transparency, while desirable to ease the programming effort, leads to un-

predictable timing behavior for real-time software. Worst-case execution time (WCET)

analysis needs to know whether each memory access is a hit or miss in the cache, so that

the appropriate latency corresponding to each case can be accounted for.

A lot of research efforts have been invested in modeling dynamic cache behavior to be

factored in WCET calculation. In the context of instruction caches, a particularly popu-

lar technique is abstract interpretation [2, 127] which introduces the concept of abstract

21

CHAPTER 3. LITERATURE REVIEW 22

cache states to completely represent possible cache contents at a given program point,

enabling subsequent classification of memory accesses into always hit, always miss, per-

sistent/first miss, and unclassified. The latency corresponding to each of these situations

can then be incorporated in the WCET calculation. Other proposed analysis methods

in the literature include data-flow analysis [91], integer linear programming [80] and

symbolic execution [84]. In contrast to exact classification of memory accesses, another

class of approach focuses on predicting miss ratio for a program fragment, utilizing

concepts such as reuse vectors within loop nests [69, 42], conflict misses for a subset of

array references [125], and Presburger formulas [26].

The analysis of data caches is further complicated by the possibility of array or pointer

aliasing and dynamic allocation. White et al. [142] perform static simulation to catego-

rize array accesses that can be computed at compile time. Xue and Vera [143] utilize

abstract call inlining, memory access vectors and parametric reuse analysis to quan-

tify reuse and interferences within and across loop nests, then use statistical sampling

techniques to predict the miss ratio from the mathematical formulation.

All these methods work on private caches; we have not known of an analysis method

that model the dynamic behavior of a shared cache. The intricate dimensions of the

problem lead us to believe that such an analysis will be prohibitively complex to attempt

in full accuracy. As we will see later in this chapter, it is then reasonable to curb the

dynamic nature of the cache via limited software control.

Cache-Related Preempted Delay Tasks in a multitasking system rarely have simple,

constant execution times estimable from their computation needs, due to the various

possible interaction scenarios that they may get involved in. Even when the cache be-

havior can be predicted for a task in isolation, the estimation may turn invalid in the face

of preemptions. Cache contents belonging to the preempted task may be evicted during

CHAPTER 3. LITERATURE REVIEW 23

the run of the preempting task, leading to additional cache misses when the preempted

task resumes. This effect is known as cache-related preempted delay (CRPD).

CPRD analysis has been widely researched. A set-based analysis in [72] investigates

cache blocks used by the preempted task before and after preemption. Another approach

in [129] applies implicit path analysis on the preempting task. Negi et al. [93] perform

program path analysis on both the preempted and the preempting tasks to estimate pos-

sible states of the entire cache, symbolically represented as a Binary Decision Diagram,

at each possible preemption point. This approach is later extended by Staschulat and

Ernst [117] for multiple process activations and preemption scenarios.

3.2 Software-Controlled Caching

Due to the complexity of accurate cache analysis described above, most existing analy-

ses handle unpredictable program regions by relying on certain restrictions to eliminate

or reduce undeterminism before applying analysis. The two main approaches are cache

locking and cache partitioning, whose main features have been described in Chapter 2.

Cache Locking Static cache locking algorithms that minimize system utilization or

inter-processor interference are presented by Puaut and Decotigny in [106]. Campoy et

al. [22] also aim at system utilization minimization when employing genetic algorithms

for content selection of statically locked caches. A dynamic cache locking algorithm

is proposed in [11], targeted at improving the worst-case performance. Further, Puaut

in [105] presents a comprehensive study of worst- and average-case performances of

static locking caches in multitasking hard real-time systems, as compared to the perfor-

mance of unlocked caches. The report identifies the application-dependent threshold at

which the performance loss in favor of predictability is acceptable.

CHAPTER 3. LITERATURE REVIEW 24

Cache Partitioning Hardware-based cache partitioning schemes have been presented

in the literature; Kirk [66] presents set-based partitioning while Chiou [27] proposes

associativity-based partitioning. Sasinowski [111] proposes an optimal cache parti-

tioning scheme that minimizes task utilization via dynamic programming approach.

Suh [120] on the other hand proposes a dynamic cache partitioning technique to mini-

mize cache miss rate, while the technique by Kim [65] aims to ensure fairness among

multiple tasks. The partitioning technique in [110] has the feature of allowing priori-

tizing of critical tasks. Meanwhile, Mueller [89] focuses on compiler transformations

to accommodate cache partitioning in preemptive real-time systems. The compiler sup-

port is needed to transform non-linear control flow to accomodate instruction cache

partitioning, and to transform codes executing data references in the case of data cache

partitioning. The impact of these transformations on execution time is also discussed.

Combined Approach Puaut in [106] considers static cache locking in a multitasking

environment. The proposed technique considers all tasks at once in selecting the con-

tents to lock into the cache, hence partitioning is also formed in the process. Vera [132,

133] combines cache partitioning and dynamic cache locking with static cache analy-

sis to provide a safe estimate of the worst-case system performance in the presence of

data cache. The cache is first partitioned among tasks. In each task, program regions

that are difficult to analyze are selected for locking. The cache contents to be locked

are selected by a greedy heuristic. The remaining program regions are left to use the

cache dynamically, and cache analysis determines the worst-case timing for these re-

gions. Only uniform partitioning is investigated in the paper. For the dynamic scheme

to be feasible, partitioning needs to be done preceding the content selection. The dy-

namic policy thus allows less partitioning flexibility, but potentially more improvement

from space overlay, compared to the static policy.

CHAPTER 3. LITERATURE REVIEW 25

3.3 Scratchpad Allocation

compile-time

runtime

static allocation

dynamic overlay

average-case optimization

worst-case optimization

by objective

by decision point

Scratchpad

allocation

program data

program code

by memory objects

Figure 3.1: Classification of scratchpad allocation techniques

Existing scratchpad allocation schemes in the literature can be majorly classified into

compile-time and runtime techniques (Figure 3.1), differing in the point of time when

the allocation decision is made.

Compile-time Allocation Compile-time scratchpad allocation techniques perform of-

fline analysis of the application program and select beneficial memory content to be

placed in the scratchpad. This approach incurs no computation overhead during the ex-

ecution of the application itself. The methods in this category can be further classified

into static allocation and dynamic overlay.

Static allocation loads selected memory blocks into the scratchpad during system ini-

tialization, and does not change the content until the completion of the application.

Techniques for scratchpad content selection include dynamic programming [8] and 0-

1 ILP [119, 138]. Panda et al. [101] view the allocation problem as a partitioning of

data into the different levels of the memory hierarchy. They present a clustering-based

partitioning algorithm that takes into account the lifetimes and potential access conflicts

CHAPTER 3. LITERATURE REVIEW 26

among program data, as well as possibilities of context switching in a multiprocessing

environment. The static allocation scheme is reasonably efficient to implement, even

though its effectiveness may be limited to applications with relatively small memory

requirement compared to available memory space.

Scratchpad allocation with dynamic overlay, on the other hand, may reload the scratch-

pad with new contents when the execution reaches designated program points. This

approach requires a way to reason about the contents of the scratchpad memory over

time. Udayakumaran and Barua [130] introduce the concept of timestamps to mark the

program points of interest. A cost model determines the cost of memory transfers at

those points, and a greedy compile-time heuristic selects transfers that maximize the

overall runtime benefit. Verma et al. [136] perform liveness analysis to determine the

live range of each memory object to be placed in the scratchpad. This information is then

used to construct an ILP formulation with the objective of maximizing energy savings.

Steinke et al. [118] also formulate the problem as an ILP optimization by modeling the

cost of copying memory objects at selected program points. Kandemir et al. [61], on the

other hand, focus on data reuse factor and use Presburger formula to determine the max-

imal set of loop iterations that reuse the elements residing in the scratchpad, in order to

minimize data transfer between on-chip and off-chip memory. For these methods, even

though the reloading of scratchpad contents is executed at runtime, the entire analysis to

select memory blocks and reloading points is performed at compile time, thus incurring

no runtime delay for computation of the gain functions.

Runtime Allocation In contrast to compile-time allocation described above, runtime

scratchpad allocation techniques decide on the scratchpad memory content when the

application is running. There can be several reasons to opt for this approach. One reason

is the situation when it is not possible to perform selection at compile time, because the

size of the scratchpad or the program memory requirement is unknown at compile time.

CHAPTER 3. LITERATURE REVIEW 27

Such a situation may arise when the embedded program is not burned into the system at

the time of manufacture, but is rather downloaded during deployment via the network or

portable media [95]. Another reason is the situation when the memory requirement of

the specific application varies widely across its input. In this case, a beneficial allocation

decision can be better determined after analysing the execution trace or history [35, 109].

Egger et al. [35], in particular, make use of the page fault exception mechanism of the

Memory Management Unit (MMU) to track page accesses and copy frequently executed

code sections into the scratchpad.

Runtime allocation methods inevitably add the cost of performing content selection to

the application runtime, even if it may be offset by the gain due to allocation. Never-

theless, most methods are able to alleviate this overhead by pre-computing part of the

analysis that does not depend on runtime information. Nguyen et al. [95] first iden-

tify potentially beneficial memory blocks at compile time when the scratchpad size is

still unknown; then perform the actual selection once the program loader discovers the

scratchpad size at startup. In a similar approach, Dominguez et al. [33] allow alloca-

tion of heap objects whose sizes are unknown at compile time. Their method performs

compile-time analysis to determine potential allocation sites, then reserves fixed-size

portions in the scratchpad to be occupied by subsets of these objects once they are cre-

ated, selected during runtime via a cost-model driven heuristic.

Worst-case Optimization Most of the works discussed above aim to minimize the

average-case execution time or energy consumption through scratchpad allocation. The

growing utilization of scratchpad memory in real-time systems, where the concern is

instead the worst-case execution time (WCET) of the application, makes it important to

consider scratchpad allocation to optimize the worst-case performance (see Figure 3.1).

A work we will discuss in this thesis [121] presents optimal and heuristic WCET-centric

static allocation methods for program data, while Deverge and Puaut [32] consider dy-

CHAPTER 3. LITERATURE REVIEW 28

namic allocation for global and stack data. The main concern in WCET-centric allo-

cation is that the worst-case execution path of the program may change as scratchpad

allocation changes. These methods account for this change in WCET path by perform-

ing iterative analysis along with incremental fine-tuning of the scratchpad allocation.

Scratchpad Allocation for Multiprocessing Systems As we move on to consider

applications running on multiprocessor systems, concurrency and sharing among the

multiple tasks or processing elements (PEs) become important factors. Early static al-

location methods [101] simply partition the scratchpad to the tasks according to gain

functions extended from allocation strategy for single-process applications. Verma et

al. [134] present a set of scratchpad sharing strategies among the processes for energy

consumption minimization. Processes may take up disjoint space in the scratchpad so

that no restoration is required upon context switch, or they may share the whole scratch-

pad whose content will be refreshed when a process is activated. A hybrid between the

two is also considered.

Another class of approach focuses on the mapping of codes/data to the private scratch-

pad memories of the PEs [59], or among memory units in a heterogeneous system [14]

so as to maximize the benefit from the scratchpad allocation. Others propose runtime

customization of scratchpad sharing among tasks or PEs to adapt to the changing mem-

ory requirement. Ozturk et al. [99] first perform automated compiler analysis to capture

memory requirements and reuse characteristics of the tasks at loop granularity, then use

this information to dynamically partition the available scratchpad space across tasks at

runtime. Kandemir et al. [62] also present a strategy to dynamically reconfigure scratch-

pad sharing and allocation among PEs to adapt to runtime variations in data storage

demand and interprocessor sharing patterns.

CHAPTER 3. LITERATURE REVIEW 29

3.4 Integrated Cache / Scratchpad Utilization

Verma et al. [135] report in their experiments that a scratchpad memory allocation tech-

nique that assumes the absence of cache may not perform well in an architecture that

includes a cache on top of scratchpad memory. Several researches have considered both

memory types for data allocation, although they do not consider real-time concerns in

the approach. Avissar et al. [13, 14] formulate the partitioning of data between scratch-

pad memory and a data cache as an 0-1 ILP formulation. The strategy is to allocate the

most frequently accessed variables in scratchpad memory. Their later work extends this

approach to heap memory [33]. Panda et al. [101] focus on the use of scratchpad mem-

ory to minimize data cache conflicts instead. For this purpose, scalars and constants

are chosen to be mapped into scratchpad memory, so that contiguous blocks of array

elements can be loaded into the cache with minimum thrashing. Kandemir et al. [64]

apply explicit data transfers between on-chip and off-chip memory in order to acco-

modate arrays that are larger than the on-chip memory capacity. The scalar variables

are kept in off-chip memory to be accessed through data cache. Another work of their

group [63] proposes the concept of virtually shared scratchpad memory (VS-SPM) by

allowing remote access to each processor’s private scratchpad. Sjodin et al. [113] con-

sider the entire address space and allocate variables to appropriate memory types so that

the size of the corresponding pointers, and hence the code size, can be reduced. Flexible

scratchpad design for multiprocessor System-on-Chips (MPSoCs) is also investigated in

[97] and [98].

3.5 Memory Hierarchy Design Exploration

A broader class of research considers exploration of memory hierarchy design space

in conjunction with other multiprocessing aspects. Kandemir and Dutt [60] give an

CHAPTER 3. LITERATURE REVIEW 30

excellent reference to memory system design in the context of chip multiprocessors.

Issenin et al. [55] present a multiprocessor data reuse analysis that explores a range of

customized memory hierarchy organizations with different size and energy profiles.

Another approach addresses the problem of determining the best cache memory sizes for

optimal cost or performance [92]. Lee et al. [74] explore cache design for large high per-

formance multiprocessors, modeling multiprocessing aspects that include cache coher-

ence issues, data prefetching, parallel execution, etc. Further, [124] designs a complete

tile-based cache architecture called WaveCache to support the low-complexity/high-

performance WaveScalar dataflow instruction set and execution model. WaveCache

handles the mapping of instructions onto processing elements as well as replacement

of expired instructions during program execution.

From the software perspective, researchers have also investigated ways to maximize the

benefit of a shared cache. Kim et al. [65] study fairness in cache sharing among program

threads, while Chang and Sohi [24] introduce a cooperative cache management scheme

that places data on either the shared cache or one of the private caches based on whether

they are globally or locally active. Conversely, cache usage can be taken into account

during the assigning and scheduling of tasks on the processing cores. Anderson et al. [7]

propose a cache-aware multi-core scheduling scheme for real-time applications, while

Squillante and Lazowska [114] consider processor-cache affinity when deciding on task

allocation to the multiple cores. Meanwhile, Li and Wolf [78] consider the effects of

cache on schedulability during allocation and scheduling decisions. This technique em-

ploys cache partitioning and reservation to reduce unpredictability in timing estimation,

which is performed based on a distribution model.

CHAPTER 3. LITERATURE REVIEW 31

3.6 Worst-Case Optimizations in Other Fields

Compiler techniques to reduce the worst-case execution time of a program have started

to receive attention over the last few years. Lee et al. [75] develop a code generation

method for dual instruction set ARM processors to simultaneously reduce the WCET

and the code size. The full ARM instruction set is employed along the WCET path to

achieve faster execution, while reduced Thumb instructions are used along non-critical

paths to reduce code size. Meanwhile, Yu and Mitra [145] perform WCET-guided se-

lection of application-specific instruction set extensions.

Bodin and Puaut [104] design a customized static branch prediction scheme for reduc-

ing a program’s WCET. This work employs a greedy heuristic to design the branch

prediction scheme — all branches appearing in the current WCET path are predicted

based on their outcomes in the WCET path. Zhao et al. [148] use a greedy heuristic

for code positioning that places the basic blocks along WCET paths in contiguous posi-

tions whenever possible. Their later work [147] attempts WCET reduction by forming

superblocks along the WCET path.

Chapter 4

Worst-Case Execution Time Analysis

The worst-case execution time (WCET) analysis is inseparable from our effort to im-

prove the worst-case performance of an application. The analysis computes an upper

bound on the execution time of a task, on a particular processor, for all possible inputs.

This gives a safe timing guarantee as well as a measure for the effectiveness of the op-

timization technique. It is also important that the analysis can be performed efficiently,

enabling iterative feedback process in fine-tuning the optimization decision.

In this chapter, we describe the process of static WCET analysis and the issues involved.

We then present an efficient WCET estimation technique that improves on the tightness

of existing methods by detecting and exploiting infeasible path information in the pro-

gram control flow graph without resorting to exhaustive path enumeration.

4.1 Overview

Static WCET analysis of a program typically consists of three phases: flow analysis

to identify loop bounds and infeasible flows through the program; micro-architectural

32

CHAPTER 4. WCET ANALYSIS 33

modeling to determine the effects of pipeline, cache, branch prediction etc. on the ex-

ecution time; and finally calculation to bound the execution time given the results of

the two preceding stages. The results of program flow analysis and micro-architectural

modeling are typically combined via a separated approach. In this approach, the micro-

architectural modeling is used to get an estimate of the WCET of each basic block of

the program. These basic block WCET estimates are the combined with flow analysis

results to produce the WCET estimate of the whole program.

The writeup in [107] gives a comprehensive summary of techniques employed in promi-

nent WCET analysis tools and research groups up to the year 2000. Some of these tech-

niques have well persisted until today. In the following, we discuss the development in

each stage of the WCET analysis.

4.1.1 Flow Analysis

The program flow analysis derives constraints on the possible execution paths of a pro-

gram, such as iteration bounds for loops, dependencies among conditional branches, and

so on. These constraints can originate, for example, from the programmer’s knowledge

of the program functionality. They are typically provided to the WCET analysis tool

through manual annotations. Certain flow informations can be inferred statically from

the program, and it is the goal of the flow analysis to extract such information as much

as possible in an automated manner.

Most researches on flow analysis have focused on loop bound analysis, since it is ab-

solutely necessary to determine upper bounds on the number of loop iterations in order

to produce a WCET estimate [43]. Existing approaches include syntactical loop pattern

detection [46, 128], a combination of data flow analysis and value analysis [31], abstract

interpretation and program slicing [38].

CHAPTER 4. WCET ANALYSIS 34

Another facet of flow analysis deals with identifying infeasible paths. These are paths

that can be traced in the control flow graph of the program, but are not feasible in ac-

tual execution due to the semantics of the program and/or possible input data values.

Removing infeasible paths from consideration allows the WCET analysis to obtain a

tighter estimate. Techniques along this direction have employed, among others, branch-

and-bound search [3] and extended simulation [84]. Ermedahl and Gustafsson [37] use

dataflow analysis to derive and exploit infeasible paths using program semantics; a nice

feature of this work is that it also automatically derives minimum and maximum loop

bounds in a program. Healy and Whalley [48] detect and exploit branch constraints

within the framework of the path-based technique. The key idea here is to compute

the effect of any assignment or a branch on other branch outcomes; this is an efficient

way of computing many common infeasible path patterns. Lastly, in the context of soft-

ware model checking, Henzinger et al. [50] abstract data values via a finite number of

propositions and eliminate infeasible paths by invoking an external theorem prover.

Our Technique As execution scenarios are closely related to program flow, flow anal-

ysis plays an important role in the interaction between WCET analysis and worst-case

performance optimization. For the WCET analysis portion of our framework, we de-

velop a lightweight infeasible path detection technique to keep the analysis fast and

efficient while still sufficiently accurate for our purpose. For the same objective, loop

bounds are supplied manually. The detailed description of this flow analysis procedure

will be given following this section.

4.1.2 Micro-Architectural Modeling

The execution time of an instruction is largely determined by the micro-architecture of

the underlying platform. Modern processors employ advanced performance enhancing

CHAPTER 4. WCET ANALYSIS 35

features such as pipelining, caches, branch prediction, and so on, which induce varia-

tion in the instruction execution time. A counter-intuitive timing behavior called timing

anomaly [85, 141] is also known to exist. This refers to the phenomenon when earlier

completion of instruction execution (due to variation in cache hit/miss result, for exam-

ple) unexpectedly leads to longer execution time of the task as a whole, because of the

way instructions move along the processing pipeline. Micro-architectural modeling at-

tempts to capture the timing effects due to these features in order to provide instruction

timing information for WCET calculation of the program.

An early attempt to model pipelines for WCET analysis was performed by Zhang et

al. [146] for a two-stage pipeline, where much of the complication lies in determining

how much of the next instruction to be executed is in the prefetch queue. Burns et al. [21]

use colored petri nets to model the timing of speculative and out-of-order instruction

execution for processors with multiple execution units and with multi-staged pipelines.

The petri net model is then simulated to evaluate the timing of instruction execution.

Colin and Puaut [28] employ static program analysis and branch target buffer mod-

elling to statically bound the timing penalties due to erroneous branch predictions. Their

method collects information on branch target buffer evolution by considering all possi-

ble execution paths of a program. This information can then be used to classify control

transfer instructions for the purpose of estimating their worst-case branching cost.

Healy et al. [47] introduce static cache simulation for instruction caches. They anal-

yse possible control flows of programs and statically categorize the caching behavior

of each access to the instruction memory as always hit, always miss, first hit, or first

miss. This categorization is then used in the pipeline path analysis to estimate the worst-

and best-case execution time of the sequence of instructions. Another development by

Mueller [90] generalizes the static cache simulation of direct mapped caches to set-

associative caches. Theiling and Ferdinand [127] apply the concept of abstract inter-

CHAPTER 4. WCET ANALYSIS 36

pretation to perform both cache analysis and pipeline analysis. Further, Li et al. [77]

model the combined effects of caching, branch prediction, and wrong-path instruction

prefetching in a unified ILP-based framework for worst-case timing estimation.

Our Technique The micro-architectural modeling in our framework has been largely

based on the same platform used in the open-source WCET analysis tool Chronos [76],

which provides the capability to model pipelining, branch prediction, and first-level

instruction caching. We note, however, that this stage is a relatively independent facet

in the interaction between WCET analysis and memory optimization decisions, and

simplifying assumptions on the underlying architecture will be made in certain cases

in order to speed up the analysis and to more clearly expose the direct effect of our

optimization techniques.

4.1.3 WCET Calculation

There exist mainly three different approaches for WCET calculation — tree-based,

path-based, and implicit path enumeration.

The tree-based approach estimates the WCET of a program through a bottom-up traver-

sal of its syntax tree and applying different timing rules at the nodes (called “timing

schema”) [102]. This method is quite simple and efficient. But it is difficult to exploit

infeasible paths in this approach as the timing rules are local to a program statement.

Implicit path enumeration techniques [79] represent program flows as linear equations

or constraints and attempt to maximize the execution time of the entire program under

these constraints. This is done via an integer linear programming (ILP) solver. The result

is a quantitative solution from which we can infer which basic blocks in the control flow

are executed in the worst-case scenario as well as the execution count for each, but not

CHAPTER 4. WCET ANALYSIS 37

the exact execution path that leads to that scenario — hence the implicit qualifier. Many

diverse kinds of flow information have been successfully integrated into ILP [36, 108],

increasing the popularity of ILP-based WCET calculation.

Path-based techniques estimate the WCET by computing execution time for the feasible

paths in the program and then searching for the one with the longest execution time.

Naturally, they can handle various flow information, but they enumerate a huge number

of paths. Stappert et al. [116] have sought to reduce the cost of this expensive path

enumeration by removing infeasible paths from the flow graph. Their method proceeds

by (1) finding the longest program path π, (2) checking for the feasibility of π, and (c)

removing π from control flow graph followed by the search for a new longest path if π

is infeasible. Stappert et al. also develop the concept of scope graphs and virtual scopes

in order to scale this approach for complex programs.

Our Technique The WCET calculation in our framework adopts the path-based ap-

proach, as this technique has the feature of preserving the worst-case path information

that can be utilized to perform memory optimization for worst-case performance. The

next part of this chapter describe this procedure.

4.2 WCET Analysis with Infeasible Path Detection

In this section, we present a technique for finding the WCET of a program in the pres-

ence of infeasible paths without performing exhaustive path enumeration. Our technique

traverses the control flow graph to find the longest path, but avoids the high cost of path

enumerations by keeping track of more information than just the heaviest path during

traversal. We pre-compute possible conflict relations, or sources of infeasibility, and

maintain the heaviest path for each such source. Thus, even when we find that the

CHAPTER 4. WCET ANALYSIS 38

“heaviest” path is infeasible, we do not have to backtrack to find alternative paths. This

indeed is the key idea of the approach.

In the following, we define conflict relations, describe how this information is used in

the WCET calculation, then evaluate the tightness and efficiency of the estimation.

4.2.1 Infeasible Path Information

First, we describe the inferencing of infeasible path information that is exploited in our

WCET calculation method. For efficient analysis, we only detect/exploit infeasible path

information within a loop body, that is, we do not detect infeasible paths spanning across

loop iterations. Thus, in the following, we consider the control flow graph (CFG) to be

a directed acyclic graph (DAG), representing the body of a loop. Further, we only keep

track of pairwise “conflicts” between branches/assignments, which can be Assignment-

Branch (AB) conflicts or Branch-Branch (BB) conflicts.

Definition: Effect Constraints

• The effect constraint of an assignment var := expression is var == expression.

• The effect constraint of a branch-edge e in the CFG for a branch condition c is c

if e denotes that the branch is taken.

• The effect constraint of a branch-edge e in the CFG for a branch condition c is ¬c

if e denotes that the branch is not taken.

Definition: Branch-Branch (BB) and Assignment-Branch (AB) Conflicts

A branch-edge e′ has BB conflict with a subsequent branch-edge e if and only if

• conjunction of the effect constraints of e′ and e is unsatisfiable, and

CHAPTER 4. WCET ANALYSIS 39

• there exists at least one path from e′ to e in the CFG that does not modify the

variables appearing in their effect constraints.

An assignment x has AB conflict with a subsequent branch-edge e if and only if

• conjunction of the effect constraints of x and e is unsatisfiable, and

• there exists at least one path from x to e in the CFG that does not modify the

variables appearing in their effect constraints.

The meaning of subsequent here is in the sense of the topological order of the control

flow DAG. The second condition in each of the above definitions also reflects that, from

the perspective of an effect constraint, each variable is a one-time entity created at the

point of assignment or modification of its value. This means that an effect constraint

A that uses a variable v before modification in fact refers to a different entity than an

effect constraint B that uses v after modification. Conjunction of A and B will thus

necessitate a renaming of v and cause the two effect constraints to be incomparable,

regardless of whether or not the modification affects the satisfiability of the original

conjunction. Certainly, if the modification dominates all paths between A and B, the

effect constraint of the modification itself may now be related to B.

Given a program’s CFG, we compute the binary relations BB Conflict and AB Conflict.

We represent BB Conflict between edges e′ and e by the tuple (e′, e), and AB Conflict

between assignment x and edge e by the tuple (u, e) where u is the basic block contain-

ing assignment x.

Restrictions Since our definition of BB and AB conflicts captures only pairwise con-

flicts, we cannot detect (and exploit) arbitrary infeasible path information. For example,

y = 2; x = y; if(x > 3) {...

CHAPTER 4. WCET ANALYSIS 40

denotes an infeasible path, but it will not be captured in the (restricted) notion of pairwise

conflicts. Note that the right-hand-side of an assignment statement can only be a variable

or an expression. To avoid the need for expensive data flow analysis, our infeasible path

detection technique handles only branch conditions and assignments with constants as

their right-hand-side expressions. In other words, the only conditional branches whose

edges appear in our BB Conflict and AB Conflict relations are of the form

variable relational operator constant

Similarly, the only assignments which appear in AB Conflict are of the form

variable := constant

However, this is not a restriction on the programs we can handle; we simply ignore more

complicated branches/assignments during path analysis. Moreover, we observe that this

simple definition of conflict relations is sufficient for our purposes as we perform the

analysis at assembly language level where each individual assignment/branch condition

cannot be complex. The featured example above, in particular, can be automatically

converted into a series of constant assignments by simple compiler optimizations such

as constant propagation.

Example Figure 4.1 shows a program and its corresponding CFG. Here, branch-edge

B1 → B2 and branch-edge B7 → B8 have BB conflict; branch-edge B1 → B3 does

not have any conflict with either B7 → B8 or B7 → B9. Similarly, the assignment

x = 1 has AB conflict with the edge B7 → B9 but not with B7 → B8.

Algorithm 1 describes our technique for deriving infeasible path information in a pro-

gram. As shown, procedures are treated individually; thus the infeasible path infor-

mation does not account for procedure call contexts or infeasibility across procedures.

CHAPTER 4. WCET ANALYSIS 41

B2B2

B5

B8

B11

T F

B1

2 B32 B3

B4

5 B6

T F

B7

T F

8 B9

B10

1 B12

T F

B12

B13

Figure 4.1: An example program and its control flow graph (CFG)

Within a procedure, each loop is in turn considered separately, thus not capturing infea-

sible paths across loops. However, we take note of assignments within the nested loop

or called procedure (lines 10, 12) that may cancel the effect of earlier assignments or

branch-edges, so that we do not falsely identify conflicts. The method essentially takes

each branch-edge e = u → v (line 13) and performs a backward breadth-first traversal

of the CFG starting from node u. The traversal along a path terminates when we en-

counter either an assignment (conflicting or otherwise) to the variable involved in the

effect constraint of e (line 18) or a conflicting branch-edge (line 23).

Algorithm Complexity The computation of the AB Conflict and BB Conflict re-

lations can be accomplished in O((|V | + |E|) ∗ |E|) time for each procedure where

|V |, |E| are the number of nodes and the number of edges in the CFG of the procedure.

CHAPTER 4. WCET ANALYSIS 42

AB Conflict := ∅;1

BB Conflict := ∅;2

foreach procedure P ∈ pgm do3

foreach loop L ∈ P do4

Let G be the DAG capturing the control flow in L without the back edge;5

Detect Conflicts(G);6

Let G′ be the DAG capturing the control flow in P ;7

Detect Conflicts(G′);8

Function Detect Conflicts(G)
foreach loop L ∈ G do9

Replace L with a dummy node containing all assignments in L;10

foreach call site CP of procedure P ∈ G do11

Replace CP with a dummy node containing all non-local assignments in P ;12

foreach branch-edge (e = u → v) ∈ G do13

Let var be the variable appearing in the effect constraint of e;14

queue := {u};15

while queue 6= ∅ do16

Dequeue the first node q from queue;17

if q contains an assignment to var then18

if last assignment to var in q conflicts with e then19

Add (q, e) to AB Conflict;20

else21

foreach predecessor p of q in G do22

if (p → q) conflicts with e then23

Add (p → q, e) to BB Conflict;24

else25

Enqueue p to queue;26

Algorithm 1: Infeasible path detection in a program pgm

CHAPTER 4. WCET ANALYSIS 43

This is because each branch-edge is tested for conflict against all the ancestor nodes and

branch-edges in the worst case.

The infeasible path detection technique we have described is now part of the ILP-based

path analysis in the open-source WCET estimation tool Chronos v3.0 [76]. Our the-

sis employs this infeasible path detection algorithm in a more lightweight, path-based

WCET calculation framework to be described in the next section.

4.2.2 Exploiting Infeasible Path Information in WCET Calculation

Let us now present our WCET calculation algorithm that exploits the pre-computed

conflict relations. The main feature of our technique is that it avoids enumeration of

large number of possible execution paths, which is typical in medium to large control-

intensive programs.

Algorithm 2 estimates the WCET of a program given the conflict relations. We will

illustrate the steps with an example later on. The algorithm calculates the WCET for

each individual procedure (lines 1–6) and accounts for this cost at the call sites of the

procedure (line 11). We assume that there is no recursive procedure call. Within a pro-

cedure, the WCET of each loop is calculated separately and nested loops are analyzed

starting from the innermost loop (line 2).

To estimate the WCET of a loop, we find the heaviest acyclic path in the loop. An

acyclic path is a possible path in a loop iteration, that is, a path in the loop’s control flow

DAG from source to sink. If the estimated execution time of the heaviest acyclic path

is t and the loop bound is lb, then the estimated WCET of the loop is lb × t (line 4 of

Algorithm 2).

Our algorithm traverses the loop’s control flow DAG from sink to source (lines 14–26).

This traversal constitutes the heart of our method. For a basic block u in the the loop,

CHAPTER 4. WCET ANALYSIS 44

foreach procedure P ∈ pgm in reverse topological order of the call graph do1

/* Process innermost loops first */
foreach loop L ∈ P in decreasing order of nesting depth do2

Let G be the DAG capturing the control flow in L without the back edge;3

L.cost := L.loopbound× WCET Estimate(G);4

/* Process P , treating loops and procedure calls in P as black boxes */
Let G′ be the DAG capturing the control flow in P ;5

P.cost := WCET Estimate(G′);6

Let M be the main procedure in pgm; return M.cost;7

Function WCET Estimate(G)
foreach loop L ∈ G do8

Replace L with a dummy node of cost L.cost, containing all assignments in L;9

foreach call site CP of procedure P ∈ G do10

Replace CP with a dummy node of cost P.cost, containing all non-local11

assignments in P ;
foreach node u ∈ G do visited(u) := FALSE;12

paths(G.sink) := {〈G.sink〉}; visited(G.sink) := TRUE;13

〈G.sink〉.conflictList := ∅;
/* Traverse from sink to source */
foreach node u ∈ (G−G.sink) in reverse topological order do14

visited(u) := TRUE; paths(u) := ∅;15

foreach immediate successor v of u do16

foreach partial path π in paths(v) do17

/* Augment the partial path π with node u if there is no conflict*/
if @ e ∈ π.conflictList s.t.18

(u → v, e) ∈ BB Conflict ∨ (u, e) ∈ AB Conflict then
π′ := 〈u〉 ◦ π; π′.cost := π.cost + u.cost;19

paths(u) := paths(u) ∪ {π′};
/* Augment conflictList while removing expired elements */
newCF := {u → v | u → v appears in AB Conflict20

or in BB Conflict};
cancelCF := {e | e ∈ π.conflictList and21

u modifies a variable appearing in e’s effect constraint };
expiredCF := {e | e ∈ π.conflictList and @ x s.t. ¬visited(x)22

∧ ((x, e) ∈ AB Conflict ∨ (x → y, e) ∈ BB Conflict)};
π′.conflictList :=23

(π.conflictList ∪ newCf) \ (cancelCF ∪ expiredCF);

/* Remove partial paths that clearly cannot lead to WCET path */
foreach partial path π ∈ paths(u) do24

if ∃ π′ ∈ paths(u) s.t. π′.conflictList ⊆ π.conflictList ∧ π′.cost > π.cost25

then
paths(u) := paths(u)− {π};26

Let π ∈ paths(G.source) be the path with maximum cost; return π.cost;27

Algorithm 2: Estimating the WCET of a program pgm given infeasible path
information

CHAPTER 4. WCET ANALYSIS 45

we keep paths(u), a subset of possible execution paths in the subgraph rooted at u

that may be part of the overall WCET path. To take into account the infeasible path

information, we cannot afford to remember only the “heaviest path so far” at the control

flow merge points. This is because the heaviest partial path may have conflicts with

earlier branch-edges or assignment instructions resulting in costly backtracking. For

each path π ∈ paths(u) we also maintain a conflictList, which contains the branch-

edges of π that participate in conflict with ancestor nodes and edges of u.

Now let us consider a single backward traversal step from v to u along the edge u → v

(lines 16–23). We construct paths(u) from partial paths in paths(v) that do not have a

conflict with the edge u → v or any assignment in u (line 18) by adding node u at the

beginning of each of these partial paths (line 19). The conflictList of this extended path

contains exactly the edges (a) whose conflicts have not “expired” due to assignments and

(b) whose corresponding conflicting branch-edges/assignments have not been visited

(lines 20–23).

We notice that a partial path π ∈ paths(u) has no chance of becoming the WCET

path if there is another path π′ ∈ paths(u) with strictly greater cost and less potential

conflicts (that is, its conflictList is subsumed by π’s conflictList). In that case, π can

be removed from the set (lines 24–26). This implies that if the conflictList of a path

π ∈ paths(u) becomes empty and π is the heaviest path in paths(u), we assign the

singleton set {π} to paths(u).

Algorithm Complexity In the worst case, the complexity of our algorithm is expo-

nential in |V |, the number of nodes in the CFG. This is because the size of paths(u) for

some node u may be O(2|V |) due to different decisions in the branches following u. In

practice, this exponential blow-up is not encountered because (1) branch-edges that do

not participate in any conflict are not kept track of, and (2) a branch-edge that conflicts

CHAPTER 4. WCET ANALYSIS 46

with other branch-edges/assignments is no longer remembered after we encounter those

conflicting branch-edges/assignments during traversal.

Illustration Let us illustrate our WCET calculation by employing it on the control

flow DAG of Figure 4.1. The conflicting pairs detected are

BB Conflict = {(B1 → B2, B7 → B8)}

AB Conflict = {(B6, B7 → B9)}

We traverse the DAG from sink (node B13) to source (node B1) and maintain a set

of paths paths(u) at each visited node u. For each path π ∈ paths(u), we maintain

conflictList — a subset of branch-edges drawn from branch decisions made so far.

Thus each path in paths(u) is written in the form

〈 Sequence of basic blocks starting with u 〉conflictList

Starting from node B13 in Figure 4.1, our traversal is routine until we reach node B10.

Here, φ denotes an empty set.

paths(B13) = {〈B13〉φ}

paths(B12) = {〈B12, B13〉φ}

paths(B11) = {〈B11, B13〉φ}

At node B10, we have two potential paths. However, all branch-edges in these paths,

B10 → B11 and B10 → B12, do not participate in any conflict relation, hence both

paths have empty conflictList. Therefore, we only carry the heaviest of the two paths

(assuming B11.cost ≥ B12.cost).

CHAPTER 4. WCET ANALYSIS 47

paths(B10) = {〈B10, B11, B13〉φ}

paths(B9) = {〈B9, B10, B11, B13〉φ}

paths(B8) = {〈B8, B10, B11, B13〉φ}

Node B7 again has two potential paths, and both of its outgoing edges appear in conflict

relations. Until we visit the corresponding conflicting edges or nodes, we cannot de-

termine the feasibility of the partial paths. Consequently, we maintain both paths along

with the potentially conflicting edges in the set conflictList associated with each path.

paths(B7) = { 〈B7, B8, B10, B11, B13〉{B7→B8},

〈B7, B9, B10, B11, B13〉{B7→B9} }

Moving on to node B6, we find that the assignment in node B6 conflicts with B7 → B9

rendering the path

〈B6, B7, B9, B10, B11, B13〉

infeasible. Thus we only extend one path leading to

paths(B6) = {〈B6, B7, B8, B10, B11, B13〉φ}

We drop B7 → B8 from the conflictList as we have encountered an assignment to

program variable x in B6. The assignment implies that the conflict between B7 → B8

and B1 → B2 has “expired” along this partial path.

Indeed, these last two steps show the key source of efficiency in our method. Since

we have kept track of both possibilities in which branch at node B7 can be resolved,

we do not need to backtrack when we find that the branch decision B7 → B9 can

lead to infeasibility. Also, we do not store paths corresponding to the decision of every

branch, but only those involved in conflicts. Furthermore, once we have encountered an

CHAPTER 4. WCET ANALYSIS 48

assignment to the variable involved in a conflict, we need not keep track of that conflict

any further.

Continuing in this way we reach node B1; we omit the details for the rest of the traversal.

Note that the control flow DAG of Figure 4.1 has four branches and 24 = 16 paths; yet,

when we visit any basic block u of the control flow DAG, paths(u) contains at most

two paths; that is, exponential blow-up is avoided in this example.

4.2.3 Tightness of Estimation

We evaluate the tightness of our WCET estimation method on several benchmark pro-

grams listed in Table 4.1. adpcm is the ADPCM coder taken from Mediabench [71].

display is an image dithering kernel taken from MPEG-2. compress is a data com-

pression program, while statemate is a car window controller automatically gener-

ated from a statechart specification; both are taken from C-Lab [137]. susan thin

from MiBench’s automotive application suite is a kernel performing edge thinning [44].

Table 4.1: Benchmark statistics
Benchmark # Basic # Conflicts # Paths

Blocks AB BB Total Feasible Feasible/Total

adpcm 32 2 5 1,536 288 18.75%
display 37 13 0 96 42 43.75%
statemate 334 74 15 6.55× 1016 1.09× 1013 0.02%
susan thin 93 15 13 146,189,962 33,820 0.02%
compress 213 9 3 110 45 40.91%

Table 4.1 shows the basic block count for each benchmark along with the number of AB

conflicts and BB conflicts detected by our method. The last three columns of the table

give, respectively, the total number of paths, the number of feasible paths, and the ratio

of feasible paths out of all paths. The total path counts for the large-scale benchmarks

(statemate and susan thin) cannot be efficiently obtained via enumeration, and

CHAPTER 4. WCET ANALYSIS 49

have thus been estimated as a function of the number of conditional branches present

in the respective programs. These two applications are also the benchmarks with huge

numbers of infeasible paths, despite the limited conflict detection applied to discover

them. We see that less than 1% of the execution paths are actually feasible in both

programs. The statemate code, having been automatically generated from a stat-

echart, contains a lot of repetitive flag checks that give rise to many infeasible paths.

susan thin applies different computations based on a single value that is checked at

multiple points; thus the entrance of a computation block renders all partial paths within

the other computation blocks infeasible. A general observation is that unoptimized pro-

gramming practices contribute substantially to infeasible program paths.

We use SimpleScalar toolset [12] for the experiments. The programs are compiled us-

ing gcc 2.7.2.3 targeted for SimpleScalar. The binary executables are then run through

our prototype analyzer that disassembles the binary to generate the control flow graph

(CFG). As our focus is on evaluating the tightening of estimation via infeasible path

detection, we assume a simple embedded processor with single-issue in-order pipeline,

perfect instruction cache and branch prediction. The execution time corresponding to

each basic block is thus easily estimated for this simple architecture. For more com-

plex micro-architectures, we can employ one of the state-of-the-art techniques or tools

reviewed earlier in this chapter. We assume that loop bounds required for WCET calcu-

lation are provided via manual annotation. All experiments are performed on a 3.0GHz

P4 CPU with 1MB cache and 2GB memory.

Table 4.2: Comparison of observed WCET, WCET estimation with and without infea-
sibility information

Benchmark Est. WCET (cycles) Improve- Obs. WCET Estimated/Observed
with infeas. w/o infeas. ment (cycles) with infeas. w/o infeas.

adpcm 896,286 907,286 1.21% 717,201 1.25 1.27
display 244,187,271 257,556,615 5.19% 229,755,271 1.06 1.12
statemate 41,578 44,938 7.48% 31,636 1.31 1.42
susan thin 293,989,241 485,328,185 39.42% 173,769,229 1.69 2.79
compress 312,904 383,329 18.37% 25,819 12.12 14.85

CHAPTER 4. WCET ANALYSIS 50

Table 4.2 gives the results of our WCET estimation algorithm on the benchmarks, tak-

ing into account infeasibility information (Est. WCET with infeas.). These are com-

pared with the results of WCET estimation on the same benchmarks when all paths are

assumed to be feasible (Est. WCET w/o infeas.). The Improvement column shows the

reduction in the estimated WCET value when infeasibility is considered. As expected,

the WCET estimation yields tighter values when infeasibility is taken into account.

To evaluate the tightness of the analysis, we perform simulation on each benchmark.

Each benchmark program is run with varying input sets whose ranges are deduced from

the program specification and randomly generated where applicable. From the simu-

lation results, we extract the maximum number of execution cycles as presented in the

column Obs. WCET in the table. Finally, the column Estimated/Observed shows the

ratio of the estimated WCET values, with and without infeasibility detection, to the

observed WCET values: the closer the ratio to 1, the tighter the estimation.

Our analysis gives tight estimates in all benchmarks except compress; the result for

compress can only be improved by considering infeasibility across loop iterations.

Method Scalability Among existing WCET analysis methods that account for infea-

sible execution paths, the work of Stappert [116] is closest to ours. As described in

subsection 4.1.3, Stappert’s method iteratively searches for a longest path, tests its feasi-

bility, and removes the path if it is infeasible. We compare the efficiency of our method

with that of Stappert’s approach. We provide both methods with the same execution

time for basic blocks and infeasibility information (see Section 4.2.1); thus both yield

the same WCET path for each benchmark.

Table 4.3 displays the result of the comparison. For our method, the column # Explored

Conflicts gives the maximum length of conflictList maintained during computation,

which is small in all cases. The column # Explored Paths shows the maximum number

CHAPTER 4. WCET ANALYSIS 51

Table 4.3: Efficiency of our WCET calculation method
Benchmark Our Method Stappert’s Method

Explored # Explored Runtime # Explored Runtime
Conflicts Paths Paths

adpcm 2 2 0.20 ms 5 0.42 ms
display 2 2 0.21 ms 7 0.61 ms
statemate 15 738 853.52 ms > 2000 > 36 mins
susan thin 3 12 1.06 ms > 2000 > 24 mins
compress 2 4 1.18 ms 27 3.72 ms

of paths maintained by our technique at any point of time. It is encouraging to note

that we only need to keep track of at most 738 partial paths at any time for our bench-

marks. This figure depends heavily on the number of conflicting pairs and the distance

between the pairwise conflicts. Most of the conflicting pairs are localized; thus they

expire quickly and need not be kept track of further. In statemate, some conflicting

pairs have long “conflict windows”, that is, the assignment/branch conditions of a con-

flicting pair appear far apart in the CFG; this makes it necessary to maintain more partial

paths at each node. The number of paths maintained in turn affects the runtime of the

algorithm. The Runtime column shows that our technique requires less than 1 second

for any benchmark. Even for programs with long “conflict windows”, our algorithm

performs far better than maintaining a single heaviest path throughout the CFG traversal

and backtracking when this path turns out to be infeasible.

The last two columns of Table 4.3 give the number of paths examined by Stappert’s

method and the runtime of the method. We observe that the huge number of infeasible

paths in statemate and susan thin are the heaviest paths as well. So, in these

two benchmarks, we have to terminate the run of Stappert’s algorithm after examining

2000 paths without finding a feasible path. The overestimation of the last infeasible path

examined by Stappert’s method, compared to the feasible WCET value obtained by our

approach, is as much as 60% for susan thin.

CHAPTER 4. WCET ANALYSIS 52

4.3 Chapter Summary

In this chapter, we have discussed the problem of WCET analysis and presented an

enhanced WCET estimation algorithm that takes into account limited infeasible path in-

formation in an efficient way. The infeasible path detection technique as described here

has also been integrated into an open-source WCET analysis tool Chronos v3.0 [76].

Chapter 5

Predictable Shared Cache

Management

As caches have been the conventional choice for a large portion of the computing mar-

ket, we dedicate this chapter to consider utilization of shared caches in a predictable

manner. This is achieved through a combination of locking and partitioning mecha-

nisms. We explore possible design choices and evaluate their effects on the worst-case

application performance. Our study reveals certain design principles that strongly dic-

tate the performance of a predictable memory hierarchy.

5.1 Introduction

Multi-core architectures are increasingly common in both desktop and embedded mar-

kets. Energy and thermal constraints are effectively precluding the design of complex

high-performance single-core processors. In this context, multiple simpler processing

cores on a single chip is an attractive option. Several manufacturers (e.g., Intel, AMD)

53

CHAPTER 5. PREDICTABLE SHARED CACHE MANAGEMENT 54

have released dual-cores while Sun Microsystems’ Niagara multiprocessor accommo-

dates 8 cores on the same die. Intel has developed an 80-core processor prototype to

be released by 2011. In the embedded domain, ARM MPCore is a synthesizable pro-

cessor configurable to contain between 1 and 4 ARM11 cores. IBM Cell processor in

Sony PlayStation 3 contains 9 cores while Xenon in Microsoft’s Xbox 360 is a custom

PowerPC-based triple-core.

Multi-core architectures can dramatically improve performance by distributing the tasks

or threads of an application among the cores. At the same time, the software design and

optimization efforts involved to exploit this performance potential are extremely com-

plex. Extensive resource sharing among the tasks in multi-core architectures (due to

shared bus, memory hierarchy, and so on) leads to higher timing unpredictability. The

challenge in implementing a real-time application on a multi-core architecture, there-

fore, is to perform effective resource sharing without sacrificing the timing predictabil-

ity. In this chapter, we focus on exploiting the shared cache memory to achieve higher

performance while maintaining real-time performance guarantees.

A popular choice for the on-chip memory structure is a two-level cache hierarchy (e.g.,

Niagara, Xenon, Power5). In this architecture, Level 1 (L1) caches are attached to, and

privately accessible by, each core. All the cores share the access to a large Level 2 (L2)

cache. This architecture is implemented for example in Power5 dual-core chip [112],

XBox360’s Xenon processor [19] and Sun UltraSPARC T1 [123]. The presence of a

shared cache offers the flexibility in adjusting the memory allocated per core according

to its requirement, as well as the possibility of multiple cores enjoying fast access to

shared code/data. This potentially improves the performance, but also requires complex

resource management.

The interaction and resulting contention among multiple cores in a shared cache bring

out many new challenges. To the best of our knowledge, no static analysis method has

CHAPTER 5. PREDICTABLE SHARED CACHE MANAGEMENT 55

been developed to estimate WCET bounds in the presence of shared caches. In our

opinion, it will be extremely difficult, if not impossible, to develop such a method that

can accurately capture the contention. Instead, we propose to use the shared cache in a

restrictive manner that eases the analysis effort, with possible tradeoff in performance.

Towards this end, we exploit two mechanisms: cache locking and cache partitioning.

Let us briefly review these mechanisms, which we have described in sections 2.1.2 and

2.1.3. Cache locking allows the user to load selected contents into the cache and subse-

quently prevents these contents from being replaced at runtime. Locking enables soft-

ware control over a traditional cache, so that static analysis techniques can associate

deterministic latency to each memory access leading to safe and tight timing bounds.

Cache partitioning assigns a portion of the cache to each task (or processor), and re-

stricts cache replacement to each individual partition. Cache partitioning enables com-

positional analysis where the timing effect of each task (or processor) can be estimated

separately.

The interplay among processing elements in a multi-core setting through the shared

cache provides some unique design choices and opportunities. One simple choice, for

example, is global cache locking where contents are selected from all the tasks in all the

cores. More sophisticated policies may partition the cache among cores or among tasks,

and manage each partition independently. The relative merits of these different design

choices are not obvious.

In this chapter, we explore the possible design choices for a predictable and high-

performance shared L2 cache on multi-core architectures. We devise different com-

binations of cache locking and partitioning schemes, then study their impact on the

worst-case performance of applications with different characteristics. Based on this

study, we recommend appropriate locking/partitioning strategy depending on the nature

of the application. Given the increasing popularity of multi-cores, this study can pro-

CHAPTER 5. PREDICTABLE SHARED CACHE MANAGEMENT 56

vide guidelines to real-time application programmers in terms of design decisions for

the memory hierarchy.

5.2 System Settings

We consider a homogeneous multi-core architecture consisting of identical cores. The

on-chip memory is configured as a two-level cache hierarchy with a shared L2 cache,

which is the focus of this work. We assume that the cache coherence is implemented

in hardware, and that the caches support locking and set-based partitioning (see subsec-

tion 2.1.3). This work focuses on instruction caches, although our technique is equally

applicable to data caches.

Our framework adopts the classic real-time system model where a set of independent

tasks {t1, t2, . . . , tN} is executed periodically. Each task ti is associated with its period

pi, which also defines its deadline, and its worst-case execution time ci. We choose

the partitioning [23] strategy for homogeneous multiprocessor scheduling. In the par-

titioning strategy, once a task is allocated to a processor, it is executed exclusively on

that processor. Any uniprocessor scheduling algorithm can then be applied on each pro-

cessor. The partitioning strategy has the advantage of lower overhead compared to the

global strategy, which allows tasks to migrate to different processors at runtime.

López et al. [82] show that the Earliest Deadline First (EDF) scheduling policy coupled

with First Fit (FF) allocation is an optimal partitioning approach with respect to utiliza-

tion bounds. Our framework applies this policy. FF assigns a task to the first processor

that can accept it. A task set is EDF-schedulable on a uniprocessor if U ≤ 1, where U

is the utilization of a task set {t1, t2, . . . , tN} given by

U =
N∑

i=1

ci

pi

CHAPTER 5. PREDICTABLE SHARED CACHE MANAGEMENT 57

The system utilization of a Q-core multiprocessor is

Usystem =
U

Q

We measure the performance of a task set on a multiprocessor by the system utilization:

lower system utilization implies higher schedulability and thus better performance.

5.3 Memory Management Schemes

We separate the treatment of the private L1 caches and the shared L2 cache, in order to

observe the shared cache behavior while abstracting out the effects of the L1 caches. We

first decide on the memory blocks to be locked into L1. As our focus is on the shared

cache, we choose a simple global static locking scheme for L1. The private L1 cache

attached to a core is utilized only by the tasks executing on that core; for each, we adopt

the cache content selection algorithm for multitasking systems [106]. The chosen blocks

for L1 will be excluded during content selection for the L2 cache.

The shared L2 cache opens up the opportunity to combine different locking and parti-

tioning schemes to achieve high cache hit rate, as shown in Table 5.1.

Table 5.1: Design choices for shared cache
Static Locking Dynamic Locking

No Partition SN –

Task-based Partition ST DT
Core-based Partition SC DC

For cache locking, we can choose a static scheme or a dynamic scheme. Recall that in

the static cache locking scheme, the cache content is loaded once and stays in the cache

throughout the execution of the task; whereas, in dynamic cache locking scheme, the

cache content can be reloaded at runtime. Dynamic cache locking requires an applica-

CHAPTER 5. PREDICTABLE SHARED CACHE MANAGEMENT 58

tion/task to be divided into multiple regions. An offline analysis selects memory blocks

to be locked for each region. As the execution moves from one region to another, the

cache content is replaced with that of the new region.

For cache partitioning, we have the following choices.

1. no partition: A cache block may be occupied by any task, scheduled on any core.

2. task-based partition: Each task is assigned a portion of the cache.

3. core-based partition: Each core is assigned a portion of the cache, and each task

scheduled on that core may occupy the whole portion while it is executing.

From these, the {dynamic locking, no partition} combination must be ruled out, be-

cause a dynamic locking scheme strictly requires a dedicated partition. Further, both the

{static locking, no partition} (SN) and the {static locking, task-based partition} (ST)

schemes lock the cache contents chosen from all tasks in the application throughout ex-

ecution, but SN offers more flexibility by not enforcing a concrete boundary. Thus ST is

either inferior or at most as good as SN; we eliminate ST from our evaluation.

Figure 5.1 illustrates the four eligible possibilities, applied on a multi-core with 2 pro-

cessing elements (PE1, PE2) and 4 independent tasks (t1, . . . t4). The scheduler assigns

t1, t2 to PE1 and t3, t4 to PE2. t1 and t4 can each be divided into two regions for dy-

namic cache locking. We assume a 2-way set-associative shared L2 cache with 8 sets.

The rest of this section details each of the four schemes.

5.3.1 Static Locking, No Partition (SN)

This is the simplest scheme where the cache content is kept unchanged throughout ap-

plication runtime (Figure 5.1a). A cache block can be assigned to any task irrespective

CHAPTER 5. PREDICTABLE SHARED CACHE MANAGEMENT 59

t1
t2

t3

t4

PE1

PE2

(a) SN
Static locking
No partition

(b) SC
Static locking
Core-based partition
(with inter-task reload)

(d) DC
Dynamic locking
Core-based partition
(with inter-task reload)

Region 1

Region 2

Region 1

Region 2

(c) DT
Dynamic locking
Task-based partition

t1

t4

t2
t3

{t1,t4} {t2,t4}{t1,t4} {t1,t3}

PE1

PE2

{t1,t4} {t2,t4} {t1,t3}

PE1

PE2

Figure 5.1: Different locking and partitioning schemes for the shared L2 cache

of the processor it is scheduled on. This scheme offers maximum flexibility; however,

its performance is restricted if the code size of all the tasks together far exceeds the L2

cache size. For static locking, we apply the cache content selection algorithm presented

in [106], which minimizes the system utilization.

5.3.2 Static Locking, Core-based Partition (SC)

In the SN scheme, all the tasks occupy cache blocks throughout the execution. On

a system with preemptive scheduling, only memory blocks belonging to the “active”

tasks are useful at any time. When a task ti is preempted by tj on one of the cores,

we can replace ti’s memory blocks in the cache with those of tj’s. This comes at the

cost of reloading the cache at every preemption. This scheme requires the cache to be

partitioned among the cores, as each core has an active task at any point of time and

the cores invoke preemptions independently. However, when a task runs on a core, it

can occupy the entire partition for that core. In Figure 5.1b, PE1 gets the first four sets;

CHAPTER 5. PREDICTABLE SHARED CACHE MANAGEMENT 60

PE2 gets the rest. Initially t1 occupies PE1’s partition and t4 occupies PE2’s partition.

When t2 preempts t1, it loads and locks PE1’s partition with its own content. We adapt

a dynamic programming based optimal partitioning algorithm [111] here. This scheme

is still categorized as static locking because no reloading is performed within a task.

5.3.3 Dynamic Locking, Task-based Partition (DT)

Dynamic locking allows more memory blocks to fit in the cache via runtime load and

lock. The overhead is the cache reload cost every time the execution of a task moves

from one region to another. As different tasks have different region formations, the cache

is first partitioned among the tasks. Each task then performs dynamic locking within

its partition. Figure 5.1c shows the scheme at work for t1 and t4. In contrast to SC,

reloading is performed intra-task. No inter-task reloading is required as the partitioning

prevents interference among the tasks, thus preemptions incur no cache reload overhead.

However, if the application comprises a large number of tasks, such rigid partitioning

might not be effective. DT also suffers from the same drawback as SN: tasks occupy

cache blocks even when they are inactive (preempted). We employ the dynamic locking

algorithm in [104] here.

5.3.4 Dynamic Locking, Core-based Partition (DC)

In this most complex scheme, reloading is supported within a task in addition to reload-

ing at preemption (see Figure 5.1d). Initially, the cache is loaded with region 1 of t1 and

region 1 of t4. As time progresses, t1’s execution (on PE1) moves to region 2, which

then replaces the content of PE1’s portion of the cache. Later on, a preemption brings

into the cache the content associated with t2. However, when t1 resumes, it again brings

in region 2 into the cache.

CHAPTER 5. PREDICTABLE SHARED CACHE MANAGEMENT 61

5.4 Experimental Evaluation

We choose a dual-core multiprocessor for experimental evaluation. Our pool of tasks

comprises independent C programs chosen from popular WCET benchmarks listed in

Table 5.2. An initial WCET analysis assumes all code blocks are located in the off-chip

memory. The resulting WCET values are shown in the table. The column Potential Re-

gions shows the number of code regions formed by the dynamic locking algorithm when

the single task is allocated cache space half its code size. From this pool, we construct

task sets of 4 tasks each. These task sets are chosen to exhibit different characteristics

(region formation, code size, and WCET) that affect the effectiveness of the locking and

partitioning schemes, as listed under each chart in Figure 5.2. Task periods are set such

that the utilization of each core is very close to 1, that is, the task set is schedulable with

maximum system utilization.

For both L1 and L2 caches, we choose the line size of 16 bytes (2 instructions) and the

associativity of 2. The size of L1 caches is fixed at 128 bytes per core. The small size is

chosen so that memory requirements are mostly served from the shared cache, enabling

better observation of the multiprocessing effect. Given the average code size of 4 KB

per task, we vary the size of the shared L2 cache from 1 KB to 4 KB. We assume that

the L1 latency is 1 clock cycle and the L2 latency is 4 cycles. The off-chip latency in

real-world systems may vary from about 10 to hundreds of cycles; we choose to fix it

at 10 cycles in these experiments to avoid extreme scale difference across benchmark

execution times.

In order to better observe the cache effects, we assume that preemption cost is negligi-

ble except for the cache reloading. In this way, non-core-based schemes (SN, DT) do

not incur any preemption cost. The only preemption cost incurred by the core-based

schemes (SC, DC) is the latency required to load the cache partition with the selected

contents. Note that this cache reload cost is entirely predictable, and is not to be con-

CHAPTER 5. PREDICTABLE SHARED CACHE MANAGEMENT 62

Table 5.2: Benchmarks comprising the task sets
Benchmark # Potential Codesize WCET Description

Regions (bytes) (cycles)

adpcm 4 12,568 3,152,246 Adaptive differential pulse code modulation
cnt 3 1,648 54,228 Matrix sum and count benchmark test
crc 4 2,032 802,866 Cyclic Redundancy Check operation
des 9 6,400 905,692 Data Encryption Standard
desu 6 10,488 889,519 des with selected loops unrolled
edn 9 13,488 983,034 Simple vector multiply
expint 6 1,760 512,824 Loop-intensive calculations
fdct 3 5,424 45,891 Integer implementation of forward DCT
fir 6 3,928 275,722 FIR filter and Gaussian function
idct 2 11,456 30,402 Inverse 2-D DCT, Chen-Wang algorithm
isort-20 3 840 57,212 Insertion sort on a list of 20 elements
isort-20s 17 8,048 53,256 isort-20 with outer loop unrolled
isort-100 2 2,120 1,381,692 Insertion sort on a list of 100 elements
isort-100s 18 9,560 1,389,022 isort-100 with outer loop unrolled
jfdctint 3 5,512 45,962 JPEG integer implementation of forward DCT
lms 5 4,648 6,979,009 LMS adaptive signal enhancement
matmul-10 3 800 376,623 10 x 10 matrix multiplication
matmul-10s 8 4,776 269,308 matmul-10 with outermost loop unrolled
matmul-10u 2 6,976 257,223 matmul-10 with inner loops unrolled
matmul-20 3 800 2,936,153 20 x 20 matrix multiplication
matmul-20s 17 9,496 2,100,158 matmul-20 with outermost loop unrolled
matmul-20u 2 6,720 1,974,153 matmul-20 with innermost loop unrolled
matsum-10 1 512 28,523 10 x 10 matrix summation
matsum-10s 8 2,376 17,698 matsum-10 with outer loop unrolled
matsum-10u 1 3,256 2,447 matsum-10 with all loops unrolled
matsum-100 2 1,016 5,050,275 100 x 100 matrix summation
matsum-100s 8 7,392 5,138,235 matsum-100 with outer loop unrolled
matsum-100u 2 5,736 4,063,275 matsum-100 with inner loop unrolled
minver 6 6,152 53,306 Matrix inversion for 3x3 floating point matrix
qurt 3 1,936 19,787 Root computation of quadratic equations
st 6 3,320 33,213,872 Computation of statistics correlation of 2 arrays
whet 6 4,376 6,570,768 Whetstone benchmark

CHAPTER 5. PREDICTABLE SHARED CACHE MANAGEMENT 63

fused with cache-related preemption delay for unlocked caches (see Section 3.1), which

refers to the non-deterministic delay due to the burst of cache misses after resuming

from preemption. In our predictable caching schemes, this delay is a known constant.

For all task sets, we first select the L1 contents for each core, then apply the four shared

caching schemes SN, DT, SC, and DC. This gives us the set of locked memory blocks

for each task. Note that a task may not be allocated any space in the cache in certain

schemes. Based on these locked sets, we calculate the new WCET of each task, taking

into account any extra latency involved to reload the cache contents. Finally, we com-

pute the system utilization. Figure 5.2 shows the system utilization computed for each

task set given the various schemes and varied cache sizes. These values are normalized

against the system utilization without a cache. The scheme that achieves lower system

utilization value in these results will be considered more effective in optimizing system

performance, leading to higher chance of schedulability.

Cache Partitioning Strategy We have three possible choices for cache partitioning

as shown in Table 5.1: no partition, task-based partition, and core-based partition. The

experimental results indicate that the best partitioning choice strongly depends on the

locking scheme (static or dynamic) used in conjunction and cache size.

First let us consider static cache locking. As mentioned before, we have eliminated

task-based partition (ST) from consideration as it is provably inferior compared to no

partition (SN). This is due to the partitioning granularity of ST, which requires the cache

partition for a task to contain power of 2 sets. SN, in contrast, allows complete flexibility

and a task is free to occupy as little as one cache block.

However, when it comes to no partition versus core-based partition (SN versus SC),

the situation is reversed; SC consistently performs better than SN irrespective of cache

size and application characteristics. Recall that in SC, the entire partition for a core is

CHAPTER 5. PREDICTABLE SHARED CACHE MANAGEMENT 64

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1K 2K

Sy
st

em
 u

til
iz

at
io

n
(n

or
m

.)

Shared cache size (byte

CLR

4K
es)

RLTL

SN DT SC DC

Codesize: Large
No. of regions: Large
WCET: Large

Tasks:
(1) des
(2) isort-100s
(3) matmul-20s
(4) matsum-100s

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1K 2K

Sy
st

em
 u

til
iz

at
io

n
(n

or
m

.)

Shared cache size (byte

CLRL

4K
es)

LTS

SN DT SC DC

Codesize: Large
No. of regions: Large
WCET: Small

Tasks:
(1) desu
(2) isort-20s
(3) matmul-10s
(4) minver

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1K 2K

Sy
st

em
 u

til
iz

at
io

n
(n

or
m

.)

Shared cache size (byte

CLR

4K
es)

STL

SN DT SC DC

Codesize: Large
No. of regions: Small
WCET: Large

Tasks:
(1) adpcm
(2) lms
(3) matmul-20u
(4) matsum-100u

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1K 2K

Sy
st

em
 u

til
iz

at
io

n
(n

or
m

.)

Shared cache size (byte

CLR

4K
es)

STS

SN DT SC DC

Codesize: Large
No. of regions: Small
WCET: Small

Tasks:
(1) fdct
(2) idct
(3) jfdctint
(4) matmul-10u

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1K 2K

Sy
st

em
 u

til
iz

at
io

n
(n

or
m

.)

Shared cache size (byte

CSR

4K
es)

RLTL

SN DT SC DC

Codesize: Small
No. of regions: Large
WCET: Large

Tasks:
(1) edn
(2) lms
(3) st
(4) whet

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1K 2K

Sy
st

em
 u

til
iz

at
io

n
(n

or
m

.)

Shared cache size (byte

CSR

4K
es)

RLTS

SN DT SC DC

Codesize: Small
No. of regions: Large
WCET: Small

Tasks:
(1) expint
(2) fir
(3) matmul-10s
(4) matsum-10s

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1K 2K

Sy
st

em
 u

til
iz

at
io

n
(n

or
m

.)

Shared cache size (byte

CSR

4K
es)

RSTL

SN DT SC DC

Codesize: Small
No. of regions: Small
WCET: Large

Tasks:
(1) crc
(2) isort-100
(3) matmul-20
(4) matsum-100

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1K 2K

Sy
st

em
 u

til
iz

at
io

n
(n

or
m

.)

Shared cache size (byte

CSR

4K
es)

RSTS

SN DT SC DC

Codesize: Small
No. of regions: Small
WCET: Small

Tasks:
(1) cnt
(2) isort-20
(3) matsum-10
(4) qurt

Figure 5.2: Effects of shared caching schemes SN, DT, SC, and DC on task sets with
various characteristics

CHAPTER 5. PREDICTABLE SHARED CACHE MANAGEMENT 65

occupied only by the “active” tasks at any point of time. For SN, in contrast, the “idle”

tasks continue to occupy precious real-estate in the shared cache. The downside of SC is

of course the cache partition reloading and locking cost at every preemption. However,

the results indicate that preemption cost does not over-shadow the advantage of better

cache utilization by SC.

The best partitioning strategy, when used in conjunction with dynamic cache locking

scheme, depends heavily on cache size. Here we are comparing DT versus DC). As

dynamic locking allows better cache utilization through intra-task reloading at region

boundaries, DT becomes a competitive scheme. Its main advantage is zero interference

among the tasks, thus avoiding cache reloading at task preemption. DC, on the other

hand, offers more cache space per task, thus performs better at small cache sizes. As

cache size increases, the difference between the two is negligible.

Static versus Dynamic Cache Locking Here the best choice is strongly influenced

by application characteristics, cache size, and the cache partitioning strategy.

Let us first consider core-based partition (SC versus DC). Clearly, DC can better utilize

the cache if the application has many hot regions and the cache space is limited. The

experiments validate this observation with DC performing better for task sets with large

number of regions (C*RLT*). Even for those task sets, DC gives diminishing returns as

cache size increases. If the constituent tasks do not contain profitable regions (C*RST*),

then it is better to use SC, which is a much simpler cache management scheme.

We now turn to task-based partition. Normally, we would compare ST against DT, but

as already discussed, ST is never better than SN. We thus compare DT with SN instead.

The trend is roughly the same as SC versus DC: DT wins if the tasks have a number of

hot regions. However, there is one important difference. As we choose a reload point

within a task only if it is profitable to do so, DC cannot perform worse than SC. We

CHAPTER 5. PREDICTABLE SHARED CACHE MANAGEMENT 66

cannot make this claim for DT over SN, as DT and SN use different schemes for cache

partitioning. Indeed, SN enjoys much more flexibility in cache allocation to tasks. The

rigid partitioning of DT can completely over-shadow the gain from reloading at region

boundaries. Thus SN can perform better than DT when (1) tasks have very few regions

(CSRSTL and CSRSTS) or (2) some tasks get no space in the shared cache (CSRLTL)

with DT policy.

Guiding Design Principles From the preceding discussion, we can make the follow-

ing general conclusions.

• The combination {static locking, core-based partition} (SC) performs better than

{static locking, no partition} (SN), which in turn performs better than {static lock-

ing, task-based partition} (ST) irrespective of cache size and application charac-

teristics. In other words, a design that uses static cache locking should apply

core-based partition.

• The combination {dynamic locking, core-based partition} DC performs better

than {dynamic locking, task-based partition} DT for small shared cache size.

They are comparable for large cache size; avoiding cache reloading at preemp-

tion via task-based partitioning does not seem to affect performance much. In

conclusion, core-based cache partition emerges as overall winner independent of

locking strategy.

• Dynamic cache locking is better than static cache locking only for tasks with a

large number of hot regions and for smaller shared cache size. Moreover, de-

signers should be careful when using task-based partitioning in conjunction with

dynamic cache locking. If some tasks do not get any cache allocation, the overall

system utilization may be severely affected.

CHAPTER 5. PREDICTABLE SHARED CACHE MANAGEMENT 67

5.5 Chapter Summary

In this chapter, we have explored predictable caching schemes for shared memory multi-

cores in the context of preemptive hard real-time systems. In particular, we have de-

veloped and evaluated various design choices for the shared L2 cache by exploiting

static/dynamic locking and task/core-based partitioning. We have studied system uti-

lization for the different choices with respect to the characteristics of the task set and

cache size. Our study reveals some interesting guiding principles for real-time system

designers with respect to the memory hierarchy.

Chapter 6

Scratchpad Allocation for Sequential

Applications

In this chapter, we discuss scratchpad allocation for data memory that aims to minimize

the WCET of sequential applications. We first develop a solution based on integer linear

programming (ILP) that constructs the optimal allocation assuming that all program

paths are feasible. Next, we exploit infeasible information in the allocation via optimal

branch-and-bound search to achieve better accuracy. However, the branch-and-bound

search is too time-consuming in practice. Therefore, we design fast heuristic searches

that achieve near-optimal allocations for all our benchmarks.

6.1 Introduction

Significant research effort has been invested in developing efficient allocation techniques

for scratchpad memory [14, 100, 101]. However, all these techniques aim to reduce the

average-case execution time (ACET) by utilizing extensive data memory access pro-

files. An optimal allocation for ACET may not necessarily be the optimal allocation for

68

CHAPTER 6. SCRATCHPAD ALLOCATION FOR SEQUENTIAL APP. 69

WCET. The main difficulty in developing optimal scratchpad memory allocation tech-

nique for WCET is the following. An ACET-guided allocation method uses the access

frequencies of variables obtained through profiling. In WCET-guided allocation, we are

interested in the access frequencies of the variables along the worst-case path. As we

allocate variables along the worst-case path into the scratchpad memory, a new path

may become the worst-case path. This leads to a different access frequency profile of

the variables corresponding to the new worst-case path. As a result, locally optimizing

the current worst-case path may not lead to the globally optimal solution. The elegant

techniques used in ACET-guided optimal allocations, such as 0-1 knapsack, are not ap-

plicable to WCET-guided allocation.

With this motivation, we propose customized optimal and near-optimal allocation tech-

niques that are guided by WCET. We consider data objects for allocation as they are

more difficult to handle as far as timing predictability of real-time tasks is concerned.

Our allocation technique can also be applied to code objects with minimal modification.

Our first optimal allocation technique is based on a simple ILP formulation. This so-

lution does not take infeasible path information into account. Therefore, it can poten-

tially allocate objects from a heavy (w.r.t. execution time) but infeasible path, leading

to misdirected optimization and consequently sub-optimal performance gain. To over-

come this drawback, we propose another optimal allocation technique based on branch-

and-bound search that does exploit infeasible path information. But branch-and-bound

search may be inefficient for large number of variables and large scratchpad sizes. So we

also design a greedy heuristic algorithm that is efficient, considers infeasibility informa-

tion, and produces near-optimal solutions. To be effective, these allocation techniques

require repeated search for the worst-case path and the access frequencies of the vari-

ables along that path. This is enabled by the efficient WCET analysis we described in

Chapter 4.

CHAPTER 6. SCRATCHPAD ALLOCATION FOR SEQUENTIAL APP. 70

6.2 Optimal Allocation via ILP

In this section, we address the problem of allocating data variables to scratchpad mem-

ory so as to reduce the WCET of a program. This first setting does not take into account

any infeasible path information, that is, all paths in the control flow graph are consid-

ered feasible. In the next section, we consider optimal and near-optimal allocation of

data variables to scratchpad memory by considering infeasible path information.

Assumptions Our WCET-guided allocation method is static, that is, the allocation of

variables is fixed at compile time. We consider both scalar variables and arrays. An

array can be allocated only if the entire array fits into the scratchpad. We consider for

allocation the global variables and the stack variables (parameters, local variables, and

return variables) corresponding to non-recursive functions. We do not consider stack

variables corresponding to recursive functions because multiple instances of these vari-

ables may exist during program execution. For non-recursive functions, our method

treats the stack variables just like global variables, that is, these stack variables are allo-

cated for the entire execution of the program. This restriction can be relaxed in a manner

similar to [14] by taking into account functions with disjoint lifetimes.

ILP Formulation We now present our allocation method based on integer linear pro-

gramming (ILP). Recall that names starting with capital letters are used for ILP variables

and names starting with small letters represent constants. First we develop a scheme for

allocating data variables appearing in a single program loop; later we extend the tech-

nique to general programs.

Let us consider the directed acyclic graph (DAG) capturing the control flow in the loop

body, that is, the control flow graph of the loop body without the loop back-edge. We

assume that the DAG has a unique source node and a unique sink node. If there is no

CHAPTER 6. SCRATCHPAD ALLOCATION FOR SEQUENTIAL APP. 71

unique sink node, then we add a dummy sink node. Each path from the source to the

sink in the DAG is an acyclic path — a possible path in a loop iteration.

For each data variable v in the program we define a 0 − 1 decision variable Sv which

indicates whether v is selected for scratchpad allocation. Thus

Sv ≥ 0; Sv ≤ 1

∑
v∈allvars

Sv ∗ areav ≤ scratchpad size

where allvars is the set of program variables, areav is a constant denoting the scratch-

pad area to be occupied by v if it is allocated and scratchpad size is a constant denoting

the total size of the scratchpad memory available.

We consider the DAG representing the loop body’s control flow and define a variable Wi

for each basic block i in the DAG. Variable Wi denotes the cost of the worst-case path

in the DAG rooted at basic block i under the allocation captured by the Sv variables.

For each outgoing edge i → j from basic block i in the DAG, we have the following

constraint.

Wi ≥ Wj + (costi −
∑

v∈vars(i)

Sv ∗ gainv ∗ nv,i)

where costi is a constant denoting the execution time (in terms of cycles) of basic block i

without any allocation. The term vars(i) denotes the set of program variables appearing

in basic block i, while gainv is a constant denoting the gain (in number of cycles) of

a single access of v by allocating v to scratchpad memory, and nv,i is the number of

occurrences of v in basic block i. For the sink node of the DAG, which has no outgoing

edge, we define Wsink as follows.

Wsink = costsink −
∑

v∈vars(sink)

Sv ∗ gainv ∗ nv,sink

CHAPTER 6. SCRATCHPAD ALLOCATION FOR SEQUENTIAL APP. 72

Clearly, the variable Wsrc (for the source node of the DAG) captures the worst-case

acyclic path under the allocation given by Sv variables. Thus, we define the objective

function as

minimize Wsrc ∗ lb (6.1)

where lb is a known constant denoting the maximum number of loop iterations.

The ILP solver finds the assignment of Sv variables (i.e., the scratchpad allocation)

which minimizes the worst-case execution time of the loop.

Extension to Full Programs In the preceding, we determine the optimal scratchpad

allocation for a single program loop. To extend our formulation to whole programs,

we first need to generate the constraints for each innermost program loop as mentioned

above. Next, we transform the program’s control flow graph by converting each in-

nermost loop to a “basic block”, where the cost of each innermost loop is given by the

objective function of Equation 6.1. We can now construct the constraints for loops in the

next level of loop nesting. We go on in this fashion until we have reached the topmost

level of loop nesting; this gives us all the ILP constraints. The new objective function

to be minimized is now Wentry, where entry is the only entry node in the program’s

control flow graph (in a C program, the entry block of the main function).

6.3 Allocation via Customized Search

In this section, we present search algorithms for generating optimal and near-optimal

allocations by taking into account infeasible path information. We have incorporated in-

feasible path detection into our WCET analysis technique, which we describe in Chapter

4. Here we show how the problem of variable allocation to minimize WCET can be for-

mulated, where the WCET analysis takes into account infeasible path information.

CHAPTER 6. SCRATCHPAD ALLOCATION FOR SEQUENTIAL APP. 73

Given the size of the scratchpad memory scratchpad size, we define an allocation as a

set

V ∈ 2allvars s.t.
∑
v∈V

areav ≤ scratchpad size

where the set 2allvars denotes the power-set of allvars.

Let WCETV be the WCET after allocating the set of variables V into the scratchpad

memory. We want to choose the “optimal” allocation, that is, the allocation V ∈ 2allvars

that produces the minimum WCETV . As before, allvars denotes the set of all variables

accessed in the program, and areav denotes the size of variable v.

Finding the optimal variable allocation for WCET reduction requires the contribution

of each variable towards the WCET. However, we cannot define the contribution of a

variable towards the WCET as a constant. This is because of the following reasons.

• First, the contribution of a variable towards the WCET is dependent on the current

WCET path. However, allocation of that variable may result in a new WCET path.

Therefore, the reduction in WCET due to allocation of a variable is, in general,

not equal to the contribution of the variable towards the current WCET.

• Secondly, the reduction in WCET due to allocation of two or more variables is

not accumulative. That is, if the WCET reduction by allocating variables v1 and

v2 are X1 and X2, respectively, then the WCET reduction by allocating variables

v1 and v2 together can be less than (X1 + X2).

To illustrate these two points, consider two paths π1 and π2 having execution times

tm(π1) and tm(π2) assuming no variable allocation to scratchpad memory (Figure 6.1).

Suppose WCET = tm(π1) = tm(π2) + ε. Consider two variables v1 and v2 where v1

is accessed in π1 but not in π2, while v2 is accessed in π2 but not in π1. Let ct(v1, π1) =

ct(v2, π2) > ε where cost(vk, πk) denotes the contribution of variable vk towards the

execution time of path πk.

CHAPTER 6. SCRATCHPAD ALLOCATION FOR SEQUENTIAL APP. 74

WCET = tm(π1)
ct (v1 ,π1) ε

allocate { v1 }

allocate { v1 ,v2 }

(a)

(b)

tm(π2) tm(π2) = WCET’

tm(π1) – ct (v1 ,π1)
ct (v2 ,π2)

π2π1 π2π1

π2π1

WCET = tm(π1)
ct (v1 ,π1)

tm(π2)

π2π1

WCET’ =
tm(π1) – ct (v1 ,π1)

tm(π2) – ct (v2 ,π2)

ct (v1 ,π1)

ct (v2 ,π2)

Figure 6.1: Non-constant WCET reduction due to variable allocation

Allocating v1 in the scratchpad memory reduces tm(π1) by ct(v1, π1), as illustrated in

Figure 6.1a. But π2 now becomes the WCET path; thus, the reduced worst-case execu-

tion time is tm(π2). The reduction in WCET is ε instead of ct(v1, π1). Furthermore, allo-

cating v1 and v2 together reduces both tm(π1) and tm(π2), as illustrated in Figure 6.1b.

As ct(v1, π1) = ct(v2, π2), the reduced worst-case execution time is tm(π1)−ct(v1, π1).

Here, the WCET reduction does not involve the contribution of v2 at all.

As we cannot define the contribution of a variable towards the WCET as a constant, the

optimal allocation problem for WCET reduction cannot be formulated as a knapsack

CHAPTER 6. SCRATCHPAD ALLOCATION FOR SEQUENTIAL APP. 75

problem. Furthermore, as the contributions of consecutively allocated variables do not

accumulate, the “optimal substructure” property required for dynamic programming is

absent. This rules out an optimal dynamic programming solution. Following this, we

use a branch-and-bound search algorithm to obtain the optimal solution.

6.3.1 Branch-and-Bound Search

The general paradigm of branch-and-bound deals with optimization problems over a

search space that can be presented as the leaves of a search tree. The search is guaran-

teed to find the optimal solution, but its complexity in the worst case is as high as that

of exhaustive search. In our case, the search space consists of the set of all possible

allocations V ∈ 2allvars.

Each level k in the branch-and-bound search tree corresponds to the decision of includ-

ing or excluding a variable vk ∈ allvars into the solution set V . Thus, each node

m at level k corresponds to a partial allocation allocation(m) with the decision about

the variables v1 up to vk, i.e., allocation(m) ⊆ {v1, . . . , vk} ⊆ allvars. Whenever

we reach a leaf node of the search tree, we have a complete allocation. We then cal-

culate the reduced WCET corresponding to this allocation. The reduction in WCET

is the difference between the original WCET (without any allocation) and the reduced

WCET. During the traversal of the search tree, the maximum WCET reduction achieved

so far at any leaf node is kept as a bound B. At any non-leaf node m in the search

tree, a heuristic function computes an upper bound, UB(m), on the maximum possible

WCET reduction at any leaf node in the subtree rooted at m. If UB(m) < B, then the

search space corresponding to the subtree rooted at m can be pruned. Clearly, the choice

of the heuristic function UB is crucial in deciding the amount of search space pruning

achieved.

CHAPTER 6. SCRATCHPAD ALLOCATION FOR SEQUENTIAL APP. 76

We define the heuristic function for a node m at level k of the search tree as fol-

lows. First, we compute the WCET reduction, reduction(m), corresponding to the

partial allocation allocation(m) at node m. The upper bound, UB(m), is the sum of

reduction(m) and the maximum potential reduction in WCET due to the allocation of

the variables not yet considered, i.e., {vk+1, . . . , v|allvars|}. An estimation of the latter is

formulated as a simple knapsack problem, which is solved using dynamic programming.

The inputs to the knapsack problem are as follows.

1. Variables: vk+1, . . . , v|allvars|

2. Size of each variable: areavk+1
, . . . , areav|allvars|

3. Size limit defined as the remaining space in the scratchpad:

scratchpad size −
∑

v∈allocation(m) areav

4. Bound on the maximum WCET reduction due to allocation of each variable:

boundvk+1
, . . . , boundv|allvars|

For a variable v, boundv is defined as the maximum contribution of v towards the

execution time of any path. Clearly, the WCET reduction achieved by allocating

v to scratchpad memory should be bounded by boundv. These bounds can be

estimated once and for all through a single traversal of the control flow graph.

The 0-1 knapsack problem allocates some of the variables vk+1, . . . , v|allvars| to the re-

maining scratchpad memory space so as to maximize the potential reduction in WCET.

Note that the knapsack problem formulation simply computes the heuristic function

(not the actual allocation gain) for the purpose of pruning the branch-and-bound search

space.

Figure 6.2 illustrates the branch-and-bound search process. Suppose that at one point of

the search we have constructed a complete allocation at the leaf node m, which achieves

the maximum reduction in WCET among all complete allocations encountered so far.

CHAPTER 6. SCRATCHPAD ALLOCATION FOR SEQUENTIAL APP. 77

v
k–1

v
|allvars|

…

reduction(m) = B

v
k

m

m’
UB(m’) < B

Figure 6.2: Pruning in the branch-and-bound search tree

We remember reduction(m) as the bound B — representing the maximum WCET

reduction achieved so far. Suppose later in the search we reach node m′ at level k.

Using the heuristic function described above, we calculate UB(m′), an upper bound on

the reduction in WCET achieved by extending the partial allocation at m′ to a complete

allocation. At this point supposed we find that UB(m′) < B which means that any

complete allocation we may construct by continuing from m′ will never outperform the

allocation we have constructed at m. Clearly, in this situation the subtree rooted at m′

need not be explored further and can be pruned from the search tree.

In order to achieve effective pruning of the unexplored nodes, the variables are sorted

so that a variable that can potentially reduce the WCET more is explored earlier in the

search tree. In other words, we measure the potential WCET reduction of a variable v

using its maximum contribution over all execution paths, namely boundv. The ordering

is simply a decreasing order of boundv for v ∈ allvars.

The branch-and-bound formulation as described above yields an optimal solution for

global WCET optimization. Unfortunately, its complexity is exponential with respect to

the number of data variables to be allocated. As such, it is not practical to run the branch-

CHAPTER 6. SCRATCHPAD ALLOCATION FOR SEQUENTIAL APP. 78

and-bound search to generate scratchpad allocation from among a large number of data

variables unless the scratchpad size is relatively small, in which case the scratchpad

capacity constraint may prune out a large portion of the search tree.

6.3.2 Greedy Heuristic

Since the branch-and-bound search is inefficient in running time, we also develop and

use a fast heuristic search based on greedy approaches. This search algorithm, in gen-

eral, may yield a sub-optimal allocation. Nevertheless, our experiments have found that

the WCET reduction from the resulting allocation is close to the WCET reduction from

the optimal allocation found by branch-and-bound search.

allocation := ∅;1

capacity := scratchpad size;2

changed := TRUE;3

Perform WCET analysis to obtain worst-case path π;4

while capacity > 0 AND changed = TRUE do5

changed := FALSE;6

V := { v | v is an unallocated variable accessed in π, areav ≤ capacity };7

if V 6= ∅ then8

Find v ∈ V with maximum contribution towards the execution time of π;9

allocation := allocation ∪ {v};10

capacity := capacity − areav;11

changed := TRUE;12

Perform WCET analysis to compute the new worst-case path π;13

Return allocation;14

Algorithm 3: Greedy heuristic for scratchpad allocation to reduce WCET of a
program

In our heuristic search, we first find the heaviest path taking into account infeasible path

information; let this path be π. The heuristic then allocates one program variable v

appearing in π. Naturally, the variable selected is the one with maximum contribution

to the execution time of π. Following this, we run the WCET analysis once again to find

the heaviest path after allocating v. More variables can then be allocated for this path.

CHAPTER 6. SCRATCHPAD ALLOCATION FOR SEQUENTIAL APP. 79

Of course, we stop whenever the scratchpad is filled. The scratchpad is considered as

filled (for π) when none of the variables accessed in π can be added into the existing

allocation without exceeding the scratchpad size. The skeleton of the greedy heuristic

appears in Algorithm 3.

Further Heuristic Consideration We observe that the sub-optimality of the greedy

heuristic arises from over-optimization of the first few heaviest paths, so that the scratch-

pad space is exhausted by the time we get to another relatively heavy path. We thus at-

tempt a more complicated heuristic which balances the allocation among the competing

paths by allowing backtracking in allocation. We allow backtracking when the scratch-

pad is filled, by removing some variables from the existing allocation to make space for

variables in the current heaviest path. To guard against unbounded backtracking, we

require that the new worst-case path after the replacement is not the same as any of the

previously encountered WCET paths. However, this complicated heuristic does not al-

ways produce a better reduction in WCET than the greedy heuristic. It is better than the

greedy heuristic when we have multiple competing paths with only a few overlapping

variables, and the scratchpad size is very small (hence it gets filled up quickly). In our

experiments, we found that such a situation occurs rarely. Moreover, allowing for back-

tracking adds an overhead to the running time of the optimization. Thus, we consider

the greedy heuristic to perform better than the complicated heuristic.

6.4 Experimental Evaluation

Setup We choose six data/control intensive kernels as benchmarks. The characteristics

of these benchmarks are given in Table 6.1. lingua performs language-independent

text processing [30]. statemate and compress are benchmarks taken from [137];

statemate is a car window lift controller generated automatically from a statechart

CHAPTER 6. SCRATCHPAD ALLOCATION FOR SEQUENTIAL APP. 80

specification, while compress is a data compression program. The susan bench-

mark is taken from MiBench’s automotive application suite [44]; it is a kernel perform-

ing edge thinning in an image. Finally, des performs Data Encryption Standard, and

fresnel computes Fresnel integrals. Both are taken from [103].

Table 6.1: Benchmark characteristics
Benchmark Data Memory (bytes) WCET (cycles)

Scalars Arrays Total with infeasibility w/o infeasibility

lingua 141 340 481 823,305 825,227
statemate 163 64 227 41,578 44,938
susan 96 36,136 36,232 293,989,241 485,328,185
compress 157 263,849 264,006 319,075 390,937
des 208 1,153 1,361 643,270 643,894
fresnel 536 0 536 256,172 256,172

Most of our benchmarks are compute-intensive kernels processing one or more arrays.

This is evident from Table 6.1 that shows the total data memory size and its division

between scalar and array variables. Also, most of our benchmarks have limited num-

bers of possible paths through any loop iteration; the only exception in this regard is

statemate. The statemate benchmark is a control-intensive application with

very little data manipulation. This benchmark has a large number of possible paths

(6.55× 1016) for one loop iteration. However, a rough estimate shows that a large num-

ber of these paths are infeasible. The number of feasible paths for any loop iteration

is 1.09 × 1013, that is, less than 0.016% of the total number of possible paths. Table

6.1 shows the estimated WCET of all benchmarks both with and without infeasible path

information. This estimation assumes that data variables have not yet been allocated to

scratchpad. The heaviest path in fresnel is feasible, so estimation with and without

infeasible paths produce the same WCET.

We use SimpleScalar tool set [12] for the experiments. The programs are compiled using

gcc 2.7.2.3 targeted for SimpleScalar. As our focus is to evaluate the latency reduction

due to allocation of data variables to scratchpad memory, we assume a simple embedded

CHAPTER 6. SCRATCHPAD ALLOCATION FOR SEQUENTIAL APP. 81

processor with single-issue in-order pipeline and perfect branch prediction. Instructions

are accessed from off-chip memory through a perfect instruction cache with 1 clock

cycle latency. There is no data cache; a subset of data variables can be allocated to on-

chip scratchpad memory. We assume single-cycle scratchpad access latency as can be

expected from current technology. Considering the presence of large-scale benchmarks,

the main memory access latency is fixed at 10 cycles (real values may range from 10 to

hundreds).

We apply the WCET analysis (as described in Chapter 4) on each compiled program to

calculate its WCET. We then run all the three different scratchpad allocation techniques

(ILP, branch-and-bound, and greedy heuristic) for each benchmark to obtain the corre-

sponding allocation and the reduced WCET. All the experiments have been performed

on a 3.0GHz P4 CPU with 1MB cache and 2GB memory.

Discussion Figure 6.3 shows the original and reduced WCET due to scratchpad allo-

cation by the ILP, branch-and-bound and greedy heuristic methods. The original WCET

assumes that all variables are allocated in off-chip memory, that is, there is no scratch-

pad memory. This is quite common for current real-time systems. The reduced WCET

is the estimation returned by the different techniques after scratchpad allocation. In Fig-

ure 6.3, the reduced WCET is indicated by the yellow bars; the difference between the

original WCET and reduced WCET is indicated by the green bars stacked on top of the

yellow bars. Thus the total height of each bar (green + yellow) indicates the original

WCET.

We choose three different scratchpad memory sizes for each benchmark corresponding

to 5%, 10%, and 20% of the total data memory size (shown in Table 6.1). As expected,

the WCET reduces by 5 − 80% due to allocation for the different benchmarks. As

we increase the scratchpad size from 5% to 10%, there is no reduction in WCET for

compress, lingua and susan. This is because these benchmarks have some large

CHAPTER 6. SCRATCHPAD ALLOCATION FOR SEQUENTIAL APP. 82

Figure 6.3: Original and reduced WCET after scratchpad allocation by ILP, greedy
(Grd), and branch-and-bound (BnB) for various benchmarks and scratchpad sizes

CHAPTER 6. SCRATCHPAD ALLOCATION FOR SEQUENTIAL APP. 83

arrays and increasing the scratchpad size still cannot accommodate these arrays. In

general, allocating only 10% of the data memory to scratchpad has been able to achieve

quite a significant reduction in WCET for all benchmarks.

Notice that the reduced WCET obtained via ILP is typically higher than the reduced

WCET with branch-and-bound and/or greedy heuristics. This is because the ILP-based

method cannot take into account the detailed infeasibility information as exploited by

our efficient WCET calculation method. This result shows that it is important to take

the infeasibility information into account when analyzing and optimizing for WCET. In

most cases there is very little or no difference between greedy heuristic and branch-and-

bound implying that greedy heuristic achieves near-optimal solutions. For the bench-

mark statemate with scratchpad size equal to 20% of the data memory, the reduced

WCET with ILP is slightly better than the reduced WCET with greedy approach. Even

though the greedy approach takes infeasibility information into account, it is still sub-

optimal; in this particular case, it performs worse than ILP does.

Figure 6.4: Original and reduced WCET after ILP, greedy (Grd), branch-and-bound
(BnB), and ACET-based (Avg) scratchpad allocation for the fresnel benchmark

Finally, as mentioned earlier, existing scratchpad allocation techniques use the average-

case profile information. In particular, Wehmeyer and Marwedel [139] investigate the

effect of scratchpad allocation on WCET where average-case profile is used for deter-

mining the allocation. However, the optimal allocation for average-case may not be

CHAPTER 6. SCRATCHPAD ALLOCATION FOR SEQUENTIAL APP. 84

optimal in reducing the worst-case execution time. This is shown experimentally in

Figure 6.4. Here, we have collected average-case data access frequencies by running

the benchmarks with representative set of inputs. We then formulate a 0-1 knapsack

problem to find the allocation that optimizes the average-case execution time (ACET),

and compute the reduction in WCET using this allocation. This appears as ‘Avg’ in the

figure. We plot it against the reduction in WCET using our WCET-guided allocation

techniques — ILP, branch-and-bound, and greedy methods.

In the fresnel benchmark, our WCET-guided allocation methods, via branch-and-

bound and greedy heuristics, produce up to 46% reduction in WCET as compared to

the allocation produced by the ACET-based technique. Other benchmarks show similar

trends but less pronounced WCET reduction. For example, in the lingua benchmark

our WCET-guided greedy allocation strategy produces up to 22% WCET reduction as

compared to the allocation produced by the ACET-based technique.

On the other hand, when we observe the effect of our WCET-guided allocation methods

on ACET in this set of benchmarks, we find that our ILP and branch-and-bound methods

achieve similar reduction in ACET as compared to ACET-guided allocation methods.

Table 6.2: Running time of allocation methods for scratchpad = 10% of data memory
Runtime (ms)

Benchmark ILP Greedy Branch-and-bound
Formulation Solution

lingua 3 28 16 78
statemate 4 33 12,080 36,616
susan 3 15 18 23,960
compress 3 18 15 346,740
des 3 18 5 19
fresnel 3 16 1 6

Table 6.2 shows the running times of our allocation techniques when the scratchpad

memory size is equal to 10% of the data memory size. It is interesting to note that even

though the reduced WCET with ILP method is typically greater than the reduced WCET

CHAPTER 6. SCRATCHPAD ALLOCATION FOR SEQUENTIAL APP. 85

with greedy heuristic, the running time of the greedy method is comparable to or even

less than the running time of the ILP method for all benchmarks except statemate.

For statemate, the running time of the greedy method is substantially more than

that of the ILP method. This particular benchmark has a large number of program

paths, hence it is more time consuming to estimate the WCET by taking infeasibility

information into account. ILP-based allocation does not take infeasibility information

into account and is therefore much faster.

6.5 Chapter Summary

In this chapter, we have discussed scratchpad memory allocation for data variables with

the explicit goal of reducing the WCET of a sequential program. We have presented

both optimal and heuristic allocation techniques. The major difference between our

work and existing works is that we specifically target WCET reduction instead of using

the WCET path (which changes as we fix the allocation) or the ACET path as profiles.

Chapter 7

Scratchpad Allocation for Concurrent

Applications

The majority of current generation embedded applications are inherently concurrent in

nature: they are built from multiple components that run independently with occasional

interactions with each other to accomplish their functionality. This is true for some real-

time applications as well, for instance those in automotive and avionics domain. The

combination of concurrency and real-time constraints introduces significant challenges

to the memory allocation problem.

In this chapter, we address the problem of scratchpad memory allocation for concurrent

embedded software with real-time constraints running on uniprocessor or multiproces-

sor platforms. Our objective is to reduce the worst-case response time (WCRT) of the

entire application.

86

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 87

7.1 Introduction

In the previous chapter, we have looked at the problem of scratchpad memory allocation

for sequential applications. This approach is not directly applicable to concurrent appli-

cations with multiple interacting processes. Let us illustrate the issues involved with an

example.

AP

Main

Modem

Control

AP-SPI

Control

GPS

Control

[Env]

Modem

fly_by_wire

Report

Unit

FBW

Main

Servo

Control

Radio

Control

FBW-SPI

Control

[Env]

Radio

[Env]

Servo
[Env]

SPI

autopilot

fm0

fm1

fm2

fm3

fm4

fv0
fr0

fr1

fs0

fs1

fs2

fm5

fv1

as0

as1

as2

as3

am0

as4

am1

am2

am3

am4

ag0

ar0

ad0

ad1

ad2

Figure 7.1: Message Sequence Chart model of the adapted UAV control application

Figure 7.1 shows a Message Sequence Chart (MSC) model [4, 56] depicting the inter-

action among the processes in an embedded application. We use an MSC model as it

provides a visual but formal mechanism to capture inter-process interactions. Visually,

an MSC consists of a number of interacting processes, each shown as a vertical line.

Time flows from top to bottom along each process. A process in turn consists of one

or more tasks represented as blocks along the vertical line. Message communications

between the processes are shown as horizontal or downward sloping arrows.

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 88

Semantically, an MSC denotes a labeled partial order of tasks. This partial order is the

transitive closure of (1) the total order of the tasks in each process, and (2) the ordering

imposed by message communications — a message is received after it is sent.

fm
1

fm
2

fm
4

fr
0

fr
1

fs
0

FBW-SPI

Control

Radio

Control

FBW

Main

Figure 7.2: A sample MSC extracted from the UAV control application case study

Consider the MSC example in Figure 7.2, which has been extracted from the earlier

application. A naive memory allocation strategy can be to share the scratchpad memory

among all the tasks of all the processes throughout the lifetime of the application. This

is illustrated in Figure 7.3a, where the distribution of scratchpad space over tasks is

depicted in the horizontal direction, while the content reloading over time is depicted in

order from top to bottom. Allocation algorithms proposed in the literature for sequential

applications can be easily adapted to support this strategy. However, this strategy is

clearly sub-optimal, as a task executes for only a fraction of the application’s lifetime yet

occupies its share of the memory space for the entire lifetime of the application. Instead,

two tasks with disjoint lifetimes (e.g., tasks fm1 and fm2) should be able to use the

same memory space through time multiplexing. This is known as dynamic scratchpad

allocation or scratchpad overlay, where the scratchpad memory content can be replaced

and reloaded at runtime.

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 89

At the other extreme of this approach, we can also let each task occupy the whole

scratchpad while it is executing (Figure 7.3b). When a task is preempted, its corre-

sponding memory content in the scratchpad is replaced by that of the preempting task.

Certainly, the time taken to load and reload contents into the scratchpad memory fol-

lowing each preemption and resuming of task execution also adds to the total latency

experienced by the system. This too has to be bounded to provide timing guarantee. In

a system with a large number of tasks vying for CPU time, the chain of preemptions can

get arbitrarily long and difficult to analyse.

tim
e

scratchpad space

(a) A simple “never flush” memory allocation (b) A simple “always flush” memory allocation

task fr0 preempted:

replace content

task fr0 resumed:

reload content

tim
e

scratchpad space

task fm2 preempted:

replace content

task fm2 resumed:

reload content

Figure 7.3: Naive memory allocation strategies for the model in Figure 7.2

The key to our proposed technique is finding a balance between these two extremes.

Clearly, we would like to employ scratchpad overlay as much as possible for optimal

gain in application response time. However, as timing predictability is the main motiva-

tion behind the choice of scratchpad memory over caches, it should be maintained even

in the presence of scratchpad overlay. This implies that in a concurrent system (e.g., as

shown in Figure 7.1), two tasks should be mapped to the same memory space only if we

can guarantee that they have disjoint lifetimes. Otherwise, the task with higher priority

may preempt the other, leading to scratchpad reloading delay at every preemption point.

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 90

We can trivially identify certain tasks with disjoint lifetimes based on the partial order

of an MSC; for example, as task fm1 “happens before” task fm2, clearly fm1 and

fm2 have disjoint lifetimes (Figure 7.2). However, there may exist many pairs of tasks

that are incomparable as per MSC partial order but still have disjoint lifetimes. For

instance, the timing analysis may be able to determine that the execution time of fr0,

given any input, is always long enough to ensure that the succeeding task fr1 can never

be started before fm2 finishes executing. In this case, we will be able to employ a

better scratchpad overlay scheme as illustrated in Figure 7.4a, where fm1, fm2, fm4

and fr1 are mapped to the same scratchpad space which they can utilize during their

respective lifetimes without disrupting one another. On the other hand, we should not

arrive at a decision such as the one in Figure 7.4b, which lets fr0 and fs0 share the

same scratchpad space without any guarantee that fs0 will not preempt fr0 in the actual

execution. This situation will lead to unexpected reloading delays that will invalidate

the WCRT estimation.

tim
e

scratchpad space

tim
e

scratchpad space

tim
e

scratchpad space

(b) Unsafe overlay solution(a) Safe overlay solution (c) Optimal overlay solution

Figure 7.4: Choices of scratchpad overlay schemes for the model in Figure 7.2: (a) safe,
(b) unsafe, and (c) optimal

We have found out through experiments that the optimal WCRT reduction for this par-

ticular example is achieved by the memory allocation scheme in Figure 7.4c, which

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 91

requires a deeper analysis of process interaction to arrive at. Moreover, as scratchpad

allocation reduces execution times of the individual tasks, the lifetimes of the tasks and

thus their interaction pattern may change. Therefore, an effective scratchpad allocation

scheme attempting to minimize the WCRT of the application should consider process

interferences as well as the impact of allocation on process interferences.

We propose an iterative allocation algorithm (Figure 7.5) consisting of two critical

steps: (1) analyze the MSC along with existing allocation to estimate the lifetimes of

tasks and hence the non-interfering tasks, and (2) exploit this interference information

to tune scratchpad reloading points and content so as to best improve the WCRT. The

iterative nature of our algorithm enables us to handle the mutual dependence between al-

location and process interaction. In addition, we ensure monotonic reduction of WCRT

in every iteration, so that our allocation algorithm is guaranteed to terminate.

Interference
and WCRT
improves?

Task lifetimes
&

interference
graph

Scratchpad

sharing scheme

& allocation

WCRT

analysis

Stop

Task

analysis

Start

Scratchpad
allocation
decision

Task execution times
& memory access

information

Initialize:
• empty allocation
• full interference

Yes No

Figure 7.5: Workflow of WCRT-optimizing scratchpad allocation

This work complements the research on cache-related preempted delay (CRPD) analy-

sis (see Section 3.1). CPRD analysis provides timing guarantee for concurrent software

by analyzing interferences in cache memory due to process interactions. An important

point of this analysis is identifying memory blocks of a process that are at risk of getting

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 92

replaced by a preempting process, and the additional miss latencies. Our work, on the

other hand, eliminates interference in memory through scratchpad allocation.

7.2 Problem Formulation

7.2.1 Application Model

The input to our problem is in the form of Message Sequence Chart (MSC) [4, 56]

that captures process interactions corresponding to a concurrent embedded application.

We assume a preemptive, multitasking execution model. The application is periodic in

nature. The MSC represents interactions within one such invocation where all processes

involved should adhere to a common period and deadline. The underlying hardware

platform contains one or more processing elements (PEs), each associated with a private

scratchpad memory. Figure 7.6 shows a simple example that illustrates this setting.

P
1

P
2

P
3

PE1 PE2

t
1

t
2

t
3

t
4

SPM
1

SPM
2

Figure 7.6: A simple MSC running on multiple PEs with scratchpad memories

A vertical line in the MSC represents the lifeline of a process, that is, the time period

during which the process is alive. A process may consist of more than one tasks. A

process typically corresponds to a specific functionality, and it is thus natural to assign

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 93

all the tasks in a process to one PE. The order in which the tasks appear on the process

lifeline in the MSC reflects their order of execution on the PE. In Figure 7.6, tasks t1 and

t2 belong to the same process P1 scheduled on PE1, and t2 executes after t1 completes

execution on the same PE. Dependencies across processes are represented as horizontal

arrows from the end of the predecessor task to the start of the successor task. In our

example, the communication delay between processes are zero. Including non-zero

communication delay in the analysis is straightforward: the start of the successor task is

simply pushed back by the amount of the delay.

Execution Priority Each process in the application is assigned a unique static priority.

The priority of a task is equal to the priority of the process it belongs to. If more than

one processes are assigned to the same PE, then a task executing on that PE may get

preempted by a task from another process with higher priority if their lifetimes overlap.

The assignment of static priorities to processes and the mapping of processes to PEs are

inputs to our framework.

Note that static priority assignment alone does not guarantee a fixed execution schedule

at runtime. The preemptions and execution time variations depending on input lead

to varying completion times of a task. This, in turn, gives rise to different execution

schedules. In Figure 7.6, supposing process P3 has higher priority than P2 on PE2,

then task t3 will be preempted when task t4 becomes ready, if the execution times of

the tasks in that particular invocation are such that t3 has not completed execution when

task t2 completes on PE1. We see that this situation is determined not only by the tasks

involved in the preemption, but other tasks in the system with dependency relationship

with these tasks as well.

The analysis and discussion in the rest of this paper will be at the task level instead of

the process level, as we make allocation decision for each task individually. Formally,

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 94

let t1, . . . , tN denote the tasks belonging to all the processes in the application. Each

task ti (1 ≤ i ≤ N) is associated with:

1. a period pd(ti),

2. a static priority pr(ti) in the range [1, R] with 1 being the highest priority, and

3. mapping to a PE PE(ti) in the range [1, Q], where Q is the number of PEs in the

system.

As mentioned earlier, all the tasks belonging to a process have the same priority and are

mapped to the same PE.

7.2.2 Response Time

We use the term task lifetime to mean the interval from the time a task is started and the

time it completes execution, specified in absolute time values. The absolute time that a

task can be started depends on the completion times of its predecessors, according to the

dependency specified in the MSC model. The length of a task’s lifetime is its response

time, which consists of the time it takes to perform computation (without interruption)

and the delay it experiences due to preemptions by higher priority tasks.

In general, the computation time of a task may vary due to (1) the variation in input

data that triggers different execution paths within the program, and (2) the variation

in memory access latencies (whether the accessed code/data object is in scratchpad or

main memory). The uninterrupted computation time required by each individual task

can be determined via static analysis [76] of the program corresponding to a task, and

represented as a range between its best-case execution time (BCET) and worst-case

execution time (WCET) [87]. However, this estimation is intertwined with the second

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 95

component, memory access latencies, as we will elaborate when we discuss scratchpad

allocation later in this section.

Obviously, the longer the execution time of a task, the longer its response time. How-

ever, the impact of a task’s response time on other tasks’ response times (and thus overall

application response time) is not straightforward. In the example shown in Figure 7.6,

a longer t2 execution time will cause t4 to start later and not preempt t3 on the same

PE (supposing t4 has higher priority than t3). In this scenario, the response time of t3

becomes shorter, and this possibly leads to an earlier completion time of the overall ap-

plication. As our ultimate aim is to optimize for the worst-case response time (WCRT)

of the whole application, we need to take into account the interplay among these com-

ponents.

7.2.3 Scratchpad Allocation

The term scratchpad allocation in this context consists of two components: (1) the

distribution of scratchpad space among the application tasks, and (2) the selection of

memory blocks of each task to fit into the allocated space. When a task can access

part of its memory requirement from the scratchpad memory instead of the significantly

slower main memory, its execution time can reduce dramatically. Depending on the

portion of memory address space allocated to the scratchpad memory, the time taken

by a single execution path within the task itself may vary greatly. Therefore, in the

presence of scratchpad memory, the execution path and execution time of a task in the

best or worst case should be determined by taking into account the allocation decision.

Here, we consider allocating program codes of the tasks into the scratchpad. The method

applies similarly to data allocation. To make better use of the limited scratchpad space,

we allow scratchpad overlay, that is, the same scratchpad memory space can be allocated

to two or more tasks as long as they have disjoint lifetimes. As apparent from Figure 7.6,

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 96

each PE accesses its own scratchpad, and the space will be shared among tasks executing

on the corresponding PE only; we do not consider accesses to remote scratchpad which

will be effective only if the PEs have access to fast interconnection network [63].

Formally, let S be a particular scratchpad allocation for the application. As described

earlier, S consists of two components:

1. the amount of scratchpad space space(ti) allocated to each task ti, 1 ≤ i ≤ N ,

and

2. the allocation of space(ti) among the code blocks of ti.

By virtue of scratchpad overlay, the sum of the scratchpad space allocated to all tasks,∑N
i space(ti), is not necessarily less than or equal to the total available scratchpad

space. This will be clear in the description that follows.

Let Mem(ti) denote the set of all code blocks of ti available for allocation. Given

space(ti) assigned in S, the allocation Alloc(ti,S) ⊆ Mem(ti) is the set of most prof-

itable code blocks from ti to fit the capacity. The BCET and WCET of ti as a result

of allocation S are denoted as bcet(ti,S) and wcet(ti,S) respectively. Given an allo-

cation S and the corresponding BCET, WCET of the tasks, we can estimate the life-

time of each task ti, defined as the interval between the lower bound on its start time,

EarliestSt(ti,S), and the upper bound on its completion time, LatestF in(ti,S). This

estimation should take into account the dependencies among the tasks specified in the

model (total order among the tasks within a process, and the ordering imposed by mes-

sage communication) as well as preemptions.

The WCRT of the whole application is now given by

WCRT = max1≤i≤N LatestF in(ti,S)−min1≤i≤N EarliestSt(ti,S) (7.1)

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 97

that is, the duration from the earliest start time of any task in the application until the

latest completion time of any task in the application.

Allocation Constraints Our goal is to construct the scratchpad allocation S that min-

imizes the WCRT of the application (Equation 7.1). To achieve this objective, S should

employ optimal inter-task overlay while respecting the constraint that only tasks that do

not preempt each other can occupy the same scratchpad space over time. This constraint

is formalized as follows.

Suppose the WCRT analysis identifies a set of tasks Gs,e
1 ⊆ {t1, t2, . . . , tN} having

disjoint lifetimes within the time interval [s, e]. The tasks in Gs,e
1 are not necessarily

related via dependency; the situation may also arise if the times of dispatch are well

separated so that one task invariably completes before another is ready. An example

of such a set is {fm1, fm2, fr1, fm4} in Figure 7.2, with s being the time when fm1

becomes ready, and e being the time when fm4 completes. Formally:

∀ ti ∈ Gs,e
x s ≤ EarliestSt(ti,S) < LatestF in(ti,S) ≤ e

∀ ti, tj ∈ Gs,e
x EarliestSt(tj,S) > LatestF in(ti,S)

∨ EarliestSt(ti,S) > LatestF in(tj,S) (7.2)

If the above conditions are satisfied, then we allow scratchpad overlay by mapping all

tasks in Gs,e
1 to the same scratchpad space throughout the duration of [s, e]. Each task ti

in Gs,e
1 can make use of the whole portion allocated to Gs,e

1 during its lifetime.

∀ ti ∈ Gs,e
x space(ti) = space(Gs,e

x)

Other tasks that are active within the same interval [s, e] but may interfere with any task

in Gs,e
1 have to share the scratchpad space with Gs,e

1 during this interval. We may identify

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 98

further groupings among those tasks (Gs,e
2 , Gs,e

3 , and so on), each of which satisfies the

same set of constraints given by Equation 7.2. In this perspective, the total scratchpad

space cap is distributed among the sets of tasks Gs,e
x , x : 1, 2, . . . (instead of among the

individual tasks) for the duration of [s, e], because each set utilizes scratchpad overlay

that allows them to occupy the same space during different times.

∑
x

space(Gs,e
x) ≤ cap

Clearly, the challenge lies in defining the grouping of tasks Gs,e
x as well as the interval

division [s, e] in order to maximize overlay opportunities over the entire application. Our

earlier motivating example in Figure 7.4c illustrates a situation where the application

execution has been “divided” over four intervals, some of which have only one task

active within its duration. In the elaboration of our allocation scheme in the rest of this

chapter, we will show how such beneficial situations can be induced through careful

manipulations.

7.3 Method Overview

Our proposed method for scratchpad allocation is an iterative scheme (Figure 7.5). Anal-

ysis is performed on each task to determine the bounds on its execution time, given the

initially empty scratchpad allocation. The memory access information of the task is

also produced as a by-product of this analysis, to be used in the later steps. The WCRT

analysis then takes in the execution time values and computes the lifetimes of all tasks.

An inter-task interference graph is then constructed. Figure 7.7a shows task lifetimes

computed by the WCRT analysis for our MSC example in Figure 7.2, along with the

constructed interference graph. An edge between two nodes in the graph implies over-

lapping lifetimes of the two tasks represented by the nodes.

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 99

fm1 fm2 fm4fr0 fr1fs0

fm2

fs0

fr0

fr1fm4

fm1

W1

W2

W3

(a) Before allocation

Task lifetimes

Interference graph

(c) Improved interference pattern

fm2

fs0

fr0

fr1fm4

fm1

Task lifetimes

Interference graph

(b) Allocation based on (a)

W1

W2

W3

scratchpad space

fm1 fm2 fm4fr0 fr1fs0

W1’

W2’

W4’

W3’

(d) Allocation based on (c)

scratchpad space

W1’

W2’

W4’

W3’

Figure 7.7: Task lifetimes before and after allocation, and the corresponding interference
graphs

Based on the analysis result, we can decide on a suitable scratchpad sharing scheme

and select actual scratchpad contents for each task, making use of the memory access

information from the earlier task analysis. One possible scheme is illustrated in Figure

7.7b, which shows the space sharing among tasks as well as the dynamic overlay over

time. With the change in allocation, the execution time of each task is recomputed, and

the WCRT analysis is performed once again to update task lifetimes (see Figure 7.5).

We ensure at this point that inter-task interference does not worsen. The reason and

technique for this will be elaborated in the discussion that follows.

If task interference has been reduced at this point without worsening the application

WCRT, we end up with more tasks that are disjoint in their lifetimes (Figure 7.7c). These

tasks can now enjoy more scratchpad space through dynamic overlay. If this is the case,

we proceed to the next iteration, in which the scratchpad sharing scheme is re-evaluated

and the allocation is enhanced (Figure 7.7d); otherwise, the iteration terminates.

Given a finite number of tasks in the application, N , the number of possible task in-

terference pairs is bounded by the number of ways to choose 2 out of N tasks, that

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 100

is, N(N − 1). As the number of interference relations is finite, by maintaining that

inter-task interference does not increase from one iteration to the next, the termination

is guaranteed.

We elaborate each of these steps in the following.

7.3.1 Task Analysis

The Task Analysis step determines both the best-case execution time (BCET) and worst-

case execution time (WCET) of each task, given a certain scratchpad allocation. These

two values bound the range of uninterrupted execution time required to complete the

task given all possible inputs.

The timing analysis of the task proceeds as follows. We extract the control flow graph

(CFG) of each task. For a given scratchpad allocation, the execution time of each basic

block in the CFG can be determined, accounting for the time saving due to faster ac-

cess time for blocks allocated in the scratchpad. Our static path-based timing analysis

method (described in Chapter 4) then traverses the CFG to find the path with the longest

(respectively, shortest) execution time. The program may contain loops, which make

the CFG cyclic. We require that the bounds on the iteration counts are specified as input

to the analysis, so that the execution time can be bounded.

In addition to the BCET and WCET values, the above path-based method also reveals

the best-case and worst-case execution paths for the given scratchpad allocation. We

may then extract the execution frequencies of basic blocks along these paths, which give

us the current gain of allocating each of the blocks. The cost of allocating the block is

the area it occupies in the memory space. These two values form the memory access

information of the task, which will serve as input to the scratchpad content selection

in the next iteration of the our technique. In this particular setting, we choose to use

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 101

the memory access information corresponding to the worst-case execution path. This

information will be used in refining the scratchpad allocation, which will in turn affect

the execution time of each basic block, and ultimately affect the best- and worst-case

execution paths. Following each such change, the memory access information is also

updated. We see here that the allocation step and the task analysis form a feedback loop,

which justifies the need for an iterative solution.

7.3.2 WCRT Analysis

As established in the earlier discussion, the response time of a single task has two com-

ponents: its uninterrupted execution time, and the delay due to preemptions by higher

priority tasks. The preemption delay is itself a function of the execution time of the task,

as the lifetime of a task affects the way it interacts with other tasks.

The WCRT Analysis step takes the task execution times estimated in the Task Analy-

sis step and the dependencies specified in the MSC model as input. Based on these,

it determines the lifetime of each task ti, which ranges from the time when ti may

start execution until the time when ti may complete execution, represented by the four

values EarliestSt(ti,S), LatestSt(ti,S), EarliestF in(ti,S), and LatestF in(ti,S).

The WCRT of the application given scratchpad allocation S, as formulated in Equation

7.1, is determined via a fixed-point computation that updates these values for each task ti

as more interaction information becomes available throughout the iteration. The change

in each iteration is brought on by the variation in the execution time of the individual

tasks as the allocation is refined, as well as possible preemption scenarios that arise from

the different task lifetimes.

The WCRT analysis method is modified from Yen and Wolf’s method [144] and pro-

ceeds as follows. A higher priority task can only preempt ti on the same PE if it is

possible to start execution during the execution of ti, that is, after ti starts and before

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 102

ti finishes. Recall that we denote the priority of task ti as pr(ti), with a smaller value

translating to a higher priority. The following equation defines the set of such tasks,

denoted as intf(ti).

intf(ti) =
{

tj
∣∣ pr(tj) < pr(ti) ∧ (7.3)

EarliestSt(ti,S) < EarliestSt(tj,S) < LatestSt(tj,S) < LatestF in(ti,S)
}

The WCRT of a single task ti can then be computed via a fixed-point iteration that finds

the root to the equation

x = g(x) = wcet(ti,S) +
∑

tj∈intf(ti)

wcet(tj,S)×
⌈

x

pd(tj)

⌉
(7.4)

The term wcet(ti,S) refers to the WCET value of ti given allocation S determined in the

Task Analysis step. The second term in the above equation gives the total preemption

delay endured by ti in the worst scenario. The maximum duration of the delay due to a

preempting task tj ∈ intf(ti) is the WCET of tj , and the maximum number of times ti

may get preempted by tj is the upper bound of the number of times tj is activated during

ti’s lifetime. The best-case response time (BCRT) of ti can be computed similarly by

substituting the term wcet(ti,S) with bcet(ti,S) (that is, the task WCET with the task

BCET) and the ceiling operator with the floor operator in the equation.

The fixed-point computation starts by assuming that all higher priority tasks on the same

PE can preempt ti unless they have dependency. The start and finish times of all tasks

are computed based on this assumption. After this step, it may become apparent that the

lifetimes of certain tasks are well separated, and thus they cannot preempt one another.

Given this refined information, the estimation of each task lifetime becomes tighter with

each iteration. The iteration stops when there is no further refinement.

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 103

The result of the computation gives the WCRT and BCRT of the single task ti, denoted

as wcrt(ti,S) and bcrt(ti,S) respectively. The start time and completion time of task ti

are related to these values as follows.

EarliestF in(ti,S) = EarliestSt(ti,S) + bcrt(ti,S)

LatestF in(ti,S) = LatestSt(ti,S) + wcrt(ti,S)

Further, the partial ordering of tasks in the MSC imposes the constraint that task ti can

start execution only after all its predecessors have completed execution, that is

EarliestSt(ti,S) ≥ EarliestF in(tj,S)

LatestSt(ti,S) ≥ LatestF in(tj,S)

for all tasks tj preceding ti in the partial order of the MSC.

Observing these constraints, the WCRT analysis computes the lifetimes of all tasks in

the application, and determines the application WCRT based on Equation 7.1. Tasks

with overlapping lifetimes are said to be interfering, with the higher-priority task pos-

sibly preempting the lower-priority task. This interference pattern is captured in a task

interference graph (Figure 7.7a) for the purpose of scratchpad allocation in the next

stage.

7.3.3 Scratchpad Sharing Scheme and Allocation

Given the current interference pattern captured in the interference graph, we decide on

an inter-task scratchpad sharing scheme that incurs no unpredictable reloading delay at

preemption. We consider four scratchpad sharing schemes with varying sophistication.

The simplest scheme performs scratchpad space distribution and allocation without any

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 104

regard for the interference pattern (Profile-based Knapsack). The second scheme groups

tasks based on their lifetime overlap, thus isolating the interference within mutually

exclusive time windows and enabling time-multiplexing among the groups (Interference

Clustering). The third scheme improves this by mapping the allocation problem to a

graph coloring problem (Graph Coloring). Our final proposal eliminates interferences

that compromise tasks on the critical path of the application by inserting strategically

placed slacks, in order to improve the situation before applying the allocation scheme

(Critical Path Interference Reduction). These techniques will be discussed in full details

in the next section.

Figure 7.7b and 7.7d visualize possible allocation schemes based on task lifetimes in

Figure 7.7a and 7.7c, respectively. They clearly show how task interference pattern

influences the allocation decision. An important feature of the allocation is that each

task occupies the space assigned to it for the whole duration of its execution, without

being preempted by any other task. This ensures that reloading of the scratchpad occurs

exactly once for each task activation, and the incurred delay can be tightly bounded.

In each scheme, aside from the scratchpad sharing, the memory content to be allocated

in the scratchpad for each task is also selected for optimal WCRT. After the allocation

is decided, each task goes through the Task Analysis step once again to determine the

updated BCET, WCET, and worst-case memory access information.

7.3.4 Post-Allocation Analysis

Given updated task execution times after allocation, the WCRT analysis is performed

once again to compute updated task lifetimes. There is an important constraint to be

observed in the WCRT analysis when the allocation decision has been made. The new

WCET and BCET values have been computed based on the current scratchpad alloca-

tion, which is in turn decided based on the task interference pattern resulting from the

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 105

previous analysis. In particular, scratchpad overlays have been decided among tasks

determined to be interference-free. Therefore, these values are only valid for the same

interference pattern, or for patterns with less interference.

To understand this issue, suppose the interference graph in Figure 7.8a leads to the

allocation decision in Figure 7.8b. The reduction in WCET due to the allocation in

turn reduces task response times and changes task lifetimes to the one shown in Figure

7.8c. However, this computation of lifetimes is incorrect, because it has assumed the

BCET and WCET values of fs0 given that it can occupy the assigned scratchpad space

throughout its execution. If fm4 is allowed to start earlier, right after its predecessor

fr1 as shown in Figure 7.8c, it may in fact preempt fs0, flushing the scratchpad content

of fs0 and causing additional delay for reload when fs0 resumes. Indeed, we see that

the interference graph deduced by the WCRT analysis in Figure 7.8d has an added edge

from fm4 to fs0.

fm1 fm2 fm4fr0 fr1fs0

fm2

fs0

fr0

fr1fm4

fm1

W1

W2

W3

(a) Before allocation

Task lifetimes

Interference graph

fm1 fm2 fm4fr0 fr1fs0

W1’

W2’

fm1 fm2 fm4fr0 fr1fs0

W1’

W2’

W3’

(c) After allocation, without slack (d) After allocation, with slack

Interference graph

fm2

fs0

fr0

fr1fm4

fm1

fm2

fs0

fr0

fr1fm4

fm1

Task lifetimesTask lifetimes

Interference graph

(b) Allocation based on (a)

W1

W2

W3

scratchpad space

Figure 7.8: Motivation for non-increasing task interference after allocation

To avoid this unsafe assumption, we need to maintain that tasks known not to interfere

when a certain allocation decision is made will not become interfering in the updated

lifetimes. This is accomplished by introducing a slack that forces the later task to “wait

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 106

out” the conflicting time window. The adapted WCRT analysis consults existing inter-

ference graph and adjusts the start time of fm4 such that

EarliestSt(fm4,S) ≥ LatestF in(fs0,S)

The start times of tasks that are dependent on fm4 are adjusted accordingly. Figure 7.8d

shows the adjusted schedule, which maintains the same interference graph as Figure

7.8a by forcing fm4 to start after fs0 has completed, thus inserting a slack between the

fm4 and its immediate predecessor fr1.

With a more sophisticated sharing/allocation scheme and schedule adjustment as we will

introduce next, we can sometimes remove existing task interferences without adding

interference elsewhere (for example, in a situation depicted in Figure 7.7). When this

happens, we iterate over the allocation and analysis steps to enhance current decision,

until no more improvement can be made (Figure 7.5). As task interferences are enforced

to be non-increasing, the iteration is guaranteed to terminate.

7.4 Allocation Methods

This section describes the scratchpad allocation routine, which is the heart of this chap-

ter. As only one task will be running on the PE at any given time, we can, in theory, uti-

lize the whole scratchpad space for the single executing task (Figure 7.3b). The concern

arises when a task is preempted, as flushing the scratchpad content will cause additional

reloading delay when the task resumes. In that case, it may be beneficial to reserve a

portion of the scratchpad for each of the tasks (space-sharing), thus avoiding the need

to flush and reload the scratchpad memory at each preemption/resume. On the other

hand, two tasks guaranteed to never interfere with each other can share the same space

via overlay (time-sharing). In Figure 7.7b, for example, tasks fm2, fs0, fr0, and fr1 in

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 107

the interval W2 are space-sharing tasks, while task fm1 has a time-sharing relationship

with fm4 and with each of the tasks in the interval W2.

The various schemes are illustrated in Figure 7.9. The left side of each picture shows

task lifetimes as determined by the WCRT analysis, and the right side sketches the state

of the scratchpad memory due to the different allocation schemes. In the following,

we present the detailed allocation methods, with each solution building on the routines

established by the simpler method preceding it.

fm1 fm2 fm4fr0 fr1fs0

(a) Profile-based Knapsack (PK) (b) Interference Clustering (IC)

tim
e

scratchpad spacescratchpad space fm1 fm2 fm4fr0 fr1fs0

tim
e

(c) Graph Coloring (GC) (d) Critical Path Interference Reduction (CR)

scratchpad space

tim
e

fm1 fm2 fm4fr0 fr1fs0
scratchpad space

tim
e

fm1 fm2 fm4fr0 fr1fs0

Figure 7.9: Four considered allocation schemes with varying sophistication

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 108

7.4.1 Profile-based Knapsack (PK)

As the baseline method, we consider a straightforward static allocation strategy where

all tasks executing on the same PE will share the PE’s scratchpad space throughout

application lifetime. It does not take into account the possible interferences among tasks

running on the PE. We refer to this scheme as Profile-based Knapsack (PK), illustrated

in Figure 7.9a. The main focus here is the scratchpad content selection routine, which

uses the information on sizes (cost) and access frequencies (gain) of code blocks along

the worst-case execution path of the tasks. This content selection routine, elaborated

below, will also serve as a building block for the other allocation schemes.

As each PE makes use of its own scratchpad space, we can perform allocation for each

PE independently. Partitioning and static scratchpad allocation for a PE q can be simul-

taneously optimized via a 0-1 integer linear programming (ILP) formulation.

Objective Function Our ultimate objective is to minimize the WCRT of the whole

application. However, there exists no closed-form linear representation for the defi-

nition of the application WCRT given a particular allocation decision (Equation 7.1),

whose evaluation requires a fixed-point computation as we have seen in the previous

section. Hence, the objective function to find the optimal allocation S is formulated to

approximate this definition, as follows.

∑
ti:PE(ti)=q

(F (ti) + d)× wcet(ti,S)

Recall that wcet(ti,S) denotes the WCET of task ti given scratchpad allocation S. This

variable is weighted by the value F (ti) + d, which measures the potential contribution

of the task to the application WCRT.

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 109

The first term, F (ti), represents the contribution of ti to the current application WCRT,

which includes the delay ti possibly introduces when it preempts any other task. The

value of F (ti) is estimated based on the current WCRT path of the application (critical

path) π0 using the following rules:

F (ti) =



lifetime(ti,S0)
W0

if ti ∈ π0;

wcrt(ti,S0)
W0

if ti may preempt a task in π0;

0 otherwise.

The term S0 denotes the current scratchpad allocation (empty for the first allocation

attempt), while the term W0 denotes the current application WCRT.

If ti is part of the current WCRT path, then ti’s contribution to the current application

WCRT is the ratio of the length of its lifetime to the overall WCRT W0. Here, the task

lifetime lifetime(ti,S0) includes the whole duration when ti is active, from the earliest

start time to the latest completion time:

lifetime(ti,S0) = LatestF in(ti,S0)− EarliestSt(ti,S0)

If ti is not on the critical path itself but may preempt a task on that path, then ti may

introduce a preemption delay up to the maximum length of its own response time,

wcrt(ti,S0). Recall that the WCRT of an individual task ti is given by

wcrt(ti,S0) = LatestF in(ti,S0)− LatestSt(ti,S0)

The second term, d, is a measure of the density of the critical path of the application,

defined as the ratio of the number of tasks in the critical path to the total number of tasks

in the application, N :

d =
|π0|
N

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 110

The value of d (0 < d ≤ 1) is evaluated following each round of WCRT analysis. In

our context here, it may be taken to indicate the reverse likelihood of the critical path

shifting. If few, long tasks dominate the runtime of the application, then it is likely that

these tasks will remain in the critical path. In this case, d evaluates to a small value,

and the allocation objective will put more weight on F (ti). Hence, tasks that concretely

participate in the current WCRT path will be prioritized over tasks that are unlikely to

contribute to the WCRT. If, on the contrary, the critical path is formed by many tasks,

then d will have a large value, which serves as a base weight for tasks that do not

participate in the current critical path. This induces a more balanced runtime reduction

across tasks that have similar possibilities of forming the application WCRT path.

We now examine the variable component of the objective function. The WCET of ti in

the presence of scratchpad allocation S is defined as

wcet(ti,S) = c(ti)− saving(ti,S) + trans(ti,S)

c(ti) is the uninterrupted worst-case running time of ti without any allocation (that is, all

code blocks are fetched from the main memory), which is evaluated once for each task

during the initial Task Analysis step. From this value, we discount the time savings due

to allocation, saving(ti,S), but account for additional instructions needed for transition

between scratchpad memory and main memory, trans(ti,S). We elaborate these terms

in the following.

Time Savings Let latS denote the latency to fetch one byte of instruction from the

scratchpad, and let latM denote the latency to fetch one byte of instruction from the

main memory. Naturally latM > latS , and the difference between the two gives the

time saving for each access to a byte allocated in the scratchpad. The total time saving

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 111

for ti due to allocation S is defined as

saving(ti,S) =
∑

b∈Alloc(ti,S)

freqb × areab × (latM − latS)

areab is the memory space (in bytes) occupied by a memory block b, and freqb is the

execution frequency of b in the worst-case execution path; both information are obtained

during the Task Analysis step. As defined in the problem formulation, Alloc(ti,S) refers

to the selected set of code blocks of ti in scratchpad allocation S. In the ILP formulation,

this term is expanded using binary decision variables Xb for each block b ∈ Mem(ti),

whose value is 1 if b ∈ Alloc(ti,S), or 0 otherwise. The above definition translates to

saving(ti,S) =

|Mem(ti)|∑
b=0

Xb × freqb × areab × (latM − latS)

Transition Cost In this work, we handle code allocation with the granularity of a basic

block. In this context, an additional constraint is needed to maintain correct control flow

[119]. If two sequential basic blocks are allocated in different memory areas (that is,

one in scratchpad and the other in main memory), then a jump instruction should be

inserted at the end of the earlier block to maintain the correct fall-through destination.

The insertion adds to the occupied area as well as increases the execution time of the

basic block. This is reflected in the ILP formulation as follows.

Let Yb be a binary variable whose value is 1 if b is allocated in the scratchpad (Xb = 1)

but the block following it is not (Xb+1 = 0) and 0 otherwise. When Yb = 1, it means that

an additional jump instruction should be inserted at the end of block b in the scratchpad

to jump to the start of block (b + 1) in the main memory. Similarly, let Zb be the binary

variable whose value is 1 if Xb = 0 and Xb+1 = 1, to represent the insertion of a

jump instruction at the end of block b in the main memory to jump to the start of block

(b + 1) in the scratchpad. Otherwise, Zb has value 0. The definition of Yb and Zb can be

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 112

linearized in terms of Xb and Xb+1 as follows:

Yb <= Xb ; Yb <= 1−Xb+1 ; Yb >= Xb −Xb+1

Zb <= Xb+1 ; Zb <= 1−Xb ; Zb >= Xb+1 −Xb

Let the size of the jump instruction be jz bytes, and the time to execute the instruction

be jt. The total time needed to fetch and execute these additional jump instructions is

trans(ti,S) =

|Memi|∑
b=0

freqb × (Yb × (jt + jz × latS) + Zb × (jt + jz × latM))

Finally, all blocks selected for allocation should fit into the scratchpad space of the host

PE. Any additional jump instruction inserted into blocks allocated in the scratchpad

should also be accounted for. Given the scratchpad size of capq attached to PE q, the

capacity constraint is expressed as

|Mem(ti)|∑
b=0

(Xb × areab + Yb × jz) ≤ space(ti) (7.5)

for each task ti, and ∑
ti:PE(ti)=q

space(ti) ≤ capq (7.6)

The ILP formulation is solved for Xb, Yb and Zb. The solution values for Xb indicate

the actual selection of memory blocks for optimal allocation given current worst-case

execution profile.

Complexity The complexity of this approach is determined by the number of decision

variables, which in this case corresponds to the allocation decision (yes or no) for each

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 113

basic block in all tasks, that is
N∑

i=1

|{b | b ∈ ti}| (7.7)

Clearly, this complexity depends on the granularity of scratchpad allocation chosen for

the technique.

7.4.2 Interference Clustering (IC)

In this second method, we use task lifetimes determined by the WCRT analysis to form

interference clusters. Tasks whose lifetimes overlap at some point are grouped into

the same cluster. They will share the scratchpad for the entire duration of the common

interval, from the earliest start time to the latest finish time among all tasks in the cluster.

The clustering is performed as detailed in Algorithm 4. We start with an empty cluster

set (line 1). For each task, we try to find an existing cluster whose duration overlaps the

lifetime of t (line 3). If there is no such cluster, we start a new cluster with t as the only

member (lines 18–21). Otherwise, we add t into the existing cluster C and update C’s

duration (lines 4–9). If the duration of the cluster changes because of the new inclusion,

we check against all other existing clusters whether any of them now overlaps with C,

in which case they will be merged (lines 13–16).

After the clustering is decided, the same partitioning/allocation routine used in PK is

employed within each cluster. The ILP capacity constraint in Equation 7.6 is therefore

modified to ∑
ti∈C

space(ti) ≤ capq

for each cluster C of tasks executing on PE q. Two distinct clusters on q are guaranteed

to have disjoint execution time intervals, thus the allocated memory blocks of tasks in a

later cluster can completely replace the scratchpad content belonging to the previously

executing cluster when the corresponding execution interval is entered.

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 114

Clusters := ∅;1

foreach task t in the application do2

if ∃ C ∈ Clusters s.t.3

[C.Begin, C.End] ∩ [EarliestSt(t,S), LatestF in(t,S)] 6= ∅ then
/* Update C to include t */
C.Tasks := C.Tasks ∪ {t};4

changed := FALSE;5

if EarliestSt(t,S) < C.Begin then6

C.Begin := EarliestSt(t,S); changed := TRUE;7

if LatestF in(t,S) > C.End then8

C.End := LatestF in(t,S); changed := TRUE;9

/* Check if inclusion of t affects the overall clustering */
if changed then10

foreach cluster C ′ ∈ Clusters \ {C} do11

if [C.Begin, C.End] ∩ [C ′.Begin, C ′.End] 6= ∅ then12

/* Merge the two clusters */
C.Tasks := C.Tasks ∪ C ′.Tasks;13

C.Begin := min (C.Begin, C ′.Begin);14

C.End := max (C.End,C ′.End);15

Clusters := Clusters \ {C ′};16

else17
/* Create a new cluster C ′ for t */
C ′.Tasks := {t};18

C ′.Begin := EarliestSt(t,S);19

C ′.End := LatestF in(t,S);20

Clusters := Clusters ∪ {C ′};21

Algorithm 4: The Interference Clustering (IC) algorithm

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 115

The left part of Figure 7.9b shows the clustering decision for the given task schedule.

Three clusters have been formed, and fm1 as well as fm4 have been identified as having

no interference from any other task. Each of them is placed in a singleton cluster and

enjoys the whole scratchpad space during its lifetime.

Complexity Given that the number of clusters is at most the number of tasks N , and

that we check against all existing clusters when deciding on the placement of a task, the

complexity of the clustering step is N2 in the worst case. However, the complexity of

the whole IC method is still dominated by the content selection routine, which equals

the total number of basic blocks to be allocated (Equation 7.7), as in the PK method.

7.4.3 Graph Coloring (GC)

The Interference Clustering (IC) method is prone to produce large clusters due to tran-

sitivity. In Figure 7.9b, even though fm2 and fs0 do not interfere with each other, their

independent interferences with fr0 end up placing them in the same cluster. Because

of this, simply clustering the tasks will likely result in inefficient decisions. The third

method attempts to enhance the allocation within the clusters formed by the IC method

by considering task-to-task interference relations captured in the interference graph. If

we apply graph coloring to this graph, the resulting assignment of colors will give us

groups of tasks that do not interfere with each other within the cluster. Tasks assigned

to the same color have disjoint lifetimes, thus can reuse the same scratchpad space via

further overlay.

The problem of graph coloring using the minimum number of colors is known to be

NP-Complete. We employ the Welsh-Powell algorithm [140], a heuristic method that

assigns the first available color to a node, without restricting the number of colors to

use. Given the interference graph, the algorithm can be outlined as follows.

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 116

1. Initialize all nodes to uncolored.

2. Traverse the nodes in decreasing order of degree, assigning color 1 to a node if it

is uncolored and no adjacent node has been assigned color 1.

3. Repeat step (2) with colors 2, 3, etc. until no node is uncolored.

The above algorithm is illustrated in Figure 7.10, featuring the tasks that have been

assigned to the same cluster by IC in our running example.

fm
2

fs
0

fr
0

fr
1

fm
2

fs
0

fr
0

fr
1

1

2
3

4

fm
2

fs
0

fr
0

fr
1

(b) Iteration 1 (c) Iteration 2(a) Initialization

Figure 7.10: Welsh-Powell algorithm for graph coloring

The numbering in Figure 7.10a shows the order of traversal based on the degree of the

nodes. The first iteration (Figure 7.10b) assigns the first color to all uncolored nodes

with no neighbour of the same color, that is, fs0 followed by fm2. The next iteration

(Figure 7.10c) assigns the second color to fr0 and fr1, and completes the coloring with a

total of two colors used. This result dictates that the scratchpad space will be partitioned

into two: one portion to be occupied by fm2 and fs0 during their respective lifetimes,

and another portion to be occupied by fr0 and fr1 during their respective lifetimes.

Even though the graph coloring algorithm is a heuristic, in practice we observe that it

does not pose serious sub-optimality to the solution, due to the fact that coloring options

for actual task interference graphs are typically limited by the dependencies.

After we obtain the color assignment, we formulate the scratchpad partitioning/allocation

with the refined constraint (replacing Equation 7.5) that each task ti with assigned color

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 117

color(ti) can occupy at most the space allocated for color(ti), which we denote as

space(color(ti)).

|Mem(ti)|∑
b=0

(Xb × areab + Yb × jz) ≤ space(color(ti))

In place of Equation 7.6, we now have the constraint that the scratchpad space given to

all Mq colors used for PE q adds up to the total scratchpad capacity capq of the PE:

Mq∑
m=1

space(color(ti)) ≤ capq

Figure 7.9c shows the further partitioning within the second cluster previously formed

by the IC scheme. fm2 and fs0 have been assigned the same color, and are allocated

the same partition of the scratchpad to occupy at different time intervals. The similar

decision applies to fr0 and fr1. The partition will be reloaded with the relevant task

content when execution transfers from one task to another.

Complexity As each iteration assigns a color to at least one task, it requires at most

N iterations to complete the coloring of all N tasks. In each iteration, each of the

N tasks is considered for the current color by checking the color of all its neighbours

(at most N − 1). The complexity of the graph coloring algorithm is thus N3. Again,

we observe from the allocation routine formulation that the complexity of this scheme

remains capped at the allocation granularity as given by Equation 7.7.

7.4.4 Critical Path Interference Reduction (CR)

While the above three schemes try to make the best out of the given interference pattern,

the final method that we propose turns the focus to reducing the interference instead.

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 118

This is motivated by the observation that allocation decisions are often compromised by

heavy interference. When the analysis recognizes a potential preemption of one task by

another, both tasks will have to do space-sharing; in addition, the lifetime interval of

the preempted task t must make allowance for the time spent waiting for the preempting

task u to complete. If t is on the critical path of the application, it may be beneficial for

the application WCRT to let t complete first before allowing u to start. By removing the

interference between t and u, we will be able to apply scratchpad overlay on the both

of them as well. The gain from allocation will potentially reduce the execution time of

both, leading to further reduction in WCRT. However, as the delay on the start of task

u will inevitably be propagated to its successors, we need to take care that the overall

delay will not overshadow the time saving on the WCRT path.

Our final proposed method proceeds as shown in Algorithm 5. We first work on the

schedule produced by the WCRT analysis to improve the interference pattern. We

consider all interferences in which tasks on the critical path are preempted or have

to wait for tasks with higher priority (line 2). Each candidate interference is evalu-

ated to determine the effect on overall WCRT if it is chosen to be eliminated. Interfer-

ence among a task t and its preempting task u is eliminated by forcing u to wait until

the completion of t, as illustrated in Figure 7.11b. The amount of slack introduced is

thus equal to the remaining execution time of t after the original preemption (line 4),

LatestF in(t,S)− LatestF in(u,S).

We then examine all tasks that execute after u in the current schedule to see if the

propagated slack pushes their lifetime beyond the current WCRT (line 5). If a task v is

dependent on u (either as a direct successor or in the transitive closure of u’s succeeding

tasks), its start and completion time will also be pushed back by up to the same amount

of slack (line 8). If a task v is not dependent on u but is not interfering with u in the

current schedule, then our iterative scratchpad algorithm will require us to maintain the

non-interference among them. In that case, we check if the delayed lifetime of u now

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 119

repeat1
/* Identify task interferences on current WCRT path π0 */
CrIf := { (t, u) | t ∈ π0 ∧ u ∈ intf(t) };2

/* intf(t): set of higher priority tasks who may preempt t (Equation 7.3) */

/* Evaluate effect of eliminating each interference */
foreach interference pair (t, u) ∈ CrIf do3

/* Estimate cost: propagated slack */
slack := LatestF in(t,S)− LatestF in(u,S);4

maxEnd := W0; /* current WCRT */5

foreach task v that starts after u in current schedule do6

if v depends on u then7

maxEnd := max (maxEnd, LatestF in(v,S) + slack);8

else if9

v /∈ intf(u) ∧ EarliestSt(v,S) < LatestF in(u,S) + slack then
vSlack := LatestF in(u,S) + slack − EarliestSt(v,S);10

maxEnd := max (maxEnd, LatestF in(v,S) + vSlack);11

/* Estimate gain: removed preemption and potential gain via overlay */
preemptLen := LatestF in(u,S)− EarliestSt(u,S);12

Let bestF it(x, y) be the set of most-accessed unallocated blocks of x to13

fit space(y);
tGain :=

∑
b∈bestF it(t,u) freqb × areab × (latM − latS);14

uGain :=
∑

b∈bestF it(u,t) freqb × areab × (latM − latS);15

/* Estimate projected WCRT if this interference is eliminated */
estW(t, u) := maxEnd− preemptLen− tGain− uGain;16

if estW(t, u) > W0 then17

Remove (t, u) from CrIf ;18

/* Choose most beneficial interference to eliminate */
if CrIf 6= ∅ then19

Find (tm, um) ∈ CrIf s.t.20

estW(tm, um) ≤ estW(t, u) ∀(t, u) ∈ CrIf ;
Set constraint EarliestSt(um,S) ≥ LatestF in(tm,S);21

Run WCRT analysis to propagate lifetime shift;22

until CrIf = ∅ ;
Algorithm 5: The Critical Path Interference Reduction (CR) algorithm

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 120

disrupts the lifetime of v. If necessary, the start and completion time of v will also be

pushed back to maintain non-interference (lines 9–11).

We move on to examine the potential gain from eliminating the candidate interference.

The first source of gain is the removed preemption delay along the critical path (Figure

7.11a) which amounts to the length of the preempting task u’s lifetime (line 12). The

second source of gain is the potential time saving due to allocation, as we can now

allow t and u to occupy more scratchpad space via overlay. This value is estimated

by assuming t can place a selection of its unallocated code blocks into the scratchpad

space currently occupied by u, and vice versa (lines 13–15). The selected blocks for

this estimation are those with highest access frequency along the task’s current WCET

path, among all blocks that are currently not allocated in the scratchpad. This strategy

is chosen for efficiency, and differs from the actual ILP-based content selection in that

it uses sub-optimal first-fit “packing” of these most-accessed blocks, and it does not

account for the transfer code needed between the scratchpad and main memory.

t

(a)

EarliestSt (t,S)

preemptLen

u

EarliestSt (u,S)

LatestFin (u,S)

LatestFin (t,S)

t u

slack

(b)

Figure 7.11: Mechanism of slack insertion for interference elimination — (a) task life-
times without introducing slack, and (b) the corresponding lifetimes after introducing
slack

We can now estimate the application WCRT after the elimination of this candidate in-

terference. It is the latest completion time over all tasks affected by the inserted slack,

discounting the original preemption delay and the projected gain from allocation (line

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 121

16). If this estimated WCRT is larger than the current WCRT, then we conclude that it is

not beneficial to remove this interference, and remove this candidate from consideration

(lines 17–18).

After evaluating the gain function for all candidate interferences along the critical path,

we select one of them to remove. A sensible choice is the candidate with the best

projected WCRT after removal (line 20). We eliminate this interference by forcing a

delayed start time for the preempting task (line 21), then propagate the shift to all tasks

by re-running the WCRT analysis (line 22). Certainly, new interferences are not allowed

to arise in this step.

From the new schedule, we again consider preemptions on the critical path, which may

or may not have shifted. The elimination and re-analysis are iterated until no more

interferences can be eliminated from the current critical path. As the number of tasks

N is finite, the number of potential interference relations is also finite, that is, at most

N(N − 1) as established earlier. Therefore, it is guaranteed that the algorithm will

terminate.

After the interference elimination step, we proceed to perform scratchpad partition-

ing/allocation routine as used by the Graph Coloring (GC) scheme on this improved

interference graph.

In Figure 7.9d, the interference between fs0 and fr1 has been eliminated by letting fr1

wait out the lifetime of fs0 instead of starting immediately after the completion of its

predecessor fr0. This improvement frees fr1 from all interference. It can now occupy

the whole scratchpad memory throughout its lifetime.

Complexity Since each iteration chooses one interference to eliminate, the maxi-

mum number of iteration equals the maximum number of possible interferences, that

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 122

is, N(N − 1). Each iteration involves (1) estimating the gain of eliminating each exist-

ing interference, and (2) re-running the WCRT analysis after elimination of the chosen

candidate.

Step (1) has a maximum of N(N − 1) interference candidates to evaluate. Each evalu-

ation employs the basic block selection routine (lines 13–15) whose complexity equals

the maximum number of basic blocks in a task (Equation 7.7). Step (2) involves check-

ing dependencies and existing interferences between pairs of tasks with complexity N2,

a term that is dominated by the complexity of the first step. The whole iterative process

thus has a complexity of

N4 ×
N∑

i=1

|{b | b ∈ ti}|

In practice, the number of interfering tasks on the critical path is rarely close to the

maximum. In addition, it is typically the case that only a handful of major interferences

give enough gain to offset the slack cost. There is thus rarely a need to go through a lot

of iterations before achieving substantial reduction and reaching a local optimum. This

behaviour significantly curbs the complexity of the scheme, as we shall observe in the

experiments.

7.5 Experimental Evaluation

Setup We use two real-life embedded applications to evaluate the scratchpad allo-

cation schemes that we have presented. Our first case study is the Unmanned Aerial

Vehicle (UAV) control application from PapaBench [94], a derivation from the real-time

embedded UAV control software Paparazzi. We adapt the C source code of this applica-

tion into a distributed implementation. The extracted application tasks are then compiled

on the SimpleScalar architectural platform [12] for further analysis.

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 123

The controller consists of two main functional units, fly by wire and autopilot,

which are inter-connected by an SPI serial link. The fly by wire unit is responsible

for managing radio-command orders and servo-commands, while autopilot runs the

navigation and stabilization tasks of the aircraft. The two components can operate in one

of two modes. In the manual mode, fly by wire obtains navigation instructions via the

radio, passes them through autopilot computation, then communicates the necessary

actions to the servos. In the automated mode, autopilot reads information from the

GPS unit to compute necessary adjustments, which are then passed to fly by wire to

be actuated by the servos.

Figure 7.1 shows the active processes in one of the scenarios under the manual mode.

This is the MSC we use in the experiments. The original implementation as shown

uses 2 PEs with a total of 5KB scratchpad memory space. In our experiments, we vary

the number of PEs from 1 to 4 for the purpose of observation. The 1-PE case has all

tasks assigned to the single PE. The 2-PE case follows the same division as the original

implementation (fly by wire on one PE and autopilot on another) shown in Figure

7.1. The task scheduling in the 4-PE case is shown in Table 7.1 along with the code

size and uninterrupted worst-case runtimes of each task. The uninterrupted runtime

values are obtained via WCET analysis of the program code assuming all instructions

are fetched from the main memory. These values remain the same irrespective of PE

assignment.

We assume uniform execution time of 1 cycle per instruction. The memory access laten-

cies are set to the typical values in real systems: 1 cycle for an access to the scratchpad

and 100 cycles for an access to the main (off-chip) memory, with the fetch width of 16

bytes. Total scratchpad size (for instructions) is varied from 512B to 8KB, distributed

evenly among the PEs. The range is chosen to provide reasonable contention for mem-

ory space given the code size of the tasks. The ILP formulation for scratchpad content

selection is solved using the tool CPLEX from ILOG [29].

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 124

PK IC GC CR

2 x 256B

2 x 512B

10.0

10.1

10.8

13.9

15.3

39.0

13.8

13.9

PK IC GC CR

512B

1KB

2KB

4KB

8KB

10.1

11.0

10.8

12.0

11.6

10.1

11.1

11.0

11.9

11.5

18.6

20.7

15.9

15.0

15.7

14.9

17.0

17.0

17.8

18.6

Algorithm runtime (seconds)

Algorithm runtime (seconds)

0

40

80

120

160

200

240

280

512 B 1 KB 2 KB 4 KB 8 KB

W
C

R
T

 (
K

c
y
c
le

s
)

Scratchpad configuration

1-PE

PK

IC

GC

CR

80

120

160

200

W
C

R
T

 (
K

c
y
c
le

s
)

2-PE

PK

IC
2 x 512B

2 x 1KB

2 x 2KB

2 x 4KB

10.1

10.1

9.9

10.5

13.9

10.6

10.5

10.9

39.0

38.9

12.2

15.4

13.9

21.7

15.1

17.8

PK IC GC CR

4 x 128B

4 x 256B

4 x 512B

4 x 1KB

4 x 2KB

11.6

11.5

10.4

10.2

10.2

12.3

11.8

12.1

12.1

16.5

17.1

12.9

14.2

19.0

53.8

17.6

13.2

17.4

57.4

16.9

Algorithm runtime (seconds)

0

40

80

2 x 256B 2 x 512B 2 x 1KB 2 x 2KB 2 x 4KB

W
C

R
T

 (

Scratchpad configuration

GC

CR

0

40

80

120

160

200

4 x 128B 4 x 256B 4 x 512B 4 x 1KB 4 x 2KB

W
C

R
T

 (
K

c
y
c
le

s
)

Scratchpad configuration

4-PE

PK

IC

GC

CR

Figure 7.12: WCRT of the benchmark application after allocation by Profile-based
Knapsack (PK), Interference Clustering (IC), Graph Coloring (GC), and Critical Path
Interference Reduction (CR), along with algorithm runtime

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 125

PE
i

t
i

Codesize (bytes) c
i

(cycles)

1

fm0

fm1

fm2

fm3

fm4

fm5

808

96

96

1,696
136

248

12,237

612

612

10,487
815

1,629

1
fv0

fv1

520
656

3,866
52,957

2
fr0

fr1

384
4,552

2,646
28,008

2

fs0

fs1

fs2

272

992
1,840

1,932

16,597
11,606

PE
i

t
i

Codesize (bytes) c
i

(cycles)

3

am0

am1

am2

am3

am4

768

96

96

1,240

1,536

10,186

612

612

9,173

9,579

3

ad0

ad1

ad2

352

2,296
6,496

2,442

13,345
36,374

4

as0

as1

as2

as3

as4

560
2,744

1,720

168

656

3,968
17,726

12,116

1,221

4,277

4 ag0 400 2,748

4 ar0
5,520 34,944

Table 7.1: Code size and WCET of tasks in the PapaBench application

Results and Discussion Figure 7.12 shows the final WCRT (in kilocycles) of the ap-

plication for various scratchpad configurations, after applying the four discussed schemes.

The three charts correspond to the cases where the tasks are distributed on 1, 2, and 4

PEs. Obviously, with more PEs, less interference is observed among the tasks. On the

other hand, it also means less scratchpad space per PE for the same total scratchpad size,

which limits the maximum space utilizable by a task. In some configurations, we do see

no reduction or even an increase in WCRT as more PEs are employed.

When only 1 PE is utilized, most tasks are interfering with each other. We can see a

drastic WCRT improvement from 1-PE to 2-PE setting for all schemes, which confirms

the observation that task interferences significantly influence application response time.

With 1 PE, the Interference Clustering (IC) method does not improve over the baseline

Profile-based Knapsack (PK), as the transitive interference places most tasks into the

same space-sharing cluster. With more PEs employed, IC is able to perform better than

PK. The Graph Coloring (GC) method performs no worse than IC in all cases shown

here, as it has a more refined view of interference relation among individual tasks. The

improvement is dramatic in the 1-PE case where task interferences are abundant. The

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 126

Critical Path Interference Reduction (CR) method is, in turn, able to further improve the

performance of GC. Certainly, when task interferences are scarce as in the 4-PE case,

the improvement that arises from the refined account for task interaction also lessens.

From these results, we can conclude that the proposed scheme CR gives the best WCRT

improvement over all other schemes. This justifies the strategy of eliminating critical

interferences via slack enforcement, whenever any additional delay that is incurred can

be overshadowed by the gain through a better scratchpad sharing and allocation scheme.

Finally, the tables of Figure 7.12 show the comparison of algorithm runtimes when

run on a 3.0 Ghz Pentium 4 CPU with 1MB cache and 2GB memory. We observe a

wide variation of runtime in certain cases, for example the runtime of GC in the 2-PE

case. The dominant component of the algorithm runtime is the ILP solution time, which

highly depends on the complexity of the problem. The variation in runtime arises from

the variation in the complexity of the formulation due to different configurations and

scratchpad sharing decisions. Nevertheless, the runtimes of all schemes as shown here

are reasonably efficient, ranging from 10 seconds to less than a minute.

7.6 Extension to Message Sequence Graph

Message Sequence Graph (MSG) is a finite state automaton where each state is de-

scribed by an MSC. Multiple outgoing edges from a node in the MSG represent a choice,

so that exactly one of the destination charts will be executed in succession. Figure 7.13

shows an example of an MSG, modeling the PapaBench application. The top left box

shows the MSG, and the labeled boxes display the MSCs corresponding to the nodes.

The MSC model used in the experiment presented earlier (Figure 7.1) corresponds to

a single execution path through this MSG, that is, it shows only one of the possible

scenarios represented by this MSG.

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 127

FLY BY WIRE AUTOPILOT

Initialization

Initialization AP

Main

Modem

Control

AP-SPI

Control

GPS

Control

FLY-BY-WIRE

Report

Unit

FBW

Main

Servo

Control

Radio

Control

FBW-SPI

Control

AUTOPILOT

radio command

received

radio timeout

ManualCmd AutoMode

CmdProcess

manual command auto command
ManualCmd AutoMode

Navigation
FBW

Main

Radio

Control

FBW-SPI

Control

[Env]

Radio

[Env]

SPI

FLY-BY-WIRE

FBW

Main

Radio

Control

FBW-SPI

Control

[Env]

Radio

[Env]

SPI

FLY-BY-WIRE

St bili ti

Main Control ControlRadio SPI Main Control ControlRadio SPI

radio

timeout

Stabilization

TransmitServo

CmdProcessing Navigation Stabilization TransmitServo

AP ModemAP-SPI [Env][Env]

AUTOPILOT

AP GPS [Env]

AUTOPILOT

APAP-SPI[Env]

AUTOPILOT FLY-BY-WIRE

FBW Servo FBW-SPI[Env] [Env]

Main ControlControl

[]

Modem

[]

SPI Main Control

[]

GPS MainControl

[]

SPI Main Control Control

[]

Servo

[]

SPI

Figure 7.13: Message Sequence Graph of the PapaBench application

While an MSC describes a single scenario in the system execution, an MSG describes

the control flow between these scenarios, allowing us to form a complete specification of

the application. Therefore, to optimize the WCRT of the entire application, the analysis

as well as the scratchpad allocation technique need to be extended to take into account

the conditional control flow specified by the MSG model.

An execution of the modeled application traces a path in the MSG from an initial state

to a terminal state (marked with double lining), and can be viewed as a concatenation of

the MSCs along that path [45]. Here, we consider the synchronous concatenation of the

MSG, where all the tasks in an MSC (that is, an MSG node) must complete before any

task in a subsequent MSC can execute. Each MSC can thus be viewed independently.

The extended scratchpad allocation technique proceeds as follows.

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 128

1. Perform scratchpad allocation on each MSC to obtain the WCRT-optimizing allo-

cation along with the post-allocation WCRT value for each MSG node.

2. Traverse the MSG to find the longest path in terms of total post-allocation WCRT.

Since there is an allocation for each MSG node (which is an MSC), after an MSG

node finishes, the scratchpad contents may be reloaded.

The MSG may contain loops between the initial state and the terminal state, in which

case we require that the maximum number of times the cyclic edges can be traversed is

known, so that the longest path is well-defined. The WCRT of the application is then

the sum of the WCRT of the MSCs along the longest path.

Experimental Evaluation We run the extended scratchpad allocation on the PapaBench

MSG (Figure 7.13). The assignment of processes to PEs as well as latency settings are

the same as in our experiments on the single MSC, presented in the previous section.

Figure 7.14 shows the resulting WCRT after allocation by the four schemes. Here, task

interactions are limited within each MSG node, and we see that distributing the appli-

cation on more PEs does not always result in overall WCRT reduction. This is due to

the fact that the PEs are not necessarily fully utilized in each node, as processes have

been mapped to PEs according to functionality without regard for load balancing. For

example, in the 2-PE case where one PE takes up fly by wire tasks and the other

executes autopilot tasks, then only one of them is active in MSG nodes other than

Initialization. As we have observed earlier, for the same total scratchpad space,

utilizing more PEs narrows down the available space on each PE, and tasks may con-

trarily take longer time to complete.

The results in terms of post-allocation WCRT of the complete application still confirm

our hypothesis that allocation techniques with more sophisticated view of task interac-

tions obtain better results. In particular, our proposed scheme CR still gives the best

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 129

PK IC GC CR

2 x 256B

2 x 512B

15.9

14.5

18.5

24.1

17.9

24.4

19.9

19.3

PK IC GC CR

512B

1KB

2KB

4KB

8KB

14.4

16.3

16.9

16.9

27.6

23.4

18.3

18.1

18.2

37.2

24.2

18.2

18.6

19.3

31.4

21.6

22.1

21.0

21.3

31.4

Algorithm runtime (seconds)

Algorithm runtime (seconds)

20

100

180

260

340

420

512 B 1 KB 2 KB 4 KB 8 KB

W
C

R
T

 (
K

c
y
c
le

s
)

Scratchpad configuration

1-PE

PK

IC

GC

CR

260

340

420

W
C

R
T

 (
K

c
y
c
le

s
)

2-PE

PK

IC
2 x 512B

2 x 1KB

2 x 2KB

2 x 4KB

14.5

27.6

15.4

29.1

24.1

32.5

32.1

19.5

24.4

20.2

19.6

22.2

19.3

21.6

19.4

21.3

PK IC GC CR

4 x 128B

4 x 256B

4 x 512B

4 x 1KB

4 x 2KB

15.7

15.6

16.2

17.7

16.3

16.9

35.9

35.8

37.3

18.6

17.6

20.0

20.2

22.5

19.4

17.1

30.4

30.0

31.4

20.1

Algorithm runtime (seconds)

20

100

180

2 x 256B 2 x 512B 2 x 1KB 2 x 2KB 2 x 4KB

W
C

R
T

 (

Scratchpad configuration

GC

CR

20

100

180

260

340

420

4 x 128B 4 x 256B 4 x 512B 4 x 1KB 4 x 2KB

W
C

R
T

 (
K

c
y
c
le

s
)

Scratchpad configuration

4-PE

PK

IC

GC

CR

Figure 7.14: WCRT of the complete PapaBench application after allocation by Profile-
based Knapsack (PK), Interference Clustering (IC), Graph Coloring (GC), and Critical
Path Interference Reduction (CR), along with algorithm runtime

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 130

WCRT improvement. In a similar trend as in the single MSC case, the improvements

are more pronounced in configurations with less number of PEs and hence heavier task

interferences.

As charts are examined individually, the method does not experience noticable scalabil-

ity problem. Given a total of 7 individual MSCs with varying degree of complexity in

this application, we see only about 50% increase in total algorithm runtime as shown in

the tables of Figure 7.14.

Extension to Asynchronous Concatenation An alternative way to form an execution

path through an MSG is the asynchronous concatenation of the charts labeling the MSG

nodes. In this case, a task in an MSC may start as soon as all tasks of the same process

in the preceding MSC have completed. The result of an asynchronous concatenation

forms an MSC, while it is not necessarily so in the synchronous case.

Our scratchpad allocation method can be extended for the case of asynchronous concate-

nation as follows. By enumerating all paths through the MSG, we obtain all possible

execution scenarios of the application. If the MSG contains loops, then the bounds on

the edge counts should also be supplied to enable the enumeration of all possible paths.

Each path is formed by asynchronously concatenating the MSCs, thus resulting in an

MSC. Our method then performs WCRT analysis along with scratchpad allocation for

each resulting MSC as before. The MSG path (which is an MSC) with the maximum

WCRT value will thus determine the WCRT of the application, and the allocation deci-

sion corresponding to that MSC is the worst-case-optimizing scratchpad allocation for

the application.

The complexity of this concatenation method lies in the enumeration of the paths. The

WCRT analysis and scratchpad allocation operate on each result of concatenation as a

stand-alone MSC. As such, in our evaluation of this setting, the trend in results is similar

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 131

to the single-MSC case, that is, the application WCRT improves as more refined view

of task interactions is employed in the allocation schemes.

7.7 Method Scalability

To evaluate the scalability of our proposed technique, we run it on a more complex

application adapted from DEBIE-I DPU Software [39], an in-situ space debris monitor-

ing instrument developed by Space Systems Finland Ltd. We model the software as an

MSG, shown in Figure 7.15. The main functions involved have been broken down into

several concurrent processes.

The DEBIE instrument utilizes up to four Sensor Units (SU) to detect particle impacts

on the spacecraft. As the system starts up, it performs initializations and runs tests of the

main functionalities. The system then enters the Standby state. When the command to

start the acquisition of impact data is received via the Telecommand handler, the system

goes into the Acquisition state and turns on at least one of the Sensor Units. In this mode,

each particle impact will trigger a series of measurement, and the data are classified and

logged for further transmission (telemetry) to the ground station. Data acquisition will

continue until the stopping command is received, after which the system returns to the

Standby state. In either mode, the Health Monitoring process periodically monitors the

health of the instrument and runs housekeeping checks. If any error is detected, the

system will reboot.

The code size and WCET of each task as well as its mapping to 4 PEs are listed in Table

7.2. When running the experiments for 2 PEs, the tasks in PE1 and PE2 are assigned to

the first PE, and the rest of the tasks are assigned to the second PE. For this application,

we use the main memory latency value of 10 cycles instead of 100 cycles as the previous

setting, in order to lessen the skewness of execution time values among the tasks. The

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 132

Boot

Boot

Main

Boot

power-up watchdog checksum soft/warm
Power-up
ResetPower-up

Reset

power up
boot

Record WD
Failure

watchdog
boot

Record CS
Failure

checksum
boot

Warm Reset

soft/warm
boot

Main Class-
ification

Record WD Failure Record CS Failure
Initializations

Tests M iM iTests

(2)

(0) (0) MainMain

Warm Reset
telecommand:

telecommand:
“Stop Acquisition”

Standby
error

Classtelecommand:
“Start Acquisition”

Acquisition
error (2)

(1) Main Class-
ification

Initializations Standby
Health

MonitoringMain

Health
Monitoring

Tele-
command

Tele-
command

Acqui-
sition

Hit Trigger
ISR

SU
Interface

[Env]
Sensor Unit

Tests
Main Health

Monitoring
Tele-

command
Acqui-
sition

Hit Trigger
ISR

SU
Interface

[Env]
Sensor UnitTelemetry

Acquisition Class-
ification

Health
Monitoring

Tele-
command

Acqui-
sition

Hit Trigger
ISR

SU
Interface

[Env]
Sensor UnitTelemetry

Figure 7.15: Message Sequence Graph of the DEBIE application

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 133

scratchpad latency remains at 1 cycle. Following the increase in average code size of

the tasks, the total scratchpad size is now varied from 1 KB to 16 KB.

PE
i

t
i

Codesize (bytes) c
i

(cycles)

1

mn-boot

mn-pw1

mn-pw2

mn-wd

mn-cs

mn-wr1

mn-wr2

mn-ini1
mn-ini2
mn-ini3
mn-ini4
mn-tst1

mn-tst2

mn-tst3

mn-tst4

mn-tst5

mn-tst6

3,200
9,456

3,472

3,400

3,400

3,408
5,952

320

376

376

376
240

240

240

240

240
240

4,325
14,589

6,784

6,745

6,745

10,757
6,594

260

271

271

271
180

180

180

180

180
180

1
tm-tst

tm-acq

56,960
3,768

839,607
5,560

2

ht-ini

ht-tst

ht-acq

616

10,776

8,016

507

105,224,302

1,008,155

2

su-tst

su-sby1

su-sby2

su-sby3

su-acq0

su-acq1

su-acq2

su-acq3

50,176

6,512

4,392

1,320
2,536

6,512

4,392

1,320

15,606,989

103,375,726

51,684,932

91,593
712

103,375,726

51,684,932

91,593

PE
i

t
i

Codesize (bytes) c
i

(cycles)

3

cl-pw

cl-wr

cl-acq

1,648

1,648

3,064

1,266

1,266

14,637

3

tc-ini

tc-tst

tc-sby

tc-acq

4,408

45,368
23,288

23,288

3,341

38,009,988
117,268

117,268

4

aq-ini

aq-tst

aq-acq1

aq-acq2

200

44,128
3,136

3,024

165

126,996,985
2,400

2,688

4

hm-ini

hm-tst

hm-sby1

hm-sby2

hm-acq1

hm-acq2

5,224

44,176

16,992
448

16,992

448

155,055,938

743,373,112

413,497,626
343

413,497,626

343

Table 7.2: Code size and WCET of tasks in the DEBIE application

The DEBIE application model as shown in Figure 7.15 is a cyclic MSG, and we have

indicated the bounds used for our experiments in the brackets labeling the cyclic edges.

Each specified bound is an absolute count of the number of times the edge is taken in a

complete scenario according to the MSG.

The optimization results in terms of post-application WCRT for the MSG along with

algorithm runtimes for all four schemes are shown in Figure 7.16.

We observe two interesting phenomena here. First, we see that GC may sometimes per-

form worse than IC (for example, in the 2-PE, 2 x 2KB scratchpad configuration). In

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 134

PK IC GC CR

2 x 512B

2 x 1KB

32.7

33.6

59.2

33.8

59.8

36.8

49.7

40.7

PK IC GC CR

1KB

2KB

4KB

8KB

16KB

33.3

37.4

40.9

35.4

37.1

34.4

38.6

38.1

38.0

36.6

32.9

38.2

40.3

47.1

41.2

36.4

37.0

46.7

47.2

51.7

Algorithm runtime (seconds)

Algorithm runtime (seconds)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1 KB 2 KB 4 KB 8 KB 16 KB

W
C

R
T

 (
x

 1
0

9
c

y
c

le
s

)

Scratchpad configuration

1-PE

PK

IC

GC

CR

3.0

3.5

4.0

4.5

5.0

W
C

R
T

 (
x

 1
0

9
c

y
c

le
s

)

2-PE

PK

IC
2 x 1KB

2 x 2KB

2 x 4KB

2 x 8KB

33.6

38.6

41.3

35.9

33.8

37.1

39.8

38.4

36.8

35.0

41.0

57.3

40.7

37.3

36.3

109.0

PK IC GC CR

4 x 256B

4 x 512B

4 x 1KB

4 x 2KB

4 x 4 KB

48.3

87.8

53.2

88.8

46.8

67.8

117.2

34.5

90.0

44.0

68.3

79.0

80.1

81.2

85.1

70.8

80.4

80.0

36.8

41.3

Algorithm runtime (seconds)

1.0

1.5

2.0

2.5

3.0

2 x 512B 2 x 1KB 2 x 2KB 2 x 4KB 2 x 8KB

W
C

R
T

 (
x

 1
0

Scratchpad configuration

GC

CR

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

4 x 256B 4 x 512B 4 x 1KB 4 x 2KB 4 x 4KB

W
C

R
T

 (
x

 1
0

9
c

y
c

le
s

)

Scratchpad configuration

4-PE

PK

IC

GC

CR

Figure 7.16: WCRT of the DEBIE application after allocation by Profile-based Knap-
sack (PK), Interference Clustering (IC), Graph Coloring (GC), and Critical Path Inter-
ference Reduction (CR), along with algorithm runtime

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 135

these cases, the performance drop is caused by the decision to allocate less space to a

color which is used by only one task, which then becomes the critical task in the partic-

ular chart. Recall that the allocation of scratchpad space and the content selection are

simultaneously performed to optimize for the approximated definition of total WCRT.

As coloring imposes a “grouping” among tasks, the evaluation of the gain function may

be biased towards a group with more tasks, moreover when it is difficult to predict which

tasks may turn out critical after all task interactions are considered.

Secondly, there are also cases where CR results in worse performance than GC or IC (for

example, in the 1-PE, 4KB scratchpad configuration). Investigation reveals that this de-

terioration happens over the iterative improvements for certain charts in the application

(recall that allocation is done independently on each chart). The decision to eliminate

selected interferences does yield better reduction in the first few iterations of the alloca-

tion scheme. However, as it continues, it hits a point when the refined allocation/content

selection does not improve the WCRT, and thus the iteration ends. Meanwhile, the GC

or IC method, while achieving longer WCRT at first, continues to refine the allocation

decision over the iteration and finally reaches a better overall WCRT. The choice to

eliminate certain interferences certainly caters to the application WCRT as best as it can

predict based on the critical path at that moment, yet the non-interference constraint that

is carried forward to the next iterations restricts the “movement” of tasks in the applica-

tion. In these cases, the shifting of tasks after the iterative improvement ultimately gives

a chance to GC and IC to obtain more beneficial allocation even with less overlay.

As far as scalability is concerned, we see that all schemes can complete their compu-

tation below 2 minutes, even though the charts to be optimized are considerably more

complex than the previous PapaBench benchmark. Again, the algorithm runtime is dom-

inated by ILP solution for scratchpad content selection, which increases in complexity

as the application has more task code blocks to consider for optimal allocation. We can

therefore conclude that there is no evident scalability problem in all four schemes.

CHAPTER 7. SCRATCHPAD ALLOCATION FOR CONCURRENT APP. 136

7.8 Chapter Summary

We have presented a detailed study of scratchpad allocation schemes for concurrent

embedded software running on single or multiple processing elements. The novelty of

this work stems from taking into account both concurrency and real-time constraints

in our scratchpad allocation. Our allocation schemes consider (1) communication or

interaction among the threads or processes of the application, as well as (2) interference

among the threads or processes due to preemptive scheduling in the processing elements.

The Message Sequence Chart (MSC) model is chosen as it shows the process interaction

explicitly. We have also presented an extension of our scheme to the Message Sequence

Graph (MSG) model, where charts labeling the nodes in the graph are concatenated to

form a complete execution scenario.

As the interactions and interference among the processes can greatly affect the worst-

case response time (WCRT) of a concurrent application, our scratchpad allocation meth-

ods achieve substantial reduction in WCRT as evidenced by our experiments on two

real-world embedded case studies.

Chapter 8

Integrated Scratchpad Allocation and

Task Scheduling

In this chapter, we expand our view to look at how scratchpad allocation may interact

with other multiprocessing aspects. One particular factor that affects application re-

sponse time is the mapping/scheduling of tasks on multiple processing cores in a multi-

processor system-on-chip (MPSoC). We design an integrated task mapping, scheduling,

scratchpad partitioning, and data allocation technique as an ILP formulation to explore

the optimal performance limit.

8.1 Introduction

Increasing concerns about the energy and thermal behavior of embedded systems are

leading to designs with multiple homogeneous/heterogeneous cores or processors on a

single chip. Significant research efforts have been invested in partitioning, mapping, and

scheduling the tasks corresponding to an embedded application onto multiple proces-

sors. However, the increasing performance gap between on-chip and off-chip memory

137

CHAPTER 8. INTEGRATED SCRATCHPAD ALLOCATION / SCHEDULING 138

implies that the design of on-chip memory hierarchy has the maximum impact on the

performance of an application. In this chapter, we focus on customization of on-chip

scratchpad memory for multiprocessor system-on-chip (MPSoC) architectures.

An MPSoC is an integrated circuit containing multiple instruction-set processors on a

single chip that implements most of the functionality of a complex electronic system. An

MPSoC architecture is, in general, customized for an embedded application. A critical

component of this customization process is the on-chip memory system configuration

— in this case, the scratchpad memory management.

We consider an MPSoC architecture where each processor has its private scratchpad. In

addition to this, a processor can also access another processor’s private scratchpad albeit

with an increased latency. Given an application and a budget for total on-chip scratch-

pad, our goal is to determine the appropriate configuration and data mapping for the pri-

vate scratchpads of all processors so as to maximize the performance of the application.

The appropriate configuration of a processor’s private scratchpad critically depends on

the tasks mapped to that processor. Therefore, task mapping/scheduling and scratchpad

configuration are dependent on each other. Traditional design space exploration frame-

works implement these two phases separately, leading to sub-optimal performance. In

the following, we propose an integer linear programming (ILP) based technique for in-

tegrated task mapping/scheduling, scratchpad partitioning, and data mapping.

8.2 Task Mapping and Scheduling

Before addressing the problem of integrated task mapping/scheduling and scratchpad

allocation, let us first manage a comprehensive view on the problem of task mapping

and scheduling and review the state of the art in this area.

CHAPTER 8. INTEGRATED SCRATCHPAD ALLOCATION / SCHEDULING 139

Uniprocessor scheduling is a well-researched area. Liu and Layland in their classic pa-

per [81] prove that Rate Monotonic Scheduling (RMS) is optimal for preemptive unipro-

cessor scheduling with static priorities where task deadlines equal task periods, while

Earliest Deadline First (EDF) is optimal when dynamic priorities are used. Further,

they show that the least upper bound of the processor utilization factor for a set of N

tasks to be schedulable is U = N(21/N − 1) for RMS and 1 for EDF.

Tasks can be scheduled on multiprocessing systems using a global scheduling (non-

partitioning) or a partitioning scheme [70]. In a global scheduling scheme, tasks can

be scheduled on any processor and, after preemption, can be resumed on a different

processor. In a partitioning scheme, each task is assigned to a processor and is only

executed on this processor.

Global Scheduling A class of global multiprocessor scheduling algorithms with rel-

atively acceptable complexity is Proportionate-fair (Pfair) [17, 115, 7]. It is optimal for

scheduling recurrent real-time tasks on a multiprocessor system, with the goal of ensur-

ing fairness. The method allocates processor time in slots of quantum length. In each

slot, each processor can be assigned to at most one task. The quantum allocation is done

by sub-dividing each task into a sequence of quantum-length subtasks. The disadvan-

tage of Pfair scheduling is that it tends to incur frequent preemptions and migrations that

may increase cache misses.

Partitioning In the partitioning scheme, tasks are first assigned to processors (task

mapping). Within each processor, tasks can then be scheduled using optimal uniproces-

sor scheduling policies such as RMS or EDF. While RMS and EDF are optimal within

the individual processors, the partitioning scheme is not optimal for multiprocessors

[20]. However, it is presently favored as it is efficient and reasonably effective. In

CHAPTER 8. INTEGRATED SCRATCHPAD ALLOCATION / SCHEDULING 140

particular, this scheme incurs less scheduling overhead and enables the application of

well-researched uniprocessor scheduling strategies on each processor individually [82].

The task mapping problem is intractable, thus a number of heuristics have been devel-

oped for this purpose, including First-Fit (FF), Next-Fit (NF), Best-Fit (BF), Worst-Fit

(WF), First-Fit Decreasing (FFD) and Best-Fit Decreasing (BFD) [1, 83]. Lopez in [82]

proves that the combination of FF task allocation and EDF scheduling scheme (EDF-FF)

achieves the highest worst-case achievable utilization among all pairs of uniprocessor

task allocation–scheduling algorithm.

The problem of scheduling a task graph on multiple homogenous processors in order

to minimize execution time (or energy) has been studied extensively. In its general

form, this problem is NP-complete; a comprehensive comparison of existing heuristics

is presented by Kwok and Ahmad [68]. These works mostly consider non-pipelined

scheduling. Benini et al. [18] propose a hybrid constraint programming and integer pro-

gramming based approach for finding the optimal pipelined schedule. The related prob-

lem of mapping and scheduling tasks to a set of heterogeneous processing elements has

been studied in the context of hardware/software co-design [144], which shares techni-

cal similarities with our multiprocessor scheduling problem. Among proposed solutions

to this co-design problem is an ILP-based solution by Niemann and Marwedel [96]. Re-

cently, various research groups have also proposed pipelined scheduling solutions to this

problem, especially in the context of streaming applications. Chatha and Vemuri [25]

propose a branch-and-bound solution whereas Kuang et al. [67] propose an ILP-based

solution. Both solutions aim to minimize the total component cost and hence the number

of pipeline stages.

For a comprehensive review of task scheduling covering uniprocessor/multiprocessor

systems, periodic/aperiodic processes and static/dynamic algorithms, readers may refer

to the paper by Burns [20].

CHAPTER 8. INTEGRATED SCRATCHPAD ALLOCATION / SCHEDULING 141

8.3 Problem Formulation

We shall now present the problem formulation.

CPU Core CPU Core CPU Core

VS-SPM1

External

Memory

Interface

Processor 1 Processor 2 Processor N

Off-chip memory

Bus

VS-SPM2 VS-SPMN

MPSoC

External

Memory

Interface

External

Memory

Interface

Figure 8.1: Embedded single-chip multiprocessor with virtually shared scratchpad
memory

Architectural Model In this work, we focus on embedded single-chip multiprocessor

architecture with scratchpad memory, as shown in Figure 8.1. The architecture contains

multiple processor cores on chip. The cores can be homogeneous or heterogeneous. The

processor cores communicate with the shared off-chip memory via a bus. In the single-

chip multiprocessor setting, each processor core can access its private scratchpad as

well as remote scratchpads attached to other processors. Such a setup, as described in

[63], is called virtually shared scratchpad memory (VS-SPM).

A processor core has a dedicated access link to its private scratchpad with minimum

latency — usually a single cycle. Access to a remote scratchpad also incurs low latency

CHAPTER 8. INTEGRATED SCRATCHPAD ALLOCATION / SCHEDULING 142

(e.g., 4–16 cycles) due to the fast on-chip communication link among the processor

cores. However, off-chip memory access has very high latency (e.g., 100 cycles) due

to the performance gap between processor and DRAM technology. Access conflicts be-

tween multiple processors may also arise in the bus, adding non-trivial variable delays

to the off-chip memory accesses. For simplicity, in this work we assume that the latency

incurred by every off-chip memory access is a constant. To avoid coherency issues, we

also make the assumption that a memory location can be mapped to at most one scratch-

pad. The Cell processor [51] is an example of a real system with similar architecture

even though its recommended programming model is somewhat different.

In this work, we focus on data scratchpad, but our strategy applies to code scratchpad as

well. That is, our formulation can be easily configured for allocating general memory

objects in the form of data variables or blocks of program code.

Task Graph We assume that the embedded application is specified as a task graph.

The task graph is a directed acyclic graph that represents the key computation blocks

(tasks) of an application as nodes and the communication between these tasks as edges.

A task can be mapped to any of the processing cores. Therefore, associated with each

task t are the execution times corresponding to running the task t on each of the process-

ing cores. In case of homogeneous cores, there is only one execution time associated

with each task. Note that for our problem, the execution time of a task t on a processor P

depends on the placement of its data variables in the scratchpad. Therefore, we estimate

the execution time assuming that all the data variables are accessed from the off-chip

memory. An edge from task t to u in the task graph represents data transfer from t to u.

Therefore, each edge is labeled with the amount of data transferred along it.

As memory hierarchy design is the main focus of this paper, each task is also associated

with the sizes and access frequencies of data variables obtained through profiling. Note

that the data access pattern of a task can be different depending on which processor it

CHAPTER 8. INTEGRATED SCRATCHPAD ALLOCATION / SCHEDULING 143

gets mapped to (if the processors are heterogeneous). In that case, for each task we

maintain multiple access patterns corresponding to the different processor cores.

Pipelined Scheduling Most streaming applications, such as multimedia and digital

signal processing (DSP) applications, are iterative in nature. For these applications, the

execution of the task graph is evoked repeatedly for a stream of input data. Hence, these

applications are amenable to pipelined implementation for greater throughput [25]. The

pipelined implementation benefits from allowing multiple processors execute multiple

iterations of the task graph at the same time. We shall consider pipelined scheduling

in our problem formulation. Note that the objective for sequential implementation is

to minimize the execution time of a single iteration of the task graph. In contrast, the

objective of pipelined implementation is to minimize the initiation interval (II), which

is the length of time between the start of two consecutive iterations of the task graph

(see Figure 8.3). Minimizing the initiation interval results in optimal throughput for a

streaming application.

Problem Statement Given a task graph, the architectural model and a bound on the

total available on-chip SRAM, our goal is to find the optimal scratchpad configuration

that results in minimum initiation interval (II). This problem can be decomposed into

three sub-problems.

• Mapping/scheduling of the tasks to the processors as well as communication

among the tasks

• Scratchpad partitioning to find the optimal size for each private scratchpad

• Data allocation of variables accessed by the tasks to the scratchpads

We present a flexible approach that explores the solution space of possible task map-

ping/scheduling, scratchpad configuration and data allocations together.

CHAPTER 8. INTEGRATED SCRATCHPAD ALLOCATION / SCHEDULING 144

8.4 Method Illustration

t2: Polyphase Filter
Bank / MDCT

(8.4M)

t1: Psychoacoustic
Analysis
(5.7M)

t3: Quantization,
Coding
(3.6M)

t4: Format Bitstream
(1.0M)

PCM MP3

Figure 8.2: Task graph of LAME MP3 encoder

To illustrate the interaction among task scheduling, scratchpad partitioning and data al-

location, we will use the task graph shown in Figure 8.2. The task graph corresponds

to LAME MP3 encoder from the MiBench benchmark suite. It consists of four tasks

and encodes a sequence of MP3 audio frames. Due to the task level parallelism, this

application can take advantage of task pipelining as well as multiprocessing. The exe-

cution time of the tasks (assuming all the variables are located in off-chip memory) are

obtained through profiling. The values (in cycles) are indicated as bracketed numbers

in Figure 8.2. Our MPSoC architecture has two homogeneous on-chip processors and a

total on-chip scratchpad budget of 4KB.

PE1

PE2

bus

t’3

t2

t’1

II = 10.3M

C2,3

t’4

Figure 8.3: Optimal pipelined schedule for the task graph in Figure 8.2 without consid-
ering data allocation

Existing design space exploration strategies will first map and schedule the tasks and

communication onto the two processors without considering the allocation of variables

CHAPTER 8. INTEGRATED SCRATCHPAD ALLOCATION / SCHEDULING 145

to the scratchpads. Figure 8.3 shows the optimal pipelined schedule for the task graph in

Figure 8.2. Non-primed labels indicate tasks/communications from the current instance,

while primed labels indicate tasks/communications from the previous instance. This

schedule can process one audio frame every 10.3M cycles, which is the initiation interval

II for the schedule.

Now, we consider allocating the data variables to on-chip scratchpads. The common

practice is to partition the total scratchpad budget equally between the two processors,

that is, each processor has 2KB private scratchpad. The variables of task t2 are allocated

to the 2KB scratchpad of processor PE1. Similarly, the variables of tasks t1, t3, and

t4 are allocated to the 2KB scratchpad of processor PE2. We call this the EQ strategy,

which stands for equal partitioning of the scratchpad. The allocation reduces the total

execution time of t1, t3, t4 to 8.2M cycles. Therefore, the II reduces to 8.2M cycles.

However, we notice that the combined execution time of t1, t3, t4 on PE2 determines II

in both cases (with or without allocation). That is, the reduction of task t2’s execution

time does not have any effect on the global throughput of the application. This example

indicates that allocating a bigger share of scratchpad to processor PE2 would have been

a better strategy.

We proceed to explore an integrated scratchpad partitioning and data allocation strategy.

We call this the PF strategy, as it is a partially flexible strategy. Note that in this case the

task mapping and scheduling have also been performed beforehand. As expected, this

strategy allocates a larger scratchpad space to processor PE2 and reduces II to 7.6M

cycles. The 1152 bytes allocated to PE1 is used to keep its execution time below this

II value. Given the schedule shown in Figure 8.3, this is the optimal II achievable with

4KB on-chip scratchpad.

However, fixing the task schedule a-priori without considering the effect of data allo-

cation on the execution time may miss the global optima. For example, task t2 has the

CHAPTER 8. INTEGRATED SCRATCHPAD ALLOCATION / SCHEDULING 146

longest execution time without data allocation and hence it is mapped onto a separate

processor. However, its execution time may reduce considerably after data allocation

and hence it may not be optimal to allocate this task on a separate processor. Exploring

the design space of task scheduling, scratchpad partitioning and data allocation together

could potentially reach a design point that is not possible through decoupled scheduling

and scratchpad allocation.

PE1

PE2

bus

t1

II = 6.7M

C1,3

t’2 t’3 t’4

Without data allocation

13.0 M

Figure 8.4: Optimal pipelined schedule for the task graph in Figure 8.2 through inte-
grated task scheduling, scratchpad partitioning and data allocation

Therefore, we devise a flexible approach that essentially combines the task scheduling,

scratchpad partitioning, and data allocation phases. We will call this the completely

flexible (CF) strategy. Figure 8.4 shows the schedule produced by the CF strategy for

the same task graph. This schedule is different from the schedule shown in Figure 8.3,

which does not consider data allocation. In particular, task t1 has been mapped to a

separate processor instead of task t2. A decoupled scheduling phase can never produce

the schedule in Figure 8.4 as its performance without data allocation is extremely poor

(II = 13M cycles). However, with data allocation, this schedule produces an optimal II

of 6.7M cycles. Incidentally, the entire scratchpad space is allocated to processor PE2.

CHAPTER 8. INTEGRATED SCRATCHPAD ALLOCATION / SCHEDULING 147

8.5 Integer Linear Programming Formulation

In this section, we present the ILP formulation for an integrated task mapping/scheduling,

scratchpad memory partitioning, and data allocation. We assume that the application is

specified as a task graph. We first formulate the problem of scheduling the tasks on

multiple processors without considering the presence of scratchpad. This formulation is

then extended to handle the pipelined scheduling. Finally, we formulate the problem of

scratchpad partitioning and data allocation and integrate it with the formulation for task

scheduling.

t1:sobel
(799,899K)

t2:laplacian
(799,896K)

t3:histogram
(102,806K)

t4:sum
(146,639K)

t5:equalizeSum
(259,260K)

t6:productSum
(188,694K)

1000
1000

1000

1000 1000

1000

Figure 8.5: An example task graph

Throughout our discussion on task mapping and scheduling, we will use the task graph

shown in Figure 8.5 for illustration purposes. The numbers in brackets indicate the

execution time of the tasks (in cycles). The edges are labeled with the communication

costs (in cycles) between the tasks. For simplicity of illustration, we assume an MPSoC

architecture consisting of four homogeneous processors so that the execution time of a

task is the same across all processors. However, we note that our formulation handles

heterogeneous processors as well.

CHAPTER 8. INTEGRATED SCRATCHPAD ALLOCATION / SCHEDULING 148

8.5.1 Task Mapping/Scheduling

We present here an ILP formulation to optimize performance through integrated task

mapping and scheduling. We shall present extensions for pipelined scheduling and

scratchpad partitioning in the next subsections.

Setting The task graph for an application has N tasks denoted as t1, . . . , tN . Without

loss of generality, let tN be the last task (the task without successors) in the task graph.

If there are multiple last tasks in the task graph, then we add a dummy last task as the

successor of all the original last tasks. We have Q available processors (homogeneous

or heterogeneous) denoted as PE1, . . . , PEQ. Associated with each task is its execution

time on each of the available processors — timei,j denotes the execution time of task ti

on processor PEj , assuming that all the data variables are available in off-chip memory

(no scratchpad data allocation is considered at this point).

Let the binary decision variable Xi,j = 1 if task ti is mapped to processor PEj and 0

otherwise. A task can be mapped to exactly one processor.

M∑
j=1

Xi,j = 1 (8.1)

The execution time of task ti is given by

Timei =
M∑

j=1

Xi,j × timei,j (8.2)

Let StartTaski and EndTaski denote the starting time and the completion time, re-

spectively, of task ti. Then

EndTaski = StartTaski + Timei − 1 (8.3)

CHAPTER 8. INTEGRATED SCRATCHPAD ALLOCATION / SCHEDULING 149

Objective Function The objective is to minimize the critical path through the task

graph, that is, to minimize the completion time EndTaskN of the last task tN .

Task Dependencies Let preds(ti) denote the set of predecessors of task ti in the task

graph. ti can only start execution after all the tasks th ∈ preds(ti) have completed

execution. Further, if ti and th are mapped to two different processors, then ti has to

wait for the completion of any data transfer from th to itself, incurring a communication

cost commh,i.

We model inter-task communications as special tasks running on a shared bus. Let Ch,i

be the communication task between th and ti, and let StartCommh,i and EndCommh,i

be the starting time and the completion time of Ch,i. Then we have the following con-

straints.

StartCommh,i ≥ EndTaskh + 1 (8.4)

StartTaski ≥ EndCommh,i + 1 (8.5)

Note that task dependencies are indirectly enforced via the communications between the

tasks. To reflect the fact that the communication cost between th and ti is incurred only

when ti and th are mapped to different processors, we have the following constraint.

EndCommh,i = StartCommh,i + Lh,i × commh,i − 1 (8.6)

where Lh,i = 1 if and only if th and ti are mapped to different processors. Recall that

Xi,j = 1 if task ti is mapped to processor PEj and 0 otherwise. The definition of Lh,i

is linearized as follows.

∀j : 1 . . . M Lh,i ≤ 2−Xh,j −Xi,j

∀j : 1 . . . M ∀k : 1 . . . M, k 6= j Lh,i ≥ Xh,j + Xi,k − 1

CHAPTER 8. INTEGRATED SCRATCHPAD ALLOCATION / SCHEDULING 150

Resource Constraint The previous constraints effectively prevent two dependent tasks

from competing for processor time. We should also ensure that any two independent

tasks mapped to the same processor have disjoint lifetimes. Mirroring our treatment of

dependent tasks, for every pair of independent tasks ti and ti′ , let the binary variable

Li,i′ = 1 if and only if ti and ti′ are mapped to different processors. If Li,i′ = 0, either

task ti executes before ti′ or vice versa. Let binary variable Bi′,i = 0 if ti and ti′ are

mapped to the same processor and ti′ executes after ti. Similarly let Bi,i′ = 0 if ti and

ti′ are mapped to the same processor and ti executes after ti′ . Then we ensure disjoint

lifetime for the two tasks through the following constraints.

Bi,i′ + Bi′,i − Li,i′ = 1 (8.7)

StartTaski ≥ EndTaski′ −∞×Bi,i′ + 1 (8.8)

StartTaski′ ≥ EndTaski −∞×Bi′,i + 1 (8.9)

As all the communications take place on a shared bus, we should also ensure that the

communications do not overlap with each other. Analogous to constraints (8.7) through

(8.9), for all pairs of distinct communication tasks Ch,i and Cf,g, we have the following

constraints.

Vh,i,f,g + Vf,g,h,i = 1 (8.10)

StartCommh,i ≥ EndCommf,g −∞× Vh,i,f,g + 1 (8.11)

StartCommf,g ≥ EndCommh,i −∞× Vf,g,h,i + 1 (8.12)

Here binary variable Vh,i,f,g = 1 if Cf,g happens after Ch,i and 0 otherwise. Similarly,

binary variable Vf,g,h,i = 1 if Ch,i happens after Cf,g and 0 otherwise.

CHAPTER 8. INTEGRATED SCRATCHPAD ALLOCATION / SCHEDULING 151

C1,6 C4,6

PE1

PE2

bus

1,059,157K 1,247,851K

t4t3

t6t5

t1

t2

0

C3,5

799,897K

C2,4

912,517K102,806K 1,059,156K

Figure 8.6: An optimal non-pipelined schedule for the task graph in Figure 8.5 on four
processors

Example Figure 8.6 shows an optimal schedule for the task graph in Figure 8.5 on

four processors, obtained using the ILP formulation. Note that only two out of four

available processors are utilized: processors PE3 and PE4 are not assigned any task.

This is because utilizing more processors will increase the length of the critical path

through additional communication costs. We assume that computation and communica-

tion can proceed in parallel (e.g., execution of task t1 on processor PE2 in parallel with

communication C3,5 from PE2 to PE1). Also note that the tasks on processor PE1

determine the critical path; therefore, tasks on processor PE2 are scheduled with slacks.

8.5.2 Pipelined Scheduling

In this section, we extend the task scheduling formulation in the previous subsection to

take into account pipelined scheduling. In a synchronous pipelined execution, tasks are

distributed across pipeline stages of uniform length. The length of the pipeline stages,

known as the initiation interval (II), is determined by the maximum time needed to

complete all the tasks in any of the stages. Thus the objective of pipelined scheduling is

to distribute tasks into stages so as to minimize the II , while respecting task dependen-

cies and resource constraints.

CHAPTER 8. INTEGRATED SCRATCHPAD ALLOCATION / SCHEDULING 152

PE1

PE2

bus

PE3

PE4

0 799,899K 1,599,799K

t4t3 t6

t5

t1

t2

Stage1 Stage2

(a)

C3,5C2,4
C1,6C5,6C2,5

PE1

PE2

bus

PE3

PE4 t4 ’t3’ t6 ’

t5’

t1

t2
(b)

C’3,5 C’1,6C’5,6C’2,4

C2,5

t4t3 t6

t5

C3,5C2,4
C1,6C5,6

t1’’

t2 ’’

C’’2,5

II = 799,899K II = 799,899K

Figure 8.7: An optimal pipelined schedule for the task graph in Figure 8.5 with (a)
single-instance execution view, and (b) steady-state execution view

Example Figure 8.7 shows an optimal pipelined schedule for the task graph in Figure

8.5 on four processors. Recall that non-primed labels indicate tasks/communications

from the current instance, primed labels indicate tasks/communications from the pre-

vious instance, and double-primed labels indicate tasks/communications from the next

instance. Comparing this pipelined schedule with the non-pipelined schedule in Figure

8.6, we can notice the difference in the objective function. The time taken to execute a

single instance of the task graph increases from 1,248M cycles for non-pipelined execu-

tion to 1,600M cycles for pipelined execution (Figure 8.7a). However, in the steady state

the pipelined execution can process a task graph every 800M cycles (Figure 8.7b), which

is the II for this schedule. That is, the throughput increases significantly compared to

the non-pipelined execution.

CHAPTER 8. INTEGRATED SCRATCHPAD ALLOCATION / SCHEDULING 153

An important constraint that becomes apparent here is that any processor can be ex-

ploited in exactly one pipeline stage, because all the stages will execute in parallel (pro-

cessing different task instances) in the steady state. On the other hand, a stage can ex-

ploit more than one processor. This also implies that the maximum number of pipeline

stages we can have is equal to the number of processors, Q. Based on this observation,

we extend our previous formulation to solve the problem of pipelined scheduling. Our

strategy is to perform task mapping and scheduling onto processors as before, and then

assign processors to the pipeline stages. Communication tasks, which are scheduled on

a shared bus, will be mapped directly to pipeline stages as we will elaborate later.

Let the binary variable Wj,s = 1 if processor PEj is assigned to sth pipeline stage

(denoted Stages). Each processor is mapped to exactly one pipeline stage.

M∑
s=1

Wj,s = 1 (8.13)

Note that in the summation term we have implicitly defined the number of pipeline

stages to be Q, the maximum allowed number. This is necessary to keep the formulation

linear. The solution may contain stages which have no processor assigned to them (that

is, one of the other stages may have more than one processor assigned to it); these are

“invalid” stages which will be disregarded.

Objective Function The objective function is to minimize the Initiation Interval II ,

which is determined by the longest time needed to complete all the tasks in any of

the stages. Let StartStages and EndStages denote the starting and completion time,

respectively, of Stages. Then:

II ≥ EndStages − StartStages + 1 ∀s : 1 . . . M (8.14)

CHAPTER 8. INTEGRATED SCRATCHPAD ALLOCATION / SCHEDULING 154

Overlap among Pipeline Stages A pipeline stage must not overlap with another stage.

Analogous to constraints (8.7) through (8.9), for all pairs of stages Stages and Staget,

we have the following constraints.

B′
s,t + B′

t,s = 1 (8.15)

StartStages ≥ EndStaget −∞×B′
s,t + 1 (8.16)

StartStaget ≥ EndStages −∞×B′
t,s + 1 (8.17)

Here B′
s,t = 1 if Staget executes after Stages and 0 otherwise. Similarly B′

t,s = 1 if

Stages executes after Staget and 0 otherwise.

Length of Pipeline Stages Now we express the constraints on the length of each

pipeline stage. The length of Stages has to encompass the entire execution period of

the processor(s) assigned to it. For all pipeline stages s : 1 . . . Q and all processors

j : 1 . . . Q we require:

StartStages ≤ StartProcj +∞× (1−Wj,s) (8.18)

EndStages ≥ EndProcj −∞× (1−Wj,s) (8.19)

where StartProcj and EndProcj denote the starting and completion time of processor

PEj’s execution, which are in turn determined by the earliest start time and the latest

end time over all the tasks mapped to processor PEj . For example, the execution time

of processor PE4 in Figure 8.7a spans from the start of task t3 until the completion of

task t6. These terms are related to the task mapping constraint as follows. Recall that

the decision variable Xi,j has value 1 if ti is scheduled on PEj and 0 otherwise.

CHAPTER 8. INTEGRATED SCRATCHPAD ALLOCATION / SCHEDULING 155

For all processors j : 1 . . . Q and all tasks i : 1 . . . N :

StartProcj ≤ StartTaski +∞× (1−Xi,j) (8.20)

EndProcj ≥ EndTaski −∞× (1−Xi,j) (8.21)

Overlap among Communication Tasks Communication tasks must also be accounted

for in the pipeline stages. Unlike normal tasks, all the communications take place on

a shared bus, which will be utilized in all the stages. As illustrated in Figure 8.7b,

communications from different pipeline stages (i.e., from different instances of the task

graph) execute simultaneously within an II . Constraints 8.10 through 8.12 only ensure

that the communication tasks within a single stage (i.e., from the same instance of the

task graph) do not overlap with each other. However, we now need to ensure that the

communication tasks do not overlap across stages.

This is accomplished by first normalizing the execution intervals of the communica-

tion tasks. The normalized interval of a communication task is its execution interval

(start time to completion time) relative to the start time of the pipeline stage that it is

mapped onto. For example, the interval of communication task C2,4 in Figure 8.7(a)

is [799, 899K, 799, 900K], while its normalized interval is [0, 1000], i.e., relative to the

start of Stage2 at 799, 899K.

Let us define a binary variable Fh,i,s = 1 if Ch,i is mapped to stage Stages and 0

otherwise.
M∑

s=1

Fh,i,s = 1 (8.22)

Each communication task is then included in the interval of the stage it is mapped to.

StartStages ≤ StartCommh,i +∞× (1− Fh,i,s) (8.23)

CHAPTER 8. INTEGRATED SCRATCHPAD ALLOCATION / SCHEDULING 156

EndStages ≥ EndCommh,i −∞× (1− Fh,i,s) (8.24)

Finally, we require mutual exclusion for all pairs of distinct communication tasks Ch,i

and Cf,g:

(StartCommh,i − StartStages)

≥ (EndCommf,g − StartStaget)−∞× V ′
h,i,s,f,g,t + 1 (8.25)

(StartCommf,g − StartStaget)

≥ (EndCommh,i − StartStages)−∞× V ′
f,g,t,h,i,s + 1 (8.26)

where V ′
h,i,s,f,g,t = 0 (V ′

f,g,t,h,i,s = 0) if and only if Ch,i is scheduled in Stages, Cf,g

is scheduled in Staget, and the normalized interval of Ch,i is scheduled after (before)

the normalized interval of Cf,g. These auxiliary variables are related via the following

linearization.

V ′
h,i,s,f,g,t + V ′

f,g,t,h,i,s + Fh,i,s ≥ 2

V ′
h,i,s,f,g,t + V ′

f,g,t,h,i,s + Ff,g,t ≥ 2

V ′
h,i,s,f,g,t + V ′

f,g,t,h,i,s + Fh,i,s + Ff,g,t ≤ 3

8.5.3 Scratchpad Partitioning and Data Allocation

We now present the ILP formulation for the scratchpad partitioning and data allocation

problem. Let the total number of variables for all the tasks be R. Some variables may

be shared by several tasks. Associated with each variable v are its size in bytes, denoted

areav, and the number of times it is accessed in each task, obtained through profiling.

The latter value may vary depending on which processor the task gets mapped to (due

CHAPTER 8. INTEGRATED SCRATCHPAD ALLOCATION / SCHEDULING 157

to difference in ISA as well as compiler). As such, let freqv,i,j specify the number of

accesses of variable v by task ti when executing on processor PEj .

Each access to the variable v incurs different latencies depending on the location of v:

• 0, if v is located in the private scratchpad of PEj , or

• a constant latency of cross penalty, if v is located in scratchpad of another pro-

cessor (remote scratchpad), or

• a constant latency of penalty, if v is located in the off-chip memory

The value of cross penalty will generally be less than penalty.

Let the binary decision variable Sv,j = 1 if variable v is allocated in the scratchpad of

processor PEj and 0 otherwise. In our architectural model, a variable can be mapped to

at most one processor’s scratchpad.

M∑
j=1

Sv,j ≤ 1 (8.27)

We have a constraint on the total available scratchpad area. Let total area be the total

available scratchpad area given as input to this problem.

R∑
v=1

M∑
j=1

Sv,j × areav ≤ total area (8.28)

Objective Function The objective of task scheduling with scratchpad configuration

and data allocation is also to minimize the overall completion time EndTaskN where

tN is the last task, or in the pipelined setting, the initiation interval II , where II is

specified in Constraint 8.14.

CHAPTER 8. INTEGRATED SCRATCHPAD ALLOCATION / SCHEDULING 158

Task Execution Time The only effect of data allocation to on-chip memory is that

the execution time of each task is potentially reduced. Previously, each task takes con-

stant execution time — timei,j denotes the execution time of task ti on processor PEj

assuming all the variables are in off-chip memory. In that case, the execution time of a

task is given by Equation 8.2. Now we replace this equation with

Timei =
M∑

j=1

(
Xi,j × timei,j −

R∑
v=1

freqv,i,j × gainv,i,j

)
(8.29)

gainv,i,j = Yv,i,j × penalty + Zv,i,j × (penalty − cross penalty) (8.30)

where Yv,i,j = 1 if and only if task ti and variable v have both been mapped to processor

PEj; and Zv,i,j = 1 if and only if ti has been mapped to processor PEj and variable v

has been mapped to the scratchpad of a processor other than PEj . In other words,

Yv,i,j = 1 ⇔ ((Xi,j = 1) AND (Sv,j = 1))

Zv,i,j = 1 ⇔ ((Xi,j = 1) AND (∃k 6= j Sv,k = 1))

The above two constraints can be linearized as follows.

Yv,i,j ≤ Xi,j; Yv,i,j ≤ Sv,j

Yv,i,j ≥ Xi,j + Sv,j − 1

For the second constraint, we need to introduce an additional binary variable Uv,j = 1

iff ∃k 6= j Sv,k = 1. We first linearize the definition of Uv,j .

M∑
k=1,k 6=j

Sv,k −∞× Uv,j ≤ 0;

CHAPTER 8. INTEGRATED SCRATCHPAD ALLOCATION / SCHEDULING 159

M∑
k=1,k 6=j

Sv,k − Uv,j ≥ 0

Then we linearize the original constraint in terms of Uv,j .

Zv,i,j ≤ Xi,j; Zv,i,j ≤ Uv,j; Zv,i,j ≥ Xi,j + Uv,j − 1

Deadline The discussion so far focuses on obtaining the optimal overall runtime or

II given the available scratchpad area. We can also modify the formulation to find

the optimal scratchpad area/configuration given a deadline on the execution time or II .

Instead of the constant total area we now have the total memory area as a variable,

denoted as TotalArea, which we want to minimize. The constraint on total scratchpad

area given by Equation (8.28) is replaced with

TotalArea =
R∑

v=1

M∑
j=1

Sv,j × areav (8.31)

The deadline on execution time is imposed by adding the following constraint.

EndTaskN ≤ deadline (8.32)

where deadline is the given deadline, a constant.

8.6 Experimental Evaluation

The ILP formulation for integrated pipelined task scheduling, scratchpad partitioning

and data allocation generates the optimal solution. The goal of our ILP formulation

is to explore the interaction among the different stages of the design space exploration

process. This helps us to identify the performance limit of MPSoC architectures for

embedded applications.

CHAPTER 8. INTEGRATED SCRATCHPAD ALLOCATION / SCHEDULING 160

As explained in Section 8.4, we attempt three different techniques for optimal data allo-

cation to scratchpad memory in increasing order of flexibility and complexity.

EQ: Task scheduling ignores the effect of data allocation to scratchpad, and the on-chip

scratchpad budget is equally partitioned among the different processors. This is

simply a knapsack problem, for which optimal solutions (e.g., dynamic program-

ming) are known.

PF: Task scheduling ignores the effect of data allocation to scratchpad. However,

scratchpad partitioning and data allocation are performed simultaneously through

a simplified ILP formulation derived from Section 8.5. As task scheduling is per-

formed a-priori, the assignments to the ILP variables X , B, V , W , F , and V ′ are

known. In other words, the design space is more restricted.

CF: Task scheduling, scratchpad partitioning and data allocation are performed simul-

taneously through the ILP formulation described in Section 8.5.

Setup We use five applications in our experiments, four of which are taken from em-

bedded benchmark suites MiBench [44] and Mediabench [71]. cjpeg, mpeg2enc

and osdemo from Mediabench perform JPEG encoding, MPEG-2 encoding and 3D

graphics rendering (part of Mesa 3D graphics library), respectively. lame is an MP3

encoder from the MiBench consumer suite. enhance, the fifth benchmark, is a slightly

modified version of the image enhancement application from [122].

We profile the applications to identify the key computation blocks. Each application is

then divided into a number of tasks where each task corresponds to a computation block.

The control/data flow information are used to identify the dependencies among the tasks

and estimate the communication costs. This process generates the task graph for each

application.

CHAPTER 8. INTEGRATED SCRATCHPAD ALLOCATION / SCHEDULING 161

We use the SimpleScalar cycle-accurate architectural simulation platform [12] for our

experiments. An instrumented version of the SimpleScalar profiler extracts the vari-

able sizes and access frequencies as well as the execution time (in processor cycles) of

each task individually. As mentioned earlier, the profiler assumes that off-chip access

latencies are constant, and does not account for bus conflicts.

We consider both scalar and array variables for allocation to scratchpad memories. All

the shared variables (i.e., variables that are written by one task and read by another)

contribute towards the communication cost in the task graph. These shared variables are

not considered for allocation into the scratchpad memories.

Table 8.1 shows the characteristics of the benchmarks. The profile is shown only for the

non-shared (i.e., non-communicating) variables. In this work, we choose data variables

for allocation, but our strategy can be applied to blocks of program code as well.

Table 8.1: Benchmark characteristics
Benchmark # Tasks # Variables Variable Size (bytes)

Total Average

enhance 6 45 7,355,920 163,464
lame 4 124 301,672 2,432
mpeg2enc 6 30 12,744 424
osdemo 6 45 80,000 1,777
cjpeg 4 20 702,296 35,114

We use a 2-processor configuration for the experiments. Total on-chip scratchpad mem-

ory budget varies from 256 bytes to 4MB for different benchmarks. We give smaller

scratchpad budgets for applications with smaller total memory requirement (e.g., mpeg2enc)

and larger scratchpad budget for applications with large average variable size (e.g.,

enhance with 163KB). We assume 100-cycle latency for off-chip memory access and

4-cycle latency for accessing a remote scratchpad.

For the ILP-based techniques, our method constructs the ILP formulation for (separate

or integrated) task scheduling and data allocation as described in Section 8.5 and inputs

CHAPTER 8. INTEGRATED SCRATCHPAD ALLOCATION / SCHEDULING 162

this to CPLEX [29], a commercial ILP solver. Upon solving the ILP problem, CPLEX

returns the objective value as well as the valuation of the decision variables that leads to

the objective. The experiments are conducted on a 3.0 GHz Pentium 4 CPU with 2GB

of memory.

Results and Discussion Figure 8.8 shows the initiation interval (II) obtained by ap-

plying EQ, PF, and CF techniques on the five benchmarks with varying scratchpad

sizes. First let us compare EQ with PF. The main advantage of PF is that it allows

flexible partitioning of scratchpad space among the processors. This flexibility can po-

tentially improve the performance dramatically over EQ. For example, PF results in

up to 35% performance improvement for mpeg2enc, 53% improvement for osdemo,

and 60% improvement for cjpeg over EQ. lame enjoys a modest improvement of

up to 7.5% due to the flexible scratchpad allocation. The only exception is enhance,

which achieves very little improvement due to PF. This is because enhance has large

variables that are harder to allocate. This is also clear from the fact that the II hardly

improves with increasing scratchpad sizes.

It is important to note that flexibility is most important when resources are not too lim-

ited or too generous. With a restricted scratchpad budget, there is not much room for

improvement irrespective of the scratchpad partitioning strategy. Similarly, when the

scratchpad budget is bigger than the one necessary to accommodate all the frequently

accessed variables, the strategy employed for scratchpad partitioning becomes immate-

rial. With a larger scratchpad budget, PF allocates more variables than EQ; but these

variables are accessed less frequently. The PF strategy shows maximum improvement

when the on-chip scratchpad budget is neither too big nor too small. In those cases, only

the most important variables should be accommodated and the flexibility guarantees that

the most important variables can indeed be allocated.

CHAPTER 8. INTEGRATED SCRATCHPAD ALLOCATION / SCHEDULING 163

1.38E+09

1.42E+09

1.46E+09

1.50E+09

1.54E+09

1.58E+09

1.62E+09

1.66E+09

128K 256K 512K 1M 2M 4M

SPM size (bytes)

In
it

ia
ti

o
n

 I
n

te
rv

a
l

II
 (

c
y

c
le

s
)

EQ

PF

CF

(a) enhance

0.00E+00

1.50E+06

3.00E+06

4.50E+06

6.00E+06

7.50E+06

9.00E+06

4K 8K 16K 32K 64K 128K

SPM size (bytes)

In
it

ia
ti

o
n

 I
n

te
rv

a
l

II
 (

c
y

c
le

s
)

EQ

PF

CF

(b) lame

4.00E+07

5.00E+07

6.00E+07

7.00E+07

8.00E+07

9.00E+07

1.00E+08

1.10E+08

1.20E+08

256 512 1K 2K 4K 8K

SPM size (bytes)

In
it

ia
ti

o
n

 I
n

te
rv

a
l

II
 (

c
y

c
le

s
)

EQ

PF

CF

(c) mpeg2enc

1.00E+07

1.50E+07

2.00E+07

2.50E+07

3.00E+07

3.50E+07

4.00E+07

4.50E+07

5.00E+07

1K 2K 4K 8K 16K 32K

SPM size (bytes)

In
it

ia
ti

o
n

 I
n

te
rv

a
l

II
 (

c
y

c
le

s
)

EQ

PF

CF

(d) osdemo

1.00E+06

2.20E+06

3.40E+06

4.60E+06

5.80E+06

7.00E+06

8.20E+06

9.40E+06

1.06E+07

8K 16K 32K 64K 128K 256K

SPM size (bytes)

In
it

ia
ti

o
n

 I
n

te
rv

a
l

II
 (

c
y

c
le

s
)

EQ

PF

CF

(e) cjpeg

Figure 8.8: Initiation interval (II) for the different benchmarks with EQ, PF, and CF
strategies given varying on-chip scratchpad budgets on a 2-processor configuration

CHAPTER 8. INTEGRATED SCRATCHPAD ALLOCATION / SCHEDULING 164

We now compare PF with CF. The results indicate that the improvements depends heav-

ily on the characteristics of the applications. For example, lame achieves as high as

80% improvement over PF by considering data allocation during scheduling. This is

highlighted in Figure 8.9, which shows the performance improvement of PF and CF

over EQ. Similarly, cjpeg enjoys up to 25% additional performance improvement.

osdemo shows 2–5% improvement. enhance and mpeg2enc, on the other hand,

show hardly any improvement. As previously explained, enhance has larger variables

that are difficult to allocate, while mpeg2enc is a compute-intensive application with

significant amount of communication among the tasks. The results shown in Table 8.1

imply that efficient use of scratchpad space is not so important in these cases because

non-shared variable accesses do not contribute significantly towards the execution time.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

4K 8K 16K 32K 64K 128K

SPM size (bytes)

Im
p

ro
v

e
m

e
n

t
o

v
e

r
E

Q
 (

%
)

PF

CF

Figure 8.9: Improvement in initiation interval (II) due to PF and CF over EQ for bench-
mark lame

Finally, Table 8.2 shows the runtime for our scheduling and allocation techniques. Schedul-

ing denotes the task scheduling time irrespective of scratchpad consideration. This is

required as input to EQ and PF. The data allocation time for EQ as well as scratchpad

partitioning and data allocation time for PF assuming a given task schedule generated

a-priori are shown in the next two columns. Finally, the column CF gives the runtime for

integrated task scheduling, scratchpad partitioning and data allocation. We show both

CHAPTER 8. INTEGRATED SCRATCHPAD ALLOCATION / SCHEDULING 165

the best-case runtime and worst-case runtime for each benchmark.

Table 8.2: Best-case and worst-case algorithm runtimes for the benchmarks
Benchmark Best Runtime (sec) Worst Runtime (sec)

Scheduling EQ PF CF Scheduling EQ PF CF

enhance 12.9 0.01 0.01 23.60 13.07 0.32 0.06 20+ mins
lame 0.20 0.03 0.04 15.26 0.22 0.81 0.52 20+ mins
mpeg2enc 1.56 0.01 0.01 3.75 6.69 0.02 0.07 69.98
osdemo 2.81 0.02 0.01 105.16 2.86 0.04 0.06 1467.33
cjpeg 0.33 0.01 0.01 0.55 0.37 0.04 0.05 3.6

We observe that the worst-case occurs when the scratchpad budget is neither too big nor

too small. This is expected as these cases are the most difficult ones to schedule. Note

that for enhance with 4MB scratchpad budget and lame with 16KB, 128KB scratch-

pad budget, the ILP solver did not terminate within 20 minutes (shown as 20+ min in

the table). For these cases, we use the intermediate solution returned by the ILP solver.

Interestingly, even the intermediate solutions obtained for CF strategy outperforms the

optimal result obtained using PF strategy (Figure 8.8). This clearly indicates that it is

important to consider memory optimization during task scheduling.

8.7 Chapter Summary

We have explored optimization of scratchpad memory in the context of embedded chip

multiprocessors. We propose an ILP formulation to capture the interaction between task

scheduling and memory optimization. Our evaluation shows that flexible partitioning

of the scratchpad budget among the processors can achieve up to 60% performance

improvement compared to equal partitioning. Further, integrating memory optimization

with task scheduling can improve performance by up to 80%.

Chapter 9

Conclusion

9.1 Thesis Contributions

Real-time systems require that applications meet their timing specifications first and

foremost. The main objective of optimization efforts in such systems is thus the system

performance in the worst case rather than in the average case. The timing constraints

impose inevitable limits to existing methods that are mainly targeted at average-case

performance optimizations, and introduce new concerns that have to be accounted for in

order for the optimization to be truly effective.

This thesis considers the problem of enhancing the worst-case performance of real-

time applications through memory optimizations, which include caches and scratchpad

memories. We propose techniques that preserve timing predictability in the interest

of meeting real-time constraints, while optimizing the system performance in terms of

the worst-case response time of the applications. We also consider interaction between

memory optimization techniques and multiprocessing aspects, including task interaction

and the impact of scheduling decisions.

166

CHAPTER 9. CONCLUSION 167

The concrete contributions of this thesis are:

• scratchpad allocation techniques specifically targeted at improving the worst-case

performance of the application

• scratchpad allocation techniques that improve the worst-case response time in the

presence of process interaction and preemptions

• general guidelines and detailed performance evaluation of shared cache manage-

ment schemes that preserve timing predictability

• integrated scratchpad allocation and task scheduling for multiprocessors

• a timing analysis method that incorporates the effect of scratchpad allocation with

enhanced accuracy

9.2 Future Directions

The embedded computing world is undoubtedly moving in the direction of multipro-

cessing, which opens a whole new set of dimensions to explore in terms of performance

enhancement. The interactions among these dimensions often produce non-trivial ef-

fects on the end result of optimization efforts. Most systems rely on simulation for

an estimate of their deliverance. This is certainly not strict enough for hard real-time

requirements.

Our thesis has looked at pairwise combinations of several of these dimensions in analy-

sis, namely scratchpad memory management, process interactions, and task scheduling.

While a complete analysis that takes into account all available multiprocessing aspects

is expectedly too complex to be feasible, it is still instructive to first identify subsets

CHAPTER 9. CONCLUSION 168

that relate closely to the characteristics of the application at hand, then attempt an inte-

grated approach that builds on known time-predictable techniques for the components.

We envision that researches along this direction will prove invaluable to the future of

embedded real-time software given the growing demands for enhanced user experience.

Bibliography

[1] T. A. AlEnawy and H. Aydin. Energy-aware task allocation for rate monotonic scheduling.

In Proc. 11th IEEE Real-Time and Embedded Technology and Applications Symposium

(RTAS), 2005.

[2] M. Alt, C. Ferdinand, F. Martin, and R. Wilhelm. Cache behavior prediction by abstract

interpretation. Lecture Notes in Computer Science, 1145:52–66, 1996.

[3] P. Altenbernd. On the false path problem in hard real-time programs. In Proc. Euromicro

Conference on Real-Time Systems (ECRTS), 1996.

[4] R. Alur and M. Yannakakis. Model checking message sequence charts. In Proc. Interna-

tional Conference on Concurrency Theory (CONCUR), 1999.

[5] Analog Devices, Inc. Blackfin Processor. Available on: http://www.analog.com/

processors/processors/blackfin/, 2006.

[6] Analog Devices, Inc. TigerSHARC Processor. Available on: http://www.analog.

com/processors/processors/tigersharc/, 2006.

[7] J. H. Anderson, J. M. Calandrino, and U. C. Devi. Real-time scheduling on multicore

platforms. In Proc. 12th IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS), 2006.

[8] F. Angiolini, F. Menichelli, A. Ferrero, L. Benini, and M. Olivieri. A post-compiler

approach to scratchpad mapping of code. In Proc. International Conference on Compilers,

Architecture, and Synthesis for Embedded Systems (CASES), 2004.

169

BIBLIOGRAPHY 170

[9] ARM Ltd. White Paper: Architecture and Implementation of the ARM Cortex-A8 Pro-

cessor. Available on: http://www.arm.com/pdfs/TigerWhitepaperFinal.

pdf, 2005. Release October 2005.

[10] ARM Ltd. ARM Processor Cores Documentation. Available on: http://www.arm.

com/documentation/ARMProcessor Cores/index.html, 2006.

[11] A. Arnaud and I. Puaut. Dynamic instruction cache locking in hard real-time systems. In

Proc. 14th International Conference on Real-Time and Network Systems (RNTS), 2006.

[12] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An infrastructure for computer system

modeling. IEEE Computer, 35(2), 2002.

[13] O. Avissar, R. Barua, and D. Stewart. Heterogeneous memory management for embedded

systems. In Proc. International Conference on Compilers, Architecture, and Synthesis for

Embedded Systems (CASES), 2001.

[14] O. Avissar, R. Barua, and D. Stewart. An optimal memory allocation scheme for scratch-

pad based embedded systems. ACM Transactions on Embedded Computing Systems,

1(1):6–26, 2002.

[15] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel. Comparison of

cache- and scratch-pad-based memory systems with respect to performance, area and

energy consumption. Technical Report 762, University of Dortmund, September 2001.

[16] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel. Scratchpad mem-

ory: design alternative for cache on-chip memory in embedded systems. In Proc. Inter-

national Conference on Hardware/Software Codesign (CODES), 2002.

[17] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportionate progress:

a notion of fairness in resource allocation. In Proc. 25th Annual ACM Symposium on

Theory of Computing (STOC), 1993.

[18] L. Benini, D. Bertozzi, A. Guerri, and M. Milano. Allocation and scheduling for MPSoCs

via decomposition and no-good generation. In Proc. International Joint Conferences on

Artificial Intelligence (IJCAI), 2005.

[19] J. Brown. Application-customized CPU design: The Microsoft Xbox 360 CPU

story. Available on: http://www-128.ibm.com/developerworks/power/

BIBLIOGRAPHY 171

library/pa-fpfxbox/?ca=dgr-lnxw07XBoxDesign, 2005. Release Dec 6,

2005.

[20] A. Burns. Scheduling hard real-time systems: a review. Software Engineering Journal,

6(3), 1991.

[21] F. Burns, A. Koelmans, and A. Yakovlev. Wcet analysis of superscalar processors using

simulation with coloured petri nets. Real-Time Systems, 18(2-3):275–288, 2000.

[22] A. M. Campoy, I. Puaut, A. P. Ivars, and J. V. B. Mataix. Cache contents selection for

statically-locked instruction caches: an algorithm comparison. In Proc. 17th Euromicro

Conference on Real-Time Systems (ECRTS), 2005.

[23] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and S. Baruah. A Cate-

gorization of Real-time Multiprocessor Scheduling Problems and Algorithms. In J. Y.-T.

Leung, editor, Handbook of Scheduling: Algorithms, Models, and Performance Analysis.

Chapman Hall/CRC Press, 2004.

[24] J. Chang and G. S. Sohi. Cooperative caching for chip multiprocessors. In Proc. Interna-

tional Symposium on Computer Architecture (ISCA), 2006.

[25] K. S. Chatha and R. Vemuri. Hardware-software partitioning and pipelined scheduling of

transformative applications. IEEE Transactions on VLSI, 10(3), 2002.

[26] S. Chatterjee, E. Parker, P. J. Hanlon, and A. R. Lebeck. Exact analysis of the cache

behavior of nested loops. In Proc. ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI), 2001.

[27] D. T. Chiou. Extending the reach of microprocessors: column and curious caching. PhD

thesis, MIT, 1999.

[28] A. Colin and I. Puaut. Worst case execution time analysis for a processor with branch

prediction. Real-Time Systems, 18(2–3):249–274, May 2000.

[29] CPLEX. The ILOG CPLEX Optimizer v7.5, 2002. Commercial software,

http://www.ilog.com.

[30] Ctrl Computer Systems. Network bookcase, 2000. http://www.bookcase.com/

library/software/msdos.devel.lang.c.html.

BIBLIOGRAPHY 172

[31] C. Cullmann and F. Martin. Data-flow based detection of loop bounds. In Proc. 7th

International Workshop on Worst-Case Execution Time (WCET) Analysis, 2007.

[32] J.-F. Deverge and I. Puaut. WCET-directed dynamic scratchpad memory allocation of

data. In Proc. 19th Euromicro Conference on Real-Time Systems (ECRTS), 2007.

[33] A. Dominguez, S. Udayakumaran, and R. Barua. Heap data allocation to scratch-pad

memory in embedded systems. Journal of Embedded Computing, 2005.

[34] B. Egger, C. Kim, C. Jang, Y. Nam, J. Lee, and S.L. Min. A dynamic code placement

technique for scratchpad memory using postpass optimization. In Proc. International

Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES),

2006.

[35] B. Egger, J. Lee, and H. Shin. Dynamic scratchpad memory management for code in

portable systems with an MMU. ACM Transactions on Embedded Computing Systems,

7(2), 2008.

[36] A. Ermedahl and J. Engblom. Modeling complex flows for worst-case execution time

analysis. In Proc. IEEE Real-Time Systems Symposium (RTSS), 2000.

[37] A. Ermedahl and J. Gustafsson. Deriving annotations for tight calculation of execution

time. In Proc. 3rd International Euro-Par Conference on Parallel Processing (Euro-Par),

1997.

[38] A. Ermedahl, C. Sandberg, J. Gustafsson, S. Bygde, and B. Lisper. Loop bound analysis

based on a combination of program slicing, abstract interpretation, and invariant analysis.

In Proc. 7th International Workshop on Worst-Case Execution Time (WCET) Analysis,

2007.

[39] European Space Agency. DEBIE – First standard space debris monitoring instrument,

2008. http://gate.etamax.de/edid/publicaccess/debie1.php.

[40] H. Falk and M. Verma. Combined data partitioning and loop nest splitting for energy con-

sumption minimization. In Proc. 8th International Workshop on Software and Compilers

for Embedded Systems (SCOPES), 2004.

BIBLIOGRAPHY 173

[41] Freescale Semiconductor, Inc. MMC2114/MMC2113 M-CORE Microcontroller Product

Brief. Available on: http://www.freescale.com/files/32bit/doc/prod

brief/MMC2114PB.pdf, 2008.

[42] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations: a compiler framework for

analyzing and tuning memory behavior. ACM Transactions on Programming Languages

and Systems, 21(4):703–746, 1999.

[43] J. Gustafsson and A. Ermedahl. Merging techniques for faster derivation of wcet flow

information using abstract execution. In Proc. 8th International Workshop on Worst-Case

Execution Time (WCET) Analysis, 2008.

[44] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown.

MiBench: A free, commercially representative embedded benchmark suite. In Proc. IEEE

Annual Workshop on Workload Characterization (WWC), 2001.

[45] D. Harel and P. S. Thiagarajan. Message sequence charts. UML for real: Design of

embedded real-time systems, pages 77–105, 2003.

[46] C. Healy, M. Sjödin, V. Rustagi, D. Whalley, and R. V. Engelen. Supporting timing

analysis by automatic bounding of loop iterations. Real-Time Systems, 18(2-3):129–156,

2000.

[47] C. A. Healy, R. D. Arnold, F. Mueller, D. B. Whalley, and M. G. Harmon. Bounding

pipeline and instruction cache performance. IEEE Transactions on Computers, 48(1):53–

70, Jan 1999.

[48] C. A. Healy and D. B. Whalley. Automatic detection and exploitation of branch con-

straints for timing analysis. IEEE Transactions on Software Engineering, 28(8), 2002.

[49] J. L. Hennessy and D. A. Patterson. Computer Organization and Design: The Hard-

ware/Software Interface, 2nd Ed. Morgan Kaufmann Publishers Inc., 1998.

[50] T. A. Henzinger, R. Jhala, R. Majumder, and G. Sutre. Lazy abstraction. In Proc. Sympo-

sium on Principles of Programming Languages (POPL), 2002.

[51] H. P. Hofstee. Power efficient processor architecture and the Cell processor. In Proc.

International Symposium on High-Performance Computer Architecture (HPCA), 2005.

BIBLIOGRAPHY 174

[52] IBM Systems and Technology Group. Cell Broadband Engine Architecture Ver-

sion 1.0. Available on: http://www-306.ibm.com/chips/techlib/

techlib.nsf/techdocs/1AEEE1270EA2776387257060006E61BA/

\$file/CBEA 01 pub.pdf, 2005. Release Aug 8, 2005.

[53] IBM Systems and Technology Group. PowerPC: IBM Microelectronics. Avail-

able on: http://www-306.ibm.com/chips/techlib/techlib.nsf/

productfamilies/PowerPC, 2006.

[54] Intel Corporation. Intel Multi-core. Available on: http://www.intel.com/

multi-core/, 2006.

[55] I. Issenin, E. Brockmeyer, B. Durinck, and N. Dutt. Multiprocessor system-on-chip data

reuse analysis for exploring customized memory hierarchies. In Proc. ACM Design Au-

tomation Conference (DAC), 2006.

[56] ITU-T. 120: Message sequence chart (MSC). ITU-T, Geneva, 1996.

[57] J. Robertson and K. Gala. Instruction and Data Cache Locking on the e300 Processor

Core. Freescale Semiconductor, Inc., 2006.

[58] A. Janapsatya, A. Ignjatovic, and S. Parameswaran. A novel instruction scratchpad mem-

ory optimization method based on concomitance metric. In Proc. Conference on Asia

South Pacific Design Automation (ASP-DAC), 2006.

[59] M. Kandemir. Data locality enhancement for CMPs. In Proc. International Conference

on Computer Aided Design (ICCAD), 2007.

[60] M. Kandemir and N. Dutt. Memory systems and compiler support for MPSoC archi-

tectures. In A. Jerraya and W. Wolf, editors, Multiprocessor Systems-on-Chips. Morgan

Kaufmann, 2005.

[61] M. Kandemir, I. Kadayif, and U. Sezer. Exploiting scratch-pad memory using presburger

formulas. In Proc. 14th International Symposium on Systems Synthesis (ISSS), 2001.

[62] M. Kandemir, O. Ozturk, and M. Karakoy. Dynamic on-chip memory management for

chip multiprocessors. In Proc. International Conference on Compilers, Architecture, and

Synthesis for Embedded Systems (CASES), 2004.

BIBLIOGRAPHY 175

[63] M. Kandemir, J. Ramanujam, and A. Choudhary. Exploiting shared scratch pad memory

space in embedded multiprocessor systems. In Proc. ACM Design Automation Conference

(DAC), 2002.

[64] M. Kandemir, J. Ramanujam, M. J. Irwin, N. Vijaykrishnan, I. Kadayif, and A. Parikh. A

compiler based approach for dynamically managing scratch-pad memories in embedded

systems. IEEE Transactions on CAD, 23(2), 2004.

[65] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and partitioning in a chip mul-

tiprocessor architecture. In Proc. 13th International Conference on Parallel Architecture

and Compilation Techniques (PACT), 2004.

[66] D. B. Kirk. SMART (Strategic Memory Allocation for Real-Time) cache design. In Proc.

IEEE Real-Time Systems Symposium (RTSS), 1989.

[67] S.-R. Kuang, C.-Y. Chen, and R.-Z. Liao. Partitioning and pipelined scheduling of em-

bedded system using integer linear programming. In Proc. International Conference on

Parallel and Distributed Systems (ICPADS), 2005.

[68] Y.-K. Kwok and I. Ahmad. Benchmarking and comparison of the task graph scheduling

algorithms. Journal of Parallel and Distributed Computing, 59(3), 1999.

[69] M. S. Lam and M. E. Wolf. A data locality optimizing algorithm. SIGPLAN Notices,

39(4):442–459, 2004.

[70] S. Lauzac, R. Melhem, and D. Mosse. Comparison of global and partitioning schemes

for scheduling rate monotonic tasks on a multiprocessor. In Proc. Euromicro Workshop

on Real-Time Systems, 1998.

[71] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. MediaBench: a tool for evaluating

and synthesizing multimedia and communicatons systems. In Proc. Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), 1997.

[72] C.-G. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong, C. Y. Park, M. Lee, and C. S.

Kim. Analysis of cache-related preemption delay in fixed-priority preemptive scheduling.

IEEE Transactions on Computers, 47(6):700–713, 1998.

BIBLIOGRAPHY 176

[73] J. W. Lee and K. Asanovic. METERG: Measurement-based end-to-end performance esti-

mation technique in QoS-capable multiprocessors. In Proc. IEEE Real-Time and Embed-

ded Technology and Applications Symposium (RTAS), 2006.

[74] R. L. Lee, P. C. Yew, and D. H. Lawrie. Multiprocessor cache design considerations. In

Proc. International Symposium on Computer Architecture (ISCA), 1987.

[75] S. Lee, J. Lee, C. Y. Park, and S. L. Min. A flexible tradeoff between code size and WCET

using a dual instruction set processor. In Proc. International Workshop on Software and

Compilers for Embedded Systems (SCOPES), 2004.

[76] X. Li, Y. Liang, T. Mitra, and A. Roychoudhury. Chronos: A timing analyzer for embed-

ded software. Science of Computer Programming, 69(1-3):56–67, 2007.

[77] X. Li, T. Mitra, and A. Roychoudhury. Accurate timing analysis by modeling caches,

speculation and their interaction. In Proc. 40th ACM Design Automation Conference

(DAC), pages 466–471, 2003.

[78] Y. Li and W. Wolf. A task-level hierarchical memory model for system synthesis of

multiprocessors. In Proc. ACM Design Automation Conference (DAC), 1997.

[79] Y-T. S. Li and S. Malik. Performance analysis of embedded software using implicit path

enumeration. In Proc. ACM Design Automation Conference (DAC), 1995.

[80] Y.-T. S. Li, S. Malik, and A. Wolfe. Cache modeling for real-time software: beyond direct

mapped instruction caches. In Proc. 17th IEEE Real-Time Systems Symposium (RTSS),

1996.

[81] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard

real-time environment. Journal of the ACM, 20(1):46–61, January 1973.

[82] J. M. Lopez, M. Garcia, J. L. Diaz, and D. F. Garcia. Worst-case utilization bound for

EDF scheduling on real-time multiprocessor systems. Real-Time Systems, 2000.

[83] J. M. Lopez, M. Garcia, J. L. Diaz, and D. F. Garcia. Utilization bounds for multiprocessor

rate-monotonic scheduling. Real-Time Systems, 24(1), 2003.

[84] T. Lundqvist and P. Stenstrom. An integrated path and timing analysis method based on

cycle-level symbolic execution. Real-Time Systems, 17(2-3), 1999.

BIBLIOGRAPHY 177

[85] T. Lundqvist and P. Stenstrom. Timing anomalies in dynamically scheduled microproces-

sors. In Proc. 20th IEEE Real-Time Systems Symposium (RTSS), 1999.

[86] P. Marwedel, L. Wehmeyer, M. Verma, S. Steinke, and U. Helmig. Fast, predictable

and low energy memory references through architecture-aware compilation. In Proc.

Conference on Asia South Pacific Design Automation (ASP-DAC), 2004.

[87] T. Mitra and A. Roychoudhury. Worst case execution time and energy analysis. In

Y. Srikant and P. Shankar, editors, The Compiler Design Handbook: Optimizations and

Machine Code Generation, 2nd Ed., chapter 1. CRC Press, 2007.

[88] A. M. Molnos, M. J. M. Heijligers, S. D. Cotofana, and J. T. J. van Eijndhoven. Cache

partitioning options for compositional multimedia applications. In Proc. 15th Annual

Workshop on Circuits, Systems and Signal Processing (ProRISC), 2004.

[89] F. Mueller. Compiler support for software-based cache partitioning. In Proc. ACM Con-

ference on Languages, Compilers, and Tools for Embedded Systems (LCTES), 1995.

[90] F. Mueller. Generalizing timing predictions to set-associative caches. In Proc. 9th Eu-

romicro Workshop on Real-Time Systems, pages 64–71, 1997.

[91] F. Mueller. Timing analysis for instruction caches. Real-Time Systems, 18(2-3), 2000.

[92] B. A. Nayfeh and K. Olukotun. Exploring the design space for a shared-cache multipro-

cessor. In Proc. International Symposium on Computer Architecture (ISCA), 1994.

[93] H. S. Negi, T. Mitra, and A. Roychoudhury. Accurate estimation of cache-related preemp-

tion delay. In Proc. 1st IEEE/ACM/IFIP International Conference on Hardware/Software

Codesign and System Synthesis (CODES+ISSS), 2003.

[94] F. Nemer, H. Cass, P. Sainrat, J.-P. Bahsoun, and M. De Michiel. PapaBench: A free

real-time benchmark. In Proc. International Workshop on Worst-Case Execution Time

(WCET) Analysis, 2006.

[95] N. Nguyen, A. Dominguez, and R. Barua. Memory allocation for embedded systems

with a compile-time-unknown scratch-pad size. In Proc. International Conference on

Compilers, Architecture, and Synthesis for Embedded Systems (CASES), 2005.

[96] R. Niemann and P. Marwedel. Hardware/software partitioning using integer program-

ming. In Proc. Conference on Design, Automation and Test in Europe (DATE), 1996.

BIBLIOGRAPHY 178

[97] O. Ozturk, G. Chen, M. Kandemir, and M. Karakoy. An integer linear programming

based approach to simultaneous memory space partitioning and data allocation for chip

multiprocessors. In Proc. IEEE Computer Society Annual Symposium on Emerging VLSI

Technologies and Architectures (ISVLSI), 2006.

[98] O. Ozturk, M. Kandemir, G. Chen, M. J. Irwin, and M. Karakoy. Customized on-chip

memories for embedded chip multiprocessors. In Proc. Conference on Asia South Pacific

Design Automation (ASP-DAC), 2005.

[99] O. Ozturk, M. Kandemir, and I. Kolcu. Shared scratch-pad memory space management.

In Proc. 7th International Symposium on Quality Electronic Design (ISQED), 2006.

[100] P. R. Panda, N. D. Dutt, and A. Nicolau. Memory Issues in Embedded Systems-On-Chip:

Optimizations and Exploration. Kluwer Academic Publishers, 1999.

[101] P. R. Panda, N. D. Dutt, and A. Nicolau. On-chip vs. off-chip memory: the data par-

titioning problem in embedded processor-based systems. ACM Transactions on Design

Automation of Electronic Systems, 5(3):682–704, 2000.

[102] C. Y. Park. Predicting program execution times by analyzing static and dynamic program

paths. Real-Time Systems, 5(1), 1993.

[103] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes in

C. Cambridge University Press, 2002.

[104] I. Puaut. WCET-centric software-controlled instruction caches for hard real-time systems.

In Proc. 18th Euromicro Conference on Real-Time Systems (ECRTS), 2006.

[105] I. Puaut, A. Arnaud, and D. Decotigny. Performance analysis of static cache locking in

multitasking hard real-time systems. Technical Report 0, IRISA, October 2003.

[106] I. Puaut and D. Decotigny. Low-complexity algorithms for static cache locking in mul-

titasking hard real-time systems. In Proc. 23rd IEEE Real-Time Systems Symposium

(RTSS), 2002.

[107] P. Puschner and A. Burns. A review of worst-case execution-time analysis. Journal of

Real-Time Systems, 18(2/3):115–128, May 2000.

[108] P. Puschner and A. Schedl. Computing maximum task execution times with linear pro-

gramming techniques. Technical report, Technical University of Vienna, 1995.

BIBLIOGRAPHY 179

[109] R. A. Ravindran, P. D. Nagarkar, G. S. Dasika, E. D. Marsman, R. M. Senger, S. A.

Mahlke, and R. B. Brown. Compiler managed dynamic instruction placement in a low-

power code cache. In Proc. International Symposium on Code Generation and Optimiza-

tion (CGO), 2005.

[110] R. Reddy and P. Petrov. Eliminating inter-process cache interference through cache re-

configurability for real-time and low-power embedded multi-tasking systems. In Proc.

International Conference on Compilers, Architecture, and Synthesis for Embedded Sys-

tems (CASES), 2007.

[111] J. E. Sasinowski and J. K. Strosnider. A dynamic programming algorithm for cache

memory partitioning for real-time systems. IEEE Transactions on Computers, 42(8),

1993.

[112] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and J. B. Joyner. POWER5 Sys-

tem Microarchitecture. Available on: http://researchweb.watson.ibm.com/

journal/rd/494/sinharoy.html, 2005. Received March 2, 2005; accepted for

publication June 27, 2005; Published online September 7, 2005.

[113] J. Sjodin and C. von Platen. Storage allocation for embedded processors. In Proc. In-

ternational Conference on Compilers, Architecture, and Synthesis for Embedded Systems

(CASES), 2001.

[114] M. S. Squillante and E. D. Lazowska. Using processor-cache affinity information in

shared-memory multiprocessor scheduling. IEEE Transactions on Parallel and Dis-

tributed Systems, 4(2), 1993.

[115] A. Srinivasan, P. Holman, J. H. Anderson, and S. Baruah. The case for fair multipro-

cessor scheduling. In Proc. 17th International Symposium on Parallel and Distributed

Processing (IPDPS), 2003.

[116] F. Stappert, A. Ermedahl, and J. Engblom. Efficient longest execution path search for

programs with compelx flows and pipeline effects. In Proc. International Conference on

Compilers, Architecture, and Synthesis for Embedded Systems (CASES), 2001.

[117] J. Staschulat and R. Ernst. Multiple process execution in cache related preemption delay

analysis. In Proc. International Conference on Embedded Software (EMSOFT), 2004.

BIBLIOGRAPHY 180

[118] S. Steinke, N. Grunwald, L. Wehmeyer, R. Banakar, M. Balakrishnan, and P. Marwedel.

Reducing energy consumption by dynamic copying of instructions onto onchip memory.

In Proc. 15th International Symposium on System Synthesis (ISSS), 2002.

[119] S. Steinke, L. Wehmeyer, B. Lee, and P. Marwedel. Assigning program and data objects

to scratchpad for energy reduction. In Proc. Design, Automation and Test in Europe

Conference and Exposition (DATE), 2002.

[120] G. E. Suh, S. Devadas, and L. Rudolph. Dynamic cache partitioning for simultaneous

multithreading systems. In Proc. 13th IASTED International Conference on Parallel and

Distributed Computing System (PDCS), 2001.

[121] V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen. WCET centric data allocation

to scratchpad memory. In Proc. 26th IEEE International Real-Time Systems Symposium

(RTSS), 2005.

[122] F. Sun, N. K. Jha, S. Ravi, and A. Raghunathan. Synthesis of application-specific hetero-

geneous multiprocessor architectures using extensible processors. In Proc. International

Conference on VLSI Design (VLSI), 2005.

[123] Sun Microsystems, Inc. UltraSPARC T1 Overview. Available on: http://www.sun.

com/processors/UltraSPARC-T1/index.xml, 2006.

[124] S. Swanson, A. Schwerin, M. Mercaldi, A. Petersen, A. Putnam, K. Michelson, M. Oskin,

and S. J. Eggers. The wavescalar architecture. ACM Transactions on Computer Systems,

25(2):4, 2007.

[125] O. Temam, C. Fricker, and W. Jalby. Cache interference phenomena. In Proc. ACM

Conference on Measurement and Modeling of Computer Systems (SIGMETRICS), 1994.

[126] Texas Instruments, Inc. TMS470R1x System Module Reference Guide. Available on:

http://focus.ti.com/lit/ug/spnu189h/spnu189h.pdf, 2004. Release

November 2004.

[127] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and precise WCET prediction by sepa-

rated cache and path analyses. Real-Time Systems, 18(2/3), 2000.

[128] S. Thesing. Safe and Precise WCET Determination by Abstract Interpretation of Pipeline

Models. PhD thesis, Saarland University, 2004.

BIBLIOGRAPHY 181

[129] H. Tomiyama and N. D. Dutt. Program path analysis to bound cache-related preemp-

tion delay in preemptive real-time systems. In Proc. International Conference on Hard-

ware/Software Codesign (CODES), 2000.

[130] S. Udayakumaran and R. Barua. Compiler-decided dynamic memory allocation for

scratch-pad based embedded systems. In Proc. International Conference on Compilers,

Architecture, and Synthesis for Embedded Systems (CASES), 2003.

[131] J. van Eijndhoven, J. Hoogerbrugge, M. N. Jayram, P. Stravers, and A. Terechko. Cache-

Coherent Heterogeneous Multiprocessing as Basis for Streaming Applications, volume 3

of Philips Research Book Series, pages 61–80. Springer, 2005.

[132] X. Vera, B. Lisper, and J. Xue. Data cache locking for higher program predictability.

In Proc. International Conference on Measurement and Modeling of Computer Systems

(SIGMETRICS), 2003.

[133] X. Vera, B. Lisper, and J. Xue. Data caches in multitasking hard real-time systems. In

Proc. 24th IEEE Real-Time Systems Symposium (RTSS), 2003.

[134] M. Verma, K. Petzold, L. Wehmeyer, H. Falk, and P. Marwedel. Scratchpad sharing

strategies for multiprocess embedded systems: A first approach. In Proc. 3rd Workshop

on Embedded Systems for Real-Time Multimedia (EstiMedia), 2005.

[135] M. Verma, L. Wehmeyer, and P. Marwedel. Cache-aware scratchpad allocation algorithm.

In Proc. Design, Automation and Test in Europe Conference and Exposition (DATE),

2004.

[136] M. Verma, L. Wehmeyer, and P. Marwedel. Dynamic overlay of scratchpad memory for

energy minimization. In Proc. International Conference on Hardware/Software Codesign

and System Synthesis (CODES+ISSS), 2004.

[137] WCET benchmarks. Benchmarks from C-LAB and Uppsala University, 2004. http:

//www.c-lab.de/home/en/download.html.

[138] L. Wehmeyer, U. Helmig, and P. Marwedel. Compiler-optimized usage of partitioned

memories. In Proc. 3rd Workshop on Memory Performance Issues (WMPI), 2004.

BIBLIOGRAPHY 182

[139] L. Wehmeyer and P. Marwedel. Influence of memory hierarchies on predictability for

time constrained embedded software. In Proc. Conference on Design, Automation and

Test in Europe (DATE), 2005.

[140] D. J. A. Welsh and M. B. Powell. An upper bound for the chromatic number of a graph

and its application to timetabling problems. The Computer Journal, 10(1):85–87, 1967.

[141] I. Wenzel, R. Kirner, P. Puschner, and B. Rieder. Principles of timing anomalies in su-

perscalar processors. In Proc. 5th International Conference on Quality Software (QSIC),

2005.

[142] R. T. White, C. A. Healy, D. B. Whalley, F. Mueller, and M. G. Harmon. Timing analysis

for data caches and set-associative caches. In Proc. 3rd IEEE Real-Time and Embedded

Technology and Applications Symposium (RTAS), 1997.

[143] J. Xue and X. Vera. Efficient and accurate analytical modeling of whole-program data

cache behavior. IEEE Transactions on Computers, 53(5):547–566, 2004.

[144] T.-Y. Yen and W. Wolf. Performance estimation for real-time distributed embedded sys-

tems. IEEE Transactions on Parallel and Distributed Systems, 9(10), 1998.

[145] P. Yu and T. Mitra. Satisfying real-time constraints with custom instructions. In Proc.

ACM International Conference on Hardware/Software Codesign and System Synthesis

(CODES+ISSS), 2005.

[146] N. Zhang, A. Burns, and M. Nicholson. Pipelined processors and worst case execution

times. Real-Time Systems, 5(4):319–343, 1993.

[147] W. Zhao, W. Kreahling, D. Whalley, C. Healy, and F. Mueller. Improving WCET by

optimizing worst-case paths. In Proc. IEEE Real-Time and Embedded Technology and

Applications Symposium (RTAS), 2005.

[148] W. Zhao, D. Whalley, C. Healy, and F. Mueller. WCET code positioning. In Proc. IEEE

Real-Time Systems Symposium (RTSS), 2004.

