
Time-predictable Execution of Embedded
Software on Multi-core Platforms

SUDIPTA CHATTOPADHYAY

M.ENG(HONS), INDIAN INSTITUTE OF SCIENCE, BANGALORE

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2012

Declaration

I hereby declare that this thesis is my original work and it has been written by me in its entirety.

I have duly acknowledged all the sources of information which have been used in the thesis.

This thesis has also not been submitted for any degree in any university previously.

SUDIPTA CHATTOPADHYAY

14th September, 2012

i

Acknowledgements

First and foremost, I want to thank my advisor Prof. Abhik Roychoudhury for his generous

guidance throughout my graduate studies. If this dissertation has taken any shape, it is due to

his continuous and timely feedback on my research. I have thoroughly enjoyed all the technical

discussions we have made in these four years. The quality of his guidance was way beyond my

expectations. His long-term vision on research has entirely changed my viewpoint to evaluate

certain aspects of research. If I ever get an opportunity to guide students, I wish that I can

acquire some of his qualities to share.

I sincerely thank Prof. Khoo Siau Cheng for his teaching in the Program Analysis course.

Before starting my graduate studies, I never took any course on program analysis. This disser-

tation revolves around designing several program analysis techniques. I truly believe that the

course has built some solid foundation for me. Such a foundation on the basics of several pro-

gram analysis methodologies has helped me throughout the work carried out in this dissertation.

My sincere thanks to Prof. Tulika Mitra for her research collaborations. I thank Prof. Wong

Weng Fai and Prof. Liang Zhenkai for taking their time to be in my dissertation panel. I

sincerely thank them for their feedback on this dissertation and helping me find some exciting

directions to work in future. I thank Prof. Wang Yi from Uppsala University for his time to read

my dissertation and his generous feedback.

I had a great opportunity to work with my fellow researchers in TU Dortmund, Germany.

I am extremely grateful to Timon Kelter, Prof. Heiko Falk and Prof. Peter Marwedel for their

excellent research collaborations. I wish to continue such collaborations for many more years in

future. Finally, my sincere thanks to Lee Kee Chong for being an excellent partner in research

collaborations.

It is the time to acknowledge my friends. My special thanks go to Hoang Nguyen, Shuang

Liu and Sucheendra Kumar (Suchee), who are my great friends in daily life. I have bugged them

with my meaningless talking and countless arguments. However, they have always been so nice

ii

to listen to me carefully and with a lot of patience. I take this opportunity to wish them best

for their future endeavor. Besides, I really appreciate the support from my friends inside and

outside the lab, including Dawei, Chundong, Lee Kee, Abhijeet, Marcele, Huping, Lavanya,

Pooja, Tushar, Sun Tao, Richard, Ju Lei, Eric Liang, Thuan, Chen Liang, Mihai, Malai, Bodhi,

Manoranjan, Manjunath, Sriganesh and Padmanabha. I also thank my long-time friends outside

NUS, specifically, Deepak Vankadaru, Raveendra Holla, Satyajit, Sayan, Debashis, Subhadeep,

Arnab, Abhinav, Sarasij and Abhijit.

I thank Srivatsan Raghavan, who was my mentor and a great friend in Synopsys. Even

though he was my mentor in Synopsys, he had always inspired me to pursue higher studies.

Besides, I thank my friends Gaurav and Vinod with whom I had worked very closely. I wish all

of them very best for their future career.

I thank School of Computing for supporting me in my conference trips. I thank all the staffs

in Dean’s office, specifically, Ms. Loo Line Fong, Ms. Agnes Ang and Mr. Mark Christopher

for helping me in several administrative matters.

My deepest gratitude to my parents and my family. They have been always supportive

throughout my graduate studies.

In this last paragraph, I shall follow the usual standard of dedicating this dissertation to one

of the most important persons in my life. Throughout my academic career, my true inspiration

has been my uncle, who is also my first teacher (Jagabandhu aka “Gajai”). He is the one with

whom I first stepped into the academic world, even before entering any primary school. He is

my first mentor. Besides, his relentless struggle in life has given me enough mental strength

to survive the difficult times in my graduate studies. Over the past two decades I have seen his

struggles and it has helped me learn only one thing – the importance of being indifferent towards

sorrow and happiness. Probably this is the last time I shall get an open opportunity to express

my deepest gratitude towards him and I do this by dedicating this dissertation to him.

iii

Contents

Declaration i

Acknowledgements ii

Contents iv

Abstract ix

Related Publications xi

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Real-time embedded systems . 1

1.1.1 Analysis of hard real-time systems . 2

1.1.2 Can we use software testing to find WCET? 4

1.2 Motivation and thesis overview . 6

1.3 Organization of the chapters . 7

2 WCET Analysis Background 8

2.1 Static WCET analysis . 8

2.2 Example . 13

2.3 Chapter summary . 14

3 Literature Review 15

3.1 Cache analysis of a single task . 15

3.2 Inter-task cache conflict analysis . 16

iv

3.3 Shared cache analysis . 18

3.4 Shared bus modeling . 20

3.5 Time predictable micro-architecture and execution model 21

3.6 Memory optimization for execution time predictability 21

3.6.1 Cache locking and cache partitioning 21

3.6.2 Changing layout of memory blocks 22

3.6.3 Scratchpad memory . 23

3.6.4 Scratchpad allocation techniques . 24

4 Unified Cache Modeling for WCET Analysis and Layout Optimizations 26

4.1 Technical Contributions . 26

4.2 Assumptions . 27

4.3 Overview of our cache analysis . 27

4.4 Details of Cache Analysis . 30

4.5 Analysis results . 34

4.6 WCET-centric code and data layout . 38

4.7 Chapter Summary . 43

5 Modeling Shared Cache for Timing Analysis 44

5.1 Introduction . 44

5.2 A background on existing cache analysis . 47

5.3 Our proposed analysis framework . 48

5.3.1 General framework . 48

5.3.2 A general code transformation framework 50

5.3.3 Refinement of inter-core cache conflicts 51

5.3.4 An extension to a generic cache analysis framework 53

5.3.5 Optimizations . 53

5.4 Implementation and evaluation using CBMC 54

5.4.1 Implementation . 54

5.4.2 Experimental setup . 56

5.4.3 Evaluation . 57

5.5 Cache conflict refinement through symbolic execution 59

5.5.1 KLEE symbolic execution engine . 60

v

5.5.2 Cache conflict refinement . 62

5.6 Implementation and evaluation using KLEE 63

5.6.1 Implementation . 63

5.6.2 Evaluation . 64

5.6.3 Discussion . 67

5.7 Chapter summary . 67

6 Modeling Shared Cache and Bus for Timing Analysis 69

6.1 System and Architectural Model . 69

6.2 Overview . 71

6.3 Bus aware WCET analysis . 74

6.3.1 WCRT Estimation . 79

6.4 Experimental evaluation . 82

6.5 Extensions . 87

6.6 Chapter summary . 89

7 A Unified WCET Analysis Framework for Multi-core Platforms 90

7.1 Introduction . 90

7.2 Background . 92

7.3 Overview of our analysis . 93

7.4 Interaction of shared resources with pipeline 95

7.4.1 Interaction of shared cache with pipeline 96

7.4.2 Interaction of shared bus with pipeline 96

7.5 WCET computation under multiple bus contexts 99

7.5.1 Execution context of a basic block . 99

7.5.2 Bounding the execution count of a bus context 101

7.6 Effect of branch prediction . 105

7.6.1 Effect on cache for speculative execution 105

7.6.2 Effect on bus for speculative execution 106

7.6.3 Computing the number of mispredicted branches 107

7.7 WCET computation of an entire program . 107

7.8 Soundness and termination of analysis . 108

7.8.1 Overall idea about soundness . 108

vi

7.8.2 Detailed proofs . 109

7.9 Experimental evaluation . 119

7.10 Extension of shared cache analysis . 128

7.10.1 Review of cache analysis for FIFO replacement 129

7.10.2 Analysis of shared cache with FIFO replacement 130

7.10.3 Interaction of FIFO cache with pipeline and branch predictor 131

7.10.4 Experimental result . 131

7.10.5 Other cache organizations . 132

7.11 Chapter summary . 133

8 Cache Related Preemption Delay Analysis for Shared Cache 134

8.1 Introduction . 134

8.2 Overview of our analysis . 136

8.3 CRPD Analysis . 141

8.3.1 Flow Analysis . 142

8.3.2 Preemption delay computation . 147

8.3.3 Handling shared caches in multi-cores 151

8.4 Soundness of analysis . 152

8.4.1 Detailed proofs . 153

8.5 Extension . 163

8.6 Experimental evaluation . 164

8.7 Chapter summary . 170

9 Modeling Cache Coherence for WCET Analysis 172

9.1 Introduction . 172

9.2 Overview . 174

9.3 Analysis . 176

9.3.1 Parallel programming model . 177

9.3.2 A review of scope based data cache analysis 178

9.3.3 Foundation . 178

9.3.4 Cache coherence modeling for write-through caches 179

9.3.5 Cache coherence modeling for write-back caches 180

9.3.6 Cache coherence modeling in the presence of synchronization constructs 184

vii

9.4 Example . 185

9.5 Chapter summary . 188

10 Static Bus Schedule aware Scratchpad Allocation in Multiprocessors 189

10.1 Introduction . 189

10.2 System and application model . 191

10.3 Overview of our SPM allocation framework 192

10.4 Bus aware WCRT analysis . 196

10.5 Bus-delay aware Scratchpad allocation . 199

10.6 Experimental evaluation . 207

10.7 Extensions and Future Work . 211

10.8 Chapter summary . 212

11 Discussion and Future Work 215

viii

Abstract

Hard real-time systems require absolute guarantees in their execution time. Worst case execu-

tion time (WCET) analysis has therefore become a very important problem to address. In recent

years, multi-core processors have become widely popular due to their high performance and rel-

atively low power consumption. With the advent of multi-core architectures, WCET prediction

has become an increasingly difficult problem. The key to this problem lies in the precise and

scalable modeling of shared resources, such as shared cache and shared bus. In this dissertation,

we study the modeling of shared cache and shared bus for statically predicting the WCET of an

application running on multi-core platform. We show that the timing predictability in multi-core

can be achieved both by static analysis and compiler optimization.

We first show that the timing unpredictability due to resource sharing may also appear in

single core. A meaningful example of such resource sharing in single core appears in the form

of unified cache, which contains both the instruction and data memory blocks. We propose

the modeling of two primary shared resources in multi-cores, namely the shared cache and the

shared bus, for WCET analysis. We show that the shared cache and the shared bus have non-

trivial timing interactions with pipeline and branch prediction. We propose a sound WCET anal-

ysis framework which not only models both the shared cache and shared bus, but also models the

complex timing interactions of shared cache and shared bus with other basic micro-architectural

components (e.g. pipeline, branch predictor). Our experimental results show that we can provide

reasonably accurate WCET prediction and we can point the different sources of WCET overes-

timation. Subsequently, we show the challenges in modeling the shared cache in the presence

of preemptive scheduling. We extend our WCET analysis framework with a provably correct

shared cache modeling in the presence of preemptive scheduling. Apart from resource sharing,

another major source of timing unpredictability in multi-core may appear due to the coherency

of shared data items. In this dissertation, we have also presented a WCET analysis framework

in the presence of cache coherence.

ix

Finally, we show that the timing unpredictability in multi-core can be reduced by compiler

optimization. We have studied the scratchpad allocation problem in multi-processors. We have

shown that the presence of shared bus may greatly affect the scratchpad allocation decision and

we have proposed a scratchpad allocation algorithm to reduce the bus traffic in multi processor

system on chip (MPSoC). Our experimental results have shown that we can significantly reduce

the WCET of an application compared to a scratchpad allocation algorithm which ignores shared

bus delay.

In summary, this dissertation explores several technical challenges and their possible so-

lutions for hard real-time computing in multi-cores. We believe that the methodologies and

frameworks proposed in this dissertation will give valuable insights into the impact of multi-

core architectures for hard real-time computing.

x

Related Publications

S. Chattopadhyay and A. Roychoudhury. Unified Cache Modeling for WCET Analysis and

Layout Optimizations. In IEEE Real-time System Symposium (RTSS), 2009.

S. Chattopadhyay, A. Roychoudhury and T. Mitra. Modeling shared Cache and Bus in Multi-

core Platforms for Timing Analysis. In International Workshop on Software and Compilers for

Embedded Systems (SCOPES), 2010.

S. Chattopadhyay and A. Roychoudhury. Static Bus Schedule aware Scratchpad Allocation

in Multiprocessors. In ACM SIGPLAN/SIGBED Conference on Languages, Compilers, Tools

and Theory for Embedded Systems (LCTES), 2011.

S. Chattopadhyay and A. Roychoudhury. Scalable and Precise Refinement of Cache Timing

Analysis via Model Checking In IEEE Real-time System Symposium (RTSS), 2011.

S. Chattopadhyay, L. K. Chong, A. Roychoudhury, T. Kelter, P. Marwedel and H. Falk. A

Unified WCET Analysis Framework for Multi-core Platforms In IEEE Real-time and Embedded

Technology and Applications Symposium (RTAS) 2012.

xi

List of Tables

4.1 Example of Persistence Analysis in Unified Cache, ⊥ represents empty cache line 30

4.2 Illustration of data cache analysis, ⊥ represents empty cache line 32

4.3 Description of Benchmarks used . 36

4.4 Accuracy and running time of WCET analysis for the different cache configu-

rations described in Fig. 4.2. 36

4.5 Reduction in WCET estimates via change in layout 43

5.1 Conflicting task set . 57

5.2 Standard task set . 57

6.1 Description of Benchmarks used . 83

6.2 Results from DEBIE (×104 cycles) . 87

7.1 Default micro-architectural setting for experiments 120

7.2 Analysis time [of nsichneu] in seconds. The first row represents the analysis

time when speculative execution was disabled. The second row represents the

time when speculative execution was enabled 128

7.3 Analysis time [of nsichneu] in seconds. The first row represents the analysis

time when speculative execution was disabled. The second row represents the

time when speculative execution was enabled 128

8.1 Papabench task set used in the evaluation 169

10.1 Problem size, analysis time and WCRT . 210

xii

List of Figures

1.1 Interaction of schedulability analysis and WCET analysis 3

1.2 (a) A program control flow graph with two paths, (b) layout of the program code

in memory, showing the instruction cache misses 3

1.3 (a) A simple program with 2100 program paths, array a is an input, (b) a single-

path program fragment where WCET cannot be obtained by executing one path 5

2.1 An example program and its corresponding control flow graph (CFG) 9

2.2 An example showing timing anomaly. (a) Execution scenario with I1 facing

instruction cache hit, (b) execution scenario with I1 facing instruction cache miss 11

2.3 Overview of a typical WCET analysis framework 12

2.4 An example showing ILP-based WCET calculation 13

3.1 Addressing mechanism in the scratchpad memory and the cache 23

4.1 Overview of Cache Modeling Framework . 28

4.2 Different cache configurations used in experiments 35

4.3 WCET overestimation for the cache configurations in Fig. 4.2 37

4.4 Code and data layout before procedure positioning 39

4.5 Code and data layout after procedure positioning by [1] 39

4.6 WCET-centric unified graph . 41

4.7 Transforming the unified graph of Figure 4.6 42

4.8 Final layout after our code + data positioning 42

5.1 (a) inter-core cache conflicts, (b) General framework of our WCET analysis

which combines abstract interpretation and model checking 49

5.2 Example program and its corresponding control flow graph (CFG) without the

backedge . 51

xiii

5.3 Refinement of shared cache conflict analysis 52

5.4 Inter-core cache conflict refinement . 52

5.5 Implementation framework using CBMC . 56

5.6 Timing precision improvement w.r.t. time using statemate and CBMC 58

5.7 (a) WCET improvement in multi-core using CBMC, (b) analysis time using

CBMC . 59

5.8 (a) Example program, (b) KLEE symbolic execution 61

5.9 (a) Transformed code for checking cache conflict, (b) checking the assertion

during KLEE symbolic execution . 62

5.10 Implementation framework using KLEE . 64

5.11 Timing precision improvement w.r.t. time using statemate and KLEE . . . 65

5.12 (a) Comparison of multi core WCET improvement using CBMC and KLEE, (b)

comparison of analysis time using CBMC and KLEE 66

6.1 Multi-core cache memory hierarchy. 70

6.2 Example to show dependency between cache and bus analysis. 71

6.3 Our analysis framework . 72

6.4 (a) An example of loop analysis (b) Limited loop unrolling for loop iterations

with low cost. 75

6.5 Overestimation in WCET analysis . 84

6.6 Sensitivity of WCET analysis with bus slot length 85

6.7 DEBIE task graph and task sizes . 86

6.8 A multi-processor architecture featuring on-chip shared L2 cache 88

7.1 Execution graph for the example program in a 2-way superscalar processor with

2-entry instruction fetch queue and 4-entry reorder buffer. Solid edges show

the dependency between pipeline stages, whereas the dotted edges show the

contention relation . 92

7.2 Overview of our analysis framework . 94

7.3 πinl and πoutl nodes shown with the example of a sample execution graph. πinl

nodes propagate bus contexts across iterations, whereas, πoutl nodes propagate

bus contexts outside of loop. 100

xiv

7.4 (a) Computation of acsini when the edge j → i is correctly predicted, (b) Com-

putation of acsini when the edge j → i is mispredicted, (c) A safe approximation

of acsini by considering both correct and incorrect prediction of edge j → i. . . 106

7.5 Effect of shared and partitioned L2 cache on WCET overestimation 121

7.6 (a) Effect of speculation on L1 cache, (b) effect of speculation on partitioned

and shared L2 caches . 122

7.7 Effect of shared bus on WCET overestimation 123

7.8 WCET overestimation sensitivity w.r.t. L1 cache (a) without speculation, (b)

with speculation . 124

7.9 WCET overestimation sensitivity w.r.t. L2 cache (a) without speculation, (b)

with speculation . 125

7.10 WCET overestimation sensitivity w.r.t. different pipelines (a) without specula-

tion, (b) with speculation . 126

7.11 WCET overestimation sensitivity w.r.t. different bus slot length (with and with-

out speculative execution) . 127

7.12 Analysis of cache in the presence of FIFO replacement policy (a) WCET over-

estimation w.r.t. different L2 cache architectures, (b) WCET overestimation in

the presence of FIFO cache and speculative execution 132

8.1 CRPD analysis framework . 136

8.2 Cache reload delay due to the indirect effect of preemption 138

8.3 For all the figures, LRU age direction has been indicated. The direction of

the arrow labelled “LRU age” points to the older age blocks. (a): Due to the

indirect effect of preemption, preemption cost must go through all the memory

references (not just all the memory blocks). The phenomenon is shown for

memory block m. (b): In the figure, an L2 cache miss occurs for the second

access (but first access to L2 cache) of m after preemption. (c)&(d)&(e)&(f):

Demonstrating the indirect effect of preemption. (c): L1 and L2 cache contents

in the absence of preemption, (d)&(e)&(f): The solid paths are the executed

paths (in the order (d)→(e)→(f)) after preemption. L1 and L2 cache contents

after preemption are shown when the solid path is executed. 139

8.4 CRPD analysis framework in the presence of shared caches 151

xv

8.5 Bounding the indirect effect of preemption when S1 ≤ S2 and K1 ≤ K2.

ref(Mi,1) and ref(Mi,2) are L1 cache hits in the absence of preemption, but

access the L2 cache after preemption. (a)&(b): Indirect preemption effect cre-

ated on ref(M), (c): a scenario which shows that (a)&(b) cannot happen together160

8.6 We use either cnt or compress [2] to generate inter-task cache conflict. (a)

Default architecture used for the results reported as “preemption + no L2 cache

sharing”. (b) Default architecture used for the results using shared cache. Either

qurt or statemate [2] is used to generate inter-core cache conflicts. 166

8.7 WCET +#p.CRPD overestimation for the task set used from [2]. A combina-

tion of A + B along the x-axis denotes the scenario when task A is preempted

by task B (where applicable) . 167

8.8 CRPD and WCET analysis sensitivity with respect to (a) L1 cache configuration

and (b) L2 cache configuration . 168

8.9 WCET + #p.CRPD overestimation for the task set used from papabench.

A combination of A + {B} along the x-axis denotes the scenario when task A

is preempted by the set of tasks in B (where applicable) 170

9.1 Multi-core architecture used for coherence miss modeling 173

9.2 Overview of our analysis framework . 175

9.3 fork and join construct in a parallel program 177

9.4 Example program and the respective control flow graph with fork-join con-

structs . 186

10.1 System Architecture . 191

10.2 Overview of SPM allocation framework . 192

10.3 (a) A sample code and its execution without SPM allocation (b) Execution of

the code by two possible SPM allocations . 193

10.4 Iterative SPM allocation scheme shown on two tasks T1, T2 running on different

processors. Task T1 is same as the example in Fig. 10.3. 195

10.5 Task graph extracted from DEBIE-DPU . 208

10.6 Task graph of papabench . 208

10.7 Experimental setup . 209

10.8 Experimental evaluation of our allocation framework 214

xvi

Chapter 1

Introduction

Many of our daily life functionalities are controlled by embedded systems, such as MP3 players,

washing machines, automobiles and so on. An embedded system runs a specific application for

its entire lifetime. Therefore, the validation of an embedded system requires the validation of

the specific application running on the system. In a way, therefore, validating an embedded

system is apparently easier than validating a general purpose system, as the validation engineer

has to focus upon exactly one application. On the other hand, most of the embedded software

are required to satisfy some extra-functional properties, such as timing. Such time-constrained

systems are not only expected to generate a correct output, but they are also expected to generate

the correct output within specified time bound. These systems are also widely known as real-

time embedded systems.

1.1 Real-time embedded systems

Real-time embedded systems can broadly be classified into two categories: hard real-time sys-

tems and soft real-time systems. Hard real-time systems need critical timing guarantees. Vio-

lation of such timing constraints for hard real-time systems may generate catastrophic effects.

A typical example of a hard real-time system could be an anti-lock braking system (ABS) from

automotive domain. An ABS is a safety system which allows the wheels of a vehicle to interact

with the ground while braking and thereby avoids the vehicle to slide on the ground surface.

Note that the response time of an ABS system is crucial and it needs hard real-time guarantees.

The violation of such hard real-time guarantee may lead to serious consequences, such as a car

accident. Soft real-time systems, on the other hand, can tolerate a certain number of violation

1

in timing constraints. A typical example of a soft real-time system could be a video streaming

device. In video streaming, a certain amount of delay could be tolerable. As long as the inter-

arrival time between two video frames does not disturb the human viewing perception, we can

say that the quality of the respective video streaming device is acceptable.

1.1.1 Analysis of hard real-time systems

Since the timing constraints are critical for hard real-time systems, the timing behavior of such

systems must be known at the design time. As an example, for the ABS safety system, we must

know the upper bound on the brake controller’s response time. In this way, the driver of the

vehicle can determine a suitable position for braking and she can avoid any serious accident.

The upper bound on the application response time is widely known in literature as worst case

response time (WCRT). The analysis of worst case response time can be classified into two

different levels as follows:

Worst case execution time analysis Worst case execution time (WCET) of a program gives

an upper bound on the execution time of the program for all possible inputs [3]. Knowing

worst case execution time is of prime importance for the WCRT analysis. Since exhaustive

enumeration of all possible inputs is often infeasible, WCET is in general determined through

a static program analysis. WCET analysis considers the execution time of an isolated task and

the tasks are assumed never to block or to be interrupted. Blocking or interruption is taken care

by the WCRT analysis. Clearly, WCET of a task depends on the underlying hardware platform

and its corresponding micro-architectural parameters (e.g., size of cache, pipeline). Therefore,

WCET analysis, in general estimates the execution time of a task for a given hardware platform.

System level or schedulability analysis In schedulability analysis, overall system perfor-

mance is analyzed given the results of WCET analysis for each task. The scheduling could be

preemptive or non-preemptive. Each task is assigned a deadline and an application is schedu-

lable if all tasks in the application can meet their deadline. The correctness and precision of

schedulability analysis thus very much depends on the accuracy and precision of WCET anal-

ysis. If WCET values are underestimated (i.e., less than the actual worst case execution time),

schedulability analysis may predict an application to be schedulable even though some task may

not meet its deadline in actual execution. This kind of error is considered catastrophic in hard

2

real-time systems and it may lead to serious consequences. On the other hand, if WCET val-

ues are pessimistic (much greater than the actual worst case execution time of task) then the

scheduler will be forced to allocate more time to those tasks than actually required and thereby

leading to a very imprecise schedulability analysis.

Underlying

hardware

WCET analysis

(single task analysis)

Task

Hard real−time application

Individual tasks

(system level /

schedulability

analysis)

time

Response

Figure 1.1: Interaction of schedulability analysis and WCET analysis

Figure 1.1 shows the dependency of schedulability analysis on WCET analysis. A real-time

application typically contains multiple tasks. As shown in Figure 1.1, schedulability analysis

computes the response time of the overall application. This analysis takes the WCET of each

component task as input and it is usually oblivious to the low-level micro-architectural details

(e.g. pipeline, cache). On the other hand, WCET analysis of each task is highly sensitive to the

underlying micro-architecture and computes the WCET of a single task for a given hardware

platform, as also shown in Figure 1.1.

add a4, b4, 2

add a3, b3, 1

add a2,b2,c2
mult x2,y2,z2

mult x3,y3,z3

L1: Return

B2

Jump L1

B3

B4

L2: add a1,b1,c1

B1Jump conditional L2

B1

B2

B3

B4

cache block

cache block

One

One

cache miss

cache miss

cache miss

(a) (b)

Figure 1.2: (a) A program control flow graph with two paths, (b) layout of the program code in
memory, showing the instruction cache misses

3

The underlying hardware platform has a serious impact on the WCET of an application.

Through a simple example in Figure 1.2, we shall show why the timing effects of the underlying

micro-architecture cannot be ignored for a sound WCET analysis. Figure 1.2(a) shows the con-

trol flow graph (CFG) of a program fragment. The program fragment has exactly two paths: i)

B1-B2-B4 and ii) B1-B3-B4. Basic block B2 has a set of multiplication (mult) instructions

and basic block B3 has a set of addition instructions (add). Since multiplication is much more

expensive than addition, without considering any micro-architectural effects, we can conclude

that B1-B2-B4 is the worst case execution path. Now consider the presence of an instruction

cache and assume that the example program fragment has been loaded in memory as shown in

Figure 1.2(b). If a cache block can hold four instructions, basic block B2 will not suffer any

cache miss. However, basic block B3 will suffer a cache miss to load the first instruction in

B3. As a result, the execution path B1-B2-B4 will suffer two cache misses (one each at the

beginning of basic block B1 and basic block B4), whereas, the execution path B1-B3-B4 will

suffer three cache misses (one each at the beginning of each basic block). Since cache miss

penalty is a magnitude higher than the processor clock cycle, B1-B3-B4 might become the

worst case execution path. Therefore, we conclude that the timing effects of the underlying

hardware platform is of prime importance for a sound WCET estimate.

1.1.2 Can we use software testing to find WCET?

In general, it is infeasible to find the WCET of a task through software testing. Finding WCET

through software testing involves executing the respective application for different inputs and

recording the maximum execution time. However, it is usually expensive to enumerate all pos-

sible inputs of an application. Moreover, testing all permutations of inputs require clear domain

knowledge of the application. Consider a simple program which sorts 10 given integers. As-

suming a 32 bit integer, there are 232∗(10) different permutations of inputs to the sorting program

and testing the sorting program for all 232∗(10) inputs is clearly infeasible. Similarly, consider

a video processing application, such as an MPEG encoder. Finding the WCET of an MPEG

encoder through software testing involves executing the MPEG encoder for a potentially un-

bounded number of videos. Therefore, even with sufficient knowledge of an application, it is

usually infeasible to test the application for all possible inputs.

It might appear to the reader that testing all different permutations of different inputs is not

necessary for finding WCET. The reader might think that it might be possible to find the WCET

4

i = 0

a[i] > 0

i++

i < 100

NY

mult r1, r2, r3

add r5, r1, r4

....... true dependency

IF ID EX WB CM

IF ID EX WB CM

.......

(input dependent multiplication)

true dependency

Input dependent pipeline stages

(a) (b)

Figure 1.3: (a) A simple program with 2100 program paths, array a is an input, (b) a single-path
program fragment where WCET cannot be obtained by executing one path

by testing all possible execution paths of a program. Such a phenomenon is commonly known as

obtaining path coverage. For the time being, assume that WCET can be computed by obtaining

path coverage. However, obtaining path coverage is also expensive, as shown by the program

in Figure 1.3(a). If the array “a” is an input, the program has 2100 possible execution paths.

As a result, obtaining path coverage is infeasible in practice and so as finding WCET through

software testing.

Finally, we show that covering all the paths of a program may not necessarily expose the

WCET of the program. Assume that we want to compute the WCET of a straight line program

fragment shown in Figure 1.3(b). The program is shown at the assembly code level to demon-

strate the technical issue. Figure 1.3(b) also shows the execution of the program fragment in a

conventional five stage pipeline (i.e. IF-ID-EX-WB-CM). The result produced by the multi-

plication instruction (e.g. mult) is used by the addition (e.g. add). This dependency is shown

by the solid edge between the WB and the EX pipeline stages of the two instructions. In general,

a multiplication instruction has variable latencies (which depends on the operands). Therefore,

if the multiplication instruction is input dependent, the EX stage of the addition instruction will

finish at different time points (depending on the concrete input values), which in turn will af-

fect the WCET of the program fragment. Such input dependent pipeline stages are highlighted

in Figure 1.3(b). However, note that it was sufficient to obtain program path coverage of the

program fragment by generating just one concrete input. In general, for a single program path,

there are different execution scenarios at the micro-architectural level. One such example is

shown in Figure 1.3(b). However, in the presence of advanced micro-architectural features (e.g.

superscalar and out-of-order pipeline, speculative execution) the situation is far more complex

5

and a single program path may lead to a huge number of execution scenarios depending on the

concrete values of inputs.

Therefore, we conclude that conventional software testing may miss the program input for

which the actual worst case execution time of the program is reached. Consequently, a sound

WCET (i.e. a true upper bound on the execution time over all possible inputs) of a program

cannot be obtained solely by software testing. On the other hand, a conservative static program

analysis technique can analyze the program irrespective of the program’s input. Consequently,

it is possible to obtain a sound upper bound of the actual WCET of a program through static

program analysis.

1.2 Motivation and thesis overview

As we describe in the preceding, WCET analysis of a program depends on the underlying hard-

ware platform. With the advent of multi-core architectures, multi-core processors have been

adopted for mainstream computing due to the high performance and low power consumption

offered by such processors. Therefore, it is reasonable to adopt the advantages of multi-core

processors in the area of real-time embedded systems. Whereas multi-core processors offer sev-

eral performance and power related advantages, they pose significant challenges to be adopted

for hard real-time systems. Multi-core processors extensively employ shared resources (e.g.

shared cache, shared bus). The presence of shared resources drastically increases the timing

unpredictability, as the timing largely depends on the nature of conflicts generated in the shared

resources. The conflicts in the shared resource, on the other hand, highly depend on the appli-

cations running on different cores. To adopt multi-core processors for hard real-time systems,

it is necessary to predict the execution time of an application. In this dissertation, we have per-

formed an in-depth study of WCET analysis of programs running on multi-core platforms. Our

modeling of shared cache and shared bus can be used for statically predicting the WCET of an

application running on multi-core platforms. Moreover, our WCET analysis framework can be

used to pinpoint the sources of WCET overestimation and it can be used for specialized com-

piler optimizations to achieve time predictability. As evidenced by our scratchpad allocation

optimization, such an analysis framework can help to reduce the timing unpredictability arising

due to a shared bus in multi-core.

6

1.3 Organization of the chapters

In this dissertation, we concentrate on static WCET analysis in the presence of multi-core ar-

chitectures. Multi-core architectures extensively employ shared resources (e.g., shared cache,

shared bus etc) and introduction of shared resources makes WCET analysis a very challeng-

ing problem due to the unpredictable conflicts generated in the same. Among others, shared

cache and shared bus are two meaningful examples of resource sharing in multi-cores (where

the conflicts are generated at the level of memory references from different tasks running on dif-

ferent processor cores). Resource sharing can also be found in single-core architectures. Unified

cache, where the conflicts are generated at the level of instruction and data memory blocks, is a

key example for resource sharing in single-core architecture. We therefore introduce our work

by modeling the unified cache for WCET analysis in Chapter 4 and later move on to model the

shared cache and the shared bus in multi-cores in Chapter 5 and Chapter 6, respectively. In

Chapter 7, we propose a unified WCET analysis framework which models the complex timing

interactions between the shared resources and other basic micro-architectural components (e.g.

pipeline, branch predictor). In Chapter 8, we extend our framework in the presence of preemp-

tive multi-tasking systems. In Chapter 9, we show that the timing unpredictability in multi-core

system may also appear due to the coherency of data items shared by multiple cores. We also

present a WCET analysis framework in the presence of cache coherence in Chapter 9. Finally,

in Chapter 10, we shall describe how our analysis framework can be used to reduce the con-

flicts in shared resources through a compiler optimization pass. More specifically, we show that

the shared bus traffic can be reduced by selecting appropriate contents in software controlled

scratchpad memories. In Chapter 11, we shall conclude this dissertation and discuss possible

future directions.

7

Chapter 2

WCET Analysis Background

In this Chapter, we shall introduce a general background on worst case execution time (WCET)

analysis. We shall discuss the different phases required for static prediction of WCET, as well

as the related technical issues associated with each of these phases.

2.1 Static WCET analysis

Static WCET estimation typically involves three phases: program flow analysis (to find the in-

feasible program path and loop bound), micro-architectural modeling (to find the timing effects

of underlying hardware) and a calculation phase to find the longest feasible program path using

the results of program flow analysis and micro-architectural modeling. In the following, we

shall briefly discuss each of these three analysis phases.

Program flow analysis The goal of program flow analysis is to find infeasible program paths

and loop bounds. The soundness of WCET analysis is not affected by infeasible program paths.

However, with the knowledge of infeasible paths, the static WCET analyzer can ignore cer-

tain paths during WCET computation. This in turn may lead to a tighter WCET estimation.

Consider an example program and its corresponding control flow graph (CFG) shown in Fig-

ure 2.1. Without any knowledge of infeasible path, assume that the WCET analyzer computes

B2-B3-B5-B6-B8 as the worst case path inside the loop. However, careful examination re-

veals that the condition of basic block B2 (i.e. z == 0) and basic block B5 (i.e. z < −2) cannot

be satisfied together for any execution. Therefore, B2-B3-B5-B6-B8 captures an infeasible

execution and therefore, it can be ignored during the WCET analysis. In general, if such infea-

sible path information can be integrated into a WCET analyzer, the analysis may lead to a more

8

x = a[i] * 5

sum += x sum += x

sum += x sum += x

i = i + 2

i < 100

z == 0

i = 0

exit

x = a[i] + 1x = a[i] * 7

x = a[i] + 5

B2

B3 B4

B5

B6 B7

B8

S

R

z < − 2

void f (int z) {

while (i < 100) {

if (z == 0) {

x = a[i] * 5;

sum += x;

} else {

x = a[i] + 5;

sum += x;
}

if (z < −2) {

x = a[i] * 7;

sum += x;

} else {

x = a[i] + 1;

sum += x;
}

i = i + 2;
}

}

int i = 0, sum, x, a[100]; Y N

Y

Y N

N

Figure 2.1: An example program and its corresponding control flow graph (CFG)

precise WCET estimate by focusing on a lesser number of possible execution paths.

Whereas the discovery of infeasible paths may only affect the precision of WCET analysis,

WCET prediction is not possible without knowing the upper bound of all loop iterations in the

program. In the example shown in Figure 2.1, it is not possible to predict the WCET of function

f without knowing that the loop iterates 50 times. Therefore, discovering the upper bound on

loop iteration is potentially more important for an accurate WCET prediction.

The research on flow analysis has focused on automatic discovery of infeasible paths as well

as loop bounds [4; 5; 6; 7]. If the upper bound on loop iteration cannot be inferred statically, such

an upper bound can be provided manually to the WCET analyzer in the form of user annotations.

Similarly, certain infeasible program paths might be provided manually to the WCET analysis

tool to get a tighter WCET estimation.

Micro-architectural modeling WCET of an application is highly sensitive to the underlying

hardware platform. Therefore, to predict a sound and precise WCET of an application, the

timing effects of the underlying hardware need to be modeled. Micro-architectural modeling

analyzes the timing effects of underlying hardware components (e.g. pipeline, cache, branch

9

predictor etc) and it is the crucial part of WCET analysis process. In past two decades, an

extensive amount of research effort has been put forward for micro-architectural modeling. One

of the first few approaches include the use of integer linear programming (ILP) [8], but the

use of ILP poses scalability issues due to the presence of a huge number of ILP constraints.

However, the breakthrough in micro-architectural modeling was first proposed in [9]. The work

in [9] has proposed a scalable approach of using abstract interpretation for micro-architectural

modeling. Since its inception [10], abstract interpretation has been successfully applied to many

application domain including functionality testing and compiler optimization. In [9], abstract

interpretation was proposed to be used for WCET analysis. The basic framework proposed in

[9] has later been extended by many research efforts to analyze advanced micro-architectural

features, such as data cache [11], multi-level cache [12], pipeline [13], branch predictor [14],

shared cache [15] and so on.

Micro-architectural modeling for modern processors is complicated due to a commonly

known phenomenon called timing anomaly [16]. Assume a sequence of instructions contain-

ing a particular instruction I . Further assume that I have two possible latencies L1 and L2,

which lead to a total execution time of E1 and E2, respectively, for the sequence of instructions.

Note that I might have variable latencies due to different reasons, such as, cache hit/miss, vari-

able execution cycle (e.g. multiplication instruction) and so on. A timing anomaly occurs when

L1 < L2, but E1 > E2. Timing anomaly is best explained by an example. We shall use the

example shown in Figure 2.2 to illustrate the problem.

Figure 2.2(a) shows a sequence of multiplication instructions and its execution in a multiple-

way, superscalar processor. The fourth instruction has a dependency on the third instruction due

to the computation in register r8. Additionally, for the sake of illustration, we assume the

following:

• Multiplication has variable execution latency 1 ∼ 4 cycles. First three multiplication

instructions take 4 cycles to execute and the fourth instruction takes 3 cycles to execute.

• Cache miss penalty is 6 cycles.

• There are a total of two multiplier units.

We shall consider two execution scenarios: (EX1) the first instruction is an instruction cache

hit, and (EX2) the first instruction is an instruction cache miss.

10

IF ID EX WB CM

CMWBEXIDIF

IF ID EX WB CM

CMWBEXIDIF

WAIT

WAIT

Time 1 2 6 7 8 10 11 161412

mult r1, r2, r3

mult r4, r5, r6

mult r8, r7, r9

mult r0, r8, 5

true dependency

I2:

I3:

I4:

I1:

(a)

CMWBEXIDIF

IF ID

IDIF

Time 1 2 6 7 11 12

IF ID

EX WB CM

EX WB CM

EX WB CM

13

WAIT

cache miss

(b)

Figure 2.2: An example showing timing anomaly. (a) Execution scenario with I1 facing in-
struction cache hit, (b) execution scenario with I1 facing instruction cache miss

InEX1 (shown in Figure 2.2(a)), instruction I3 has to wait till 6th cycle as the two multiplier

units are occupied by I1 and I2. Since I4 depends on the result computed by I3, I4 also has to

wait for I3 to finish execution. Eventually, the sequence of instructions I1, I2, I3, I4 finishes

in 16 cycles.

Now consider the second execution scenario where I1 is an instruction cache miss (shown in

Figure 2.2(b)). In this case, I3 can finish execution at 7th cycle using one of the free multiplier

units. Subsequently, I4 can finish execution at 11th cycle and the sequence of instructions

finishes in 13 cycles.

From the above example, we observe that a cache hit (which is a local worst case scenario)

leads to an overall worse execution time compared to a cache miss. Such counter intuitive

phenomenon appears due to the complex timing interactions between cache and pipeline. The

example in Figure 2.2 also demonstrates that it is insufficient to track the local worst case of

each instruction (such as a cache miss rather than a cache hit) to compute the WCET of an

entire program. As a result, to compute the WCET of a program, one needs to keep track of

the different micro-architectural states and their possible permutations. However, capturing all

possible micro-architectural states is, in general, infeasible. Therefore, existing works use ab-

stract micro-architectural states via abstract interpretation [9; 13] or timing interval abstraction

to capture the time taken by each pipeline stage [17; 18].

11

Path analysis Path analysis uses the results by program flow analysis and micro-architectural

modeling to find the longest feasible program path in the program. Among others, path-based

technique and implicit path enumeration are mostly used for the calculation of WCET.

Path-based techniques try to find the WCET of the program by enumerating feasible pro-

gram paths and then searching for the program path having longest execution time. Path-based

techniques are naturally very precise and these techniques can also integrate various program

flow information (computed during flow analysis) while searching for the longest path. Path-

based WCET calculation has been used in [19]. However, path-based techniques suffer from

scalability problem, as it enumerates a huge number of paths. The work of [20] somewhat ad-

dresses this issue by systematically removing the infeasible paths from the control flow graph.

Implicit path enumeration techniques represent program control flow as linear equations/-

constraints and formulate the WCET computation problem as maximizing the objective function

of an integer linear program (ILP). The solution of the ILP can be derived by any ILP solver

(e.g. CPLEX [21]). The solution of the ILP contains a quantitative value capturing the WCET

of the program and the execution count of different control flow edges. However, the solution

of the ILP does not return the exact execution path which leads to the worst-case scenario. The

work of [9] first comprehensively combined the abstract interpretation based micro-architectural

modeling and the ILP-based path analysis for WCET computation. Moreover, most of the com-

mon forms of program flow information (such as infeasible path, loop bound) can easily be

encoded as linear constraints and they can be integrated into the WCET formulation (as shown

in [5; 22]). Consequently, ILP-based WCET computation has become popular in the research

community. Many WCET analyzers currently employ ILP-based (such as Chronos [23], aiT

[24]) calculation phase.

Processor

configuration

Micro−architectural

modeling

Program CFG

Program flow Flow information

(infeasible path,

loop bound etc)

calculation

WCET

analysis

of basic blocks

WCET

constraints

Additional user

WCET

Figure 2.3: Overview of a typical WCET analysis framework

12

void f (int z) {

while (i < 100) {

if (z == 0) {

x = a[i] * 5;

sum += x;

} else {

x = a[i] + 5;

sum += x;
}

if (z < −2) {

x = a[i] * 7;

sum += x;

} else {

x = a[i] + 1;

sum += x;
}

i = i + 2;
}

}

int i = 0, sum, x, a[100];
x = a[i] * 5

sum += x sum += x

sum += x sum += x

i = i + 2

i < 100

z == 0

i = 0

exit

x = a[i] + 1x = a[i] * 7

x = a[i] + 5

B2

B3 B4

B5

B6 B7

B8

S

R

z < − 2

Y N

Y

Y N

N

Control flow constraints

Infeasible path constraints

Loop bound constraints

ILP objective function

ESB2 +EB2B8 = EB2B3 +EB2B4

EB2B3 = EB3B5

EB2B4 = EB4B5

EB3B5 + EB4B5 = EB5B6 + EB5B7

EB5B6 = EB6B8

EB5B7 = EB7B8

EB6B8 + EB7B8 = EB8R + EB8B2

EB8R = 1

EB8B2 ≤ 50

CS +CB2ESB2 +CB2EB8B2 +CB3EB2B3

+CB4EB2B4 +CB5EB3B5 +CB5EB4B5

Maximize

+CB8EB7B8

+CB6EB5B6 +CB7EB5B7 +CB8EB6B8

EB2B3 + EB5B6 ≤ 50

(a) (b) (c)

Figure 2.4: An example showing ILP-based WCET calculation

Figure 2.3 captures an overview of a typical WCET analysis process. Micro-architectural

modeling usually works at the level of basic blocks and computes the WCET of each basic

block. Program flow information can be derived by static analysis and some additional flow

information can also be given by the user manually. WCET of each basic block and program

flow information (loop bound, infeasible path) are used to compute the WCET of the entire

program, as shown in Figure 2.3.

2.2 Example

In this section, we shall illustrate the WCET computation by revisiting the example shown

in Figure 2.1. We shall use the implicit path enumeration based WCET calculation for the

illustration.

The example is shown in Figure 2.4(a). Although, WCET analysis is usually carried out

on the executable, for the sake of simplicity in the discussion, we shall show the process at the

source code level. Control flow graph of the program is shown in Figure 2.4(b).

Let us assume,CB denotes the WCET of basic blockB derived via micro-architectural mod-

eling. Further assume EB1B2 is the ILP variable which denotes number of times the edge from

basic block B1 to basic block B2 is taken in the execution. Therefore, we have the following

objective function in the ILP formulation:

13

Maximize CS + CB2ESB2 + CB2EB8B2 + CB3EB2B3

+CB4EB2B4 + CB5EB3B5 + CB5EB4B5 + CB6EB5B6

+CB7EB5B7 + CB8EB6B8 + CB8EB7B8

(2.1)

Representing control flow and loop bound Only one execution path is taken at a branch.

Therefore, we have a set of control flow constraints as shown in Figure 2.4(c). The program

in this example contains a loop and for WCET computation, the loop bound must be known.

For the example program, the upper bound on the loop iteration is 50. This loop bound can

be explicitly specified by the user or it can also be derived through a complex analysis of the

program (e.g., using [7]).

Representing infeasible path Certain infeasible path informations can be represented as lin-

ear constraints and therefore, they can easily be integrated into the ILP-based calculation. Note

that both the basic blocks B3 and basic block B5 cannot be present in any feasible execution.

This is due to the infeasible condition z == 0 ∧ z < −2. Such infeasible paths can be repre-

sented as linear constraints as shown in Figure 2.4(c).

An ILP solver (e.g. CPLEX) maximizes the objective function (as specified in Equation 2.1)

considering all specified constraints to it (Figure 2.4(c)).

2.3 Chapter summary

In this chapter, we have briefly discussed the different steps involved in a typical WCET analysis

process. As the work in this dissertation is concentrated towards multi-core architectures, our

work mainly revolves around multi-core specific micro-architectural modeling, while keeping

the rest of the phases of a WCET analysis framework mostly unchanged.

14

Chapter 3

Literature Review

In this Chapter, we present an overview of the existing research in both single and multi-core. As

the existing research on shared caches are based on the cache analysis in single core, we first start

with an overview of cache analysis in single core. Subsequently, we shall discuss the existing

research in shared caches and shared buses in multi-core. Finally, we shall give an overview of

the existing memory optimization techniques for improving execution time predictability.

3.1 Cache analysis of a single task

Most of the research in cache modeling consider a single level of instruction cache. Among

others, abstract interpretation based cache analysis proposed in [9] deserves mention. For an-

alyzing the cache behaviour of a single task, must and may cache analysis has been proposed

in [9]. Must and may cache analysis categorize memory references as all-hit (AH) and all-miss

(AM) respectively. The memory block corresponding to an AH categorized memory reference

is always in cache when accessed. On the other hand, the memory block corresponding to an

AM categorized memory reference is never in cache when accessed. Must analysis can be used

along with virtual inline and virtual unrolling (VIVU) to significantly improve the analysis pre-

cision. In VIVU approach, each loop is unrolled once to distinguish the cold cache misses at

first iteration of the loop. If a memory reference cannot be classified as AH or AM, it is consid-

ered unclassified (NC). For a fully timing composable architecture, an NC categorized memory

reference can be considered as a cache miss during worst-case computation. The analysis pro-

posed in [9] has later been extended to analyze multi-level non-inclusive instruction caches (in

[12]).

15

Static analysis of data cache timing effects have also been studied (e.g., see [11; 25]). In

particular, [11] adapts the abstract interpretation approach for data cache analysis. One of the

major difficulties in data cache analysis is the fact that several executions of an instruction can

access different data memory addresses and it is difficult to precisely predict the range of data

memory addresses accessed by a particular instruction. The work proposed in [26] addresses

this concern somewhat by partial unrolling of loops. A recent approach [27] improves over the

state-of-the-art data cache analysis by employing a scope based cache state computation. The

work in [27] is based on the insight that a data memory reference may access different memory

blocks in different iterations of a loop. For each memory blockm accessed by a particular load/-

store instruction and for each loop nesting depth, [27] defines a set of iteration interval (called as

temporal scope) in which m could be accessed. A temporal scope L 7→ [x, y] of memory block

m captures that m can only be accessed between iteration x and iteration y of loop L, but m

can never be accessed before iteration x and after iteration y of loop L. Such a temporal scope

based partitioning is quite useful for data cache analysis, as different memory blocks accessed

by a load/store instruction may have totally disjoint temporal scopes and therefore, may not

conflict in the cache with each other. Once the temporal scopes are computed for each data ref-

erence instruction, [27] employs a scope based persistence analysis. Such a persistence analysis

classifies each memory block accessed by a data reference as persistence (PS) or unclassified

(NC) with respect to a loop nesting depth.

In summary, all existing works on cache modeling focus on either instruction cache or data

cache, but not both. Moreover, for cache hierarchies, in most real processors the second-level

cache is a unified cache which contains both instruction and data — an issue not considered

in existing works. In Chapter 4, we show that the timing unpredictability may arise due to the

sharing in unified cache — at the level of different instruction and data memory blocks. In our

work (described in Chapter 4), we build on existing works to develop a WCET analyzer which

considers separate instruction and data caches in the first level and a unified cache in the second

level.

3.2 Inter-task cache conflict analysis

Inter-task cache conflict analysis is required to find an upper bound on cache misses due to

preemption. The bound on cache misses (or additional clock cycles) due to preemption is called

16

cache related preemption delay (CRPD). In last decade, there has been an extensive amount of

research to bound the cache related preemption delay (CRPD) [28; 29; 30; 31; 32; 33; 34].

There are three main approaches to statically bound the value of CRPD:

• Analyzing the preempted task ([28; 33]),

• Analyzing the preempting task ([30]), and

• Analyzing both the preempted and the preempting task ([29; 34]).

The analysis of the preempted task revolves around the concept of useful cache block (UCB)

[28]. A UCB is a block that may be cached before preemption and may be used later, resulting

in a cache hit in the absence of preemption. A data flow analysis is applied on the preempted

task to statically predict the set of UCBs at each program point. The set of UCBs poses an upper

bound on the additional cache misses for a single preemption. Recently, [33] has improved

the state-of-the-art CRPD analysis [28] by reducing the number of UCBs to consider for CRPD

computation. The key idea of [33] is based on the observation that CRPD analysis is always used

along with the WCET analysis. Therefore, the technique proposed by [33] considers only those

cache misses which were not predicted cache miss by the WCET analysis. In this fashion, [33]

may not be able to preserve the over-estimation of CRPD in isolation, however, it can guarantee

the over-estimation of the sum of WCET and CRPD.

The analysis of the preempting task is based on the notion of evicting cache block (ECB).

The set of cache blocks used by the preempting task during its execution is known as ECB. If a

cache set is unused by the preempting task, it cannot evict any of the cache blocks used by the

preempted task in the respective cache set. Therefore, researchers have proposed to use the set

of ECBs for estimating CRPD in [30; 31].

[29] has proposed a precise CRPD analysis approach based on the combination of UCB

and ECB. Therefore [29] analyzes both the preempted task (for computing the UCBs) and the

preempting task (for computing the ECBs). A UCB may lead to an additional cache miss after

preemption only if it might be evicted by an ECB. Such a CRPD analysis framework [29] is more

precise than the CRPD analysis based on analyzing either the preempted or the preempting task

in isolation. However, the analysis of [29] is based on direct-mapped caches. As shown in

[34], set-associative caches introduce additional complications in accurately estimating the set

of UCBs that can be replaced by a set of ECBs. [34] proposes a CRPD analysis framework for

general, set-associative caches.

17

[32] shows that the precision of CRPD analysis does not only depend on the precision of

UCB and ECB, but it also depends on the set of preemption points. The technique proposed by

[32] is based on the following insight: if two different preemptions at p and p′ may lead to a

cache miss of the same memory reference in the preempted task, then we need to consider only

one additional cache miss in the preempted task for the set of preemption points {p, p′}. This

could be possible, only if the analyzer has the knowledge of both the preemption points p and

p′. On the other hand, if we compute the CRPD for p and p′ in isolation, it will lead to consider

duplicate cache misses for the same memory reference in the preempted task. Computing the

CRPD for all possible set of preemption points will lead to an exponential slow-down. There-

fore, [32] proposes efficient algorithms which account multiple preemption points to improve

the precision of state-of-the-art CRPD analysis.

In summary, there has been an extensive set of works to estimate CRPD based on UCB

and ECB. Several improvements over the state-of-the-art by combining UCB and ECB (e.g.

[29; 34]) and maintaining the knowledge of multiple preemptions (e.g. [32]) have also been

proposed in the previous years. However, all of the previous works target a single level cache.

On the contrary, we leverage the concept of both UCB and ECB in the context of cache hierarchy

in multi-core (described in Chapter 8). To the best of our knowledge, ours is the first CRPD

analysis framework which targets a cache hierarchy and provides an analysis framework to

bound the value of CRPD in the presence of shared caches in multi-core.

3.3 Shared cache analysis

In multi-core systems, tasks in different cores may execute in parallel while sharing memory

space in the cache hierarchy. Wei Jhang and Jun Yan [35] were first to introduce the shared cache

modeling for software timing analysis. In this work they differentiate a memory block inside

some loop or outside any loop. The underlying architecture has two levels of cache where the

second level is shared across cores. All memory blocks, which are present in the private cache

of a core, do not suffer from the conflicts introduced by the threads running in other cores.

Similarly, only L2 cache hits are required to change since L2 cache misses already exploit the

worst-case scenario for WCET analysis. Therefore, only L1 cache misses and L2 cache hits are

analyzed further to detect possible conflicts introduced by other cores. The analysis works as

follows: assume a task T accesses a memory block m and is mapped to cache set C in the L2

18

cache. Task T ′ is concurrently running with T in a different core and therefore share the L2

cache with task T . Further assume M ′ is the set of memory blocks accessed in T ′ which maps

to same cache set C in L2 cache and memory block m was a cache hit in L2 cache ignoring

the conflicts from other cores. The classification of memory block m is changed to a L2 cache

miss if any of the memory blocks inside the set M ′ is accessed inside a loop of T ′. On the other

hand, the classification of memory block m is changed to a always-except-one L2 cache hit if

M ′ contains a single memory block and is accessed outside any loop of T ′ (since the memory

block inside M ′ can be accessed at most once).

The analysis proposed in [35] has several limitations: first, the approach does not exploit the

task dependency. On the other hand, real life embedded applications generally contains multiple

tasks and the dependency could be provided through a task graph or message sequence chart

[36]. Two dependent tasks can never interfere in the shared resources. Similarly, two different

tasks never interfere if their execution times do not overlap. This observation was first made in

a recent work proposed in [15]. [15] has proposed an iterative WCRT (Worst Case Response

Time) analysis framework for modeling shared cache. Conflicts in shared cache depends on task

lifetimes which on other hand depends on shared cache contents of each task. To resolve this

dependency, an iterative framework was proposed in [15]. Authors of [15] have also formally

proved that their framework always terminates after a finite number of iterations. Secondly, [35]

does not employ any additional optimizations for set associative caches. On the other hand, the

shared L2 cache is normally made set associative to reduce conflicts. [15] solves this problem

with LRU replacement policy. It simply checks, how much more a memory block can grow in

a shared cache set in age without conflicts from other cores. Therefore, if number of memory

blocks (from the conflicting tasks) mapping to the same cache set is not more than this limit, the

corresponding memory block remains to be a cache hit in the shared cache even after conflicts

from other cores.

Hardy et al. [37] have proposed a compile time optimization to improve the precision of

[35]. The work of [37] performs a compile time analysis to find memory blocks which are used

at most once in the program. Since the memory blocks are used only once, they do not heavily

affect the performance of the program, however, they might evict some memory blocks from the

shared cache which are used heavily by other cores. Therefore, the central idea was to restrict

all such memory blocks (used only once) to go into the shared L2 cache.

Existing works on shared caches suffer from overestimating the infeasible inter-core cache

19

conflicts. In Chapter 5, we propose a novel approach which combines abstract interpretation

and model checking for building a scalable as well as precise WCET analysis framework.

3.4 Shared bus modeling

Shared bus analysis introduces several difficulties in accurately analyzing the variable bus delay.

It has been shown in [38] that a time division multiple access (TDMA) scheme would be useful

for WCET analysis due to its statically predictable nature. Subsequently, the analysis of TDMA

based shared bus was introduced in [39]. In [39], it has been shown that a statement inside a loop

may exhibit different bus delays in different iterations. Therefore, all loop iterations are virtu-

ally unrolled for accurately computing the bus delays of a memory reference inside loop. As

loop unrolling is sometimes undesirable due to its inherent computational complexity, in [40]

(described in Chapter 6), we have proposed a TDMA bus analysis technique which analyzes

the loop without unrolling it. Moreover, our work, as described in Chapter 6 was the first to

propose an analysis framework which models both the shared cache and shared bus. However,

[40] requires some fixed alignment cost for each loop iteration so that a particular memory ref-

erence inside some loop suffers exactly same bus delay in any iteration. The analysis proposed

in [40] is fast, as it avoids loop unrolling, however imprecise due to the alignment cost added

for each loop iteration. Finally, [41] proposes an efficient TDMA-based bus analysis technique

which avoids full loop unrolling, but it is almost as precise as [39]. The analysis time in [41]

significantly improves compared to [39]. However, none of the works ([39; 40; 41]) model the

interaction of shared bus with pipeline and branch prediction. Additionally, [39] and our work in

[40] assume a timing-anomaly-free architecture. A recent approach [42] has combined abstract

interpretation and model checking for WCET analysis in multi-cores. The micro-architecture

analyzed by [42] contains a private cache for each core and it has a shared bus connecting all the

cores to access main memory. The framework uses abstract interpretation ([9]) for analyzing the

private cache and it uses model checking to analyze the shared bus. However, [42] ignores the

interaction of shared bus with pipeline and branch prediction. It is also unclear whether the pro-

posed framework remains scalable in the presence of shared cache and other micro-architectural

features (e.g. pipeline). In Chapter 7, we propose a unified WCET analysis framework for multi-

core platforms. Such a unified WCET analysis framework models both the shared cache and

shared bus. Additionally, our framework models the complex interactions with shared cache

20

and shared bus with pipeline and branch predictor, without appreciable loss of efficiency.

3.5 Time predictable micro-architecture and execution model

To eliminate the problem of pessimism in multi-core WCET analysis, researchers have proposed

predictable multi-core architectures [43] and predictable execution models by code transforma-

tions [44]. The work in [43] proposes several micro-architectural modifications (e.g. shared

cache partitioning among cores, TDMA round robin bus) so that the existing WCET analysis

methodologies for single cores can be adopted for analyzing the hard real-time software run-

ning on such system. On the other hand, [44] proposes compiler transformations to partition

the original program into several time-predictable intervals. Each such interval is further par-

titioned into memory phase (where memory blocks are prefetched into cache) and execution

phase (where the task does not suffer any last level cache miss and it does not generate any traf-

fic to the shared bus). As a result, any other bus traffic scheduled during the execution phases of

all other tasks does not suffer any additional delay due to the bus contention.

3.6 Memory optimization for execution time predictability

3.6.1 Cache locking and cache partitioning

Due to the difficulty in analyzing cache behaviors, several analyses pose restrictions on parts

of the program for predictable execution time behaviour. Cache locking and cache partitioning

are two meaningful examples of such transformation. In cache locking, users are allowed to

load the content in the cache and subsequently prevent those content to be evicted out from the

cache. Cache locking is available as an ISA feature in several commercial processors (e.g., ARM

920T, PowerPC 440 Core etc). However, placement of this cache locking instruction is crucial

and wrong placement (which may happen when cache locking instructions are placed manually)

of lock instruction may severely degrade application performance by blocking frequently used

memory blocks to be loaded into the cache. Therefore, researchers have investigated automatic

placement of cache locking instruction to improve worst case performance. Among others,

Puaut’s work in [45] for software controlled cache deserves mention. The work of [45] divides

program code with respect to different function entries and loop headers (called reload points in

[45]). The portion of code between two reload points is called a program region. The approach

21

described in [45] statically computes the frequently accessed memory blocks along the worst

case path in a region and locks the cache after loading those memory blocks before entering the

same region.

When cache locking is mainly used for eliminating intra task interferences, cache partition-

ing techniques are mainly used for eliminating inter task interferences. This situation arises

when multiple tasks, with overlapping execution time, may use the same cache. For example, in

previous section, we discussed about CRPD analysis to compute the additional cache reloading

delay encountered due to the preemption. One can eliminate the use of such analysis by as-

signing different disjoint partitions to different tasks. Cache partitioning techniques have been

proposed in [46; 47] to guarantee that the most recently used memory blocks will remain in

the cache despite preemption. Therefore, these techniques will be able to eliminate inter task

interferences. However, cache partitioning may have the disadvantage of exploring only a lim-

ited amount of space in the cache and therefore may encounter more cache misses due to the

intra task interferences. A combination of cache locking and cache partitioning for average case

performance improvement has also been proposed in [48; 49] for data caches. In [49], first

the cache is partitioned among different tasks. Each portion of the program that are difficult to

analyze (e.g., have unpredictable data memory accesses), are locked by using a greedy heuris-

tic. The program regions with predictable data memory accesses can be analyzed using static

data cache analysis (e.g. [11]). Therefore, the work proposed in [49] comprehensively com-

bines cache partitioning, cache locking and static cache analysis for better time predictability.

The work in [4] has subsequently explored several combinations of cache locking and cache

partitioning for shared caches used in multi-core architectures.

3.6.2 Changing layout of memory blocks

Changing the layout of memory blocks may lead to predictable execution time behaviour. Most

of the processors incur a pipeline delay whenever an instruction transfers control to a target

that is not the next sequential instruction. Compiler developers therefore try to place the most

frequently used memory blocks in the memory sequentially to reduce average case execution

time (ACET). Zhao et. al. [50] first proposed the equivalent optimization to reduce worst

case execution time (WCET). In [50], most frequently accessed basic blocks along the worst

case execution path (WCEP) are placed in contiguous memory location to improve WCET.

Additionally, placement of basic blocks along the WCEP increases the spacial locality along the

22

WCEP and therefore also improves the worst-case cache behaviour. A recent paper [1] places

the most frequently called functions along the WCEP contiguously to reduce cache conflict

misses and thereby improving the worst case performance. In summary, all of these works have

optimized the layout of code ignoring the layout of data. In our work ([51]), we show that

changing only the layout of code may lead to performance degradation in presence of unified

cache. Therefore, we proposed a novel algorithm in [51] which changes the layout of instruction

and data simultaneously to improve WCET. We describe this optimization in Section 4.6.

3.6.3 Scratchpad memory

CPU

SRAM

Cache

DRAM

Address

Figure 3.1: Addressing mechanism in the scratchpad memory and the cache

Scratchpad is a fast on-chip memory and it is explicitly controlled by user or managed by

system software (e.g., a compiler). Scratchpad memory is mapped into the address space of

the processor. Whenever the address of a memory access falls within a pre-defined range, the

scratchpad memory is accessed instead of caches. This addressing mechanism is demonstrated

in Figure 3.1. Since scratchpad memory contents can be controlled by a compiler, each mem-

ory access to scratchpad becomes predictable. Therefore, scratchpad memory has widely been

adopted for real-time embedded systems instead of caches where the memory management is

entirely transparent to the user. Moreover, it is also shown in [52] that using scratchpad mem-

ory leads to a reduced area and energy consumption compared to caches. However, use of

scratchpad memory comes with a cost. Managing scratchpad memory by user is cumbersome

and also error-prone. It also requires rewriting of existing application to make use of scratch-

pad memory. For the above mentioned reasons, there has been an extensive amount of work

for automatic content selection into scratchpad memory in the past. In the following, we shall

briefly describe the trend of research in this direction in past and how our work differs from the

previous approaches.

23

3.6.4 Scratchpad allocation techniques

Scratchpad allocation can be static (where the content of the scratchpad is decided at the compile

time and cannot be changed at runtime) or dynamic (where the scratchpad can be overwritten

and reloaded at runtime). Both have its own advantages and disadvantages. Static scratchpad

allocation schemes do not encounter any reloading cost at runtime. However, static allocation

also limits number of variables to be allocated into scratchpad compared to dynamic scratchpad

allocation. A significant amount of research efforts have been made [53; 54; 55; 56] for de-

veloping efficient scratchpad allocation schemes that aim for reducing average-case execution

time (ACET) of a program. These works mainly takes a memory access profile of the program

and try to optimize the most frequently accessed path. Our aim is to optimize worst case per-

formance and since most frequently accessed path is not necessarily the worst case path, none

of the before mentioned techniques can directly be applied for our purpose. Another inherent

problem with any worst case performance optimization is that the worst case path may change

after an optimization pass. As an example, if a variable is allocated into scratchpad accessed

in the current worst case path π, π may not remain the worst case path after the allocation, as

the cost of π has been reduced. Therefore, WCET analysis is carried out again to find the new

worst case path π′ to employ the next optimization pass. The approach proposed in [57] first

addresses the problem of scratchpad allocation targeting towards the reduction of WCET. The

work of [57] proposed different schemes of static scratchpad allocations for reducing the WCET

of a program. An ILP-based approach was proposed, which is optimal (in the sense achieving

the minimum WCET) but it cannot take into account of certain infeasible paths in a program.

A greedy heuristic for scratchpad allocation was also proposed, which was shown to achieve

nearly same performance gain with the optimal scheme. Additionally, the greedy heuristic can

also take into account the infeasible path information. The approach proposed in [57] is based

on static scratchpad allocation. Therefore, the entire content of the scratchpad is decided before

the program execution and the content is never changed. Static scratchpad allocation has the

advantage of avoiding any reloading cost of scratchpad at the runtime, however, it may suffer

from poor scratchpad space utilization. As a result, dynamic scratchpad allocation for WCET

reduction has also been investigated in [58].

The work of [57] and [58] address the allocation of data objects into scratchpad. It is worth

mentioning that allocating program code into scratchpad requires additional care to maintain

24

program flow, while allocating program data into scratchpad generally calls for specific consid-

erations depending on the type of the data (global, stack, or heap) and the different nature of

their access. Allocation of code objects in scratchpad has also been addressed previously in [59]

for ACET reduction and has recently been addressed in [60] for WCET reduction.

Scratchpad sharing among different processing elements in multiprocessor system-on-a-

chip (MPSoC) has also been explored by researchers. Scratchpad allocation framework for

average case performance improvement has been presented, among others, in [61] and [62].

Therefore, these techniques are not useful for improving the worst case performance of an ap-

plication.

Static scratchpad allocation strategies for concurrent embedded software have recently been

studied in [63] for worst case performance improvement. Scratchpad space is shared among

multiple tasks through overlay if their execution times do not overlap. On the other hand,

whether the execution time of two tasks overlap, depends on the allocated memory blocks from

these two tasks into scratchpad. Because of this dependency, an iterative framework has been

proposed in [63]. The iteration stops when there is no more change in the interference of ex-

ecution times among all the tasks. However, there are two key limitations in [63]. First, [63]

ignores the waiting time to access the shared bus. Secondly, the architecture explored in [63]

only has a private scratchpad for each processing element and the private scratchpad is shared

among different tasks by partitioning or overlay. Current commercial processors such as Cell

[64] allow for the scratchpad space to be (virtually) shared among all the available processing

elements through local or remote access. Our work on scratchpad allocation aims to optimize

the Worst Case Response Time (WCRT) of an application by accurate content selection and

overlay in this shared scratchpad space, by accounting for the variable bus delays. Chapter 10

describes our optimization framework in details.

25

Chapter 4

Unified Cache Modeling for WCET

Analysis and Layout Optimizations

Shared resources are employed even in single core architectures. Unified cache is the most com-

mon form of resource sharing available in current generation processor chips. In real processors

(such as Intel x86), the most common cache architecture is a multi level one. In the first level

(L1), there are separate instruction and data caches. In the second level (L2), there is a unified

cache which houses both instruction and data. Instruction accesses are looked up first in the L1

instruction cache, followed by the L2 unified cache, and finally in the main memory. Similarly,

data accesses are looked up first in the L1 data cache, followed by the L2 unified cache and

finally in the main memory. Therefore, we start the work in our dissertation by modeling this

variety of resource sharing in single core — namely the unified cache.

4.1 Technical Contributions

In terms of technical contributions, ours is the first work to model the timing effects of a L2

unified cache which houses instruction as well as data. Previous works had either considered

instruction cache or data cache but not both. In this work, we integrate the modeling of instruc-

tion and data accesses by modeling the timing effects of a unified (instruction + data) cache.

Using our cache modeling, we can identify the different sources of WCET over-estimation in a

multi-level cache architecture with instruction and data caches. Our cache modeling framework

has been integrated into the open-source WCET analyzer Chronos [23]. Using our WCET anal-

ysis, we develop heuristics to perform simultaneous code and data layout optimizations which

26

can help reduce the WCET estimate. Previous works on WCET-driven compiler optimizations

[50; 1] have studied code layout separately without concern for data layout, and this is problem-

atic in the presence of a unified cache. Thus, we present a cache modeling framework which

goes beyond existing approaches, integrate it into a state-of-the-art WCET analyzer, and use the

analyzer results to guide novel WCET-driven layout optimizations.

4.2 Assumptions

We consider a memory hierarchy containing L1 instruction cache, L1 data cache and a L2 uni-

fied D/I cache. For simplicity, all our examples and evaluation assume that the cache replace-

ment policy is LRU and the write policy is write-through with allocate, although the proposed

analysis is not tied to a specific cache replacement or write policy. We also assume the follow-

ing.

1. A piece of information is searched in the level 2 cache if and only if a cache miss occurs

in level 1 cache. Cache of level 1 is searched always.

2. Every time a cache miss occurs in level L cache, the entire cache line containing the

missing piece of information is loaded in cache of level L.

3. There is a separation of address space for instruction and data. That is from the memory

address alone, it can be verified whether it is the address of an instruction or the address

of a data.

4. Effects of micro-architectural features such as out of order pipeline, branch prediction (in

particular timing anomalies created by the interaction of cache with these other features)

are disregarded.

Assumption 1 rules out architectures where cache levels are searched in parallel to speed

up the search for a piece of information. Assumption 2 rules out architectures with exclusive

caches. These two assumptions also appear in [65].

4.3 Overview of our cache analysis

An overview of our cache analysis is shown in Figure 4.1. A separate address analysis, which

predicts the range of data addresses accessed by each load/store instruction, is needed for data

27

cache analysis. From the result of L1 instruction and data cache analysis, the “Compute CAC”

block in the diagram computes the access criteria for the unified cache which is used by the final

analysis to compute the hit/miss classification of data and instruction in the same. All cache

analysis results are used for the final WCET estimation.

To illustrate unified cache analysis consider the following code fragment and its correspond-

ing assembly code targeting Simplescalar Portable Instruction Set Architecture (PISA).

int a[4][18];

for(j = 0; j < 4; j++)

for(i = 0; i < 18; i++)

a[j][i] = a[j][i] + 10;

00400208 addu $4,$0,$0

00400210 addu $3,$0,$5

00400218 lw $2,0($3)

00400220 addiu $4,$4,1

00400228 addiu $2,$2,10

00400230 sw $2,0($3)

00400238 addiu $3,$3,4

00400240 slti $2,$4,18

00400248 bne $2,$0,00400218

00400250 addiu $5,$5,72

00400258 addiu $6,$6,1

00400260 slti $2,$6,4

00400268 bne $2,$0,00400208

Executable

L1 instruction
cache analysis

Address

Analysis Cache Analysis

L1 Data

AH/AM/PS/NC
classification
of instruction

Compute

CAC

AH/AM/PS/NC
classification

of data

Unified
Cache

Analysis

AH/AM/PS/NC
classification
of instruction
Or Data in

Unified cache

WCET

Computation

Instruction

Reference

Data
Reference

Figure 4.1: Overview of Cache Modeling Framework

Assuming that each integer takes 4 bytes to store and cache block size being 32 bytes, array

a accesses nine memory blocks in the full computation when a starts from the memory block

28

boundary. Also assuming that each instruction take 8 bytes to store, the loop accesses four

memory blocks for fetching instructions say {I1, I2, I3, I4}. Let {m1, ...,m9} are the memory

blocks accessed by a. Assume a direct mapped L1 data cache and for the sake of illustration

let’s say m1 maps to the same cache block as m9 in L1 data cache. Apart from these there are

no other conflicts in data cache. Since access patterns are not considered, a persistence analysis

on data cache cannot classify any of the accesses of the array a in the loop to be persistent

which leads to adding the cache miss penalty for all 4 × 18 × 2 = 144 array accesses in the

source code. But in reality, only 3 memory blocks are accessed per outer loop iteration leading

to a total miss count of 12.

Now consider the presence of a L2 unified cache (common in commercial processors such as

Intel x86) whose size is four times bigger than the L1 data cache by increasing the associativity

from 1 to 4. Increase of associativity is a reasonable assumption as cache associativity generally

increases with hierarchy level. In this case, persistence analysis on unified cache will not evict

m1 for accessing the memory block m9. The instruction memory blocks {I1, I2, I3, I4} being

contiguous map to different cache sets. Moreover for a set-associative cache, one of these

instruction memory blocks can co-exist with m1 in a cache set of the unified cache. Thus,

persistence analysis on the unified cache can declare all accesses in the loop to be persistent

in the same. Since access to unified cache is much faster than accessing memory and access of

array a is persistence in unified cache in this example, overall estimate in WCET will have much

tighter result. Persistence analysis of the data cache and unified cache results at the start of the

loop are shown in Table 4.1 where levict represents cache blocks which may be evicted from the

cache and li represents the usual cache blocks. The different rows in Table 4.1 represent different

cache sets. For the above example, L1 data cache analysis encountered a cache thrashing

scenario which leads to a much higher WCET than expected. The example also shows a scenario

where the presence of unified cache does not make much difference in concrete execution but

certainly analyzing the unified cache makes us predict a much tighter WCET estimate.

On the other hand consider a very large loop which cannot entirely fit into the instruction

cache. As a result in a concrete execution of the loop, cache thrashing will take place in

presence of only instruction cache. But in presence of a unified cache in the memory hierarchy

this problem may be resolved as unified cache is generally much larger than level 1 caches. For

illustration suppose in the example I1 and I4 conflicts. Thus every iteration will encounter two

instruction cache misses apart from cold misses. But presence of a unified cache will resolve

29

L1 Data Cache Unified Cache
l0 levict l0 l1 l2 l3 levict
⊥ {m1,m9} ⊥ {m1,m9} I1 ⊥ ⊥
m2 φ m2 I2 ⊥ ⊥ ⊥
m3 ⊥ ⊥ {m3, I3} ⊥ ⊥ ⊥
m4 ⊥ ⊥ {m4, I4} ⊥ ⊥ ⊥
m5 ⊥ m5 ⊥ ⊥ ⊥ ⊥
m6 ⊥ m6 ⊥ ⊥ ⊥ ⊥
m7 ⊥ m7 ⊥ ⊥ ⊥ ⊥
m8 ⊥ m8 ⊥ ⊥ ⊥ ⊥

Table 4.1: Example of Persistence Analysis in Unified Cache, ⊥ represents empty cache line

this by getting the relevant instruction block from unified cache. From the analysis result in

Table 4.1 also we can see that in the presence of a larger unified cache we can resolve this

problem since all of the instructions have become persistent in unified cache. This constitutes

an example where cache thrashing is avoided in concrete execution because of unified cache,

and this will also be captured in the unified cache analysis.

4.4 Details of Cache Analysis

For the rest of the discussion we consider a set associative cache with associativity A and with

a set of cache lines L = {l1, l2, ..., ln} in a single set. The memory store is considered as a set

of memory blocks S = {s1, s2, ..., sm}. An abstract cache set is a mapping d̂ : L ⇒ 2S ∪ ⊥

where each cache line corresponds to a set of memory blocks and ⊥ captures the situation

where a cache line is empty. Let D̂ represents the set of all abstract cache states. To model the

LRU replacement policy it is assumed that the memory blocks in the cache set are ordered by

increasing age.

Data Cache Analysis The output of address analysis is used in data cache analysis. A key

difference between instruction and data references is that the address set for the latter may

not be a singleton set (for example consider array references). As long as a data reference

accesses a single memory block, the update function for any data cache analysis remains same

as that of instruction cache analysis; in this case it is definitely known which memory block

is accessed and thus it can be brought to the abstract cache set. On the other hand, if number

of memory blocks accessed is more than one, it is not definitely known which memory blocks

are accessed in concrete execution as address analysis computes an over-approximation of the

30

actual addresses accessed. Thus for our analysis to be safe, the update functions for different

data cache analysis (may, must and persistence) become different. The persistence analysis

for data cache is described in [11] although no experimental results were presented. Must

analysis for data cache is introduced in [26]. For a precise analysis result of the unified cache in

our architecture, we also need to performmay analysis on data cache. May data cache analysis

classifies all-miss data references of a program. As memory blocks corresponding to all-miss

data references in one cache level are always searched for in the next cache level, these memory

blocks are potential candidates to be brought into the unified cache at level 2. We describe our

proposed may analysis for data cache next.

May Analysis As described before, when the accessed memory block is a singleton, the

update function remains same as in the case of instruction cache analysis. But when num-

ber of accessed memory blocks is more than one, a safe update function for may analysis

should satisfy the following two properties:

1. All memory blocks possibly accessed by the address set must be brought into the abstract

cache set and have lowest possible age in the corresponding set.

2. Age of all memory blocks that are already in the abstract cache and possible accessed

must be decreased to the lowest possible age.

Thus we use the following generalized update function for may data cache analysis:

Ûmay(d̂,M) = tmi∈M Û(d̂,mi) (4.1)

Here M is the set of memory blocks accessed by the data reference, Ûmay : D̂× 2S → D̂ is the

update function used for may data cache analysis, Û is the update function used in instruction

cache analysis, d̂ is the current data cache set and t is the join operation used for may analysis.

Informally, amay join operation is performed for each possible memory blocks accessed by the

reference. It is clear that this update operation satisfies both of the above specified conditions of

may analysis. Join operation for may data cache analysis remains same as that of may analysis

for instruction cache [9].

A particular data access at some program point p is classified as all-miss(AM) if the abstract

cache contains none of the memory blocks accessed by it at p. Otherwise the data access is

categorized as not-classified(NC).

31

Following example shows the difference of must, may and persistence analysis on data

cache. Let an abstract cache set be as shown in the first row of Table 4.2 at some program point

p. For a particular memory reference r, assume the address analysis module computes a range

of addresses which corresponds to a set of memory blocks M ⊆ S. Let {sx, sy, sz} ⊆ M map

to the same cache set whose abstract state is shown at row 1 of Table 4.2. Abstract cache sets for

must, may and persistence analysis after memory reference r are shown in subsequent rows.

state l1 l2 l3 l4 levict

Initial sx sp ⊥ ⊥ ⊥
Must ⊥ ⊥ sx sp ⊥
May {sx, sy, sz} sp ⊥ ⊥ ⊥

Persistence ⊥ ⊥ {sx, sy, sz} sp ⊥

Table 4.2: Illustration of data cache analysis, ⊥ represents empty cache line

Cache access classification Multi level instruction caches have been analyzed for WCET

analysis in [66], and more recently in [65] which discusses timing anomalies permitted by pre-

vious approaches. In the presence of multi level cache hierarchy, a specified cache level may

not be accessed at all. Thus the access categorization of a specified cache hierarchy must also

be known. This categorization was first presented in [65]. For a given memory access r, CAC

(cache access classification) of a particular cache level L can be as follows:

1. A: This means that the cache level L will always be accessed. For example for cache

level 1 this is always true.

2. N : This means that the cache level L will never be accessed.

3. U : This means the access of this cache level L cannot be determined statically for this

memory access.

CAC of cache level L for memory reference r is determined from the CAC and hit-miss catego-

rization of r in cache level L−1. For example consider a two level hierarchy with L1 instruction

cache, L1 data cache and a unified L2 cache. It is clear that AH categorized instructions or data

are never brought into unified cache, as it is never accessed. On the other hand AM categorized

instructions or data are always brought into unified cache as it is always accessed. For the other

two categorizations it is not sure whether the unified cache is accessed or not. Thus all possibili-

ties must be explored for a safe solution. The approach described in [65] has also been extended

to analyze equivalent multi level data cache hierarchies in [67].

32

Unified Cache Analysis After must, may and persistence analysis of instruction and data

cache we have AH/AM/PS/NC classification of each instruction in the program and additionally

if the instruction is a load/store instruction we also have the same classification for its data

access. Moreover for each instruction and data access we know whether the unified cache

will be accessed or not. Since level 1 caches are always accessed, only the hit/miss criteria of

instruction and data access will decide the access classifications of unified cache.

Let an abstract cache set of unified cache be a mapping û1 : L ⇒ 2S ∪ ⊥ where each

cache line corresponds to a set of memory blocks. Let CACu(i) represents the CAC (cache

access classification as described in 4.4) of instruction i in unified cache and additionally if the

instruction is a memory load/store CACu(di) represents the CAC of data access at instruction i

in unified cache.

Informally, for any memory block accessed, it is checked whether the corresponding access

in unified cache is anA (always) access or not. If the unified cache has aN (never) classification

for the same access, no update is performed. In an U (unknown) classification of the access,

a join operation is performed on previous two possibilities depending on the kind of analysis

(may, must or persistence) and access type (instruction or data).

It is also worth mentioning that for each instruction in the program, instruction is fetched

from memory or cache first and if the instruction is a load/store instruction then the data is

fetched from memory or cache subsequently. Thus when updating the unified cache, we always

update it first with the memory block representing the instruction and then with all memory

blocks representing the data access (if any).

Algorithm 1 describes the operations carried out for each instruction i in unified cache anal-

ysis. Given an input abstract cache set û1 it produces the output abstract cache set ûf after the

execution of instruction i.

In Algorithm 1, Û and Ûd represents the update functions used for instruction and data cache

analysis respectively, and t denotes the join function. Note that the update and the join function

depends on the type of analysis performed (may, must, persistence). For our purposes, we

performed both must and persistence analysis on unified cache. This allows us to categorize

certain code/data accesses as AH — Always Hit (via must analysis) or PS — Persistent (via

persistence analysis), thereby tightening our WCET estimate. We now discuss the experimental

results obtained from our analysis.

33

Algorithm 1 Unified Cache Analysis. û1 is the input abstract cache state (for a cache set) and
ûf is the output abstract cache state (for the same set) after executing a given instruction i.

Let mi be the memory block corresp. to instruction i
if (CACu(i) = A) then
ûm = Û(û1,mi)

else if (CACu(i) = N) then
ûm = û1

else if (CACu(i) = U) then
ûm = Û(û1,mi) t û1

end if
if the instruction is not a load/store instruction then
ûf = ûm
return

end if
Let M is the set of data memory blocks accessed by instruction i
if (CACu(di) = A) then
ûf = Ûd(ûm,M)

else if (CACu(di) = N) then
ûf = ûm

else if (CACu(di) = U) then
ûf = Ûd(ûm,M) t ûm

end if

4.5 Analysis results

In this section we evaluate the accuracy and precision of our unified cache analysis. We have

implemented the unified cache analysis inside the Chronos WCET analyzer framework [23]. To

compare the overestimation of WCET we have taken four different cache configurations whose

essential parameters are shown in Figure 4.2. For the rest of the discussion we shall use the

abbreviations for cache configurations as shown in Figure 4.2. Our implementation has a 5

staged pipeline with in-order execution. Branch prediction is assumed to be perfect in all the

experiments. L1 cache hit latency is 1 cycle and L1 cache miss penalty is 2 cycles. L2 cache

miss penalty is 4 cycles. If there is no level 2 cache in the configuration, the cache miss penalty

is taken to be 6 cycles. In Figure 4.2 all L1 caches have a block size of 32 bytes whereas all

L2 caches have a block size of 64 bytes. For each of the cache configurations shown in Figure

4.2 we define two metrics, Sim and Est. Here Sim represents the observed WCET (in terms

of cpu cycles) of a program and Est represents the WCET computed through static analysis (in

terms of cpu cycles).

All experiments are run on a 3 GHz Pentium 4 machine having a 1 GB of RAM and running

ubuntu Linux 8.10 operating system.

34

Instr. access Data access Instr. access Data access

Data accessInstr. access Instr. access Data access

Main memory

Main memory

Main memory
Main memory

L1 instruction cache
direct mapped, 1KB

L1 instruction cache
direct mapped, 1KB

direct mapped, 1KB

L1 instruction cache L1 instruction cache
direct mapped, 1KB

L1 data cacheL1 data cache

L1 data cache L1 data cache

direct mapped, 4 KB

direct mapped, 4 KB direct mapped, 4 KB

direct mapped, 4 KB

L2 instruction cache
2−way, 2 KB

L2 instruction cache
2−way, 2 KB

L2 data cache
2−way, 16KB L2 unified cache

2−way, 16KB

(b) il1−il2−dl1

(d) il1−dl1−ul2(c) il1−il2−dl1−dl2

(a) il1−dl1

Figure 4.2: Different cache configurations used in experiments

Benchmarks We have used benchmarks described in table 6.1 from [2]. To test the effect of

unified cache we have taken benchmarks having different characteristics as follows.

1. Benchmarks having small/medium loop (in terms of codesize) but accessing large amount

of data (e.g. matmult,cnt,ns).

2. Benchmarks having large loop (in terms of codesize), and accessing large amount of data

(e.g. fft, edn).

3. Benchmarks having large loop (in terms of codesize) but accessing small amount of data

(e.g. fdct).

4. Benchmarks having small loop (in terms of codesize) and accessing small amount of data

(e.g. qurt, expint).

We have benchmarks containing single as well as multiple paths. For example matmult, bsort100

are single path programs, whereas qurt,expint,fft have multiple paths.

Comparison of analysis precision Table 4.4 demonstrates the running time and accuracy of

our analysis. Cache analysis time in Table 4.4 corresponds to the total time taken for multi-level

cache analysis excluding the time for address analysis (which is presented separately). The

WCET overestimation ratio for different cache configurations are shown in Figure 4.3.

35

Table 4.3: Description of Benchmarks used

Benchmark Description Bytes LOC
matmult Matrix multiplication of two 20 X 20 matrices 3737 163

cnt Counts non-negative numbers in a 40 X 40 matrix 2880 267
bsort100 Bubblesort program 2779 128
insertsort Insert sort a reverse array of size 10 3892 92

expint Series expansion for computing an exponential integral function. 4288 157
bs Binary search for the array of 30 integer elements. 4248 114
fir Finite impulse response filter (signal processing algorithms) over a 700 items long sample 11965 276

fdct Fast Discrete Cosine Transform. 8863 239
fft 1024-point Fast Fourier Transform. 6244 135
ns Search in a multi-dimensional array. 10436 535

qurt Root computation of quadratic equations. 4998 166
edn Implements the jpegdct algorithm together with other signal processing algorithms. 10563 285

Table 4.4: Accuracy and running time of WCET analysis for the different cache configurations
described in Fig. 4.2.

il1-dl1 il1-il2-dl1 il1-il2-dl1-dl2 il1-dl1-ul2 Analysis time
Benchmark Sim Est Sim Est Sim Est Sim Est Address Cache

analysis analysis

matmult 187056 360154 187000 360146 186985 224222 186985 224230 2.78 1.6
cnt 75278 103056 75232 103048 74432 83840 74432 83848 1.14 1.3

bsort100 2692 3471 2664 3463 2664 3347 2664 3347 1.01 1.1
insertsort 968 1509 936 1493 936 1341 936 1341 1.01 1.04

expint 2730 3491 2693 3491 2693 3487 2693 3487 1.05 1.22
bs 141 261 121 261 121 221 121 221 1.01 1.01
fir 348411 700311 348374 700303 348168 498027 348192 498051 1.01 1.3

fdct 2893 4300 2744 4276 2744 4276 2744 4276 0.01 1.2
fft 610117 900693 571309 900633 561984 596237 562345 745637 1.29 2.67
ns 7665 13053 7641 13053 7577 10409 7585 10409 1.01 1.08

qurt 1847 2910 1816 2902 1701 2846 1701 2846 0.2 1.6
edn 90730 99574 87945 98054 87945 91216 87945 96216 1.1 3

36

Figure 4.3: WCET overestimation for the cache configurations in Fig. 4.2

For data intensive programs (e.g. matmult, fir, ns), WCET estimates in presence of unified

caches are much tighter than the WCET estimated in presence of only L1 data cache. Presence

of a L2 data cache also reduces the WCET. For these data intensive programs, a large number of

memory blocks whose hit-miss criteria were not-classified (NC) in L1 data cache, become per-

sistent in unified cache or L2 data cache. We also observe that modeling only an L2 instruction

cache together with the L1 instruction cache does not reduce the WCET significantly for these

programs. The reason is all loops of these programs can fit into the L1 instruction cache. Thus

no cache thrashing happens in L1 instruction cache when executing the loop body. Only reduc-

tion in WCET estimation by modeling the L2 instruction cache may come through the higher

block size of the same. We also observe that the estimate with unified cache and separated L2

data cache are almost the same. This signifies that there is little interference between instruction

and data in the L2 unified cache.

On the other hand, benchmarks which have very large loops in terms of codesize (e.g. edn),

modeling only an L2 instruction cache shows significant improvement in WCET. There is one

loop in edn which cannot fit entirely in a 1 KB instruction cache. Thus in presence of an L2

instruction cache, all instructions in the loop which would have been evicted from L1 cache,

become persistent in the L2 cache and reduces the overall WCET estimation. However there

is a significant amount of data accesses in edn; some of which become persistent in presence

of a unified cache and reducing the WCET estimation even more.

37

For benchmarks which have very small loop size (in terms of codesize) as well as access

very small set of data (e.g. qurt, expint, bsort100), the WCET estimate cannot be reduced much

by modeling any type of L2 caches. The reason is, all loops as well as accessed data memory

blocks for these benchmarks can fit in L1 instruction and data caches respectively and thus

getting no significant reduction in WCET in presence of L2 caches.

Finally, we observe that WCET estimates in presence of separate L2 instruction and data

caches are almost same for all of the benchmarks except edn and fft. For these two bench-

marks, there is a significant amount of interference between instruction and data in the unified

cache (for which the WCET estimate is increased) — an issue we discuss in the next section.

4.6 WCET-centric code and data layout

In this section, we shall describe how our unified cache modeling framework can be used to find

out possible conflicts between instruction and data memory blocks. We then use such conflict

information to change the layout of code and data simultaneously and thereby improving the

overall cache performance of an application.

In the presence of unified caches, conflict misses may occur between instruction and data.

Thus the WCET in presence of a L2 unified cache cannot be better than the WCET in presence

of separate L2 data and L2 instruction caches of same size. However a unified cache reduces lot

of storage cost. Thus if the code and data layout in the program are placed such that minimal

conflict misses occur in unified cache, WCET/ACET of an application can be highly reduced.

Procedure positioning is a well known compiler optimization aiming at the improvement of

instruction cache behaviour. A recent paper [1] has proposed procedure positioning optimiza-

tions driven by WCET information to effectively minimize the program’s worst case behaviour.

However in presence of unified caches, this problem becomes more challenging as instruction

may interfere with data and vice versa. Thus there is a need of simultaneous change of code and

data layout for WCET reduction in presence of unified caches. We present here a fast heuristic

based and unified cache aware algorithm for simultaneously changing the code and data layout

to effectively minimize the WCET of a program.

Issues with WCET-centric procedure positioning in presence of unified cache Current

WCET-centric procedure positioning algorithm may not be helpful in presence of unified caches.

For example let us consider the program below:

38

void f1()

{

.....

for(i = 0; i < N; i++) {

if(...) f3();

else {

f2(); a[i] = a[i] + 10;

}

}

}

0

1

2

3

4

5

6

7

8

9

10

11

12
13

14

15

0

2

3

1

256

257

258

259

.........

f1

f2

a[0]

a[N]

.........

260

261

262

263

.........
f1

f2 f3

1024

Instruction Memory Unified Cache Data Memory

WCET−centric call graph

Figure 4.4: Code and data layout before procedure positioning

0

1

2

3

4

5

6

7

8

9

10

11

12
13

14

15

0

2

3

1

f1

a[0]

a[N]

.........

260

261

262

263

.........

Instruction Memory Unified Cache Data Memory

.........

f24

5

6
7

CACHE THRASHING

Figure 4.5: Code and data layout after procedure positioning by [1]

Instruction and data memory layout for procedures f1, f2 and array a are shown in Figure

4.4. For sake of illustration assume a direct mapped unified cache with 16 cache lines. Initially

procedure f1 and f2 conflict each other in unified cache as shown in Figure 4.4. Array a maps

39

to cache lines 4 to 7. Because of the initial layout of f1 and f2, whenever f2 is called memory

blocks corresponding to procedure f1 got evicted and when control comes back to f1 again,

memory blocks corresponding to f2 are replaced eventually leading to a poor WCET estimate.

Thus a WCET-centric procedure positioning algorithm as described in [1] re-position the pro-

cedures from a “WCET-centric call graph” so that most frequently called procedures are placed

in contiguous memory locations. The WCET-centric call graph of a program1 is computed by

a WCET analyzer and is invariant of all program executions. Call frequency of each edge is

computed by the WCET analyzer and not by profiling. The WCET-centric call graph of the ex-

ample program is shown in Figure 4.4. The marked portion of the call graph corresponds to the

worst case path and edges corresponding to the worst case path is labeled with call frequencies

computed by the WCET analyzer. The layout after procedure positioning is shown in Figure

4.5. It is clear that without having the knowledge about where array a was mapped, procedure

positioning in a unified cache leads to a layout which may encounter cache thrashing scenario

as shown in Figure 4.5. This leads to the motivation of changing the layout of instruction and

data simultaneously in presence of unified cache which we are going to describe next.

Simultaneous procedure and data positioning The idea behind simultaneous procedure and

data positioning is to consider a unified memory and apply the general positioning algorithm.

WCET-centric unified graph We define a unified undirected graph Guni = (V,E) which is

an extension to the call graph. We have V = P ∪ R where P is the set of nodes corresponding

to all procedures and R is the set of nodes corresponding to all data references in the program.

There is an edge e ∈ E between p1 ∈ P and p2 ∈ P if p1 calls p2. Similarly there is an

edge e ∈ E between p1 ∈ P and r1 ∈ R if r1 is inside procedure p1. An edge e ∈ E can be

between two data references r1 and r2 if and only if references(r1) ∩ references(r2) 6= φ

i.e. two data references access some common memory blocks. Execution frequencies of all

edges of our unified graph are computed from the WCET analyzer. Clearly edges between two

data reference nodes do not have any associated frequency, they are drawn only to capture the

overlapping memory access behavior. The unified graph for the example in Figure 4.4 appears

in Figure 4.6 and the worst case path is marked. Edges belonging to the worst case path are

labeled with execution frequencies. Data references r1 and r2 represent two references to array
1The nodes of a call graph denote procedures, and edges denote calling relationships. The edges are typically

weighted with call frequencies.

40

a (one for load and another for store).

f1

f2 f3
r1 r2

1024
1024

1024

Figure 4.6: WCET-centric unified graph

Algorithm Our technique for simultaneous data and procedure positioning is described in Al-

gorithm 2. In the algorithm, the maxEdge function selects an edge e ∈ E labeled with highest

execution frequency at each step. If any node representing the edge (returned by end1 and end2

functions) is a data reference, then all overlapping data reference nodes with the current one

are first merged together by collapseData function to form a super-node. Subsequently the

collapseEdge function collapses the edge selected in that step to form a single node. This func-

tion also modifies all related execution frequencies. If none of the ends of a selected edge is a

data reference node, only the collapseEdge function is called to form a super-node as overlap-

ping data references (if any) are already captured in the existing nodes. The algorithm terminates

when no edges are left in the WCET-centric unified graph. After the graph has been merged to

a single node, the layout is computed assuming the presence of a single unified memory and

shifting to other memory such that mapping to the unified cache line is preserved.

Algorithm 2 Simultaneous code and data positioning. Guni is the unified graph and R is the set
of nodes in Guni which represent data references.

repeat
e = maxEdge(Guni);
if (e = φ) then

return;
end if
if (end1(e) ∈ R or end2(e) ∈ R) then

collapseData(e);
end if
collapseEdge(e);

until false

The collapsing of the unified graph in Figure 4.6 is depicted in Figure 4.7. For our example,

f1 and f2 are allocated contiguously in instruction memory. Memory blocks corresponding

to r1 and r2 are allocated in data memory such that they will map to the same cache line as

if it would have been allocated contiguously after f1 and f2 assuming a hypothetical unified

41

f1,f2

r1 r2

1024 1024
f1,f2,{r1,r2}

Figure 4.7: Transforming the unified graph of Figure 4.6

memory. The layout produced by our method is shown in Figure 4.8. As pointed out before our

algorithm is unified cache aware i.e. assumes the knowledge of unified cache and also assumes

the start of instruction and data memory.

0

1

2

3

4

5

6

7

8

9

10

11

12
13

14

15

0

2

3

1

f1

a[0]

a[N]

.........

.........

Instruction Memory Unified Cache Data Memory

f2

.........

4

5

6

7

8

8

9

10

11

Figure 4.8: Final layout after our code + data positioning

Experiments To evaluate our heuristic, we compared the procedure positioning method of [1]

with our unified code and data layout method. We chose the two benchmarks in our benchmark-

suite which have large codesize as well as manipulate large amounts of data. These two bench-

marks are fft and edn. We measure the amount of WCET reduction due to the procedure

positioning method of [1] as well as our unified code and data layout method for these two

benchmarks. A multi-level cache architecture with a L2 unified cache is assumed (see Fig.

4.2(d)). The results appear in Table 4.5. Estul2 represents the WCET estimate (in presence of

a unified L2 cache) assuming a default layout for code/data (e.g. code is laid out as it appears

in the program). Estp denotes the WCET estimate using the procedure positioning of [1] and

Estp+d captures the WCET estimate using our simultaneous procedure/data positioning.

As expected, Table 4.5 shows that procedure positioning heuristic of [1] alone is not useful

in presence of unified caches. But by simultaneous data and procedure positioning we are able

to reduce the WCET estimate by 3% for edn and almost 18% for fft. For fft benchmark we

42

Table 4.5: Reduction in WCET estimates via change in layout

Benchmark Estul2 Estp Estp+d
edn 96216 97240 93108

fft 745637 745638 608418

observe that using unified caches at level 2 increases the WCET by almost 0.15 million cycles.

fft has fairly large loop structures (in terms of codesize) and it is a data intensive program.

In case of improper data and instruction layout there is sufficient number of conflict misses in

unified cache which may give a poor WCET estimate. Thus by applying our heuristic we are

able to bring down the WCET estimate for fft substantially.

4.7 Chapter Summary

In this Chapter, we have developed a cache modeling framework for Worst-case Execution Time

(WCET) analysis of real-time embedded software. Our framework considers a generic multi-

level cache architecture with separated instruction and data caches in the first level and a unified

(code+data) cache in the second level. Unified cache is the most common in commercial pro-

cessors such as Intel x86 and ARM. Existing works on cache modeling have so far considered

either instruction or data caches but not both. Our experiments indicate that our analysis of the

multi-level unified cache architecture produces tight WCET estimates with low running time

overheads.

We also exploit our WCET analysis of the unified cache to build WCET-centric compiler

optimizations. In particular, we develop a joint (code + data) layout heuristic which leads to

better timing predictability in the presence of a unified cache as compared to existing WCET-

centric code positioning methods. These methods are oblivious of the data layout, whereas

our joint layout is aware of the unified cache. As a result, our combined code and data layout

achieves greater WCET reduction in the presence of a unified cache.

43

Chapter 5

Modeling Shared Cache for Timing

Analysis

In the previous chapter, we have seen the timing unpredictability arising due to the presence of

unified cache. Even for a single thread of execution, a unified cache may introduce difficulties

in WCET analysis due to the sharing of different instruction and data memory blocks. However

in a single thread of execution, the access sequences of instruction and data memory blocks are

mostly predictable (since the instruction is always fetched before the same instruction accesses

a data value). On the other hand, the modeling of shared caches in multi-core poses more

difficulties, as the thread interleaving pattern is non-deterministic and in general, it is infeasible

to enumerate all thread interleaving patterns. In this Chapter, we present a novel shared cache

modeling framework which significantly improves the analysis precision over the state-of-the-

art shared cache modeling.

5.1 Introduction

Recall that WCET estimation usually involves a program level path analysis (to determine the

infeasible paths in the program’s control flow graph) and micro-architectural modeling (to ac-

curately determine the maximum execution time of the basic blocks). Micro-architectural mod-

eling usually involves systematically considering the timing effects of performance enhancing

processor features such as pipeline and caches. Cache analysis for real-time systems is usually

accomplished by abstract interpretation. This involves estimating the cache behavior of a basic

blockB by considering the incoming flows toB in the control flow graph. The memory accesses

44

of the incoming flows are analyzed to determine the cache hits/misses for the memory accesses

in B. Since programs contain loops, such an analysis of memory accesses involves an iterative

fixed point computation via a method known as abstract interpretation. Abstract interpretation is

usually efficient, but the results are often not precise. This is because the estimation of memory

access behavior are “joined” at the control flow merge points - resulting in an over-estimation

of potential cache misses returned by the method.

In this Chapter, we develop a cache analysis framework which improves the precision of

abstract interpretation, without appreciable loss of efficiency. We augment abstract interpreta-

tion with a gradual and controlled use of model checking, a path sensitive search based formal

verification method. Because of path sensitivity in its search - model checking is known to

be of high complexity. Hence abstract interpretation based analysis cannot be naively replaced

with model checking for analysis of cache behavior. Recent works [68] which have advocated

combination of abstract interpretation and model checking for multi-core software analysis -

restrict the use of model checking to program path level; cache analysis is still accomplished

only by abstract interpretation. Indeed almost all current state-of-the-art WCET analyzers (such

as Chronos [23], [24]) perform cache analysis via some variant of abstract interpretation. Model

checking is usually found to be not scalable for micro-architectural analysis because of the huge

search space that needs to be traversed. The main novelty of our work lies in integrating model

checking with abstract interpretation for timing analysis of cache behavior.

Our baseline analysis is abstract interpretation. Potential cache conflicts identified by ab-

stract interpretation are then subjected to model checking. Our goal is to rule out “false” cache

conflicts which can occur only on infeasible program paths. Such false conflicts are consid-

ered by abstract interpretation since its join operator (which merges the estimates from paths

at control flow join points) conservatively considers all possible cache conflicts on any path

in the control flow graph. The path sensitive search in model checking naturally rules out the

infeasible program paths and the cache conflicts incurred therein.

One appealing nature of our analysis method is that the results are always safe. We start

with the results from abstract interpretation and gradually refine the results with repeated runs of

model checking. Model checking is a property verification method which takes in a system/pro-

gram P and a temporal logic property ϕ, where ϕ is interpreted over the execution traces1 of

P . It checks whether all execution traces of P satisfy ϕ. Given a potentially conflicting pair of
1We consider only Linear Time Temporal Logic properties here.

45

memory blocks, we can model check a property that the pair never conflicts in any execution

trace of the program. If indeed the conflict pair is introduced due to the over-approximation in

abstract interpretation - model checking verifies that the conflict pair can never be realized. We

can then rule out the cache misses estimated due to the conflict pair and tighten the estimated

time bounds.

The property checked in a single run of model checking involves certain cache conflicts

identified by abstract interpretation - model checking then verifies whether these conflicts are

indeed realizable. Thus, the scalability of our framework is never in question. Given a time

budget T , we can first employ abstract interpretation and then employ as many runs of model

checking as we can within time T . Of course, given more time, the results are more precise.

We finally show that such a compositional cache analysis framework is generic in nature

and the use of model checking can be replaced by different other forms of property checking

methodologies, such as constraint solving. Constraint solving technology has made significant

progress with the advances in satisfiability modulo theory (SMT). A constraint solver can be

used to explore different feasible program paths. Such a constraint solver based path exploration

executes the program based on the symbolic input variables (termed as symbolic execution in the

literature). Given a formula ϕ to check at a particular program location, a constraint solver is

used to check the satisfiability of ϕ whenever the same program location is visited during the

symbolic execution. The feasibility of a path is checked on-the-fly during the execution by

sending a query to the SMT based constraint solver. Due to this inherent path sensitive nature

of symbolic execution, the spurious cache conflicts can be eliminated when they are introduced

due to the over-approximation of abstract interpretation. As the SMT technology is continuously

evolving, we believe that the composition of abstract interpretation and constraint solving gives

another exciting opportunity for WCET analysis.

Technical contribution In summary, we present a generic cache analysis framework based on

abstract interpretation, model checking and constraint solving. Depending on the time budget

for analysis and the analysis precision required - the framework can be tuned to analyze cache

hit/miss classifications for timing analysis. Our experimental results on the moderate to large

scale WCET benchmarks [2] show substantial improvement in the precision of multi-core tim-

ing analysis results with limited time overheads. This yields a parameterizable cache analysis

framework for real-time systems which is generic, precise and scalable.

46

5.2 A background on existing cache analysis

WCET analysis of a single task WCET analysis of a single task is broadly composed of

two different phases: i) micro-architectural modeling and ii) path analysis. Micro-architectural

modeling analyzes the timing characteristics of different hardware components (e.g. cache,

pipeline, branch predictor) and works at the granularity of basic blocks. As an outcome of micro-

architectural modeling, we obtain the WCET of each basic block in the examined program. On

the other hand, path analysis uses the WCET of each basic block as input and searches for the

longest feasible program path. Our baseline implementation employs the separated cache and

path analysis as proposed in [9]. [9] uses abstract interpretation (AI) for cache analysis and

integer linear programming (ILP) for path analysis. We assume least recently used (LRU) cache

replacement policy. We implement must and may cache analysis to classify memory blocks as

all-hit (AH) and all-miss (AM) respectively. Must analysis is used along with virtual inline and

virtual unrolling (VIVU) as discussed in [9]. In VIVU approach, each loop is unrolled once to

distinguish the cold cache misses at first iteration of the loop. AH categorized memory blocks

are always in cache when accessed. On the other hand, AM categorized memory blocks are

never in cache when accessed. If a memory block cannot be classified as either of two (AH

or AM), it is considered unclassified (NC). Cache analysis outcome is used for computing the

WCET of each basic block. Finally, longest path search in a program is formulated as an integer

linear program. The formulated ILP uses the basic block WCETs and structural constraints

imposed by program control flow graph (CFG). Infeasible program path informations are also

encoded as separate ILP constraints using the technique explored in [22]. The solution of the

formulated ILP returns the whole program WCET.

Inter-core cache conflict analysis Inter-core cache conflict analysis computes the conflicts

generated in shared cache. Conflicts in shared cache, on the other hand, are generated by the

tasks running on different cores. Till now, only a few solutions have been proposed for analyzing

timing behaviors of shared cache [15; 37; 35]. However, all of them suffer from over-estimating

the inter-core cache conflicts. We use our former work on shared cache analysis [15], which em-

ploys a separate shared cache conflict analysis phase. Shared cache conflict analysis may change

the categorization of a memory block m from all-hit (AH) to unclassified (NC). This analysis

phase first computes the number of unique conflicting shared cache accesses from different

cores. Then it is checked whether the number of conflicts from different cores can potentially

47

replace m from shared cache. More precisely, cache hit/miss categorization (CHMC) of m is

changed from all-hit (AH) to unclassified (NC) if and only if the following condition holds:

N − age(m) < |Mc(m)| (5.1)

where |Mc(m)| represents the number of conflicting memory blocks from different cores which

may potentially access the same L2 cache set as m. N represents the associativity of shared

L2 cache and age(m) represents the age of memory block m in shared L2 cache set in the

absence of inter-core conflicts. Therefore, N − age(m) specifically represents the amount of

shift that memory block m can tolerate before being replaced from the cache. We call the term

N − age(m) as residual age of m.

5.3 Our proposed analysis framework

5.3.1 General framework

Figure 5.1(a) demonstrates the general analysis framework. Our goal is to refine the abstract

interpretation (AI) based cache analysis through model checking (MC). Cold cache misses are

unavoidable and AI based cache analysis can accurately predict the set of cold cache misses.

However, AI based cache analysis suffers from overestimating the conflict misses in a cache.

With the advent of multi-core architectures, it has become important to precisely estimate the

timing behaviour of shared cache. AI based shared cache analysis suffers from precisely esti-

mating the inter-core cache conflicts, which is generated in the shared cache by a task running

on a different core. Figure 5.1(b) pictorially represents the inter-core cache conflicts generated

in the shared cache.

Even though the basic goal of our framework is cache conflict refinement, the notion of

cache conflict may vary depending on the outcome of AI based cache analysis. For example, in

inter-task cache conflict refinement, initial CRPD analysis produces a set of ECBs, which can

be considered as the set of cache conflicts. On the other hand, during intra-task and inter-core

cache conflict refinement, we get the cache hit miss classification (AH, AM or NC) of each

memory block. A memory block might be categorized as NC due to its conflicts with more than

one memory block. Therefore, by refining one NC categorized memory block into AH, we may

reduce more than one cache conflict pairs, which in turn results in an improvement of WCET.

48

Executable

Cache

WCET
WCET

analysis

Conflicts in

cache

Modify

conflicts Refinement
success

Other Micro−architectural

modeling (pipeline, branch

predictor etc)

to refine
conflicts

Refinement
through

model checker

timeout

analysis by AI

Modify code failure
Refinement

All refinements
done

(a)

Task Task

Core 1 Core 2

L1 cacheL1 cache

Shared L2 cache

(b)

Figure 5.1: (a) inter-core cache conflicts, (b) General framework of our WCET analysis which
combines abstract interpretation and model checking

In Figure 5.1(a), the dotted boxed portion captures the shared cache conflict refinement.

The refinement of cache conflicts is iteratively performed through model checking on a modi-

fied program. We rule out the cache accesses for which AI has generated precise information.

Therefore, the model checker refinement phase works on a very small subset of all cache ac-

cesses. The iterative refinement through model checking eliminates several infeasible paths

from the candidate program, resulting in the removal of several unnecessary conflicts generated

in a particular cache set. The iterative refinement is continued as long as the time budget permits

or all possible refinements have been performed by MC. Recall that the WCET analysis process

can broadly be categorized into two phases: micro-architectural modeling and path analysis.

The infeasible path exploration by the model checker is only performed for refining cache con-

flicts (i.e. during the micro-architectural modeling phase). For path analysis, our framework

encodes the infeasible path information as separate ILP constraints (for details, refer to [22]).

Infeasible path constraints are finally used in the global ILP formulation for computing WCET.

There are two important advantages of our framework: first, the iterative MC refinement can be

terminated at any point if the time budget exceeds. The resulting cache conflicts, after a partial

49

refinement, can safely be used for estimating the WCET. Secondly, our framework can be com-

posed with other micro-architectural features (e.g. pipeline, branch prediction) and thereby, not

affecting the flexibility of AI-based cache analysis.

5.3.2 A general code transformation framework

Any code transformation for refining various cache conflicts can be represented by a quintuple

< L,A,Pl,Pc, I > as follows:

• L : Set of conflicting memory blocks in the cache set for which the refinement is being

made.

• A : The property which need be checked by the model checker. The property is placed in

form of an “assertion” clause, which validates A for all possible execution traces of the

modified code.

• Pl : Set of positions in the code where the conflict count would be incremented. These

are the set of positions where some memory block in L might be accessed.

• Pc : Position in the code where property A would be placed.

• I : Set of positions in the code to reset conflict count. Recall that we consider LRU cache

replacement policy. A memory block m becomes the most recently used immediately

after it is accessed. Therefore, if we are counting cache conflicts with m, the conflict

count must be reset after m is accessed.

Any model checker refinement pass corresponds to a specific cache set and therefore, conflicts

are defined for a specific cache set in each code transformation. Consequently, computation of

L and Pl depends only on the cache set for which the conflicts are being refined.

In subsequent sections, we shall describe the instantiation of the framework in Figure 5.1

for refining shared cache conflicts (as shown in Figure 5.1(b)). We shall also show how A, Pc
and I are configured for refining the inter-core cache conflicts.

For our subsequent discussions, we shall use the example in Figure 5.2. Parameter z can

be considered as an input to the program. Control flow graph (CFG) of the loop body and the

accessed memory blocks are also shown in Figure 5.2.

50

void f(int z) {
int i = 0;
while (i < 100) {

if (z >= 0) {
x++;

} else {
x−−;

}
if (z == −2) {

x−−;
} else {

x++;
}

i++;}

}

T

T NT

NT

m4

m2m1

m3

m0

m6m5

Figure 5.2: Example program and its corresponding control flow graph (CFG) without the
backedge

5.3.3 Refinement of inter-core cache conflicts

We describe the refinement of inter-core conflicts generated in a shared cache (as shown in

Figure 5.1(b)). Recall from Equation 5.1 that the precision of shared L2 cache analysis largely

depends on the accuracy of estimating the term |Mc(m)|. The model checking pass in our

framework refines the setMc(m) by exploiting infeasible paths in the conflicting task.

Figure 5.3 demonstrates the instantiation of our general framework for inter-core conflict

refinement. We only target the memory blocks whose categorizations are changed from AH

to NC in a shared cache conflict analysis phase. Consider such a memory block m mapping

to an N -way associative shared L2 cache set i. Disregarding the inter-core conflicts, assume

the maximum LRU age of m in cache set i is denoted by age(m). Therefore, if the amount of

inter-core conflicts (in cache set i) is bounded by N − age(m), we can guarantee that m will

remain a shared L2 cache hit, despite inter-core conflicts. Recall that N − age(m) is called the

residual age of m. Further assume tc is a task which may generate inter-core cache conflicts

and Ci serves the purpose of counting inter-core conflicts in shared L2 cache set i generated by

tc. Therefore, we use the model checker to verify an “assertion” property Ci ≤ N − age(m).

Identical to inter-task cache conflict refinement, we need to check the total amount of cache

conflicts generated by task tc. Therefore, in our transformed code, we initialize Ci only once,

before any cache blocks accessed by tc and we check the “assertion” property just before the

exit point of tc.

The example in Figure 5.2, assume thatm1 andm5 map to the same cache set of a 2-way set

associative L2 cache. Further assume that we are trying to refine the inter-core cache conflicts

generated to a task t′ and t′ is running in parallel on a different core with the task in Figure

51

Memory blocks inside
a loop that are changed
from AH to NC in shared
cache conflict analysis

Modify categorization

from NC to AH

Refinement failure

All refinements
done

Timeout

Refinement
success

model checker

Refinement by
< L,A,Pl,Pc, I >

Figure 5.3: Refinement of shared cache conflict analysis

m1

m5

m4

NTT

NTT

m2

m0

m3

m6

void f(int z) {
int i = 0;
while (i < 100) {

if (z >= 0) {
x++;

} else {

}
if (z == −2) {

x−−;
} else {

x++;
}

i++;}

}

x−−;

int flag_m5 = 0;

int C_1 = 0;

int flag_m1 = 0;

void f(int z) {

int i = 0;

if (flag_m1 == 0) {

flag_m1 = 1;

}

while (i < 100) {

if (z >= 0) {

}

x++;
} else {

x−−;

if (z == −2) {

}

flag_m5 = 1;

if (flag_m5 == 0) {

x−−;
} else {

x++;
}

i++;
}

}
assert(C_1 <= 1);

C_1++;

C_1++;

I1

L1

P2

L2

Model

checker

query

Original code

Modified code

Control flow graph

Figure 5.4: Inter-core cache conflict refinement

5.2. Consider t′ accesses a memory block m′, which map into the same shared L2 cache set as

m1 and m5. Finally assume that m′ is an all-miss (AM) or unclassified (NC) in L1 cache, but

an all-hit (AH) in L2 cache with residual age one, in the absence of inter-core cache conflicts.

Previous analysis will compute |Mc(m
′)| as 2 (due tom1 andm5 in the conflicting task). Since

the residual age of m′ is one, the categorization of m′ will be changed to NC (Equation 5.1),

leading to unnecessary conflict misses. We modify the code to check whether the number of

unique inter-core conflicts is less than or equal to the residual age of m′. The transformation

is similar to Figure 5.4 where C 1 serves the purpose of counting unique cache conflicts with

m′ in shared L2 cache. The model checker will satisfy the assertion P2 in Figure 5.4 due to the

infeasible path m1-m3-m5. Consequently, we shall be able to derive that the amount of inter-

52

core conflicts with m′ never exceeds the residual age of m′. Therefore, the categorization of m′

is kept all-hit (AH). Configuration of our code transformation framework< L,A,Pl,Pc, I > is

identical to the inter-task cache conflict refinement as follows: L = {m1,m5}, Pl = {L1, L2},

A is the “assertion” clause checking the property C 1 ≤ 1, Pc = {P2} and I = {I1}.

Although we show the transformation for a two core system, our framework does not have

the strict limitation of working only for two cores. However, one model checker invocation can

verify only one task. Therefore, to refine conflicts from X different tasks t1, t2, . . . , tX run-

ning on X different cores, we first employ an additional compose phase in transformation. The

compose phase sequentially composes t1, t2, . . . , tX (in any order) into a single task T . The

infeasible paths in any task t1, t2, . . . , tX are preserved in task T . Consequently, our code trans-

formation technique can be applied to T in exactly same manner as described in the preceding

to refine conflicts from t1, t2, . . . , tX . Since the composition is sequential, number of conflicts

are accumulated from all X cores. Model checker refinement passes can then be carried out on

task T .

5.3.4 An extension to a generic cache analysis framework

In [69], we have shown that such a combination of abstract interpretation and model checking is

generic in nature and it can be used to refine different varieties of cache analysis. More precisely,

our framework proposed in Figure 5.1(a) can be instantiated for refining three different varieties

of cache analysis: first, cache analysis in single core, secondly, cache analysis for multi-tasking

system in single core and thirdly, shared cache analysis for multi-core systems. In the preceding,

we only present the instantiation of our framework for shared cache analysis. For further details,

readers are referred to [69].

5.3.5 Optimizations

To reduce the number of calls to model checker, we cache the verification results. Recall that the

“assertion” property verified by the model checker was always placed at the end of conflicting

task during inter-core cache conflict refinement. Therefore, the following optimization can be

applied only during inter-core conflict refinement.

Model checker results are stored as a triple (set, resultmc, conflicts). The triple has the

following meaning:

• set : Cache set for which the refinement is being made.

53

• resultmc : Returned result by the model checker. Assume resultmc is one for a successful

verification and zero otherwise.

• conflicts : Number of conflicts in the assertion property. If we verify an assertion prop-

erty Ci ≤ N , value of conflicts is N .

In Figure 5.4, we store (1, 1, 1) after the successful refinement (assuming m1 and m5 map to

cache set 1). Assume any other assertion of form Cset′ ≤ N ′ is needed to be verified, where

set′ is the cache set for which the conflicts are being refined. We search the cached results of

form (set, resultmc, conflicts) and take an action as follows:

• set = set′ ∧ resultmc = 0 ∧ N ′ ≥ conflicts: Assertion failure is returned. If the

refinement previously failed for a less number of conflicts, it will definitely fail for more

conflicts.

• set = set′ ∧ resultmc = 1 ∧ N ′ ≤ conflicts: Assertion success is returned. If the

refinement was previously satisfied for more number of conflicts, it must be satisfied for

less number of conflicts.

If none of the entries satisfy the above two conditions, a new call to the model checker is made.

Depending on the outcome, the new result is cached accordingly for future use.

5.4 Implementation and evaluation using CBMC

5.4.1 Implementation

We have used the Chronos timing analysis tool [23] in which we have already integrated the AI

based cache analysis proposed in [9] (for single core) and [15] (for multiple cores). Chronos

employs detailed micro-architectural modeling (superscalar, out-of-order pipeline and branch

prediction).

For model checking purposes, we use C bounded model checker (CBMC) [70]. CBMC

formally verifies ANSI-C programs through bounded model checking (BMC) [71]. For a given

system/program P , BMC unwinds P to a certain depth. After unwinding, a Boolean formula

is obtained that is satisfiable if and only if there exists a counter example trace. The formula

is checked by a SAT procedure. If the formula is satisfiable, a counter example is produced

from the output of SAT procedure. Technically, for a C program, the unwinding is achieved

54

by unrolling the program loops to a certain depth. For a given unwinding depth n, CBMC

unwinds a loop by duplicating the code of loop body n times. Each copy is guarded by the loop

entry condition and hence, covering the cases where the loop executes for less than n iterations.

The main advantage of CBMC is that the tool also checks whether sufficient unwinding has

been done and thereby ensures that no longer counterexample can exist. Technically, CBMC

achieves the same by putting an “assertion” (called unwinding assertion) after the last copy of

the unrolled loop. The assertion uses the negated loop entry condition and therefore, it ensures

that the program never requires more iterations. In summary, if no counterexample is produced

by CBMC, it ensures the absence of error in the program for any execution.

As described in the preceding, CBMC requires unwinding depth (bound) of each loop. If

user does not specify any unwinding depth (loop bound), CBMC tries to determine the depth

automatically. In most of our experiments, CBMC was able to determine the loop bound auto-

matically. For the cases where CBMC failed to determine the loop bound, we passed sufficient

loop bound for each loop as an input to CBMC. Recall that CBMC automatically put an “asser-

tion” clause (called an unwinding assertion) after the last unwound copy of a loop. The assertion

clause verifies the negated loop entry condition. Therefore, if insufficient loop bound is provided

by the user, CBMC generates an unwinding assertion violation and the verification process re-

turns a failure. Consequently, user can give a larger loop bound and rerun CBMC. However,

in our experiments, we initially provided sufficient loop bounds, so that no unwinding assertion

is violated. In our current implementation, CBMC is called as an external module. Therefore,

for each different call of CBMC, the loop unwinding needs to be performed. Running time of

our analysis can certainly improve if we can restrict the number of loop unwindings. This will

require us to make use of CBMC and Chronos in a single binary executable, which could be

explored in future.

Figure 5.5 gives an overall picture of our implementation framework. The figure demon-

strates one refinement for each type of conflicts. Chronos employs AI based cache analysis

directly on the executable. We use a utility addr2line which converts an instruction address

to corresponding source code line number. The information generated by addr2line is used

to generate the transformed code. The transformation of code is entirely automatic. Note that

the sole purpose of the transformed code is to prove that certain cache conflicts in the original

code are infeasible. Therefore, the timing effects generated by the original code is entirely inde-

pendent of the additional code introduced in transformation. The transformed code contains an

55

Inter−core

Executable

analysis

Path
CFG

L1 cache
analysis

L2 cache

analysis

CHMC

in L2 cache

Executable

running

core
conflict setconflict analysis

Shared cache

on a different
addr2line

CBMC

SATISFIED

VIOLATED

Modified
source

code

Figure 5.5: Implementation framework using CBMC

“assertion” property to be verified by CBMC. CBMC either successfully verifies the assertion

property or generates a counter example. We would finally like to point out that the central

contribution of this paper is an efficient composition of abstract interpretation and model check-

ing. Therefore, even though we have used CBMC for model checking, our proposed framework

(Figure 5.1) remains unchanged if we use a model checker that directly works on the executable

(e.g. [72]). Nevertheless, there are certain advantages of using a model checker like [72]. Since

[72] directly works on the executables, it can capture the effect of all compiler optimizations.

Our technique can be integrated with [72] to make a more robust WCET analysis framework.

5.4.2 Experimental setup

We have chosen benchmarks from [2] which are generally used for timing analysis. Note that

the main motivation of our work is to remove spurious cache conflicts, which were introduced

due to the infeasible paths. Infeasible paths are often introduced when auto generating code

from a high level modeling language (e.g. esterel as shown in [22]). For evaluation of

our framework, therefore, we need a set of tasks which potentially exhibit many paths. Table

5.1 demonstrates a set of benchmarks having multiple paths. Let us call the set of tasks in

Table 5.1 as conflicting task set. All the model checker (CBMC) passes are used to refine the

inter-core conflicts generated by the conflicting task set. We use another set of benchmarks

from [2] as shown in Table 5.2 during inter-task and inter-core conflict refinement. We call the

tasks in Table 5.2 as standard task set. During inter-core cache conflict refinement, we refine the

56

conflicts generated by the conflicting task set on the standard task set. We report our experiences

for each possible combinations of standard and conflicting task set.

Table 5.1: Conflicting task set

Task Description code size (bytes)
statemate Automatically generated code 52618

from Real-time-Code generator STARC
compress Data compression program 13411
nsichneu Simulate an extended petri-net 118351

Table 5.2: Standard task set

Task Description code size (bytes)
cnt Counts non-negative numbers in a matrix 2880
fir Finite impulse response filter 11965

fdct Fast discrete cosign transform 8863
jfdctint discrete cosign transform on 8× 8 block 16028

edn signal processing application 10563
ndes complex embedded code 7345

We use the following terminology in presenting the experimental data:

• WCETbase : WCET before any refinement by model checker.

• WCETrefined : WCET after refinement by model checker.

WCET improvement is computed as WCETbase−WCETrefined

WCETbase
× 100%.

Our framework uses the usual 5-stage pipeline (IF-ID-EX-MEM-WB) implemented by

Chronos when predicting the WCET value. We fix the L1 cache miss latency as 6 cycles and L2

cache miss latency as 30 cycles for all the experiments. For the experiments which do not have

an L2 cache (e.g. inter-task and intra-task conflict refinement), we simply take the L1 cache

miss penalty as 36 cycles. All reported experiments have been performed in an Intel Core i7

processor having 4 GB of RAM and running ubuntu 10.04 operating system. The reported total

time captures the entire time taken during the analysis — including the base analysis through

abstract interpretation and repeated CBMC invocation steps.

5.4.3 Evaluation

Key result Before going into the details of each experiment, let us first demonstrate the key

result of this work via Figure 5.6. Figure 5.6 shows the average WCET improvement using

57

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10
 15

 20
 25

 30
 35

 40
 45

 50

%
im

p
ro

v
e
m

e
n
t

time (in seconds)

Average timing precision improvement using CBMC

29%

45%

inter-core

Figure 5.6: Timing precision improvement w.r.t. time using statemate and CBMC

CBMC. The improvement of WCET is demonstrated in case of inter-core cache conflict re-

finement. We observe that inter-core cache conflict refinement demonstrates an almost linear

improvement in timing precision (i.e. improvement in WCET) with respect to time.

As our result is always safe, a provably correct WCET value can be obtained from any ver-

tical cut along the time axis of Figure 5.6. As illustrated in Figure 5.6, consider the vertical

cut at 100th second. It clearly shows that if we end the model checker (CBMC) refinement

process after 30 seconds, we can obtain 32% improvement during inter-core cache conflict re-

finement. Nevertheless, if the model checker refinement process is allowed more time to run,

we can obtain better precision in our obtained result (46% for inter-core conflict refinement after

45 seconds, as shown in Figure 5.6).

Reducing inter-core cache conflicts Finally, we present the result of inter-core cache conflict

refinement in Figure 5.7(a). The analysis time recorded for each refinement is reported in Figure

5.7(b). In one core, we run a task from the standard task set (in Table 5.2) and in another core, we

run a task from the conflicting task set (in Table 5.1). Reported WCET improvements represent

the WCET improvements from the standard task set. For the experiments reported in Figure

5.7(a), we need the analysis of both L1 and L2 cache. We fixed the L1 cache as a direct-

mapped, 256 bytes with a block size of 32 bytes. L1 cache is taken relatively small so that we

are able to generate reasonable number of conflicts in the shared L2 cache. We take a 4-way

58

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

cnt
fir fdct

jfdctint

edn
ndes

%
 W

C
E

T
im

pr
ov

em
en

t

benchmark

WCET improvement in multi-core by CBMC

STATEMATE NSICHNEU COMPRESS

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

cnt
fir fdct

jfdctint

edn
ndes

A
na

ly
si

s
tim

e
(in

 s
ec

on
ds

)

benchmark

Analysis time for WCET refinement in multi-core using CBMC

STATEMATE NSICHNEU COMPRESS

(b)

Figure 5.7: (a) WCET improvement in multi-core using CBMC, (b) analysis time using CBMC

associative, 8 KB shared L2 cache having a cache block size of 32 bytes.

We are able to significantly reduce the standard task WCET by refining the inter-core cache

conflicts (maximum improvement around 50%). Similar to the inter-task cache conflict refine-

ment, we run the refinement process until we had checked all possible and spurious inter-core

cache conflicts. All our experiments using CBMC complete within four minutes.

5.5 Cache conflict refinement through symbolic execution

Motivation Our compositional analysis framework using abstract interpretation and constraint

solving is inspired by the recent advances in satisfiability modulo theory (SMT) and program

59

path exploration. In the past few years, constraint solver based path exploration has made sig-

nificant progress for program functionality testing [73; 74]. In these works, different feasible

program paths are explored to find functionality bugs. Our work combines constraint solving

with abstract interpretation to reduce the imprecision of abstract interpretation based cache anal-

ysis.

In this section, we shall extend our compositional analysis framework with a symbolic exe-

cution engine. As before, we use the abstract interpretation (AI) as a base analysis. We rule out

the set of inter-core cache conflicts which are accurately analyzed by AI. Rest of the cache con-

flicts are iteratively refined using our code transformation framework and a symbolic execution

engine.

5.5.1 KLEE symbolic execution engine

KLEE [75] is a symbolic execution engine based on LLVM [76] compiler infrastructure. KLEE

uses the power of satisfiability modulo theory (SMT) and the SMT based solvers to explore

different paths in a program. Such a path exploration strategy has been proved very effective in

exposing some critical functionality bugs in real-world programs [74].

To better understand the workflow of KLEE, we shall use our example in Figure 5.2. Al-

though KLEE interprets the LLVM bitcode, for the sake of simplicity, we shall convey the main

idea through the source code shown in Figure 5.8.

Assume that z represents an input to the program shown in Figure 5.8. Before KLEE starts

interpreting the program, a few variables of the program are marked as symbolic. Typically,

these symbolic variables represent the input to the program. Any expression, whose value de-

pends directly or indirectly on these symbolic variables, are treated as symbolic expressions

throughout the program. For the program in Figure 5.8(a), we mark z as symbolic, as z is an

input to the program. If the value of an expression does not depend on any of the symbolic

variables, the expression value is treated as concrete (i.e. input independent). In Figure 5.8, any

update on variable i and x are interpreted as concrete values, as the updates on i and x are not

data dependent on the value of z.

At each program point, KLEE maintains a constraint store. The constraint store is a sym-

bolic formula on the input variables which must be satisfied to reach the same program point.

The constraint store is the logical formula true at the beginning of the program and is adjusted

at each branch instruction. In example 5.8(b), the program hits the i < 100 branch instruction

60

void f(int z) {
int i = 0;
while (i < 100) {

if (z >= 0) {
x++;

} else {
x−−;

}
if (z == −2) {

x−−;
} else {

x++;
}
i++;}

}

i = 0

z ≥ 0

i < 100

z ≥ 0 z < 0

z == -2 z == -2

z ≥ 0 z ≥ 0
∧ ∧

i < 100 i < 100 i < 100

z < 0 z < 0

SATISFIABLE SATISFIABLE

SATISFIABLESATISFIABLE

UNSATISFIABLE
FORMULA

SATISFIABLE

(UNEXPLORED)

z �= -2 z �= -2
z = -2 z = -2

∧
∧

(a) (b)

Figure 5.8: (a) Example program, (b) KLEE symbolic execution

first. Since i is not an input and is initialized 0, only the true leg of the branch instruction is

interpreted.

However, consider the branch instruction z ≥ 0, when being hit for the first time. At this

point, the constraint store is the logical formula true. This branch condition is sent as a query

to the SMT solver to decide the condition outcome (i.e. true or false). The SMT solver consults

the constraint store to decide the outcome of the branch condition. Since the constraint store is

the logical formula true, the outcome of z ≥ 0 could be both true or false depending on the

value of input z. Therefore, KLEE forks two different execution states for each leg of the branch

instruction. The constraint store at the true leg is updated as z ≥ 0 and the same at the false leg

is updated as z < 0. The content of the constraint store is shown beside the control flow edges.

Now consider the branch instruction z == −2 with constraint store z > 0. The SMT solver

checks the satisfiability of the formula z ≥ 0 ∧ z = −2, which is clearly unsatisfiable. The un-

satisfiability of such formula can be checked very fast by an SMT solver with the theory of linear

integer arithmetic. Therefore, KLEE does not create any execution state which corresponds to

the unsatisfiable constraint store z ≥ 0 ∧ z = −2. Eventually, three different execution states

are created (as shown in Figure 5.8(b)) with their respective constraint stores as follows:

• z ≥ 0 ∧ z 6= −2,

• z < 0 ∧ z = −2, and

• z < 0 ∧ z 6= −2

The symbolic execution by KLEE is terminated when it finishes interpreting all the instructions

61

int flag_m5 = 0;

void f(int z) {
int i = 0;

while (i < 100) {
if (z >= 0) {

int C_1 = 0;

}
x−−;

} else {
C_1 = 0;
flag_m5 = 0;
x++;

}

if (z == −2) {
if (flag_m5 == 0) {

flag_m5 = 1;
C_1++;

}

x−−;

i++;

} else {
x++;

}
}

assert(C_1 <= 0);

I1

P1

I2

L2

z ≥ 0

i < 100

z == -2

i < 100 i < 100

i < 100(UNEXPLORED)

z == -2

assert(C 1 ≤ 0)

C 1 = 0
i = 0

C 1++

C 1++

C 1 = 0 ∧ C 1 ≤ 0

SMT solver query

(a) (b)

Figure 5.9: (a) Transformed code for checking cache conflict, (b) checking the assertion during
KLEE symbolic execution

in all the three execution states (as shown in the preceding).

5.5.2 Cache conflict refinement

KLEE has successfully been applied to discover many critical functionality bugs. At a high

level, our code transformation framework can be viewed as reducing the problem of cache tim-

ing checking to functionality checking. Recall that our code transformation framework contains

an assertion property A to check whether certain cache conflicts in the program are spurious.

This assertion property can be checked for validity using KLEE. If any execution ofA leads to a

violation of the property captured byA, the entire symbolic execution by KLEE is aborted. Such

an abnormal termination of the program captures the fact that certain cache conflicts (captured

by A) can be realized for some execution of the program and therefore, such cache conflicts are

not spurious. On the other hand, if the execution of KLEE is not aborted, we can prove that our

introduced assertion holds over all possible executions of the program. Consequently, the cache

conflict captured by the assertion property is spurious.

We shall demonstrate the refinement process through the example in Figure 5.9. Figure

5.9(b) shows that only one execution state (among all three) can execute the assertion property

involving the variable C 1. Since KLEE interprets the program, at each program point it holds

the value of all the registers and memory locations. At the assertion location, KLEE checks

whether the currently stored values satisfy the assertion. Since C 1 has a value of zero, a

62

formula of the form C 1 = 0 ∧ C 1 ≤ 0 is sent to the SMT solver as a query. If the SMT

solver returns a satisfiable formula, we can conclude that the assertion property holds for the

corresponding execution. For the example shown, all the executions of the assertion property

send the same formula (i.e. C 1 = 0∧C 1 ≤ 0) to the SMT solver. Therefore, KLEE execution

is never aborted for the example and we can conclude that m1 and m5 cannot create conflicts in

the cache for any execution.

It is important to note that the above checking procedure is entirely different from CBMC.

In CBMC, the checking of an assertion property is captured by a single SAT formula. The SAT

formula takes care of all the different program paths that may reach the assertion. Therefore, in

general, the SAT formula created by CBMC is very large. On the other hand, KLEE does not

check the assertion by a single formula. KLEE checks the assertion property while interpreting

the program. Therefore, each time the assertion is interpreted, an SMT solver is asked to check

the satisfiability of the assertion. The symbolic and concrete values at the assertion location are

used to validate the assertion property. Note that each interpretation of the assertion captures

a single program path and therefore, the formula checked by the SMT solver is usually much

simpler than the single SAT formula generated by CBMC. Nevertheless, an SMT solver is called

many times to check the assertion property, whereas CBMC calls a SAT solver only once.

Finally, for a violation of the assertion property, the KLEE symbolic execution can be

aborted as soon as a violation is reached. As a result, a violation of the assertion is likely to

be checked much more quickly than the validity of the same assertion. On the other hand,

since CBMC creates a single SAT formula capturing all the program paths, it has to wait till

the formula is generated and checked for satisfiability by the SAT solver. Therefore, the time

taken by CBMC for the violation (or validity respectively) of an assertion largely depends on

the performance of the SAT solver to check the satisfiability (or unsatisfiability respectively) of

a formula.

5.6 Implementation and evaluation using KLEE

5.6.1 Implementation

Figure 5.10 shows our implementation framework using KLEE. The basic structure of the imple-

mentation is same as in Figure 5.5. The modifications made to use KLEE have been highlighted

in Figure 5.10. KLEE is a symbolic execution engine based on the LLVM bitcode format.

63

Inter−core

Executable

analysis

Path
CFG

L1 cache
analysis

L2 cache

analysis

CHMC

in L2 cache

Executable

running

core
conflict setconflict analysis

Shared cache

on a different
addr2line

KLEE

Abort

Normal

termination

Modified

LLVM

bitcode

Figure 5.10: Implementation framework using KLEE

Therefore, our transformation is made at the level of LLVM bitcode. KLEE allows to spec-

ify assertions, which are checked during the symbolic execution using [77] constraint solver.

Originally, KLEE ignores the assertions with a warning and continues symbolic execution. We

modify the source code of KLEE to terminate the symbolic execution as soon as it reaches the

violation of some assertion property. Note that our sole purpose is to check the assertions intro-

duced in the modified code, and therefore, we do not need to continue execution if the assertion

is violated in some execution state. As a result, KLEE can usually check the violation of an

assertion property much faster than CBMC.

5.6.2 Evaluation

In this section, we shall evaluate our compositional analysis framework using symbolic execu-

tion engine (i.e. the implementation framework shown in Figure 5.10). We shall compare the

results obtained using symbolic execution (i.e. using KLEE) with the results obtained using

model checking (i.e. using CBMC). To make a fair comparison, we use the same experimental

setup of Section 5.4.2. Therefore, for each of the experiments reported in the following, we use

the exactly same micro-architectural configuration and application setting used in Section 5.4.3

(i.e. during the evaluation of our framework using model checking). We shall also compare the

overall analysis time required for our framework using model checking and symbolic execution.

64

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.5
 1 1.5

 2 2.5
 3 3.5

 4 4.5
 5

%
im

p
ro

v
e
m

e
n
t

time (in seconds)

Average timing precision improvement using KLEE

43%
46%

inter-core

Figure 5.11: Timing precision improvement w.r.t. time using statemate and KLEE

Key result Figure 5.11 shows the average WCET improvement using KLEE. The improve-

ment of WCET is demonstrated in case inter-core cache conflict refinement.

We observe from Figure 5.11 that the analysis time using KLEE is much smaller compared

to the time taken by CBMC (refer to Figure 5.6). Similar to model checker refinement phase,

our analysis result is always safe during the refinement through symbolic execution. However,

as the symbolic execution through KLEE is much faster than model checking, we can obtain a

provably correct, yet precise WCET value using KLEE quicker than using CBMC. As illustrated

in Figure 5.11, consider the cut at 4th second. By 4 seconds, KLEE is able to check all possible

inter-core cache conflicts.

Together from Figure 5.6 and Figure 5.11 we can conclude that the improvement in precision

using symbolic execution can be obtained faster than model checking. This is evidenced by the

vertical cuts along the time axes in Figure 5.6 and Figure 5.11.

Reducing inter-core cache conflicts Figures 5.12(a) shows the precision gain obtained us-

ing KLEE. KLEE and CBMC produce the exactly same precision gain in WCET. For all the

benchmarks, KLEE and CBMC are able to refine the same number of inter-core cache conflicts,

thereby reducing the WCET by the exactly same amount. This result is evidenced by Figure

5.12(a).

Figure 5.12(b) compares the analysis time overhead using CBMC and KLEE. For nsichneu

65

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

cnt
fir fdct

jfdctint

edn
ndes

%
 W

C
E

T
im

pr
ov

em
en

t

benchmark

Comparison of WCET improvement in multi-core by CBMC and KLEE

STATEMATE + CBMC
STATEMATE + KLEE

NSICHNEU + CBMC
NSICHNEU + KLEE

COMPRESS + CBMC
COMPRESS + KLEE

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

cnt
fir fdct

jfdctint

edn
ndes

A
na

ly
si

s
tim

e
(in

 s
ec

on
ds

)

benchmark

Comparison of analysis time for WCET refinement in multi-core using CBMC and KLEE

STATEMATE + CBMC
STATEMATE + KLEE

NSICHNEU + CBMC
NSICHNEU + KLEE

COMPRESS + CBMC
COMPRESS + KLEE

(b)

Figure 5.12: (a) Comparison of multi core WCET improvement using CBMC and KLEE, (b)
comparison of analysis time using CBMC and KLEE

66

and compress, KLEE generates the same results at least twice faster than CBMC. On the other

hand, for statemate, usage of KLEE leads to a significant improvement in the refinement

process – with as much as 900% for a few benchmarks (Figure 5.12(b)). The maximum time

taken by KLEE for any of the benchmarks is 80 seconds.

5.6.3 Discussion

We have evaluated our framework using two different forms of iterative refinements – model

checking and symbolic execution. For model checking, we have used CBMC and for symbolic

execution, we have used KLEE. In our experiments, CBMC was unable to infer some of the

loop bounds in a program automatically. In particular for statemate, we provided sufficient

loop bounds, so that no unwinding assertion is violated (recall that an unwinding assertion is

violated when the user given loop bound may under-approximate the number of times the loop

body can be executed). On the other hand, since KLEE performs a symbolic execution of the

program, it was able to automatically detect the termination of all the loops and no manual

intervention was required during the experiments using KLEE. Our evaluation shows that both

the symbolic execution and model checking improve the analysis precision by exactly same

amount. However, a symbolic execution guided refinement process is much faster than the

refinement process based on model checking. This time efficiency of symbolic execution has

been made possible by the recent advances in SMT technologies. KLEE uses the fast SMT

solver STP for constraint solving, hence improving the refinement process of our framework

significantly. Moreover, if any execution of an assertion property leads to a violation, the entire

symbolic execution by KLEE can be terminated. This in turn makes the violation check of an

assertion much faster than CBMC.

5.7 Chapter summary

In this chapter, we have proposed two compositional WCET analysis frameworks, one of which

combines abstract interpretation with model checking and the second one combines abstract

interpretation with constraint solving, both for shared cache modeling. Our framework does

not affect the flexibility of abstract interpretation based cache analysis and it can be composed

with the analysis of different other micro-architectural features (e.g. pipeline). Moreover, our

model checker or symbolic execution guided refinement process is always safe. Therefore, the

67

refinement process can be terminated at any point if the time budget is violated. Experimental

results show that we can obtain significant improvement in cache analysis for multi-cores using

both of our compositional analysis frameworks.

68

Chapter 6

Modeling Shared Cache and Bus for

Timing Analysis

In Chapter 5, we have modeled the timing effects of shared cache. In this Chapter, we shall

extend our framework to analyze the timing effects of another primary shared resource in multi-

core – namely the shared bus. It is very common that the shared last level cache or the external

memory is accessed through a shared bus. Shared cache and shared bus introduce unpredictable

execution time behaviour of a program due to the conflicts arising from different cores. The

conflicts arising in the shared cache and the shared bus are not independent. Therefore, it is

crucial to model the timing effects of both the shared cache and the shared bus and their inter-

actions for current generation multi-core architectures. To the best of our knowledge, ours is the

first work to model the timing effects of both the shared cache and the shared bus.

6.1 System and Architectural Model

Our system architecture is representative of the current generation of commercial multi-core

platforms (Figure 6.1). Each core on chip has one or more levels of private caches and the last

level of private caches from all the cores are connected to a large shared cache through a shared

bus. For example, ARM Cortex-A9 MPCore [78] and Intel core 2 (code named Penryn) [79]

have only private L1 caches that are connected via a bus to the shared L2 cache as shown in

Figure 6.1 (Architecture A). The advantage of a shared cache is that the cache space can be

dynamically and transparently allocated to the different cores based on their memory require-

ment. Next-generation multi-cores are likely to introduce more levels of private caches before

69

Core 0Core 0

L1L1

….

Core NCore N

L1 L1

Shared Bus

Shared L2

Core 0Core 0

L1L1

….

Core NCore N

L1 L1

Shared Bus

Shared L3

L2L2 L2 L2

Architecture A
Architecture B

Figure 6.1: Multi-core cache memory hierarchy.

hitting the shared resources. For example, Intel Xeon [80] has private L1 and L2 caches; the L2

caches are connected to a large shared 16MB L3 cache through a bus as shown in Figure 6.1

Architecture B.

In this work, we will assume, without loss of generality, the first architecture in Figure

6.1 (Architecture A) to develop WCET analysis of shared resources in multi-core platforms.

Extending our work to multiple levels of private cache hierarchy is simply a matter of employing

the same propagation principle that we employ from L1 to L2 cache.

We focus here only on the instruction memory. We assume that the data memory refer-

ences do not interfere with the L1 and L2 instruction caches modeled by us (they could be

serviced from a separate data cache that we do not model). We do not allow self-modifying

code and hence do not need to model cache coherence. For each program, all shared library

code used in it are copied into its private code section. Hence, there is no code sharing among

different programs running in different cores. We consider Least Recently Used (LRU) cache

replacement policy for set-associative caches. Also, we consider architectures without timing

anomalies caused by interactions between caches and other architecture features. The L2 cache

block size is assumed to be larger than or equal to the L1 block size. This is usually the case in

real architectures to exploit higher spatial locality through a second level cache. Finally, we are

analyzing non-inclusive multi-level caches [65].

The shared communication infrastructure in our architecture is the bus. It is used for ac-

cessing the instructions and data from the shared L2 cache (in case of L1 cache miss) by the

different cores. However, as we are not modeling the data caches, we assume fully separated

70

T2.1= 10T2.1= 10

Core 0 Core 1

L2 Hit: 10 cycles
L2 Miss: 20 cycles
M2.2 and M3.2 conflict in L2:

Both L2 Miss

M4.2 is L2 Hit

T1.1= 90T1.1= 90 T3.1= 20T3.1= 20

T4.1= 20T4.1= 20

T3.2=10

T2.2=20 T4.2=10

T3.1=20T3.1=20

T4.1 =20T4.1 =20

T4.2 =10

Core 0 Core 1Bus

Wait

Wait

T1.1=90T1.1=90

T2.1= 10T2.1= 10
T2
lifetime

T3
lifetime

Bus schedule based on M2.2, M3.2 L2 miss
WCRT: 170 cycles

T2 and T3 have Disjoint lifetime
M2.2 and M3.2 cannot conflict: Both L2 Hit

Core0
slot

Core1
slot

Core0
slot

Core1
slot

M2.2=20

M3.2 =20

T2.2=20

M4.2 = 10

T3.2 = 10

T1.1=90T1.1=90

T3.1=20T3.1=20

T2.2 =20

T3.2=10

T2.1= 10T2.1= 10

T4.1=20T4.1=20

T4.2=10M2.2=10

M3.2=10

M4.2=10

Core 0 Core 1Bus

Wait

Core0
slot

Core1
slot

Core0
slot

Core1
slot

Bus schedule based on M2.2, M3.2 L2 Hit
Second bus wait for Core 1 eliminated
WCRT: 130 cycles

(a) (b) (c)

Figure 6.2: Example to show dependency between cache and bus analysis.

buses and memories for both code and data. Therefore, we ignore bus traffic arising from data

memory accesses and this includes interprocess communication through shared memory. We

assume TDMA-based static bus scheduling policy where a fixed length bus slot is allocated to

each core in a round-robin fashion.

During WCET analysis, we assume all loop bounds are known through user annotation or

simulation. We also assume all paths in a program are feasible and all loops in a program are

reducible (i.e., all loops have a single entry and single exit).

We model the application as a set of task graphs. Each task graph is a directed acyclic graph

consisting of a number of tasks. Let {T0, . . . , TN−1} be the set of N tasks corresponding to all

the task graphs. A directed edge between two tasks Ti and Tj in a task graph denotes that task

Tj can start execution only after task Ti completes execution. Our objective is to estimate the

worst-case response time (WCRT) of the overall application.

6.2 Overview

Our WCRT analysis framework in the presence of shared cache and bus in multi-core platforms

appears in Figure 6.3. L1 cache analysis proceeds independently for each core. The memory

accesses that are guaranteed to be L1 cache hits are eliminated from further consideration at this

point. The remaining memory accesses (guaranteed / probable L1 misses) can be transmitted

71

via the bus and are considered for shared cache and bus analysis.

L1 cache
analysis

L2 cache
analysis

Cache access
classification

L1 cache
analysis

L2 cache
analysis

L2 conflict
analysis

Bus-aware
WCET/BCET
computation

WCRT
computation

Interference
changes ? Yes

Initial interference

Modified
interference

Estimated
WCRT

No

Cache access
classification

Figure 6.3: Our analysis framework

Clearly, the bus analysis requires the time at which the L1 cache misses appear on the

bus. However, the bus access time of an L1 cache miss is affected by the execution time of

the preceding memory accesses in the same core. This in turn is determined by the shared L2

hit/miss categorization of the preceding memory accesses. On the other hand, the shared L2

cache conflict analysis determines the memory blocks that may get evicted by memory blocks

from other core. Whether a memory block M1 belonging to task T1 can be evicted from the

shared cache by a memory block M2 from task T2 depends on whether the lifetime of the two

tasks can overlap or not. The task lifetime, in turn, is determined by the shared bus analysis

results.

This circular dependency between the bus and cache analysis requires us to develop an

iterative analysis framework as shown in Figure 6.3. In the first iteration, we perform shared

L2 cache analysis assuming that a task on one core can conflict with all the tasks in other

cores. Based on this pessimistic L2 cache analysis results, we estimate the shared bus access

time and hence the WCET of the different tasks. These numbers are fed to the WCRT analysis

component that estimates the worst-case response time of the complete application by taking

into account the dependencies among the tasks. A by-product of the WCRT analysis framework

is the lifetime of each task. These lifetime estimates are used to eliminate interference among

72

tasks with disjoint lifetimes. If the interference pattern has changed (i.e., we have managed to

eliminate some interferences), the shared L2 cache analysis has to be repeated. We can formally

prove that our analysis monotonically reduces the task interferences across iterations, and hence

is guaranteed to terminate.

Illustrative Example We now show the working of our analysis using the example in Figure

6.2(a). We assume a 2-core system where the task graph containing tasks T1 and T2 are running

on core 0 and task graph containing tasks T3 and T4 are running on core 1. For simplicity of

exposition, we shall assume in this example that best case and worst case execution times of

any task are same. T1.1, T2.1, . . . , T4.2 represent the memory blocks within the tasks. Each

memory block is annotated with its computation cost. Only the memory blocks marked in

black are the ones with guaranteed or possible L1 cache miss as determined by per-core L1

cache analysis. We perform an initial L2 cache analysis for each core individually that ignores

conflicts from other cores. This per-core L2 cache analysis determines all the memory blocks

(T2.2, T3.2, and T4.2) as guaranteed L2 cache hits. Let us also assume that L2 cache hit latency

is 10 cycles, whereas L2 cache miss latency is 20 cycles. Further, the round-robin TDMA bus

scheduler assigns a 50 cycle bus slot to each core and the first bus slot goes to core 0. In this

example, to demonstrate the dependency between shared cache and bus analysis, we ignore any

cold cache misses. However, our analysis does not rely on that assumption and it accurately

models the additional cycles due to cache misses if some memory blocks have to be loaded into

the cache for the very first time.

Now we proceed to shared L2 cache analysis. At this point, we have no information about

task lifetimes. So we assume any task on core 0 can conflict with all the other tasks on core 1

and vice versa. Memory block T2.2 and T3.2 map to the same L2 cache block and therefore

they conflict with each other. So we have to conservatively assume that both of them will be

L2 cache misses in the worst case, whereas T4.2 remains as L2 cache hit because it does not

conflict with any memory block from core 0. Note that, even though any task on core 0 can

conflict with all the other tasks on core 1 and vice versa, memory block T4.2 may not conflict

with T2.2 since it maps to a different cache block in shared L2 cache.

After shared L2 cache analysis, we proceed to shared bus analysis. The result of the analysis

can be visualized in Figure 6.2(b). In Figure 6.2, a memory transaction corresponding to the L1

cache miss of memory block Px.y is denoted by Mx.y. Notice that all L2 cache accesses

73

(whether hit or miss) are transmitted on the shared bus in our architecture. An L2 cache access

from core i has to wait for core i to get access to the bus. The L1 cache miss M2.2 in core 0

occurs at time 100. From the bus schedule, we can observe that the slot beginning at time 100

belongs to core 0. Thus M2.2 does not encounter any additional waiting time to acquire the

shared bus and is completed by time 120. Thus, T2 finishes at time 140. However, the L2 cache

miss M3.2 in core 1 happens at time 20 and the bus slot from time 0 to time 50 is alloted to

core 0. Hence, M3.2 encounters an additional 30 cycles waiting time to acquire the bus and

eventually the memory transaction corresponding to M3.2 completes at time 70. This makes

task T3 to finish at time 80. Similarly, the L2 cache hit M4.2 in core 1 occurs at time 100 and

the bus slot from time 100 to time 150 is alloted to core 0. Thus M4.2 encounters an additional

50 cycles waiting time and eventually the task graph running on core 1 is completed at time 170.

Hence, the WCRT of the application according to this schedule is 170 cycles.

However, as a by-product of the WCRT analysis, we note that task T2 and T3 have disjoint

lifetimes. So memory blocks T2.2 and T3.2 cannot conflict with each other in the shared L2

cache and they remain as L2 cache hits as determined by per-core L2 cache analysis. As L2

cache hits have shorter latency, the bus analysis needs to be re-done. The revised schedule is

shown in Figure 6.2(c). Task graph running on core 0 finishes at time 130 because M2.2 is

now a L2 cache hit. Due to the earlier completion of M3.2 (because of L2 hit), L2 cache hit

M4.2 occurs at time 90. Since L2 cache hit latency is 10 cycles, M4.2 can be serviced in the

remaining bus slot belonging to core 1 (i.e., the bus slot from time 90 to time 100) and therefore

making T4 finish by time 110. Hence, this new analysis results in much tighter WCRT estimate

as the second wait time for the bus in core 1 is now eliminated. The WCRT at this point changes

to 130 cycles. This example illustrates how an iterative shared cache and bus analysis can obtain

tight WCRT estimates for embedded real-time applications.

6.3 Bus aware WCET analysis

We now present a bus-aware WCET analysis of programs. Note that L1 cache misses are trans-

mitted via the bus to access the shared L2 cache (Fig. 6.1, Architecture A).

Classical WCET analysis can compute the WCET of a program by taking into account only

the number of worst case cache misses. The exact time-stamp of the cache misses (the time at

which the cache misses occur) are not required for WCET computation. In presence of a shared

74

C6= 10C6= 10

C4 = 10C4 = 10

C5 = 10
M5= 10

Right Branch

Align
C8 = 10C8 = 10

C2= 30C2= 30

C1=20C1=20

C5= 10
C4= 10C4= 10

C6= 10C6= 10

C3= 20

C8= 10C8= 10

M7=20

M3= 10

C1=20C1=20

C7=30

t=0

t=50

t=100

t=150

t=200

Core0
Bus slot

Core0
Bus slot

L2 Hit L2 Hit

L2 Miss

C1= 20C1= 20

C2= 30C2= 30
C3= 20

C7= 30

Common PathLeft Branch

Bus slot: 50 cycles, L2 hit: 10 cycles,
L2 miss: 20 cycles,
Bus slot is assigned in round‐robin
fashion between 2 cores.
C1,C2, …. ,C8 are memory blocks inside loop

annotated with the computation cost.

Code Executing on Core0

Core0
Bus slot

C1=10C1=10
C2=10L2 Hit

C1=10C1=10
M2=10
C2=10

C1=10C1=10
M2=10
C2=10
C1=10C1=10
M2=10
C2=10
C1=10C1=10
M2=10
C2=10

C1=10C1=10 C1=10C1=10

t=0

t=100

Core0
Bus slot

No unrolling Partial unrolling

Iter1

Iter2

Iter3

Iter1

Iter2 Iter4 Core0
Bus slot

Code Executing

on Core0

(a) (b)

Figure 6.4: (a) An example of loop analysis (b) Limited loop unrolling for loop iterations with
low cost.

bus, a cache miss encounters variable amount of delay due to the waiting time elapsed to acquire

the bus-slot for the corresponding core. One naive approach is to always consider the maximum

possible waiting time for each memory reference that may potentially access the shared bus. In

that case, effect of shared bus in WCET analysis can be ignored at the cost of obtaining highly

over-estimated WCET value. Our analysis effectively bounds the over-estimation in WCET

analysis, while keeping the analysis time-efficient.

Formally, the round-robin TDMA bus schedule is represented by the following recurrence

relation:

CS
(i+1)
k = CS

(i)
k +B; CS

(0)
k = Ak (6.1)

where CS(i)
k is the starting time of the bus schedule assigned to k-th core in i-th round, B =

J × sl, J being the total number of cores, sl is the slot length assigned to each core and Ak is

the starting time of the very first slot in the bus schedule assigned to k-th core.

At first we discuss the WCET computation of a single loop (no nesting) and later we extend

it to a full program. Analysis of loop is depicted by an example in Figure 6.4(a). The bus slot

is 50 cycles. Let us also assume that L2 cache hit latency is 10 cycles, whereas L2 cache miss

latency is 20 cycles. Only the memory blocks marked in black denote L1 cache misses and

hence will be transmitted via the bus. The loop starts at 0 time. Following this assumption, L1

cache miss M3 occurs at time 50. Since the next bus slot for Core0 starts only at time 100, this

L2 cache access is delayed till time 100. Thus total time encountered for M3 access becomes

75

60 cycles — 50 cycles to wait for the bus and 10 cycles to get the instruction from L2 cache.

On the other hand, L1 cache miss M5 starts at time 30, when the bus is still available to Core0.

As a result, M5 does not suffer any delay to access the bus. Worst case starting time of the loop

sink node is at time 130. Once again, due to the availability of the bus, L2 cache miss M7 can

be served immediately. Finally the computation of loop sink node ends at time 190. Since we

always assume a loop iteration starts from the beginning of a bus slot of Core0, an alignment

cost of 10 cycles is added to the total cost of one iteration. Assuming loop bound to be 5, overall

WCET of the loop becomes (5 ∗ (190 + 10) + 100) = 1100 cycles (additional 100 cycles were

added for aligning the first iteration of the loop, since the time between the beginning of any

two consecutive bus slots allotted to the same core is 100 cycles). Note that, an L1 cache miss,

occurred earlier than the time predicted in the worst-case, is served by an earlier bus slot (than

the bus slot predicted in the worst-case analysis). This accounts for the safety of our method.

Formally, WCET computation of a loop is described in Algorithm 3. startbi and finishbi

keep track of the worst case starting and finishing time of basic block bi respectively. cost stores

the worst case cost of basic block bi while bi is being processed. finishbi is computed by adding

the value of cost to startbi (line 30). Header node of the loop always starts from time 0 (line

5). Worst case starting time of any basic block (other than the header node) is the maximum

of all of its predecessors’ finishing time (line 9). lbusbi is the beginning time of the latest bus

slot acquired by the core while basic block bi is processed; this information is propagated to all

successor basic blocks (line 10). For an L1 cache miss, function Wait computes the worst case

additional delay for accessing the shared bus (line 18).

Wait(∆) =


0, if (b∆

B c ×B + sl − LAT) >= ∆;

(b∆
B c+ 1)×B −∆, otherwise.

Here ∆ is the difference between the current time and lbusbi . sl is the bus slot length assigned

to each core. LAT is equal to the fixed L2 cache hit latency in case of a L2 cache hit and main

memory latency in case of a L2 cache miss. The term b∆
B c represent the number of full bus

schedules (whose length is equal to B) expired in time ∆. Therefore, b∆
B c × B represents the

starting time of the latest bus slot assigned to the core relative to lbusbi . Relative to lbusbi , end

time of this latest slot is at time b∆
B c × B + sl. On the other hand, end time of the current L1

76

Algorithm 3 WCET computation of a loop lp; B is the interval between two consecutive bus
slots assigned to a core

1. costiter := 0;
2. for (all blocks bi of loop lp in topological order) do
3. cost := 0;
4. if (bi is the header node of loop lp) then
5. startbi := 0; /* assume loop header node starts at time 0 */
6. lbusbi := 0; /* assume first bus slot starts at time 0 */
7. else
8. find the predecessor pmax of bi having maximum finish time (finishpmax);
9. startbi := finishpmax ;

10. lbusbi := lbuspmax ;
11. end if
12. inst := first instruction in basic block bi;
13. repeat
14. if (inst is an L1 cache hit) then
15. cost := cost + L1lat; /* L1lat : L1 cache hit latency */
16. else
17. ∆ := (startbi + cost)− lbusbi ;
18. if (Wait(∆) > 0) then
19. lbusbi := startbi + cost + Wait(∆);
20. end if
21. cost := cost + Wait(∆) + LAT ;
22. end if
23. inst := next instruction in basic block bi;
24. until (all instructions in basic block bi finish)
25. if (bi is the sink node of loop lp) then
26. ∆ := (startbi + cost)− lbusbi ;
27. cost := cost + AlignCost(∆);
28. costiter := (startbi + cost);
29. end if
30. finishbi := startbi + cost; /* finish time of bi */
31. end for
32. return costiter ×N +B;

cache miss is ∆ + LAT relative to lbusbi . To complete the current L1 cache miss in the latest

bus slot, it must be the case that b∆
B c×B+sl ≥ ∆+LAT , which is precisely the first condition

of Wait function. If the L1 cache miss at current time cannot be served in the latest bus slot, it

is delayed till the next bus slot. Clearly, the next bus slot starts at time (b∆
B c + 1) × B relative

to lbusbi . Thus (b∆
B c + 1) × B −∆ precisely represents the waiting time to acquire this next

bus slot. In case a new bus slot is acquired (the second case in Wait(∆) function), the value

of lbusbi is updated (line 19). After computing the worst case cost of one iteration of the loop,

the additional cost to align the next iteration to the starting of a bus slot is added to the WCET

(by the AlignCost function) (line 27). AlignCost function is similar to the Wait function and is

described as follows.

77

AlignCost(∆) =


0, if (∆ mod B) = 0;

(b∆
B c+ 1)×B −∆, otherwise.

Thus, if ∆ is already aligned with the beginning of a bus slot alloted to the core, alignment cost

is 0. Otherwise, alignment cost is equal to shift the timeline to the beginning of the nearest

bus slot alloted to the core. By adding AlignCost(∆) we get costiter, the worst case cost of

one loop iteration. Since we do not know the exact starting time of the loop, for the very first

iteration, maximum alignment cost needs to be added (which is equal to B). Hence, the WCET

of the loop is computed as costiter ×N +B, where N is the loop bound.

There is a special case when the worst case cost of one loop iteration is much smaller than

the bus slot length. In that case, due to the alignment to the beginning of a bus slot after one

iteration, overestimation in WCET may increase significantly. We always partially unroll such

loops so that worst case cost of a single iteration of the unrolled loop exceeds one single bus

slot. This situation is illustrated in Figure 6.4(b). The loop is unrolled three times as L1 cache

misses (M2) from three consecutive iterations can be serviced in a single bus slot.

Extension to full program So far, we have only discussed the WCET computation of a single

loop. To extend our analysis to whole programs, we transform the program’s control flow graph

by converting each innermost loop to a single “basic block”. The cost of each innermost loop

is given by the pre-computed WCET. Using the innermost loop’s WCET, we get the WCET of

loops at the next level of nesting. In this way, we can get WCETs of all the outermost loops in

a program. The program can now be viewed as a DAG with all outermost loops converted to

single basic blocks. Algorithm 3 can again be used to compute the WCET of the program with

zero alignment cost. For programs containing procedure calls, the extension is straightforward.

For each call instruction, the cost of the callee can be computed as mentioned above and will be

added to the total cost of the corresponding basic block. Our analysis is context sensitive, i.e.,

procedure calls at different call sites are analyzed separately. In our actual implementation, the

cache analysis module also handles different contexts of a loop (i.e., Virtual Inlining and Virtual

Unrolling (VIVU) approach [9]) and thus our shared bus analysis indeed can model different

contexts of a loop. However, for simplicity of discussion, we describe only about the WCET

analysis of a loop in a single context.

78

6.3.1 WCRT Estimation

In order to compute the WCRT of a task graph, we need to know the time interval of each

task. The task ordering is imposed by the partial ordering given in the corresponding task graph.

We use four variables EarliestReady(t), LatestReady(t), EarliestFinish(t), and LatestFinish(t)

to represent the execution time information of a task t. For any task t, the earliest (latest)

time when all of t’s predecessors in the task graph have completed execution, is represented

by EarliestReady(t) (LatestReady(t)). Similarly, the earliest (latest) time when task t finishes

execution, is represented by EarliestFinish(t) (LatestFinish(t)). Given a task t, its execution

interval is EarliestReady(t) to LatestFinish(t).

We consider a non-preemptive system. Let us assume, WCET(t) and BCET(t) denote the

Worst-case Execution Time and Best-case Execution time of task t. For BCET computation, all

NC classified instructions in L1 cache are considered to be L1 cache hit and all instructions that

are AM classified in L1 cache and NC classified in shared L2 cache are considered to be shared

L2 cache hit. BCET of all the tasks are computed after the shared L2 cache analysis. A task

t can be ready only after all its predecessors Pred(t) in the task graph finish execution. So the

following two equations hold:

EarliestF inish(t) = EarliestReady(t) +BCET (t) (6.2)

EarliestReady(t) = max
u∈Pred(t)

EarliestF inish(t) (6.3)

For a task t without any predecessor EarliestReady(t)=0. However, latest finish time of tasks is

not only affected by its predecessors but also by the set of tasks running on the same core whose

execution interval may overlap (called peers) [15]. Let us call the set of tasks overlapping with

t, and running on the same core by <tpeers. Since, our WCET analysis assumes that the tasks

are aligned to the beginning of a bus slot, during LatestFinish time computation, this alignment

cost needs to be considered. In the worst case, all of the peers of a task and the task itself

may encounter maximum alignment cost (equals B). Thus the LatestFinish time is defined as

79

follows:

LatestF inish(t) = LatestReady(t) +WCET (t)

+
∑

tc∈<t
peers

WCET (tc)

+(|<tpeers|+ 1)×B (6.4)

Here |<tpeers| represents the number of peers of task t. This approach keeps our framework

highly modular since the WCRT computation can be carried out given the WCET and BCET

values of each task t, and without knowing their worst/best case starting time. Finally WCRT

of an application is defined as follows:

WCRT = max
t

(LatestF inish(t))−min
t

(EarliestReady(t)) (6.5)

that is, the duration from the earliest start time of any task to the latest completion time of any

task.

Our WCRT analysis framework is shown in Figure 6.3. Initially a task t′ cannot overlap

(that is, interfere) with a task t if and only if 1) task t′ depends on t and vice versa by the partial

order imposed from the task graph or 2) t and t′ execute on the same core (by virtue of non-

preemptive execution). After the WCRT analysis, new interference information is generated if

two independent tasks which accounted for shared cache conflicts in the cache analysis are found

to have non-overlapping lifetimes, that is, their [EarliestReady(t),LatestFinish(t)] intervals do

not overlap. This new interference information is again fed to the shared cache conflict analysis

module which may further tighten several tasks’ WCET in presence of shared bus. This process

continues until the interference among all the tasks stabilizes. In the following, we shall prove

the termination of our WCRT analysis technique.

Observation 6.3.1. T1 and T2 are beginning time of any two bus slots in the round robin schedule

belonging to some core n. Say the worst case cost of a program running on core n, if started after δ time

from T1 is W1 and if started at same δ time after T2 is W2. Then, always W1=W2.

Theorem 6.3.1. For any task t, its BCET and EarliestReady(t) do not change across different

iterations of L2 cache conflict and WCRT analysis.

Proof. First we shall prove that the best-case hit-miss classification of an instruction in L1 and

L2 cache does not change across different iterations of L2 cache conflict analysis. Level 2

80

cache conflict analysis from [15] only changes the memory blocks classified as “Always Hit”

in L2 cache to “Non-Classified” due to interference from conflicting tasks. An “Always Hit”

memory block in L2 cache should have “Always Miss” or “Non-Classified” status in L1 cache.

A memory block classified as L1 “Always Miss” is considered as L2 cache hit in the best case

irrespective of whether it is AH or NC in L2 cache. Similarly, a “Non-Classified” memory block

in L1 is considered as L1 cache hit in the best case irrespective of its classification in the L2

cache. Hence, L2 cache conflict analysis cannot change the best-case fixed latency of a memory

reference.

We prove that for same EarliestReady(t) of a task t, its BCET does not change across

different iterations of bus analysis. We have already proved that best-case fixed latency of a

memory reference cannot change in different iterations of WCRT analysis. Hence a memory

reference will encounter different latency if and only if its corresponding waiting time for bus

access is different. Waiting time for the bus, in turn will be different if and only if the starting

time of the corresponding memory reference is different. In bus analysis, we always assume all

loops inside a task start at time 0 irrespective of the task’s original starting time. Essentially,

we compute the best case cost of a loop independent of the starting time of the task. Hence

the best case cost of loops do not change across different iterations of the analysis. Only the

set of L1 cache misses outside outer-most loops may encounter different bus delay for different

starting time and thus leading to a different BCET value. But starting time of all those memory

references may change if and only if the EarliestReady(t) of the task t changes. Hence we

derive, for the same EarliestReady(t) of a task t, its BCET does not change across different

iterations of L2 cache conflict and WCRT analysis.

We prove thatEarliestReady(t) does not change through contradiction. Let us assume that

for a task t, its EarliestReady(t) changes. This must be due to a change in its predecessor’s

EarliestReady time because a task’s BCET remains unchanged for the same EarliestReady

time. Proceeding backwards, EarliestReady(src) must have changed where src is a task

without any predecessor, contradicting the fact that EarliestReady(src) = 0. Hence, for a

task t its EarliestReady(t) does not change.

Theorem 6.3.2. Task interferences monotonically decrease (strictly decrease or remain the

same) across different iterations of our analysis framework (Figure 6.3).

Proof. We prove by induction on number of iterations.

81

Base Case: In the first iteration, tasks are assumed to conflict with all the tasks on other cores

(except those excluded by partial order). This is the worst case task interference scenario. Thus,

the task interferences of the second iteration definitely monotonically decrease compared to the

first iteration.

Induction Step: We need to show that the task interferences monotonically decrease from

iteration n to iteration n + 1 assuming that the task interferences monotonically decrease from

iteration n − 1 to n. We prove by contradiction. Assume two tasks i and j do not interfere at

iteration n, but interfere at iteration n+ 1. There are two cases.

• EarliestReady(j) ≥ LatestF inish(i) at iteration n, but at iteration n + 1, we obtain

EarliestReady(j) < LatestF inish(i). This implies that LatestF inish(i) at iteration

n+ 1 increases because EarliestReady(j) remains unchanged across iterations accord-

ing to Theorem 6.3.1. LatestF inish(i) at iteration n+1 can change due to three reasons:

(1) at iteration n+1, the WCET of the task i itself increases; (2) the WCET of some tasks

which task i depends on directly on indirectly increases; and (3) the WCET of some tasks

increases as a result of which either the number of peers of task i (|<tpeers|) increases

or the WCET of a peer of task i increases. In summary, at least one task’s WCET is

increased. The WCET increase of some task at iteration n + 1 can be for two reasons:

(1) More memory blocks are changed from Always Hit to Non-Classified due to the task

interference increase at iteration n; (2) the task is started at some different offset from

the beginning of a bus slot — as a result bus analysis may increase the WCET. Since we

always align the task to the beginning of a bus slot belonging to the core, Observation

6.3.1 rules out the second option. First option contradicts with the assumption that task

interferences monotonically decrease at iteration n.

• EarliestReady(i) ≥ LatestF inish(j) at iteration n, but at iteration n + 1, we obtain

EarliestReady(i) < LatestF inish(j) . The proof is symmetric to the first case.

6.4 Experimental evaluation

Experimental setup We compile our benchmarks for SimpleScalar Portable instruction set

(PISA) [81] – a MIPS like instruction set architecture. The individual tasks are compiled into

82

Table 6.1: Description of Benchmarks used

Benchmark Description Bytes Lines of Code
matmult Matrix multiplication 3737 163

jfdcint Discrete-cosine transformation 16028 375
adpcm Adaptive pulse code modulation algorithm 26852 879

edn Implements the jpegdct algorithm together 10563 285
with other signal processing algorithms

fft Fast Fourier Transform 6244 219
fir Finite impulse response filter 11965 276

(signal processing algorithms)
compress Data compression program 13411 508
statemate Automatically generated code by the 52618 1276

STAtechart Real-time-Code generator STARC

SimpleScalar PISA compliant binaries, and their control flow graphs (CFGs) are extracted as

input to the analysis framework. Each processor core has an in-order pipeline along with an

instruction cache.

In order to experimentally evaluate the accuracy of our analysis results, we have built a

cycle-accurate simulation infrastructure on top of the CMP-SIM simulator — a multi-core ex-

tension of simplescalar toolset. We have extended CMP-SIM in three ways. First, we extend

CMP-SIM to handle PISA binaries. Secondly, CMP-SIM models shared caches, but not shared

bus across cores. We have extended CMP-SIM with shared bus modeling to provide a cycle-

accurate simulator for present day multi-core architectures; we instrumented each L1 cache

miss in the simulation to go through a round-robin TDMA based shared bus. Finally, the ex-

isting CMP-SIM simulator only allows simulation of independent programs, each running on a

different core. We have extended CMP-SIM to simulate concurrent applications represented as

task graphs.

All experiments are performed on a 3 GHz Pentium 4 machine having 1 GB of RAM and

running Ubuntu Linux 8.10 as the operating system.

Analysis of independent programs First we analyze independent programs running on mul-

tiple cores. Later we present results from analyzing the task graph from a real-life space debris

monitoring program.

We have performed experiments both for two-core and four-core platforms with the follow-

ing cache configuration: L1 cache hit latency = 1 cycle, L2 cache hit latency = 6 cycles and

memory latency = 30 cycles. Each private L1 cache is direct-mapped and has a size of 1 KB

with block size of 32 bytes. The shared L2 cache is 4-way associative and has a size of 2 KB

with block size of 64 bytes. The shared bus connecting the different cores is TDMA based and is

83

 1

 1.5

 2

 2.5

m
at

m
ul

t

jfd
ci

nt fft

ed
n

ad
pc

m fir

co
m

pr
es

s

st
at

em
at

eO
ve

re
st

im
at

io
n

ra
tio

Benchmarks

Over-estimation of various analyses (2-core)

Maximum Bus Delay
Our Approach

Without bus

 1

 1.5

 2

 2.5

m
at

m
ul

t

jfd
ci

nt

ed
n

ad
pc

m fir

co
m

pr
es

s

st
at

em
at

eO
ve

re
st

im
at

io
n

ra
tio

Benchmarks

Over-estimation of various analyses (4-core)

Maximum Bus Delay
Our Approach

Without bus

Figure 6.5: Overestimation in WCET analysis

accessed by all the cores in a round-robin fashion. Each core has a bus slot length of 80 cycles.

For analyzing independent programs running on different cores, we have chosen bench-

marks from [2]. The set of benchmarks is described in Table 6.1. We have benchmarks with

small/medium code size (e.g., matmult, fft) as well as large code size (e.g., statemate, adpcm).

Also, our chosen set of benchmarks contain both single-path programs (e.g., matmult, jfdcint)

and multiple-path programs (e.g., compress, statemate). We have chosen a long running pro-

gram statemate as a representative to run on a single core (to increase the probability of inter-

ference in shared L2 instruction cache) and different combinations of other programs are run on

other cores. For all experiments on 2-cores, the estimation results for program X (other than

statemate) correspond to running X in one core and statemate in the other core. The reported

results for statemate are the average of all the runs. For 4-core experiments we either run (edn,

adpcm, compress, statemate) on the 4 cores, or we run (matmult, fir, jfdcint, statemate) on the

4 cores. The reported results for statemate are the average of what we get from running (edn,

84

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

40 50 60 70 80
O

ve
re

st
im

at
io

n
ra

tio
TDMA slot length for round robin schedule (in cycles)

Sensitivity w.r.t bus slot length (2-core)

Maximum bus delay Our approach

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

40 50 60 70 80

O
ve

re
st

im
at

io
n

ra
tio

TDMA slot length for round robin schedule (in cycles)

Sensitivity w.r.t bus slot length (4-core)

Maximum bus delay Our approach

Figure 6.6: Sensitivity of WCET analysis with bus slot length

adpcm, compress, statemate) and (matmult, fir, jfdcint, statemate).

Figure 6.5 demonstrates the precision of our analysis. The overestimation ratio in Figure

6.5 is computed by dividing the estimated WCET with the observed WCET. Observed WCET

of the program is computed through simulation by running it on a few sample inputs and taking

the maximum of these running times. Our analysis results are marked by “Our Approach” in

Figure 6.5.

To compare the effect of shared bus analysis in WCET estimation, we have also shown the

overestimation ratio for an architecture without shared bus (shown by the bar “Without Bus” in

Figure 6.5). Some of the cases show a decreased overestimation ratio (e.g., statemate in 4-core)

in presence of shared bus. Note that observed WCET also increases in presence of shared bus.

Therefore, a decreased overestimation ratio signifies that the overestimation is more due to the

presence of other micro-architectural entities (i.e., pipeline, cache) than due to the shared bus.

Due to the difficulty of analyzing the shared bus, an obvious solution is to always assume

the worst case waiting time for bus access for every memory reference that may potentially

access the shared bus. Overestimation introduced from this approach is also depicted in Figure

85

6.5 as “Maximum Bus Delay”. As shown, for reasonably large programs (e.g., edn, fft, adpcm,

statemate) the overestimation is excessive, making this approach not useful in practice.

As shown in Figure 6.5, our analysis can produce tight WCET estimates. The average

overestimation from our approach is around 40%. For single path programs (e.g., matmult,

edn), the overestimation is within 35%.

Figure 6.6 presents the over-estimation ratio of benchmark statemate in various analysis re-

sults (“Our approach”, “Maximum bus delay” as mentioned above) for different bus slot lengths.

Figure 6.6 shows that the precision of our analysis depends on the bus slot length. However, the

over-estimation is much tighter than the analysis which uses maximum bus delay for each bus

transaction (“Maximum bus delay” approach). Figure 6.6 also shows clearly that our analysis is

not tied with a particular bus slot length.

main‐tc
(1)

main‐hm
(1)

main‐tm
(1)

main‐hit
(1)

main‐aq
(1)

main‐su
(1)

tc‐test
(3)

hm‐test
(4)

tm‐test
(1)

hit‐test
(2)

aq‐test
(4)

su‐test
(2)

Core Task name Code size
(bytes)

1 main‐tc 240

1 main‐hm 240

1 main‐tm 240

1 main‐hit 240

1 main‐aq 240

1 main‐su 240

Core Task name Code size
(bytes)

1 tm‐test 56,960

2 hit‐test 10,776

2 su‐test 50,176

3 tc‐test 45,368

4 hm‐test 44,176

4 aq‐test 44,128

Figure 6.7: DEBIE task graph and task sizes

Analysis of task graphs in DEBIE To evaluate our WCRT framework we have analyzed a

large fragment of a real life DEBIE program [82], an in-situ space debris monitoring program.

The task graph for the fragment of DEBIE program is given in Figure 6.7. We consider a system

with four cores. The number inside each task of the task graph shows the mapping of the tasks

to the processor cores. Codesize of each task is given in Figure 6.7.

For the experiments with DEBIE, private L1 caches are changed to 2-way associative, 2 KB

caches and the shared L2 cache is changed to a 4-way associative, 8 KB cache. The reason

for changing the above-mentioned parameters is the relatively large code-sizes of the tasks in

the DEBIE benchmark. Without a larger instruction cache, both simulation and estimation

encounter cache thrashing making it difficult to evaluate the accuracy of our analysis. For this

86

reason the L2 cache size is increased to 8KB in these experiments. All other parameters (bus

slot, cache line size, cache hit latency, cache miss latency) remain unchanged from the settings

used previously.

The analysis results are shown in Table 6.2. The value simbus denotes the observed WCRT

(maximum execution time obtained from cycle-accurate simulation on a few inputs in presence

of shared cache and bus). The values wcrtmax bus delay and wcrtours denote the WCRT esti-

mates taking the maximum bus delay for every bus access and WCRT estimate from our analysis

respectively — all in presence of shared cache and bus.

simbus wcrtmax bus delay wcrtours
50432 192567 61997

Table 6.2: Results from DEBIE (×104 cycles)

We observe that the overestimation coming through our analysis is only 22.9% when com-

pared to the simulation results (compare wcrtours with simbus). Our analysis is time-efficient.

The time to produce wcrtours is less than 1.5 minutes. This time includes the full analysis time

– starting from intra-core analysis to the end of our iterative and combined shared cache and bus

analysis.

6.5 Extensions

Other multi-processor architectures: Our analysis can easily be adopted with minimal changes

for other kind of architectures featuring shared cache and shared bus. For example, consider the

multi-processor architecture shown in Figure 6.8. In this type of architectures, a processor chip

has multiple cores (as shown by Core 0, . . ., Core N in Figure 6.8). Each core in the processor

has an on-chip L1 cache and all cores share an on-chip L2 cache through a crossbar switch.

There might be multiple processor chips in the architecture (as shown by Processor 0 and Pro-

cessor 1) and they access the off-chip system memory through an off-chip shared bus. Intel’s

dual-processor and dual core architecture [83] are similar to the one shown in Figure 6.8 where

each processor has 2 cores.

Our analysis framework can easily be tuned to work with the above mentioned architec-

tures. Each core can still be analyzed separately to produce per-core analysis result. Later, the

interference between all the tasks running on the same chip can be used in on-chip shared cache

conflict analysis. However, we observe that only shared L2 cache misses appear in the off-chip

bus. Therefore, only shared L2 cache misses encounter variable amount of latency. On the other

87

Shared off‐chip Bus

Core 0Core 0

L1L1

….

Core NCore N

L1 L1

Shared L2

Core 0Core 0

L1L1

….

Core NCore N

L1 L1

Shared L2

Off‐chip

Memory

Crossbar Crossbar

Processor 0 Processor 1

Figure 6.8: A multi-processor architecture featuring on-chip shared L2 cache

way, our bus analysis has to be employed only for shared L2 cache misses (which is a subset of

L1 cache misses) instead of all L1 cache misses.

Applications using shared library: In our current implementation, all shared libraries are

copied inside each task. However, our analysis can easily be extended with shared libraries as

follows: first, a single shared memory block in L2 cache could be accessed by two independent

tasks. In this case, these two accesses are not conflicting and both accesses are cache hits.

However, our shared L2 cache conflict analysis will interpret these two accesses as conflicting

and in the worst-case both accesses to this shared memory block (in two different tasks) will

be estimated as cache misses. Our shared L2 cache conflict analysis can easily be changed to

incorporate this information. Second, in presence of shared libraries, initial cache state of a task

may contain some shared memory blocks left by its predecessor tasks. This initial cache state

can be estimated by taking into account all possible dependencies imposed by the application

task graph.

Other application model: In this work, we use a non-preemptive execution model. Using a

preemptive execution model requires us to analyze the delay due to the preemptions. The most

important problem is to analyze the amount of delay introduced for reloading the cache when

preempted task restarts execution. This reloading cost is known as cache related preemption

delay (CRPD). Existing works produce an upper bound on CRPD so that it could be added to

the actual WCET of the task. In the presence of shared bus, the waiting time to access the shared

bus depends on the exact timestamp of each memory reference; this in turn is affected by the

possible points where preemption can take place and the associated CRPD at that points. We

plan to model the effect of CRPD on our analysis in the future.

88

6.6 Chapter summary

This chapter presents an integrated analysis framework that considers the timing effects gen-

erated by both the shared cache and the shared bus. Existing works had concentrated on the

modeling of either shared cache or shared bus, but not both. This chapter described how the

timing interactions of shared cache and shared bus can affect the overall response time of an

application. Moreover, we have presented a new and efficient TDMA shared bus analysis tech-

nique that avoids virtual loop unrolling. Our experimental results are compared with the cycle-

accurate simulation results to evaluate the precision of our analysis. We have also discussed that

our analysis can be applied to similar multi-processor architectures.

89

Chapter 7

A Unified WCET Analysis Framework

for Multi-core Platforms

So far in this dissertation, we have discussed the modeling of shared resources in multi-core

(shared cache and shared bus) and the timing interactions created among these shared resources.

In this Chapter, we shall show the major challenges in WCET analysis while the shared re-

sources in multi-core interact with other basic micro-architectural components (such as pipelines

and branch predictors). Our work in this chapter is dedicated to build a sound WCET analysis

framework for multi-core, which is capable to provide safe WCET estimates in the presence of

advanced micro-architectural features (e.g. out-of-order and superscalar pipelines, speculative

execution and so on).

7.1 Introduction

We have seen that the WCET analysis in multi-core becomes challenging due to the presence

of shared caches and shared buses. The presence of a shared cache requires the modeling of

inter-core cache conflicts. On the other hand, the presence of a shared bus introduces variable

bus access latency to accesses to shared cache and shared main memory. The delay introduced

by shared cache conflict misses and shared bus accesses is propagated by different pipeline

stages of the processor and affects the overall execution time of a program. WCET analysis is

further complicated by a commonly known phenomenon called timing anomalies [16]. In the

presence of timing anomalies, a local worst case scenario may not lead to the WCET of the

overall program. As an example, a cache hit rather than a cache miss may lead to the WCET of

90

the entire program. Therefore, we cannot always assume a cache miss or maximum bus delay

as the worst case scenario, as the assumptions are not just imprecise, but they may also lead to

an unsound WCET estimation. Existing works have proposed to model the shared cache and/or

the shared bus ([35; 15; 40; 41; 42]) in isolation, but all of these previous solutions ignore the

interactions of shared resources with important micro-architectural features such as pipelines

and branch predictors.

In this Chapter, we propose a WCET analysis framework for multi-core platforms featuring

both a shared cache and a shared bus. In contrast to existing work, our analysis can efficiently

model the interaction of the shared cache and bus with different other micro-architectural fea-

tures (e.g. pipeline, branch prediction). A few such meaningful interactions include the effect

of shared cache conflict misses and shared bus delays on the pipeline, the effect of speculative

execution on the shared cache etc. Moreover, our analysis framework does not rely on a timing-

anomaly free architecture and gives a sound WCET estimate even in the presence of timing

anomalies. In summary, the central contribution of this paper is to propose a unified analysis

framework that features most of the basic micro-architectural components (pipeline, (shared)

cache, branch prediction and shared bus) in a multi-core processor.

Our analysis framework deals with timing anomalies by representing the timing of each

pipeline stage as an interval. The interval covers all possible latencies of the corresponding

pipeline stage. The latency of a pipeline stage may depend on cache miss penalties and shared

bus delays. On the other hand, cache and shared bus analysis interact with the pipeline stages

to compute the possible latencies of a pipeline stage. Our analysis is context sensitive — it

takes care of different procedure call contexts and different micro-architectural contexts (i.e.

cache and bus) when computing the WCET of a single basic block. Finally, WCET of the entire

program is formulated as an integer linear program (ILP). The formulated ILP can be solved by

any commercial solver (e.g. CPLEX) to get the whole program’s WCET.

We have implemented our framework in an extended version of Chronos [23], a freely avail-

able, open-source, single-core WCET analysis tool. To evaluate our approach, we have also

extended a cycle-accurate simulator [81] with both shared cache and shared bus support. Our

experiments with moderate to large size benchmarks from [2] show that we can obtain tight

WCET estimates for most of the benchmarks in a wide range of micro-architectural configura-

tions.

91

IF

IF

IF

IF

IF

ID

ID

ID

ID

ID

EX

EX

EX

EX

EX

WB

WB

WB

WB

WB

CM

CM

CM

CM

CM

I2

I1

I3

I4

I5

mult r1 r7 r8

mult r1 r2 r3

mult r4 r5 r6

add r2 r1 r2

add r9 r1 r6

I1:

I2:

I3:

I4:

I5:

Figure 7.1: Execution graph for the example program in a 2-way superscalar processor with
2-entry instruction fetch queue and 4-entry reorder buffer. Solid edges show the dependency
between pipeline stages, whereas the dotted edges show the contention relation

7.2 Background

In this section, we introduce the basic background behind our WCET analysis framework. Our

WCET analysis framework for multi-core is based on the pipeline modeling of [17].

Pipeline modeling through execution graphs The central idea of pipeline modeling revolves

around the concept of the execution graph [17]. The execution graph is constructed for each

basic block in the program control flow graph (CFG). For each instruction in the basic block,

the corresponding execution graph contains a node for each of the pipeline stages. We assume a

five stage pipeline — instruction fetch (IF), decode (ID), execution (EX), write back (WB) and

commit (CM). Edges in the execution graph capture the dependencies among pipeline stages;

either due to resource constraints (instruction fetch queue size, reorder buffer size etc.) or due

to data dependency (read after write hazard). The timing of each node in the execution graph

is represented by an interval, which covers all possible latencies suffered by the corresponding

pipeline stage.

Figure 7.1 shows a snippet of assembly code and the corresponding execution graph. The

example assumes a 2-way superscalar processor with 2-entry instruction fetch queue (IFQ) and

4-entry reorder buffer (ROB). Since the processor is a 2-way superscalar, instruction I3 cannot

be fetched before the fetch of I1 finishes. This explains the edge between IF nodes of I1 and

I3. On the other hand, since IFQ size is 2, IF stage of I3 cannot start before ID stage of I1

finishes (edge between ID stage of I1 and IF stage of I3). Note that I3 is data dependent on I1

and similarly, I5 is data dependent on I4. Therefore, we have edges from WB stage of I1 to EX

stage of I3 and also from WB stage of I4 to EX stage of I5. Finally, as ROB size is 4, I1 must

92

be removed from ROB (i.e. committed) before I5 can be decoded. This explains the edge from

CM stage of I1 to ID stage of I5.

A dotted edge in the execution graph (e.g. the edge between EX stage of I2 and I4) represents

contention relation (i.e. a pair of instructions which may contend for the same functional unit).

Since I2 and I4 may contend for the same functional unit (multiplier), they might delay each

other due to contention. The pipeline analysis is iterative. Analysis starts without any timing

information and assumes that all pairs of instructions which use same functional units and can

coexist in the pipeline, may contend with each other. In the example, therefore, the analysis

starts with {(I1,I2), (I2,I4), (I1,I4), (I3,I5)} in the contention relation. After one iteration, the

timing information of each pipeline stage is obtained and the analysis may rule out some pairs

from the contention relation if their timing intervals do not overlap. With this updated contention

relation, the analysis is repeated and subsequently, a refined timing information is obtained for

each pipeline stage. Analysis is terminated when no further elements can be removed from the

contention relation. WCET of the code snippet is then given by the worst case completion time

of the CM node for I5.

7.3 Overview of our analysis

Figure 10.2 gives an overview of our analysis framework. Each processor core is analyzed at a

time by taking care of the inter-core conflicts generated by all other cores. Figure 10.2 shows

the analysis flow for some program A running on a dedicated processor core. The overall anal-

ysis can broadly be classified into two separate phases: 1) micro-architectural modeling and

2) path analysis. In micro-architectural modeling, the timing behavior of different hardware

components is analyzed (as shown by the big dotted box in Figure 10.2). We use abstract in-

terpretation (AI) based cache analysis [9] to categorize memory references as all-hit (AH) or

all-miss (AM) in L1 and L2 cache. A memory reference is categorized AH (AM) if the result-

ing access is always a cache hit (miss). If a memory reference cannot be categorized as AH or

AM, it is categorized as unclassified (NC). In the presence of a shared L2 cache, categorization

of a memory reference may change from AH to NC due to the inter-core conflicts [15]. More-

over, as shown in Figure 10.2, L1 and L2 cache analysis has to consider the effect of speculative

execution when a branch instruction is mispredicted (refer to Section 7.6 for details). Similarly,

the timing effects generated by the mispredicted instructions are also taken into account during

93

basic blocks

Program A

binary

L1 cache

analysis

Program running

on different cores

conflicts

Inter−core
cache

L2 cache

analysis

modeling

Pipeline

Branch predictor

modeling

Branch predictor
Speculative
execution

of WCET

constraints

analysis

Shared bus

Bus context
constraints

Micro−architectural modeling

User
constraints

ILP

formulating

WCET

program

CFG
flow

constraints

WCET of

A

Figure 7.2: Overview of our analysis framework

the iterative pipeline modeling (refer to [17] for details). The shared bus analysis computes the

bus context under which an instruction can execute. The outcome of cache analysis and shared

bus analysis is used to compute the latency of different pipeline stages during the analysis of the

pipeline (refer to Section 7.4 for details). Pipeline modeling is iterative and it finally computes

the WCET of each basic block. WCET of the entire program is formulated as maximizing the

objective function of a single integer linear program (ILP). WCETs of individual basic blocks

are used to construct the objective function of the formulated ILP. The constraints of the ILP

are generated from the structure of the program’s control flow graph (CFG), micro-architectural

modeling (branch predictor and shared bus) and additional user-given constraints (e.g. loop

bounds). The modeling of the branch predictor generates constraints to bound the execution

count of mispredicted branches (for details refer to [18]). On the other hand, constraints gen-

erated for bus contexts bound the execution count of a basic block under different bus contexts

(for details, refer to Section 7.5). Path analysis finds the longest feasible program path from the

formulated ILP through implicit path enumeration (IPET). Any ILP solver (e.g. CPLEX) can

be used for IPET and for deriving the whole program’s WCET.

System and application model We assume a multi-core processor with each core having a

private L1 cache. Additionally, multiple cores share a L2 cache. The extension of our framework

for more than two levels of caches is straightforward. If a memory block is not found in L1 or L2

cache, it has to be fetched from the main memory. Any memory transaction to L2 cache or main

memory has to go through a shared bus. For shared bus, we assume a TDMA-based round robin

arbitration policy, where a fixed length bus slot is assigned to each core. We also assume fully

94

separated caches and buses for instruction and data memory. Therefore, the data references do

not interfere with the instruction references. In this work, we only model the effect of instruction

caches. However, the data cache effects can be considered in a similar fashion. Since we

consider only instruction caches, the cache miss penalty (computed from cache analysis) directly

affects the instruction fetch (IF) stage of the pipeline. We do not consider self modifying code

and therefore, we do not need to model the coherence traffic. Finally, we consider the LRU

cache replacement policy and non-inclusive caches only. Later in Section 7.10, we shall extend

our framework for FIFO cache replacement policy and we shall also discuss the extension of

our framework for other cache replacement policies (e.g. PLRU) and other cache hierarchies

(e.g. inclusive).

7.4 Interaction of shared resources with pipeline

Let us assume each node i in the execution graph is annotated with the following timing param-

eters, which are computed iteratively:

• earliest[treadyi], earliest[tstarti], earliest[tfinishi] : Earliest ready, earliest start and earli-

est finish time of node i, respectively.

• latest[treadyi], latest[tstarti], latest[tfinishi] : Latest ready, latest start and latest finish time

of node i, respectively.

For each pipeline stage i, earliest[treadyi] and earliest[tstarti] are initialized to zero, whereas,

earliest[tfinishi] is initialized to the minimum latency suffered by the pipeline stage i. On the

other hand, latest[treadyi], latest[tstarti] and latest[tfinishi] are all initialized to ∞ for each

pipeline stage i. The active time span of node i can be captured by the following timing interval:

[earliest[treadyi], latest[tfinishi]]. Therefore, each node of the execution graph is initialized with

a timing interval [0,∞].

Pipeline modeling is iterative. The iterative analysis starts with the coarse interval [0,∞]

for each node and subsequently, the interval is tightened in each iteration. The computation of

a precise interval takes into account the analysis result of caches and shared bus. The iterative

analysis eliminates certain infeasible contention among the pipeline stages in each iteration,

thereby leading to a tighter timing interval after each iteration. The iterative analysis starts

with a contention relation. Such a contention relation contains pairs of instructions which may

95

potentially delay each other due to contention. Initially, all possible pairs of instructions are

included in the contention relation and after each iteration, pairs of instructions whose timing

intervals do not overlap, are removed from this relation. If the contention relation does not

change in some iteration, the iterative analysis terminates. Since the number of instructions in

a basic block is finite, the contention relation contains a finite number of elements and in each

iteration, at least one element is removed from the relation. Therefore, this analysis is guaranteed

to terminate. Moreover, if the contention relation does not change, the timing interval of each

node reaches a fixed-point after the analysis terminates. In the following, we shall discuss how

the presence of a shared cache and a shared bus affects the timing information of different

pipeline stages.

7.4.1 Interaction of shared cache with pipeline

Let us assume CHMCL1
i (CHMCL2

i) denotes the AH/AM/NC cache hit-miss classification

of an IF node i in L1 (shared L2) cache. Further assume that Ei denotes the possible latencies

of an IF node i without considering any shared bus delay. Ei can be defined as follows:

Ei =



1, if CHMCL1
i = AH;

LATL1 + 1, if CHMCL1
i = AM ∧ CHMCL2

i = AH;

LATL1 + LATL2 + 1, if CHMCL1
i = AM ∧ CHMCL2

i = AM ;

[LATL1 + 1, LATL1 + LATL2 + 1], if CHMCL1
i = AM ∧ CHMCL2

i = NC;

[1, LATL1 + 1], if CHMCL1
i = NC ∧ CHMCL2

i = AH;

[1, LATL1 + LATL2 + 1], otherwise.

(7.1)

where LATL1 and LATL2 represent the fixed L1 and L2 cache miss latencies respectively.

Note that the interval-based representation captures the possibilities of both a cache hit and a

cache miss in case of an NC categorized cache access. Therefore, the computation of Ei can

also deal with the architectures that exhibit timing anomalies.

7.4.2 Interaction of shared bus with pipeline

Let us assume that we have a total of C cores and the TDMA-based round robin scheme assigns

a slot length Sl to each core. Therefore, the length of one complete round is SlC. We begin with

the following definitions which are used throughout the paper:

96

Definition 7.4.1. (TDMA offset) A TDMA offset at a particular time T is defined as the relative

distance of T from the beginning of the last scheduled round. Therefore, at time T , the TDMA

offset can be precisely defined as T mod SlC.

Definition 7.4.2. (Bus context) A Bus context for a particular execution graph node i is defined

as the set of TDMA offsets reaching/leaving the corresponding node. For each execution graph

node i, we track the incoming bus context (denoted Oini) and the outgoing bus context (denoted

Oouti).

For a task executing in core p (where 0 ≤ p < C), latest[tfinishi] and earliest[tfinishi] are

computed for an IF execution graph node i as follows:

latest[tfinishi] = latest[tstarti] +max latp(O
in
i , Ei) (7.2)

earliest[tfinishi] = earliest[tstarti] +min latp(O
in
i , Ei) (7.3)

Note that max latp, min latp are not constants and depend on the incoming bus context (Oini)

and the set of possible latencies of IF node i (Ei) in the absence of a shared bus. max latp and

min latp are defined as follows:

max latp(O
in
i , Ei) =


1, if CHMCL1

i = AH;

max
o∈Oin

i ,t∈Ei

∆p(o, t), otherwise.
(7.4)

min latp(O
in
i , Ei) =


1, if CHMCL1

i 6= AM ;

min
o∈Oin

i ,t∈Ei

∆p(o, t), otherwise.
(7.5)

In the above, Ei represents the set of possible latencies of an IF node i in the absence of shared

bus delay (refer to Equation 7.1). Given a TDMA offset o and latency t in the absence of shared

bus delay, ∆p(o, t) computes the total delay (including shared bus delay) faced by the IF stage

97

of the pipeline. ∆p(o, t) can be defined as follows (similar to [40] or [41]):

∆p(o, t) =


t, if pSl ≤ o+ t ≤ (p+ 1)Sl;

t+ pSl − o, if o < pSl;

t+ (C + p)Sl − o, otherwise.

(7.6)

In the following, we shall now show the computation of incoming and outgoing bus contexts

(i.e. Oini and Oouti respectively) for an execution graph node i.

Computation of Oouti from Oini The computation of Oouti depends on Oini , on the possible

latencies of execution graph node i (including shared bus delay) and on the contention suffered

by the corresponding pipeline stage. In the modeled pipeline, inorder stages (i.e. IF, ID, WB and

CM) do not suffer from contention. But the out-of-order stage (i.e. EX stage) may experience

contention when it is ready to execute (i.e. operands are available) but cannot start execution

due to the unavailability of a functional unit. Worst case contention period of an execution graph

node i can be denoted by the term latest[tstarti]− latest[treadyi]. For best case computation, we

conservatively assume the absence of contention. Therefore, for a particular core p (0 ≤ p < C),

we compute Oouti from the value of Oini as follows:

Oouti =


u(Oini , Ei + [0, latest[tstarti]− latest[treadyi]]), if i = EX;

u(Oini ,
⋃
o∈Oin

i ,t∈Ei
∆p(o, t)), if i = IF ;

u(Oini , Ei), otherwise.

(7.7)

Here, u denotes the update function on TDMA offset set with a set of possible latencies of node

i and is defined as follows:

u(O,X) =
⋃

o∈O,t∈X
{(o+ t) mod SlC} (7.8)

Note that Ei + [0, latest[tstarti]− latest[treadyi]] captures all possible latencies suffered by the

execution graph node i, taking care of contentions as well. Therefore, Oouti captures all possible

TDMA offsets exiting node i, when the same node is entered with bus context Oini . More

precisely, assuming that Oini represents an over-approximation of the incoming bus context at

node i, the computation by Equation 7.7 ensures that Oouti represents an over-approximation of

98

the outgoing bus context from node i.

Computation ofOini The value ofOini depends on the value ofOoutj , where j is a predecessor

of node i in the execution graph. If pred(i) denotes all the predecessors of node i, clearly,

∪j∈pred(i)O
out
j gives a sound approximation of Oini . However, it is important to observe that

not all predecessors in the execution graph can propagate TDMA offsets to node i. Recall that

the edges in the execution graph represent dependency (either due to resource constraints or due

to true data dependences). Therefore, node i in the execution graph can only start when all

the nodes in pred(i) have finished. Consequently, the TDMA offsets are propagated to node

i only from the predecessor j, which finishes immediately before i is ready. Nevertheless, our

static analyzer may not be able to compute a single predecessor that propagates TDMA offsets

to node i. However, for two arbitrary execution graph nodes j1 and j2, if we can guarantee that

earliest[tfinishj2] > latest[tfinishj1], we can also guarantee that j2 finishes later than j1. The

computation of Oini captures this property:

Oini =
⋃
{Ooutj | j ∈ pred(i) ∧ earliest[tfinishpmax] ≤ latest[tfinishj]} (7.9)

where pmax is a predecessor of i such that latest[tfinishpmax] = maxj∈pred(i) latest[t
finish
j].

Therefore, Oini captures all possible outgoing TDMA offsets from the predecessor nodes that

are possibly finished latest. Given that the value of Ooutj is an over-approximation of the out-

going bus context for each predecessor j of i, Equation 7.9 gives an over-approximation of the

incoming bus context at node i. Finally, Equation 7.7 and Equation 7.9 together ensure a sound

computation of the bus contexts at the entry and exit of each execution graph node.

7.5 WCET computation under multiple bus contexts

7.5.1 Execution context of a basic block

Computing bus context without loops In the previous section, we have discussed the pipeline

modeling of a basic block B in isolation. However, to correctly compute the execution time

of B, we need to consider 1) contentions (for functional units) and data dependencies among

instructions prior to B and instructions in B; 2) contentions among instructions after B and

instructions in B. Set of instructions before (after) B which directly affect the execution time

of B is called the prologue (epilogue) of B [17]. B may have multiple prologues and epilogues

99

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

from previous iteration

of loop

Body instructions
inside the loop

Prologue instructions

nodes

nodesπout
l

πin
l

Instructions outside loop

Figure 7.3: πinl and πoutl nodes shown with the example of a sample execution graph. πinl nodes
propagate bus contexts across iterations, whereas, πoutl nodes propagate bus contexts outside of
loop.

due to the presence of multiple program paths. However, the size of any prologue or epilogue

is bounded by the total size of IFQ and ROB. To distinguish the execution contexts of a basic

block B, execution graphs are constructed for each possible combination of prologues and epi-

logues of B. Each execution graph of B contains the instructions from B itself (called body)

and the instructions from one possible prologue and epilogue. Assume we compute the incom-

ing (outgoing) bus context Oini (p, e) (Oouti (p, e)) at body node i for prologue p and epilogue e

(using the technique described in Section 7.4). After we finish the analysis of B for all possible

combinations of prologues and epilogues, we compute an over-approximation of Oini (Oouti) by

merge operation as follows:

Oini =
⋃
p,e

Oini (p, e) (7.10)

Oouti =
⋃
p,e

Oouti (p, e) (7.11)

Clearly, Oini (Oouti) captures an over-approximation of the bus context at the entry (exit) of node

i, irrespective of any prologue or epilogue of B.

100

Computing bus context in the presence of loops In the presence of loops, a basic block can

be executed with different bus contexts at different iterations of the loop. The bus contexts at

different iterations depend on the set of instructions which can propagate TDMA offsets across

loop iterations. For each loop l, we compute two sets of nodes — πinl and πoutl . πinl are the

set of pipeline stages which can propagate TDMA offsets across iterations, whereas, πoutl are

the set of pipeline stages which could propagate TDMA offsets outside of the loop. Therefore,

πinl corresponds to the pipeline stages of instructions inside l which resolve loop carried de-

pendency (due to resource constraints, pipeline structural constraints or true data dependency).

On the other hand, πoutl corresponds to the pipeline stages of instructions inside l which resolve

the dependency of instructions outside of l. Figure 7.3 demonstrates the πoutl and πinl nodes

for a sample execution graph. The bus context at the entry of all non-first loop iterations can

be captured as (Oinx1, O
in
x2, . . . , O

in
xn) where πinl = {x1, x2, . . . , xn}. The bus context at the

first iteration is computed from the bus contexts of instructions prior to l (using the technique

described in Section 7.4). Finally, Ooutxi for any xi ∈ πoutl can be responsible for affecting the

execution time of any basic block outside of l.

7.5.2 Bounding the execution count of a bus context

Foundation As discussed in the preceding, a basic block inside some loop may execute un-

der different bus contexts. For all non-first iterations, a loop l is entered with bus context

(Oinx1, O
in
x2, . . . , O

in
xn) where {x1, x2, . . . , xn} are the set of πinl nodes as described in Figure

7.3. These bus contexts are computed during an iterative analysis of the loop l (described be-

low). On the other hand, the bus context at the first iteration of l is a tuple of TDMA offsets

propagated from outside of l to some pipeline stage inside l. Note that the bus context at the

first iteration of l is computed by following the general procedure as described in Section 7.4.

In this section, we shall show how the execution count of different bus contexts can be

bounded by generating additional ILP constraints. These additional constraints are added to a

global ILP formulation to find the WCET of the entire program. We begin with the following

notations:

Ωl The set of all bus contexts that may reach loop l in any iteration.

101

Ωs
l The set of all bus contexts that may reach loop l at first iteration. Clearly, Ωs

l ⊆ Ωl.

Moreover, if l is contained inside some outer loop, l would be invoked more than once. As

a result, Ωs
l may contain more than one element. Note that Ωs

l can be computed as a tuple of

TDMA offsets propagated from outside of l to some pipeline stage inside l. Therefore, Ωs
l can be

computed during the procedure described in Section 7.4. If l is an inner loop, an element of Ωs
l

is computed (as described in Section 7.4) for each analysis invocation of the loop immediately

enclosing l.

Gsl For each s0 ∈ Ωs
l , we build a flow graph Gsl = (V s

l , F
s
l) where V s

l ⊆ Ωl. The graph Gsl

captures the transitions among different bus contexts across loop iterations. An edge fw1→w2 =

(w1, w2) ∈ F sl exists (where w1, w2 ∈ Ωl) if and only if l can be entered with bus context w1 at

some iteration n and with bus context w2 at iteration n+ 1. Note that Gsl cannot be infinite, as

we have only finitely few bus contexts that are the nodes of Gsl .

Mw
l Number of times the body of loop l is entered with bus context w ∈ Ωl in any iteration.

Mw1→w2
l Number of times l can be entered with bus context w1 at some iteration n and with

bus context w2 at iteration n + 1 (where w1, w2 ∈ Ωl). Clearly, if fw1→w2 /∈ F sl for any flow

graph Gsl , M
w1→w2
l = 0.

Construction of Gsl For each loop l and for each s0 ∈ Ωs
l , we construct a flow graph Gsl .

Initially, Gsl contains a single node representing bus context s0 ∈ Ωs
l . After analyzing all the

basic blocks inside l (using the technique described in Section 7.4), we may get a new bus

context at some node i ∈ πinl (recall that πinl are the set of execution graph nodes that may

propagate bus context across loop iterations). As a byproduct of this process, we also get the

WCET of all basic blocks inside l when the body of l is entered with bus context s0. Let us

assume that for any s ∈ Ωl \ Ωs
l and i ∈ πinl , s(i) represents the bus context Oini . Suppose we

get a new bus context s1 ∈ Ωl after analyzing the body of l once. Therefore, we add an edge

from s0 to s1 in Gsl . We continue expanding Gsl until sn(i) ⊆ sk(i) for all i ∈ πinl and for some

1 ≤ k ≤ n − 1 (where sn ∈ Ωl represents the bus context at the entry of l after it is analyzed

n times). In this case, we finish the construction of Gsl by adding a backedge from sn−1 to sk.

We also stop expanding Gsl if we have expanded as many times as the relative loop bound of

l. Note that Gsl contains at least two nodes, as the bus context at first loop iteration is always

102

distinguished from the bus contexts in any other loop iteration.

It is worth mentioning that the construction of Gsl is much less computationally intensive

than a full unrolling of l. The bus context at the entry of l quickly reaches a fixed-point and

we can stop expanding Gsl . In our experiments, we found that the number of nodes in Gsl never

exceeds ten. For very small loop bounds (typically less than 5), the construction ofGsl continues

till the loop bound. For larger loop bounds, most of the time, the construction of Gsl reaches the

diverged bus context [0, . . . , SlC − 1] quickly (in less than ten iterations). As a result, through

a small node count in Gsl , we are able to avoid the computationally intensive unrolling of every

loop.

Generating separate ILP constraints Using each flow graph Gsl for loop l, we generate ILP

constraints to distinguish different bus contexts under which a basic block can be executed. In

an abuse of notation, we shall use w.i to denote that the basic block i is reached with bus context

w.i when the immediately enclosing loop of i is reached with bus context w in any iteration.

The following ILP constraints are generated to bound the value of Mw
l :

∀w ∈ Ωl :
∑
x∈Ωl

Mx→w
l = Mw

l (7.12)

∀w ∈ Ωl : Mw
l − 1 ≤

∑
x∈Ωl

Mw→x
l ≤Mw

l (7.13)

∑
w∈Ωl

Mw
l = Nl.h (7.14)

where Nl.h denotes the number of times the header of loop l is executed. Equations 7.12-

7.13 generate standard flow constraints from each graph Gsl , constructed for loop l. Special

constraints need to be added for the bus contexts with which the loop is entered at the first

iteration and at the last iteration. If w is a bus context with which loop l is entered at the

last iteration, Mw
l is more than the execution count of outgoing flows (i.e. Mw→x

l). Equation

7.13 takes this special case into consideration. On the other hand, Equation 7.14 bounds the

aggregate execution count of all possible contexts w ∈ Ωl with the total execution count of the

loop header. Note that Nl.h will further be involved in defining the CFG structural constraints,

which relate the execution count of a basic block with the execution count of its incoming and

103

outgoing edges [9]. Equations 7.12-7.14 do not ensure that whenever loop l is invoked, the

loop must be executed at least once with some bus context in Ωs
l . We add the following ILP

constraints to ensure this:

∀w ∈ Ωs
l : Mw

l ≥ Nw.h
l.h (7.15)

Here Nw.h
l.h denotes the number of times the header of loop l is executed with bus context w.

The value of Nw.h
l.h is further bounded by the CFG structural constraints.

The constraints generated by Equations 7.12-7.15 are sufficient to derive the WCET of a

basic block in the presence of non-nested loops. In the presence of nested loops, however, we

need additional ILP constraints to relate the bus contexts at different loop nests. Assume that the

loop l is enclosed by an outer loop l′. For eachw′ ∈ Ωl′ , we may get a different element s0 ∈ Ωs
l

and consequently, a different Gsl = (V s
l , E

s
l) for loop l. Therefore, we have the following ILP

constraints for each flow graph Gsl :

∀Gsl = (V s
l , E

s
l) :

∑
w∈V s

l

Mw
l ≤ boundl ∗ (

∑
w′∈parent(Gs

l)

Mw′
l′) (7.16)

where boundl represents the relative loop bound of l and parent(Gsl) denotes the set of bus

contexts in Ωl′ for which the flow graph Gsl is constructed at loop l. The left-hand side of

Equation 7.16 accumulates the execution count of all bus contexts in the flow graph Gsl . The

total execution count of all bus contexts in V s
l is bounded by boundl, for each construction of

Gsl (as boundl is the relative loop bound of l). Since Gsl is constructed
∑

w′∈parent(Gs
l)M

w′
l′

times, the total execution count of all bus contexts in V s
l is bounded by the right hand side of

Equation 7.16.

Finally, we need to bound the execution count of any basic block i (immediately enclosed

by loop l), with different bus contexts. We generate the following two constraints to bound this

value: ∑
w∈Ωl

Nw.i
i = Ni (7.17)

∀w ∈ Ωl : Nw.i
i ≤Mw

l (7.18)

whereNi represents the total execution count of basic block i andNw.i
i represents the execution

count of basic block i with bus context w.i. Equation 7.18 tells the fact that basic block i can

execute with bus context w.i at some iteration of l only if l is reached with bus context w at the

104

same iteration (by definition). Ni will be further constrained through the structure of program’s

CFG, which we exclude in our discussion.

Computing bus contexts at loop exit To derive the WCET of the whole program, we need to

estimate the bus context exiting a loop l (sayOexitl). A recently proposed work ([41]) has shown

the computation of Oexitl without a full loop unrolling. In this paper, we use a similar technique

as in [41] with one important difference: In [41], a single offset graphGoff is maintained, which

tracks the outgoing bus context from each loop iteration. Once Goff got stabilized, a separate

ILP formulation on Goff derives the value of Oexitl . In the presence of pipelined architectures,

Oouti for any i ∈ πoutl could be responsible for propagating bus context outside of l (refer to

Figure 7.3). Therefore, a separate offset graph is maintained for each i ∈ πoutl (say Gioff)

and an ILP formulation for each Gioff can derive an estimation of the bus context exiting the

loop (say Oexiti). In [41], it has been proved that the computation of Oexitl is always an over-

approximation (i.e. sound). Given that the value of eachOouti is sound, it is now straightforward

to see that the computation of each Oexiti is also sound. For details of this analysis, readers are

further referred to [41].

7.6 Effect of branch prediction

Presence of branch prediction introduces additional complexity in WCET computation. If a

conditional branch is mispredicted, the timing of the mispredicted instructions need to be com-

puted. Mispredicted instructions introduce additional conflicts in L1 and L2 cache which need

to be modeled for a sound WCET computation. Similarly, branch misprediction will also affect

the bus delay suffered by the subsequent instructions. In the following, we shall describe how

our framework models the interaction of branch predictor on cache and bus. We assume that

there could be at most one unresolved branch at a time. Therefore, the number of mispredicted

instructions is bounded by the number of instructions till the next branch as well as the total size

of instruction fetch queue and reorder buffer.

7.6.1 Effect on cache for speculative execution

Abstract-interpretation-based cache analysis produces a fixed point on abstract cache content at

the entry (denoted as ACSini) and at the exit (denoted as ACSouti) of each basic block i. If a

basic block i has multiple predecessors, output cache states of the predecessors are joined to

105

acsoutj

= Join(acsoutj , acsoutspec)

acsoutj

acsoutspec
acsoutspec

acsini
acsini = acsoutspec

(a) (b) (c)

j j j

i i i

acsini = acsoutj

Speculated
instructions

Figure 7.4: (a) Computation of acsini when the edge j → i is correctly predicted, (b) Com-
putation of acsini when the edge j → i is mispredicted, (c) A safe approximation of acsini by
considering both correct and incorrect prediction of edge j → i.

produce the input cache state of basic block i. Consider an edge j → i in the program’s CFG. If

j → i is an unconditional edge, computation of ACSini does not require any change. However,

if j → i is a conditional edge, the condition could be correctly or incorrectly predicted during

the execution. For a correct prediction, the cache state ACSini is still sound. On the other

hand, for incorrect prediction, ACSini must be updated with the memory blocks accessed at

the mispredicted path. We assume that there could be at most one unresolved branch at a time.

Therefore, the number of mispredicted instructions is bounded by the number of instructions till

the next branch as well as the total size of instruction fetch queue and reorder buffer. To maintain

a safe cache state at the entry of each basic block i, we join the two cache states arising due to

the correct and incorrect predictions of conditional edge j → i. We demonstrate the entire

scenario through an example in Figure 7.4. In Figure 7.4, we demonstrate the procedure for

computing the abstract cache state at the entry of a basic block i. Basic block i is conditionally

reached from basic block j. To compute a safe cache content at the entry of basic block i, we

combine two different possibilities —- one when the respective branch is correctly predicted

(Figure 7.4(a)) and the other when the respective branch is incorrectly predicted (Figure 7.4(b)).

The combination is performed through an abstract join operation, which depends on the type

of analysis (must or may) being computed. A stabilization on the abstract cache contents at the

entry and exit of each basic block is achieved through conventional fixed point analysis.

7.6.2 Effect on bus for speculative execution

Due to branch misprediction, some additional instructions might be fetched from the mispre-

dicted path. As described in Section 7.5, an execution graph for each basic block B contains

106

a prologue (instructions before B which directly affect the execution time of B). If the last

instruction of the prologue is a conditional branch, the respective execution graph is augmented

with the instructions along the mispredicted path ([17]). Since the propagation of bus context

is entirely performed on the execution graph (as shown in Section 7.4), our shared bus analy-

sis remains unchanged, except the fact that it works on an augmented execution graph (which

contains instructions from the mispredicted path) in the presence of speculative execution.

7.6.3 Computing the number of mispredicted branches

In the presence of a branch predictor, each conditional edge j → i in the program CFG can be

correctly or incorrectly predicted. Let us assumeEj→i denotes the total number of times control

flow edge j → i is executed andEcj→i (Emj→i) denotes the number of times the control flow edge

j → i is executed due to correct (incorrect) branch prediction. Clearly, Ej→i = Ecj→i + Emj→i.

Value of Ej→i is further bounded by CFG structural constraints. On the other hand, values of

Ecj→i and Emj→i depend on the type of branch predictor. We use our prior work ([18]), where

we have shown how to bound the values of Ecj→i and Emj→i for history based branch predictors.

The constraints generated on Ecj→i and Emj→i are as well captured in the global ILP formulation

to compute the whole program WCET. We exclude the details of branch predictor modeling in

this paper — interested readers are referred to [18].

7.7 WCET computation of an entire program

We compute the WCET of the entire program with N basic blocks by using the following

objective function:

Maximize T =

N∑
i=1

∑
j→i

∑
w∈Ωi

tc,wj→i ∗ E
c,w
j→i + tm,wj→i ∗ E

m,w
j→i (7.19)

Ωi denotes the set of all bus contexts under which basic block i can execute. Basic block i can be

executed with different bus contexts. However, the number of elements in Ωi is always bounded

by the number of bus contexts entering the loop immediately enclosing i (refer to Section 7.5).

tc,wj→i denotes the WCET of basic block i when the basic block i is reached from basic block j,

the control flow edge j → i is correctly predicted and i is reached with bus context w ∈ Ωi.

Similarly, tm,wj→i denotes the WCET of basic block i under the same bus context but when the

107

control flow edge j → i was mispredicted. Note that both tc,wj→i and tm,wj→i are computed during

the iterative pipeline modeling (with the modifications proposed in Section 7.4). Ec,wj→i (Em,wj→i)

denotes the number of times basic block i is reached from basic block j with bus context w and

when the control flow edge j → i is correctly (incorrectly) predicted. Therefore, we have the

following two constraints:

Ecj→i =
∑
w∈Ωi

Ec,wj→i, E
m
j→i =

∑
w∈Ωi

Em,wj→i (7.20)

Constraints on Ecj→i and Emj→i are proposed by the ILP-based formulation in [18]. On the

other hand, Ec,wj→i and Em,wj→i are bounded by the CFG structural constraints ([9]) and the con-

straints proposed by Equations 7.12-7.18 in Section 7.5. Note that in Equations 7.12-7.18, we

only discuss the ILP constraints related to the bus contexts. Other ILP constraints, such as CFG

structural constraints and user constraints, are used in our framework for an IPET implementa-

tion.

Finally, the WCET of the program maximizes the objective function in Equation 7.19. Any

ILP solver (e.g. CPLEX) can be used for the same purpose.

7.8 Soundness and termination of analysis

In this section, we shall first provide the basic ideas for the proof of the soundness of our analysis

framework and subsequently, elaborate each point.

7.8.1 Overall idea about soundness

The heart of soundness guarantee follows from the fact that we represent the timing of each

pipeline stage as an interval. Recall that the active timing interval of each pipeline stage is

captured by INTVi = [earliest[treadyi], latest[tfinishi]]. Therefore, as long as we can guarantee

that INTVi is always an over-approximation of the actual timing interval of the corresponding

pipeline stage in any concrete execution, we can also guarantee the soundness of our analysis.

To ensure that the interval INTVi is always an over-approximation, we have to consider all

possible latencies suffered by any pipeline stage. The latency of a pipeline stage, on the other

hand, may be influenced by the following factors:

108

Cache miss penalty Only NC categorized memory references may have variable latencies.

Our analysis represents this variable latency as an interval [lo, hi] (Equation 7.1) where lo (hi)

represents the latency of a cache hit (miss).

Functional unit latency Some functional units may have variable latencies depending on

operands (e.g. multiplier unit). For such functional units, we consider the EX pipeline stage

latency as an interval [lo, hi] where lo (hi) represents the minimum (maximum) possible latency

of the corresponding functional unit.

Contention to access functional units A pair of instructions may delay each other by con-

tending for the same functional unit. Since only EX stage may suffer from contention, two

different instructions may contend for the same functional unit only if the timing intervals of

respective EX stages overlap. For any pipeline stage i, an upper bound on contention (say

CONTmaxi) is computed by accounting the cumulative effect of contentions created by all the

overlapping pipeline stages (which access the same functional unit as i). We do not compute a

lower bound on contention and conservatively assume a safe lower bound of 0. Finally, we add

[0, CONTmaxi] with the timing interval of pipeline stage i. Clearly, [0, CONTmaxi] covers all

possible latencies suffered by pipeline stage i due to contention.

Bus access delay Bus access delay of a pipeline stage depends on incoming bus contexts

(Oini). Computation of Oini is always an over-approximation as evidenced by Equation 7.7

and Equation 7.9. Therefore, we can always compute the interval spanning from minimum to

maximum bus delay using Oini (Equation 7.4 and Equation 7.5).

In the following description, we shall argue how our analysis maintain soundness for each

of these four scenarios.

7.8.2 Detailed proofs

Property 7.8.1. Functional unit latency considered during analysis is always sound. More

precisely, any functional unit latency that may appear in a concrete execution, is considered

during WCET analysis.

Proof. If a functional unit has fixed latency, the soundness follows trivially. However, a func-

tional unit may have variable latency (e.g. multiplier unit). Assume lo (hi) represents the

109

minimum (maximum) latency that could possibly be suffered by using functional unit f . Our

WCET analysis uses an interval [lo, hi] to represent the execution latency (i.e. the latency of

EX stage in the pipeline) for all the instructions which may use f . In this way, we are able to

handle the worst case which may arise due to a lower functional unit latency.

Property 7.8.2. Cache access latencies considered during analysis is always sound. Therefore,

WCET analysis considers all possible cache access latencies which may appear in a concrete

execution.

Proof. Recall that memory references are classified as all-hit (AH), all-miss (AM) and unclas-

sified (NC) in L1 and (shared) L2 cache. The soundness of categorizing a memory reference

either AH or AM in L1 or (shared) L2 cache follows from the soundness of analyses proposed

in [9] and [15]. On the other hand, the soundness of our analysis directly follows from Equation

7.1. Note that the latency considered for NC categorized memory reference (Equation 7.1) cap-

tures the entire interval — ranging from cache hit latency to cache miss latency. Therefore, our

analysis can handle the worst case which may arise due to a cache hit (instead of a cache miss)

for a particular memory reference.

We propose the following properties which are essential for understanding the soundness of

shared bus analysis.

Property 7.8.3. Consider an execution graph of a basic blockB and assume INITB represents

the set of execution graph nodes without any predecessor. Assume two different execution con-

texts of basic blockB say c1 and c2. Further assumeOinj (c1) (Oinj (c2)) andOoutj (c1) (Ooutj (c2))

represent the incoming and outgoing bus context, respectively, at any execution graph node j

with execution context c1 (c2). Finally assume that each EX stage in the execution context c2

experiences at least as much contention as in the execution context c1. For any execution graph

node j, the following property holds: if Oinj (c1) * Oinj (c2), then Oini (c1) * Oini (c2) for at

least one i ∈ INITB .

Proof. For j ∈ INITB , our claim trivially follows. Therefore, assume j /∈ INITB . We

prove our claim by contradiction. We assume that Oini (c1) ⊆ Oini (c2) for all i ∈ INITB , but

110

Oinj (c1) * Oinj (c2). Note that any execution graph is acyclic and consequently, it has a valid

topological ordering. We prove that the contradiction is invalid (i.e. Oinj (c1) ⊆ Oinj (c2)) by

induction on the topological order n of execution graph nodes.

Base case n = 1. These are the nodes in INITB . Therefore, the claim directly follows from

our assumption.

Induction step Assume all nodes in the execution graph which have topological order ≤ k

validates our claim. We prove that any node j having topological order ≥ k + 1 validates our

claim as well. If we assume a contradiction then Oinj (c1) * Oinj (c2). However, it is only

possible if one of the following conditions hold for some predecessor p′ of j (refer to Equation

7.9):

• earliest[tfinishp′](c1) < earliest[tfinishp′](c2) or

• latest[tfinishp′](c1) > latest[tfinishp′](c2) or

• Ooutp′ (c1) * Ooutp′ (c2).

where earliest[tfinishi](c1) (latest[tfinishi](c1)) and earliest[tfinishi](c2) (latest[tfinishi](c2))

represent the earliest (latest) finish time of node i in the execution contexts c1 and c2, re-

spectively. As any EX stage in the execution context c2 experiences more contention than in

the execution context c1 (our assumption), any of the above three conditions can hold only if

Oinp′ (c1) * Oinp′ (c2). Following the same argument and going backward in the topological order

of the execution graph, we must have a predecessor p0 which has topological order ≤ k and

Oinp0(c1) * Oinp0(c2). This contradicts our induction hypothesis. Therefore, our initial claim was

invalid.

This property ensures that the bus contexts reaching at basic block B can precisely be en-

coded by the set of bus contexts reaching at INITB , ignoring functional unit contentions (since

the bus context at any node in the execution graph can grow only if the bus context at some node

i ∈ INITB grows). The following property ensures that the same is true even in the presence

of functional unit contentions.

Property 7.8.4. Consider an execution graph of a basic blockB and assume INITB represents

the set of execution graph nodes without any predecessor. Assume two different execution

111

contexts of basic blockB say c1 and c2. Further assumeOinj (c1, n) (Oinj (c2, n)) andOoutj (c1, n)

(Ooutj (c2, n)) represent the incoming and outgoing bus context, respectively, at any execution

graph node j with execution context c1 (c2) and at the n-th iteration of pipeline modeling.

Finally assume CRn(c1) (CRn(c2)) represents the contention relation in the execution context

c1 (c2) and at the n-th iteration of pipeline modeling. For any execution graph node j, the

following property holds: if Oini (c1, n) ⊆ Oini (c2, n) for all i ∈ INITB then Oinj (c1, n) ⊆

Oinj (c2, n) for any execution graph node j and CRn(c1) ⊆ CRn(c2) over different iterations n

of pipeline modeling.

Proof. Assume earliest[treadyi , n](c1) (earliest[treadyi , n](c2)) represents the earliest ready time

of execution graph node i in the execution context c1 (c2) and at n-th iteration of pipeline mod-

eling. Similarly, latest[tfinishi , n](c1) (latest[tfinishi , n](c2)) represents the latest finish time of

execution graph node i in the execution context c1 (c2) and at n-th iteration of pipeline modeling.

We prove our claim by an induction on the number of iterations (n) of pipeline modeling.

Base case n = 1. We start with all possible pairs of instructions in the contention relation (i.e.

we assume that every pair of instructions which may use same functional unit, can potentially

delay each other). Therefore, CR1(c1) = CR1(c2). Property 7.8.3 ensures that Oinj (c1, 1) ⊆

Oinj (c2, 1) for any execution graph node j. Consequently, for any execution graph node j, we

can conclude that

• earliest[treadyj , 1](c1) ≥ earliest[treadyj , 1](c2)

• latest[tfinishj , 1](c1) ≤ latest[tfinishj , 1](c2)

Therefore, CR2(c1) ⊆ CR2(c2) as the timing interval of any execution graph node is coarser in

the execution context c2 compared to the corresponding timing interval in the execution context

c1.

Induction step We assume that CRn(c1) ⊆ CRn(c2) and Oinj (c1, n) ⊆ Oinj (c2, n) for any

execution graph node j. We shall prove that CRn+1(c1) ⊆ CRn+1(c2) and Oinj (c1, n + 1) ⊆

Oinj (c2, n + 1) for any execution graph node j. We shall prove the same by contradiction (i.e.

assume that CRn+1(c1) * CRn+1(c2)). Informally, we have at least two execution graph

112

nodes i and j which have disjoint timing intervals in the execution context c1 but have overlap-

ping timing intervals in the execution context c2. This is only possible if one of the following

conditions hold:

• earliest[treadyi , n+ 1](c1) < earliest[treadyi , n+ 1](c2)

• earliest[treadyj , n+ 1](c1) < earliest[treadyj , n+ 1](c2).

• latest[tfinishi , n+ 1](c1) > latest[tfinishi , n+ 1](c2)

• latest[tfinishj , n+ 1](c1) > latest[tfinishj , n+ 1](c2)

However, above situation may arise only if one of the following two conditions holds:

• Oink (c1, n + 1) * Oink (c2, n + 1) for some execution graph node k. Since CRn(c1) ⊆

CRn(c2), Property 7.8.3 ensures Oinp (c1, n + 1) * Oinp (c2, n + 1) for at least one node

p which does not have any predecessor. This is a contradiction as Oinp (c1, n + 1) =

Oinp (c1, n) andOinp (c2, n+1) = Oinp (c2, n) and therefore,Oinp (c1, n+1) = Oinp (c1, n) ⊆

Oinp (c2, n) = Oinp (c2, n+ 1).

• CRn(c1) * CRn(c2), which may increase latest[tfinishi , n + 1](c1) with respect to the

value of latest[tfinishi , n+1](c2) for some node i. However, this is a contradiction of our

induction hypothesis.

This property generalizes the previous Property 7.8.3 by considering functional unit contentions.

Property 7.8.5. Consider an execution graph of a basic blockB and assume INITB represents

the set of execution graph nodes without any predecessor. Assume two different execution con-

texts of basic blockB say c1 and c2. Further assumeOinj (c1) (Oinj (c2)) andOoutj (c2) (Ooutj (c2))

represent the incoming and outgoing bus context, respectively, at any execution graph node j

with execution context c1 (c2). If Oini (c1) ⊆ Oini (c2) for all i ∈ INITB , WCET of basic block

B in the execution context c2 is always at least equal to the WCET of basic block B in the

execution context c1.

113

Proof. This claim follows directly from Properties 7.8.3-7.8.4. If Oini (c1) ⊆ Oini (c2) for all

nodes i ∈ INITB , then according to Properties 7.8.3-7.8.4, Oinj (c1) ⊆ Oinj (c2) for any execu-

tion graph node j. Since the bus context at any execution graph node with the execution context

c2 subsumes the respective bus contexts with the execution context c1, we can conclude that the

WCET of basic block B with the execution context c2 is at least equal to the WCET of basic

block B with the execution context c1.

Property 7.8.6. Consider any non-nested loop l. Assume Oini (m) represents the incoming bus

context of any execution graph node i atm-th iteration of loop. Consider two different iterations

m′ and m′′ of loop l. If Oinxi(m
′) ⊆ Oinxi(m′′) for all xi ∈ πinl , Oinxi(m

′+ 1) ⊆ Oinxi(m′′+ 1) for

all xi ∈ πinl . Moreover, WCET of any basic block inside loop l at iteration m′′ must be at least

equal to the WCET of the corresponding basic block at iteration m′.

Proof. By definition, πinl corresponds to the set of pipeline stages which resolve loop carried

dependency (either due to resource constraints, pipeline structural constraints or true data de-

pendency). This direct dependency is specified through directed edges in the execution graph

(as shown in Figure 7.3). We first prove that Oinj (m′) ⊆ Oinj (m′′) for any execution graph

node j that corresponds to some instruction inside l. We prove our claim by induction on the

topological order n of basic blocks in l.

Base case n = 1. This is the loop headerH . By using an exactly similar proof as in properties

7.8.3-7.8.4, we can show that if Oinxi(m
′) ⊆ Oinxi(m′′) for all xi ∈ πinl , Oini (m′) ⊆ Oini (m′′) for

any node i in the execution graph of H .

Induction step Assume our claim holds for all basic blocks having topological order≤ k. We

shall prove that our claim holds for all basic blocks having topological order≥ k+ 1. However,

using our methodology for proving Properties 7.8.3-7.8.4, we can easily show that if the bus

context for some basic block (having topological order ≥ k + 1) at iteration m′′ is not an over-

approximation of the bus context of the same basic block at iteration m′, it could be either of

two following reasons:

114

• The bus context at iteration m′′ is not an over-approximation of the bus context at itera-

tion m′ for some basic block having topological order ≤ k, contradicting our induction

hypothesis;

• For some xi ∈ πinl , Oinxi(m
′) * Oinxi(m

′′), contradicting our assumption.

Since the bus contexts computed at each basic block at iteration m′′ subsume the corre-

sponding bus contexts at iteration m′, Oinxi(m
′ + 1) ⊆ Oinxi(m

′′ + 1) for all xi ∈ πinl . For the

same reason, WCET of any basic block inside l at m′′-th iteration is at least equal to the WCET

of the corresponding basic block at iteration m′.

Recall that to track the bus contexts at different loop iterations, we construct a flow graph

Gsl . We terminate the construction of Gsl after k (k ≥ 1) iterations only if for all i ∈ πinl ,

Oini (k) ⊆ Oini (j) where 1 ≤ j < k. We add a backedge from k − 1-th bus context to j-th

bus context to terminate the construction of Gsl . The bus context at some loop iteration n is

computed from Gsl by following a path of length n from the initial node. In case n is less than

the number of nodes in Gsl , it is straightforward to see that the computed bus context is always

an over-approximation (as evidenced by Equation 7.7 and Equation 7.9). In case n is more than

the number of nodes in Gsl (i.e. backedge in Gsl is followed at least once to compute the bus

context), the above property ensures that the bus context computed by the flow graph is always

an over-approximation.

In the following property, we shall generalize the result for any loop (nested or non-nested).

Property 7.8.7. Consider any loop l. Assume Oini (m) represents the incoming bus context of

any execution graph node i at m-th iteration of loop. Consider two different iterations m′ and

m′′ of loop l. If Oinxi(m
′) ⊆ Oinxi(m

′′) for all xi ∈ πinl , Oinxi(m
′ + 1) ⊆ Oinxi(m

′′ + 1) for all

xi ∈ πinl . Moreover, if l contains some loop l′, Oexitxj computed at m′′-th iteration of l always

over-approximates Oexitxj computed at m′-th iteration of l, for every xj ∈ πoutl′ .

Proof. Let us first consider some loop l which contains only non-nested loops. Let us assume

a topological order of all inner loops inside l and assume lx represents the inner loop contained

in l, which is preceded by x − 1 other inner loops inside l, in topological order. We first prove

115

that Oinj (m′) ⊆ Oinj (m′′) for any execution graph node j that corresponds to some instruction

inside l. We also prove that for any inner loop lx and for all j ∈ πoutlx , Oexitj computed at m′′-th

iteration of l is always an over-approximation of Oexitj computed at m′-th iteration of l.

For any basic block i inside l, assume that ni is the number of loop exit edges appearing

prior in topological order of i. We assume that each loop has a single exit node. If some loop

has multiple exits, we can assume an empty node which post-dominates all the exit nodes of the

loop. We prove our claim by induction on ni.

Base case ni = 0. Therefore, we have the two following possibilities:

• (Case I) i is a basic block which is immediately enclosed by loop l.

• (Case II) i is a basic block which is immediately enclosed by loop l1 and l1 is the first

loop contained inside l, following a topological order.

For Case I, Property 7.8.6 ensures thatOinj (m′) ⊆ Oinj (m′′) for all nodes j that corresponds

to the instructions in basic block i.

For Case II, basic block i may have different bus contexts at different iterations of loop l1.

We shall prove that the bus context computed for basic block i at any iteration of l1 validates

our claim. Assume Oinj (x, x′) (Ooutj (x, x′)) represents the incoming (outgoing) bus context at

the execution graph node j at x-th iteration of l and at x′-th iteration of l1. Properties 7.8.3-

7.8.4 ensure that Oinxj(m
′, 1) ⊆ Oinxj(m

′′, 1) for all xj ∈ πinl1 . Therefore, applying Property

7.8.6 on loop l1, for any execution graph node j and for any iteration n of loop l1, we get

Oinj (m′, n) ⊆ Oinj (m′′, n) . Therefore, Oexiti for any i ∈ πoutl1 (recall that Oexiti represents

the bus context exiting the loop l1 from node i) computed at m′′-th iteration of loop l is an

over-approximation of Oexiti computed at m′-th iteration of loop l.

Induction step Assume our claim holds for all basic blocks i having ni ≤ k. Therefore,

Oinj (m′) ⊆ Oinj (m′′) for any execution graph node j that corresponds to the instructions of any

basic block i (having ni ≤ k). Moreover, for any inner loop lk and for all j ∈ πout
lk

, Oexitj

computed at m′′-th iteration of l is always an over-approximation of Oexitj computed at m′-th

iteration of l,

We shall prove that our claim holds for all basic blocks having ni = k + 1. As described in

the preceding, we have the two following cases:

116

• (Case I) i is a basic block which is immediately enclosed by loop l.

• (Case II) i is a basic block which is immediately enclosed by some loop lk+1, where lk+1

is the loop contained inside l and k different loops inside l precedes lk+1 in topological

order.

For Case I, using our methodology for proving Properties 7.8.3-7.8.4, we can easily show

that if the bus context for some basic block i (having ni = k + 1) at iteration m′′ is not an

over-approximation of the bus context of the same basic block at iteration m′, it could be due to

any of the three following reasons:

• The bus context at iterationm′′ is not an over-approximation of the bus context at iteration

m′ for some basic block j having nj ≤ k, contradicting our induction hypothesis;

• There exists some loop lx which appears prior to i in topological order butOexiti computed

at m′′-th iteration of loop l is not an over-approximation of Oexiti computed at m′-th

iteration of loop l for some i ∈ πoutlx . Since lx appears prior in topological order of i,

x ≤ k. This also violates our induction hypothesis.

• For some xi ∈ πinl , Oinxi(m
′) * Oinxi(m

′′), contradicting our assumption.

Now consider Case II. Assume Oinj (x, x′) (Ooutj (x, x′)) represents the incoming (outgoing)

bus context at the execution graph node j at x-th iteration of l and at x′-th iteration of lk+1.

According to our induction hypothesis and the argument provided above, we get Oinj (m′, 1) ⊆

Oinj (m′′, 1) for all j ∈ πin
lk+1 . Therefore, applying Property 7.8.6 on loop lk+1, for any execution

graph node j and for any iteration n of loop lk+1, we get Oinj (m′, n) ⊆ Oinj (m′′, n) . Conse-

quently, for any i ∈ πout
lk+1 ,Oexiti computed atm′′-th iteration of loop l is an over-approximation

of Oexiti computed at m′-th iteration of loop l. This completes our induction.

Finally, we conclude that Oinj (m′) ⊆ Oinj (m′′) for any execution graph node j that corre-

sponds to some instruction in l. Consequently, Oinxi(m
′ + 1) ⊆ Oinxi(m′′ + 1) for all xi ∈ πinl .

From the above argument, it is now straight-forward to see that the property also holds for

any nested loop by proving the claims in a bottom up fashion of loop nests (i.e. an induction on

the level of loop nests starting from the innermost loop).

Property 7.8.8. (Termination Property) Consider two instructions p and q of basic block B.

(p, q) ∈ CR if and only if p and q may contend for the same functional unit. CR is called

117

the contention relation. Assume CRn represents the contention relation at n-th iteration of

pipeline modeling. Set of elements in CRn monotonically decreases across different iterations

n of pipeline modeling.

Proof. We prove the above claim by induction on number of iterations taken by the pipeline

modeling. For some execution graph node i, assume Oini (n) (Oouti (n)) represents the incom-

ing (outgoing) bus context at iteration n. Also assume earliest[treadyi , n] (latest[tfinishi , n])

represents the earliest (latest) ready (finish) time of execution graph node i at iteration n.

Base case n = 1. We start with all possible pairs of instructions in the contention relation (i.e.

we assume that every pair of instructions which may use same functional unit can potentially

delay each other). Therefore, the set of elements in the contention relation trivially decreases

after the first iteration (i.e. CR2 ⊆ CR1).

Induction step We assume that CRn ⊆ CRn−1 and we shall prove that CRn+1 ⊆ CRn. We

prove the same by contradiction (i.e. assume that CRn+1 * CRn). Informally, we have at

least two execution graph nodes i and j which have disjoint timing intervals at iteration n but

overlapping timing intervals at iteration n + 1. This is only possible if one of the following

conditions hold:

• earliest[treadyi , n+1] < earliest[treadyi , n] (or earliest[treadyj , n+1] < earliest[treadyj , n]).

• latest[tfinishi , n+ 1] > latest[tfinishi , n] (or latest[tfinishj , n+ 1] > latest[tfinishj , n]).

However, above situation may arise only if one of the following two conditions hold: 1)Oink (n+

1) * Oink (n) for some execution graph node k. Since CRn ⊆ CRn−1, Property 7.8.4 ensures

Oinp (n + 1) * Oinp (n) for at least one node p which does not have any predecessor. This is a

contradiction as Oinp (n + 1) = Oinp (n). 2) CRn * CRn−1, which leads to more contention at

n-th iteration and thereby increasing latest[tfinishi , n + 1] for some node i. However, this is a

contradiction of our induction hypothesis.

This property ensures that our iterative framework always terminates in the presence of

shared cache and shared bus.

Property 7.8.9. Computation of Oini and Oouti is always sound.

118

Proof. This follows directly from the previous properties. Property, 7.8.6 ensures that we in-

clude all possible contexts for a basic block inside loop. Equation 7.10 and Equation 7.11

ensure that we include all possible TDMA offsets from different program paths. As contention

decreases monotonically over different iterations of pipeline modeling (Property 7.8.8), Equa-

tion 7.9 and Equation 7.7 ensure that the value of Oini and Oouti are sound over-approximations

of respective bus contexts. Finally, the soundness of the analysis presented in [41] guarantees

that we always compute an overapproximation of bus contexts at loop exit.

Essentially, we show that the search space of possible bus contexts is never pruned through-

out the program. Therefore, our analysis maintain soundness when a lower bus delay may lead

to global worst case scenario.

Finally, we conclude that the longest acyclic path search in the execution graph always

results in a sound estimation of basic block WCET. Moreover, we are able to consider an over-

approximation of all possible bus contexts if a basic block executes with multiple bus contexts

(Properties 7.8.6 -7.8.7). The IPET approach, on the other hand, searches for the longest feasible

program path to ensure a sound estimation of whole program’s WCET.

7.9 Experimental evaluation

Experimental setup

We have chosen moderate to large size benchmarks from [2], which are generally used for

timing analysis. The code size of the benchmarks ranges from 2779 bytes (bsort100) to

118351 bytes (nsichneu), with an average code size of 18500 bytes. Individual benchmarks

are compiled into simplescalar PISA (Portable Instruction Set Architecture) [81] — a MIPS like

instruction set architecture. We use the simplescalar gcc cross compiler with optimization level

-O2 to generate the PISA compliant binary of each benchmark. The control flow graph (CFG)

of each benchmark is extracted from its PISA compliant binary and is used as an input to our

analysis framework.

To validate our analysis framework, the simplescalar toolset [81] was extended to support

the simulation of shared cache and shared bus. The simulation infrastructure is used to compare

the estimated WCET with the observed WCET. Observed WCET is measured by simulating the

program for a few program inputs. Nevertheless, we would like to point out that the presence

of a shared cache and a shared bus makes the realization of the worst case scenario extremely

119

Table 7.1: Default micro-architectural setting for experiments

Component Default settings Perfect settings
Number of cores 2 NA

1-way, inorder
pipeline 4-entry IFQ, 8-entry ROB NA

L1 instruction 2-way associative, 1 KB All accesses
cache miss penalty = 6 cycles are L1 hit

L2 instruction 4-way associative, 4 KB NA
cache miss penalty = 30 cycles

Shared bus slot length = 50 cycles Zero bus delay
Branch predictor 2 level predictor, L1 size=1 Branch prediction

L2 size=4, history size=2 is always correct

challenging. In the presence of a shared cache and a shared bus, the worst case scenario depends

on the interleavings of threads, which are running on different cores. Consequently, the observed

WCET result in our experiments may sometimes highly under-approximate the actual WCET.

For all of our experiments, we present the WCET overestimation ratio, which is measured

as Estimated WCET
Observed WCET . For each reported overestimation ratio, the system configuration during

the analysis (which computes Estimated WCET) and the measurement (which computes

Observed WCET) are kept identical. Unless otherwise stated, our analysis uses the default

system configuration in Table 7.1 (as shown by the column “Default settings“). Since the data

cache modeling is not yet included in our current implementation, all data accesses are assumed

to be L1 cache hits (for analysis and measurement both).

To check the dependency of WCET overestimation on the type of conflicting task (being

run in parallel on a different core), we use two different tasks to generate the inter-core conflicts

— 1) jfdctint, which is a single path program and 2) statemate, which has a huge

number of paths. In our experiments (Figures 7.5-7.7), we use jfdctint to generate inter-

core conflicts to the first half of the tasks (i.e. matmult to nsichneu). On the other hand, we

use statemate to generate inter-core conflicts to the second half of the tasks (i.e. edn to st).

Due to the absence of any infeasible program path, inter-core conflicts generated by a single

path program (e.g. jfdctint) can be more accurately modeled compared to a multi-path

program (e.g. statemate). Therefore, in the presence of a shared cache, we expect a better

WCET overestimation ratio for the first half of the benchmarks (i.e. matmult to nsichneu)

compared to the second half (i.e. edn to st).

To measure the WCET overestimation due to cache sharing, we compare the WCET result

120

with two different design choices, where the level 2 cache is partitioned. For a two-core system,

two different partitioning choices are explored: first, each partition has the same number of

cache sets but has half the number of ways compared to the original shared cache (called vertical

partitioning). Secondly, each partition has half the number of cache sets but has the same number

of ways compared to the original shared cache (called horizontal partitioning). In our default

configuration, therefore, each core is assigned a 2-way associative, 2 KB L2 cache in the vertical

partitioning, whereas each core is assigned a 4-way associative, 2 KB L2 cache in the horizontal

partitioning.

Finally, to pinpoint the source of WCET overestimation, we can selectively turn off the anal-

ysis of different micro-architectural components. We say that a micro-architectural component

has perfect setting if the analysis of the same is turned off (refer to column “Perfect settings” in

Table 7.1).

 0

 0.5

 1

 1.5

 2

 2.5

matmult

cnt
fir fdct

expint

nsichneu

edn
ludcmp

ns bsort100

adpcm
stW

C
E

T
ov

er
es

tim
at

io
n

ra
tio

 (W
C

E
T/

S
IM

)

Benchmarks

WCET overestimation w.r.t various L2 cache setting

perfect L1 cache
only L1 cache

L1 cache + shared L2 cache

L1 cache + vertically partitioned L2 cache
L1 cache + horizontally partitioned L2 cache

Figure 7.5: Effect of shared and partitioned L2 cache on WCET overestimation

Basic analysis result

Effect of caches Figure 7.5 shows the WCET overestimation ratio with respect to different

L1 and L2 cache settings in the presence of a perfect branch predictor and a perfect shared

bus. Results show that we can reasonably bound the WCET overestimation ratio except for

nsichneu. The main source of WCET overestimation in nsichneu comes from the path

analysis and not due to the micro-architectural modeling. This is expected, as nsichneu

contains more than two hundred branch instructions and many infeasible paths. These infeasible

paths can be eliminated by providing additional user constraints into our framework and hence

improving the result. We also observe that the partitioned L2 caches may lead to a better WCET

121

overestimation compared to the shared L2 caches, with the vertical L2 cache partitioning almost

always working as the best choice. The positive effect of the vertical cache partitioning is visible

in adpcm, where the overestimation in the presence of a shared cache rises. This is due to the

difficulty in modeling the inter-core cache conflicts from statemate (a many-path program

being run in parallel).

 0

 0.5

 1

 1.5

 2

 2.5

matmult

cnt
fir fdct

expint

nsichneu

edn
ludcmp

ns bsort100

adpcm
st

W
C

E
T

ov
er

es
tim

at
io

n
ra

tio
 (W

C
E

T/
S

IM
)

Benchmarks

WCET overestimation w.r.t speculation and with only L1 cache

perfect predictor + perfect L1 cache
2 level predictor + perfect L1 cache

perfect predictor + only L1 cache
2 level predictor + only L1 cache

(a)

 0

 0.5

 1

 1.5

 2

 2.5

matmult

cnt
fir fdct

expint

nsichneu

edn
ludcmp

ns bsort100

adpcm
stW

C
E

T
ov

er
es

tim
at

io
n

ra
tio

 (W
C

E
T/

S
IM

)

Benchmarks

WCET overestimation w.r.t speculation in various L2 cache setting

perfect predictor + L1 cache + shared L2 cache
2 level predictor + L1 cache + shared L2 cache

perfect predictor + L1 cache + vertically partitioned L2 cache
2 level predictor + L1 cache + vertically partitioned L2 cache

perfect predictor + L1 cache + horizontally partitioned L2 cache
2 level predictor + L1 cache + horizontally partitioned L2 cache

(b)

Figure 7.6: (a) Effect of speculation on L1 cache, (b) effect of speculation on partitioned and
shared L2 caches

Effect of speculative execution As we explained in Section 7.6, the presence of a branch

predictor and speculative execution may introduce additional computation cycles for executing

a mispredicted path. Moreover, speculative execution may introduce additional cache conflicts

from a mispredicted path. The results in Figure 7.6(a) and Figure 7.6(b) show the effect of

speculation in L1 and L2 cache, respectively. Mostly, we do not observe any sudden spikes

in the WCET overestimation just due to speculation. adpcm shows some reasonable increase

in WCET overestimation with L2 caches and in the presence of speculation (Figure 7.6(b)).

122

 0

 0.5

 1

 1.5

 2

 2.5

matmult

cnt
fir fdct

expint

nsichneu

edn
ludcmp

ns bsort100

adpcm
stW

C
E

T
ov

er
es

tim
at

io
n

ra
tio

 (W
C

E
T/

S
IM

)

Benchmarks

WCET overestimation in presence of shared bus

perfect predictor + L1 cache + shared L2 cache + perfect shared bus
perfect predictor + L1 cache + shared L2 cache + shared bus

2 level predictor + L1 cache + shared L2 cache + perfect shared bus
2 level predictor + L1 cache + shared L2 cache + shared bus

Figure 7.7: Effect of shared bus on WCET overestimation

This increase in the overestimation ratio can be explained from the overestimation arising in

the modeling of the effect of speculation in cache (refer to Section 7.6). Due to the abstract

join operation to combine the cache states in correct and mispredicted path, we may introduce

some spurious cache conflicts. Nevertheless, our approach for modeling the speculation effect

in cache is scalable and produces tight WCET estimates for most of the benchmarks.

Effect of shared bus Figure 7.7 shows the WCET overestimation in the presence of a shared

cache and a shared bus. We observe that our shared bus analysis can reasonably control the

overestimation due to the shared bus. Except for edn and nsichneu, the overestimation in

the presence of a shared cache and a shared bus is mostly equal to the overestimation when

shared bus analysis is turned off (i.e. a perfect shared bus). Recall that each overestimation ratio

is computed by performing the analysis and the measurement on identical system configuration.

Therefore, the analysis and the measurement both includes the shared bus delay only when the

shared bus is enabled. For a perfect shared bus setting, both the analysis and the measurement

consider a zero latency for all the bus accesses. As a result, we also observe that our shared

bus analysis might be more accurate than the analysis of other micro-architectural components

(e.g. in case of nsichneu, expint and fir, where the WCET overestimation ratio in the

presence of a shared bus might be less than the same with a perfect shared bus). In particular,

nsichneu shows a drastic fall in the WCET overestimation ratio when the shared bus analysis

is enabled. For nsichneu, we found that the execution time is dominated by shared bus delay,

which is most accurately computed by our analysis for this benchmark. On the other hand, we

observed in Figure 7.5 that the main source of WCET overestimation in nsichneu is path

analysis, due to the presence of many infeasible paths. Consequently, when shared bus analysis

123

is turned off, the overestimation arising from path analysis dominates and we obtain a high

WCET overestimation ratio. Average WCET overestimation in the presence of both a shared

cache and a shared bus is around 50%.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

1-way, 512 bytes

2-way, 512 bytes

1-way, 1 KB

2-way, 1 KB

1-way, 2 KB

2-way, 2KB

1-way, 4 KB

2-way, 4KBW
C

E
T

ov
er

es
tim

at
io

n
ra

tio
 (W

C
E

T/
S

IM
)

L1 cache

WCET overestimation sensitivity w.r.t L1 cache size

only L1 cache + perfect shared bus
L1 cache + shared L2 cache + perfect shared bus

L1 cache + vertically partitioned L2 cache + perfect shared bus
L1 cache + horizontally partitioned L2 cache + perfect shared bus

L1 cache + shared L2 cache + shared bus

(a)

 0

 0.5

 1

 1.5

 2

 2.5

1-way, 512 bytes

2-way, 512 bytes

1-way, 1 KB

2-way, 1 KB

1-way, 2 KB

2-way, 2KB

1-way, 4 KB

2-way, 4KB

W
C

E
T

ov
er

es
tim

at
io

n
ra

tio
 (W

C
E

T/
S

IM
)

L1 cache

WCET overestimation sensitivity w.r.t speculation and L1 cache size

2 level predictor + only L1 cache + perfect shared bus
2 level predictor + L1 cache + shared L2 cache + perfect shared bus

2 level predictor + L1 cache + vertically partitioned L2 cache + perfect shared bus
2 level predictor + L1 cache + hrizontally partitioned L2 cache + perfect shared bus

2 level predictor + L1 cache + shared L2 cache + shared bus

(b)

Figure 7.8: WCET overestimation sensitivity w.r.t. L1 cache (a) without speculation, (b) with
speculation

WCET analysis sensitivity w.r.t. micro-architectural parameters

In this section, we evaluate the WCET overestimation sensitivity with respect to different micro-

architectural parameters. For the following experiments, the reported WCET overestimation

denotes the geometric mean of the term Estimated WCET
Observed WCET over all the different benchmarks.

WCET sensitivity w.r.t. L1 cache size Figure 7.8(a) and Figure 7.8(b) show the geometric

mean of WCET overestimation for different L1 cache sizes, with and without speculation, re-

spectively. To keep the L2 cache bigger than the L1 cache, total L2 cache is kept at 4-way,

16 KB for all the experiments in Figures 7.8(a)-(b). Therefore, for horizontally and vertically

124

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

4-way, 4 KB 4-way, 8 KB 4-way, 16 KB 4-way, 32 KB 4-way, 64 KB

W
C

E
T

ov
er

es
tim

at
io

n
ra

tio
 (W

C
E

T/
S

IM
)

L2 cache

WCET overestimation sensitivity w.r.t L2 cache size

only L1 cache + perfect shared bus
L1 cache + shared L2 cache + perfect shared bus

L1 cache + vertically partitioned L2 cache + perfect shared bus
L1 cache + horizontally partitioned L2 cache + perfect shared bus

L1 cache + shared L2 cache + shared bus

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

4-way, 4 KB 4-way, 8 KB 4-way, 16 KB 4-way, 32 KB 4-way, 64 KB

W
C

E
T

ov
er

es
tim

at
io

n
ra

tio
 (W

C
E

T/
S

IM
)

L2 cache

WCET overestimation sensitivity w.r.t speculation and L2 cache size

2 level predictor + L1 cache + shared L2 cache + perfect shared bus
2 level predictor + L1 cache + vertically partitioned L2 cache + perfect shared bus

2 level predictor + L1 cache + horizontally partitioned L2 cache + perfect shared bus
2 level predictor + L1 cache + shared L2 cache + shared bus

(b)

Figure 7.9: WCET overestimation sensitivity w.r.t. L2 cache (a) without speculation, (b) with
speculation

partitioned L2 cache architectures, each core uses an 8 KB L2 cache. Naturally, in the pres-

ence of speculation, the overestimation is slightly higher. However, our framework is able to

maintain an average overestimation ratio around 20% without speculation and around 40% with

speculation.

WCET sensitivity w.r.t. L2 cache size Figure 7.9(a) and Figure 7.9(b) show the geomet-

ric mean of WCET overestimation for different L2 cache sizes, with and without speculation,

respectively. On average, WCET overestimation in the presence of shared L2 cache is higher

compared to partitioned L2 cache architectures. As pointed out earlier, this is due to the inher-

ent difficulties in modeling the inter-core cache conflicts. Nevertheless, our analysis framework

captures an average overestimation around 40% (50%) without (with) speculation over different

L2 cache settings.

125

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1-way, inorder 1-way, out-of-order 2-way, out-of-orderW
C

E
T

ov
er

es
tim

at
io

n
ra

tio
 (W

C
E

T/
S

IM
)

Pipeline

WCET overestimation sensitivity w.r.t pipeline parameters

perfect L1 cache
only L1 cache + perfect shared bus

L1 cache + shared L2 cache + perfect shared bus
L1 cache + vertically partitioned L2 cache + perfect shared bus

L1 cache + horizontally partitioned L2 cache + perfect shared bus
L1 cache + shared L2 cache + shared bus

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1-way, inorder 1-way, out-of-order 2-way, out-of-orderW
C

E
T

ov
er

es
tim

at
io

n
ra

tio
 (W

C
E

T/
S

IM
)

Pipeline

WCET overestimation sensitivity w.r.t pipeline parameters in presence of speculation

2 level predictor + perfect L1 cache
2 level predictor + only L1 cache + perfect shared bus

2 level predictor + L1 cache + shared L2 cache + perfect shared bus
2 level predictor + L1 cache + vertically partitioned L2 cache + perfect shared bus

2 level predictor + L1 cache + horizontally partitioned L2 cache + perfect shared bus
2 level predictor + L1 cache + shared L2 cache + shared bus

(b)

Figure 7.10: WCET overestimation sensitivity w.r.t. different pipelines (a) without speculation,
(b) with speculation

WCET sensitivity w.r.t. different pipelines We have done experiments for different pipelines.

Figure 7.10(a) (without speculation) and Figure 7.10(b) (with speculation) show the WCET

overestimation sensitivity for inorder, out-of-order and superscalar pipelines. Superscalar pipelines

increase the instruction level parallelism and so as the performance of entire program. However,

it also becomes difficult to model the inherent instruction level parallelism in the presence of

superscalar pipelines. Therefore, Figure 7.10(a) and 7.10(b) both show an increase in WCET

overestimation with superscalar pipelines. However, it is clear from both the figures that the

additional overestimation mostly comes from the superscalar pipeline modeling (results marked

by “without cache” and “2lev without cache” respectively) and not from the modeling of caches.

WCET sensitivity w.r.t. bus slot length Finally, we show how the WCET overestimation is

affected with respect to bus slot length. Figure 7.11 shows the WCET overestimation sensitivity

with respect to different bus slot lengths. With very high bus slot lengths (e.g. 70 or 80 cycles),

WCET overestimation normally increases (as shown in Figure 7.11). This is due to the fact that

126

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

40 cycles 50 cycles 60 cycles 70 cycles 80 cycles

W
C

E
T

ov
er

es
tim

at
io

n
ra

tio
 (W

C
E

T/
S

IM
)

TDMA bus slot length

WCET overestimation sensitivity w.r.t bus slot length

perfect predictor + L1 cache + shared L2 cache + shared bus
2 level predictor + L1 cache + shared L2 cache + shared bus

Figure 7.11: WCET overestimation sensitivity w.r.t. different bus slot length (with and without
speculative execution)

with higher bus slot lengths, the search space for possible bus contexts (or set of TDMA offsets)

increases. As a result, it is less probable to expose the worst case scenario in simulation with

higher bus slot lengths.

Analysis time

We have performed all the experiments on an 8 core, 2.83 GHz Intel Xeon machine having 4 GB

of RAM and running Fedora Core 4 operating system. Table 7.2 reports the maximum analysis

time when the shared bus analysis is disabled and Table 7.3 reports the maximum analysis time

when all the analyses are enabled (i.e. cache, shared bus and pipeline). Recall from Section

8.2 that our WCET analysis framework is broadly composed of two different parts, namely,

micro-architectural modeling and implicit path enumeration (IPET) through integer linear pro-

gramming (ILP). The column labeled “µ arch” captures the time required for micro-architectural

modeling. On the other hand, the column labeled “ILP” captures the time required for path anal-

ysis through IPET.

In the presence of speculative execution, number of mispredicted branches is modeled by

integer linear programming [18]. Such an ILP-based branch predictor modeling, therefore,

increases the number of constraints which need to be considered by the ILP solver. As a result,

the ILP solving time increases in the presence of speculative execution (as evidenced by the

second rows of both Table 7.2 and Table 7.3).

Shared bus analysis increases the micro-architectural modeling time (as evidenced by Table

7.3) and the analysis time usually increases with the bus slot length. The time for the shared bus

analysis generally appears from tracking the bus context at different pipeline stages. A higher

127

bus slot length usually leads to a higher number of bus contexts to analyze, thereby increasing

the analysis time.

In Table 7.2 and Table 7.3, we have only presented the analysis time for the longest running

benchmark (nsichneu) from our test-suite. For any other program used in our experiments,

the entire analysis (micro-architectural modeling and ILP solving time) takes around 20-30 sec-

onds on average to finish.

The results reported in Table 7.2 show that the ILP-based modeling of branch predictor

usually increases the analysis time. Therefore, for a more efficient but less precise analysis

of branch predictors, one can explore different techniques to model branch predictors, such

as abstract interpretation. Shared bus analysis time can be reduced by using different offset

abstractions, such as interval instead of an offset set. Nevertheless, the appropriate choice of

analysis method and abstraction depends on the precision-scalability tradeoff required by the

user.

Table 7.2: Analysis time [of nsichneu] in seconds. The first row represents the analysis time
when speculative execution was disabled. The second row represents the time when speculative
execution was enabled

Shared L2 cache Pipeline
1-way 1-way 2-way

4 KB 8 KB 16 KB 32 KB 64 KB inorder out-of-order superscalar
µ µ µ µ µ µ µ µ

arch ILP arch ILP arch ILP arch ILP arch ILP arch ILP arch ILP arch ILP

1.2 1.3 1.4 1.3 1.7 1.3 2.3 1.3 4.8 1.2 1.3 1.3 1.2 1.3 1.3 1.4
2.6 240 2.9 240 3.5 238 4.6 238 7 239 2.6 238 2.4 239 2.8 254

Table 7.3: Analysis time [of nsichneu] in seconds. The first row represents the analysis time
when speculative execution was disabled. The second row represents the time when speculative
execution was enabled

TDMA bus slot length
40 cycles 50 cycles 60 cycles 70 cycles 80 cycles
µ µ µ µ µ

arch ILP arch ILP arch ILP arch ILP arch ILP

75.8 4 100 4 128 4 160 4.2 198 5.1
128 162 163 156 205 158 261 181 363 148

7.10 Extension of shared cache analysis

Our discussion on cache analysis has so far concentrated on the least-recently-used (LRU) cache

replacement policies. However, a widely used cache replacement policy is first-in-first-out

128

(FIFO). FIFO cache replacement policy has been used in embedded processors such as ARM9

and ARM11 [84]. Recently, abstract interpretation based analysis of FIFO replacement policy

has been proposed in [85; 86] for single level caches and for multi-level caches in [87]. In this

section, we shall discuss the extension of our shared cache analysis for FIFO cache replacement

policy. We shall also show that such an extension will not change the modeling of timing inter-

actions among shared cache and other basic micro-architectural components (e.g. pipeline and

branch predictor).

7.10.1 Review of cache analysis for FIFO replacement

We use the must cache analysis for FIFO replacement as proposed in [85]. In FIFO replacement,

when a cache set is full and still the processor requests fresh memory blocks (which map to the

same cache set), the first cache line entering the respective cache set (i.e. first-in) is replaced.

Therefore, the set of tags in a k-way FIFO abstract cache set (say As) can be arranged from

last-in to first-out order ([85]) as follows:

As = [T1, T2, . . . , Tk] (7.21)

where each Ti ⊆ T and T is the set of all cache tags. Unlike LRU, cache state never changes

upon a cache hit with FIFO replacement policy. Therefore, the cache state update on a memory

reference depends on the hit-miss categorization of the same memory reference. Assume that a

memory reference belongs to cache tag tagi. The FIFO abstract cache setAs = [T1, T2, . . . , Tk]

is updated on the access of tagi as follows:

τ([T1, T2, . . . , Tk], tagi) =


[T1, T2, . . . , Tk], if tagi ∈

⋃
i Ti;

[{tagi}, T2, . . . , Tk−1], if tagi /∈
⋃
i Ti ∧ |

⋃
i Ti| = k;

[φ, T2, . . . , Tk−1 ∪ {tagi}], otherwise.

(7.22)

The first scenario captures a cache hit and the second scenario captures a cache miss. Third

scenario appears when the static analysis cannot accurately determine the hit-miss categorization

of the memory reference.

The abstract join function for the FIFO must cache analysis is exactly same as the LRU

must cache analysis. The join function between two abstract FIFO cache sets computes the

129

intersection of the abstract cache sets. If a cache tag is available in both the abstract cache sets,

the right most relative position of the cache tag is captured after the join operation.

7.10.2 Analysis of shared cache with FIFO replacement

We implement the must cache analysis for FIFO replacement as described in the preceding. To

distinguish the cold cache misses at the first iterations of loops and different procedure calling

contexts, our cache analysis employs the virtual-inline-virtual-unrolling (VIVU) approach (as

described in [9]). After analyzing the L1 cache memory references are categorized as all-hit

(AH), all-miss (AM) or unclassified (NC). AM and NC categorized memory references may

access the L2 cache and therefore, the L2 cache state is updated for the memory references

which are categorized AM or NC in the L1 cache (as in [87]).

To analyze the shared cache, we used our previous work on shared cache [15] for LRU

cache replacement policy. [15] employs a separate shared cache conflict analysis phase. For

FIFO replacement policy too, we can use the exactly same idea to analyze the set of inter-core

cache conflicts. Shared cache conflict analysis may change the categorization of a memory

reference from all-hit (AH) to unclassified (NC). For the sake of illustration, assume a memory

reference which accesses the memory block m. This analysis phase first computes the number

of unique conflicting shared cache accesses from different cores. Then it is checked whether

the number of conflicts from different cores can potentially replace m from shared cache. More

precisely, for anN -way set associative cache, hit/miss categorization (CHMC) of corresponding

memory reference is changed from all-hit (AH) to unclassified (NC) if and only if the following

condition holds:

N −AGEfifo(m) < |Mc(m)| (7.23)

where |Mc(m)| represents the number of conflicting memory blocks from different cores which

may potentially access the same L2 cache set as m. AGEfifo(m) represents the relative posi-

tion of memory block m in the FIFO abstract cache set and in the absence of inter-core cache

conflicts. Recall that the memory blocks (or the tags) are arranged according to the last-in to

first-out order in the FIFO abstract cache set. Therefore, the term N − AGEfifo(m) captures

the maximum number of fresh memory blocks which can enter the FIFO cache before m being

evicted out.

130

7.10.3 Interaction of FIFO cache with pipeline and branch predictor

As described in the preceding, after the FIFO shared cache analysis, memory references are

categorized as all-hit (AH), all-miss (AM) or unclassified (NC). In the presence of pipeline, such

a categorization of instruction memory references add computation cycle with the instruction

fetch (IF) stage. Therefore, we use Equation 7.1 to compute the latency suffered by cache

hit/miss and propagate the latency through different pipeline stages.

Recall from Section 7.6.1 that speculative execution may introduce additional cache con-

flicts. In Section 7.6.1, we proposed to modify the abstract interpretation based cache analysis

to handle the effect of speculative execution on cache. From Figure 7.4, we observe that our so-

lution is independent of the cache replacement policies concerned. Our proposed modification

performs an abstract join operation on the cache states along the correct and mispredicted path

(as shown in Figure 7.4). Therefore, for FIFO replacement polices the abstract join operation

is performed according to the FIFO replacement analysis (instead of LRU join operation we

performed in case of LRU caches).

7.10.4 Experimental result

Figure 7.12 demonstrates our WCET analysis experience with FIFO replacement policy. We

have used the exactly same experimental setup as mentioned in Section 7.9. Figure 7.12(a)

shows the WCET overestimation ratio in the absence of speculative execution and Figure 7.12(a)

shows the same in the presence of branch predictor. In general, our analysis framework can

reasonably bound the WCET overestimation for FIFO cache replacement, except for fdct.

Such an overestimation for fdct is solely due to the presence of a FIFO cache and not due to

the presence of cache sharing, as clearly evidenced by Figure 7.12(a). However, as mentioned

in [88], the observed worst-case for FIFO replacement may highly under-approximate the true

worst case due to the domino effect. Otherwise, our results in Figure 7.12(a) show that FIFO is

a reasonably good alternative of LRU replacement even in the context of shared caches.

Figure 7.12(b) shows that our modeling of the interaction between FIFO cache and the

branch predictor does not much affect the WCET overestimation. As evidenced by Figure

7.12(b), the increase in the WCET overestimation is minimal due to the speculation.

131

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

matmult

cnt
fir fdct

expint

nsichneu

edn
ludcmp

ns bsort100

adpcm
stW

C
E

T
ov

er
es

tim
at

io
n

ra
tio

 (W
C

E
T/

S
IM

)

Benchmarks

WCET overestimation w.r.t various L2 cache setting (FIFO cache replacement)

perfect L1 cache
only L1 cache

L1 cache + shared L2 cache

L1 cache + vertically partitioned L2 cache
L1 cache + horizontally partitioned L2 cache

(a)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

matmult

cnt
fir fdct

expint

nsichneu

edn
ludcmp

ns bsort100

adpcm
st

W
C

E
T

ov
er

es
tim

at
io

n
ra

tio
 (W

C
E

T/
S

IM
)

Benchmarks

WCET overestimation w.r.t speculation in various L2 cache setting (FIFO cache replacement)

perfect predictor + L1 cache + shared L2 cache
2 level predictor + L1 cache + shared L2 cache

perfect predictor + L1 cache + vertically partitioned L2 cache
2 level predictor + L1 cache + vertically partitioned L2 cache

perfect predictor + L1 cache + horizontally partitioned L2 cache
2 level predictor + L1 cache + horizontally partitioned L2 cache

(b)

Figure 7.12: Analysis of cache in the presence of FIFO replacement policy (a) WCET overes-
timation w.r.t. different L2 cache architectures, (b) WCET overestimation in the presence of
FIFO cache and speculative execution

7.10.5 Other cache organizations

In the preceding, we have discussed the extension of our WCET analysis framework with FIFO

replacement policy. We have shown that as long as the cache tags in an abstract cache set can be

arranged according to the order of their replacement, our shared cache conflict analysis can be

integrated. As a result, our modeling for the timing interaction among (shared) cache, pipeline

and branch predictor is independent of the underlying cache replacement policy. Nevertheless,

for some cache replacement policies, arranging the cache tags according to the order of their re-

placement poses a challenge (e.g. PLRU [89]). Cache analysis based on relative competitiveness

[84] tries to analyze a cache replacement policy with respect to an equivalent LRU cache, but

with different parameters (e.g. associativity). Any cache replacement analysis based on relative

competitiveness can directly be integrated with our WCET analysis framework. Nevertheless,

more precise analysis than the ones based on relative competitiveness can be designed, as shown

in [89] for PLRU policy. However, we believe that designing more precise cache analysis is out-

132

side the scope of this paper. The purpose of our work is to propose a unified WCET analysis

framework and any precision gain in the existing cache analysis technique will directly benefit

our framework by improving the precision of WCET prediction.

In this paper, we have focused on the non-inclusive cache hierarchy. In multi-core archi-

tectures, inclusive cache hierarchy may limit performance when the size of the largest cache

is not significantly larger than the sum of the smaller caches. Therefore, processor architects

sometimes resort to non-inclusive cache hierarchies [90]. On the other hand, inclusive cache

hierarchies greatly simplify the cache coherence protocol. The analysis of inclusive cache hi-

erarchy requires to take account of the invalidations of certain cache lines to maintain the in-

clusion property (as shown in [87] for multi-level private cache hierarchies). The analysis in

[87] first analyzes the multi-level caches for general non-inclusive cache hierarchies and a post-

processing phase may change the categorization of a memory reference from all-hit (AH) to

unclassified (NC). Our shared cache conflict analysis phase can be applied on this reduced set

of AH categorized memory reference for inclusive caches, keeping the rest of our WCET anal-

ysis framework entirely unchanged. Therefore, we believe that the inclusive cache hierarchies

do not pose any additional challenge in the context of shared caches and the analysis of such

cache hierarchies can easily be integrated, keeping the rest of our WCET analysis framework

unchanged.

7.11 Chapter summary

In this chapter, we have proposed a sound WCET analysis framework by modeling different

micro-architectural components and their interactions in a multi-core processor. Our analysis

framework is also sound in the presence of timing anomalies. We have performed a detailed

evaluation of our proposed WCET analysis framework. Our experiments suggest that we can

obtain tight WCET estimates for the majority of benchmarks in a variety of micro-architectural

configurations. Apart from design space exploration, we believe that our framework can be used

to figure out the major sources of overestimation in multi-core WCET analysis. As a result, our

framework can help in designing predictable hardware for real-time applications and it can also

help writing real-time applications for the predictable execution in multi-cores. More details

about the multi-core analyzer and the simulator are available in [91].

133

Chapter 8

Cache Related Preemption Delay

Analysis for Shared Cache

In previous chapters, we have assumed an uninterrupted execution of each task in each core.

However, real-time systems are often multi-tasking and the execution of a task can be interrupted

(or preempted) by a different task. In this Chapter, we shall extend our multi-core WCET

analysis framework for a multi-tasking application setup. Specifically, we shall look at the

problem of statically predicting the additional cache miss penalty in the presence of shared

caches.

8.1 Introduction

Caches have a key role to play for enhancing performance of any running application on the

underlying hardware platform. On the other hand, employing caches introduces additional com-

plications to analyze the effect of intra-task and inter-task interferences on cache. Literature on

static cache analysis handle the problem of intra-task interferences on cache. Inter task inter-

ferences on cache are created due to preemption. Suppose a low priority task t is preempted

by a higher priority task t′, the set of cache blocks used by t′ is Ct′ and the set of cache blocks

used by t before the preemption took place is denoted by Ct. If Ct ∩ Ct′ 6= φ, t′ may replace

some of the cache blocks used by t and therefore may introduce additional cache misses to t

when it resumes. This variety of inter-task interference on cache performance is well known in

literature as cache related preemption delay (CRPD).

Research for statically predicting CRPD has been done in the past few years [28; 29; 30; 31;

134

33; 34]. All prior works on CRPD consider a single level instruction or data cache. However,

with the advent of complex hardware in real time embedded systems (e.g., cache hierarchies,

multi-core), many processors (e.g., ARM) employ a bigger level two (L2) cache for improving

the performance. Moreover, in multi-core architectures, the last level of cache hierarchy (typ-

ically the second level) is shared among all the cores (e.g., ARM MPCORE). Therefore, there

is a need to consider cache hierarchies for estimating the inter-task interferences. In this chap-

ter, we propose a CRPD analysis framework which can be applied to a two-level, non-inclusive

cache hierarchy. More importantly, we propose an analysis framework which can be used in

the presence of a shared cache, thereby providing a solution for computing CRPD in the current

generation of multi-core architectures.

The key to estimate CRPD is based on the notion of useful cache blocks (UCB). UCB

denotes a cache block which might be used by the preempted task after preemption. Therefore,

the number of UCBs poses an upper bound on CRPD. Estimation can further be tightened by

analyzing the evicting cache blocks (ECB) in the preempting task. ECB denotes a cache block

which might be used by the preempting task. In the presence of non-inclusive cache hierarchy,

some memory blocks in the preempted task may access the L2 cache only after the preemption

— thereby increasing the amount of intra-task cache interference on the L2 cache. Therefore,

in the presence of two level cache hierarchy, CRPD computation might be affected due to the

variation in the intra-task L2 cache interference after preemption.

We show that in the presence of cache hierarchy, a memory reference may suffer multiple

L2 cache misses after the preemption. Our framework gives reasonable theoretical bounds on

the number of L2 cache misses suffered by the same memory reference after preemption. This

theoretical bound, on the other hand, depends on the organization of cache hierarchy (in terms of

the number of cache sets and the associativity). We propose a CRPD analysis framework which

uses this bound and estimates the CRPD. Finally, we extend our CRPD analysis framework for

shared caches in multi-cores by handling both the inter-core and inter-task cache conflicts.

We can guarantee the correctness of our CRPD analysis framework via formal proofs. We

have also implemented our CRPD analysis framework into Chronos [23] - a freely available,

open-source, WCET analysis tool. To experimentally validate our analysis framework, we also

extend the simplescalar toolset [81] and observe the cache related preemption delay. We have

evaluated our framework using a number of benchmarks from [2] and using different tasks from

an unmanned aerial vehicle (UAV) control application. Experiments show that our framework

135

Preempted

task

L1 cache

analysis analysis

L2 cache

task

Preempting

analysis

L1 cache

analysis

L2 cache

blocks

cache

Evicting

Backward

flow analysis

flow analysis

Useful

due to preemption

Indirect effect

blocks

cache

Forward

CRPD computation

Figure 8.1: CRPD analysis framework

gives precise estimations for most of the benchmarks.

8.2 Overview of our analysis

In this section, we shall first give an overview of our CRPD analysis framework for a two level

cache hierarchy. Subsequently, we shall discuss the key challenges in analyzing CRPD in the

presence of level two caches. We shall show through a few examples that major changes are

required in the existing CRPD analysis framework based on the concept of UCB and ECB. We

shall also show through an example that a sound CRPD estimation is not possible solely using

the concepts of UCB and ECB.

System model

In this work, we only model the effect of instruction memory. We assume a two-level instruction

cache hierarchy (L1 and L2 cache). For multi-cores, we assume that each core has a private L1

cache and multiple cores can share an L2 cache. A memory block is always accessed from the

L1 cache. If a memory reference misses in both the L1 and L2 cache, it is loaded from main

memory to both the cache levels. On the other hand, if a memory block misses in the L1 cache

but hits in the L2 cache, it is loaded into the L1 cache. Finally, the L2 cache is not accessed

when a memory reference hits in the L1 cache. We assume a LRU cache replacement policy and

we consider only non-inclusive caches.

136

Overall framework

Our CRPD analysis framework is shown in Figure 10.2. We first perform L1 and L2 cache

analysis on the preempted task using [9] and [12], respectively. The outcome of L1 and L2

cache analysis is used by a backward flow analysis, which in turn derives the set of useful cache

blocks (UCB) in the context of a two-level cache hierarchy. A similar L1 and L2 cache analysis

on the preempting task derives the set of evicting cache blocks (ECB) in L1 and L2 cache. A

separate forward flow analysis is used to estimate the additional intra-task L2 cache conflicts

generated due to preemption. We call this additional intra-task L2 cache conflict as the indirect

effect of preemption (as shown by the box labeled “indirect effect due to preemption” in Figure

10.2). Finally, the information derived by the backward and forward flow analysis are processed

to compute the cache related preemption delay (CRPD) of the underlying preempted task. Our

CRPD analysis does not account the cache misses already accounted by intra-task L1 and L2

cache analysis (similar to [33]). Therefore, the CRPD computed by our framework is safe only

when considered together with the WCET analysis.

Key challenges

The presence of non-inclusive caches makes the CRPD analysis complicated due to the indirect

effect of preemption. The indirect effect of preemption is created when a particular memory

reference was an L1 cache hit in the absence of preemption, but the same memory reference has

to access the L2 cache after preemption. This counter-intuitive scenario is explained through

Figure 8.2. Figure 8.2 demonstrates the indirect effect of preemption on a memory block m′

which was contained exclusively in the L2 cache before preemption. m′ was not evicted by the

preempting task. However, a different memory block m, which was exclusively in the L1 cache

before preemption, was evicted by the preempting task. Consider the memory access sequence

m m′ after the preempted task resumes execution. m will be reloaded in both the L1 and L2

cache — eventually evicting m′ from the L2 cache. Therefore, even though m′ was not directly

evicted by the preempting task, reference to m′ will suffer an additional L2 cache miss after

preemption.

Apart from accounting the cost of indirect preemption effect separately, the phenomenon

shown in the preceding creates several other challenges during CRPD analysis. As a result, some

major changes are required in the CRPD analysis framework. Before going into the details of

137

m’’ m L1

m’’ m’ L2

X m’’

m’m’’

L1

L2

Cache content

after preemption

Cache content
before preemption

Memory block X accessed
in the preempting task is mapped

to a different cache set in L2
Preempted task

Preemption point

m

m

m’

m’’

LRU age

Figure 8.2: Cache reload delay due to the indirect effect of preemption

analysis, let us go through a few of examples, which will help understanding the main difficulties

in CRPD analysis in the presence of (shared) L2 cache.

The first difficulty arises in deciding the granularity of component, for which the preemption

cost need to be accounted. With the presence of only L1 cache and LRU cache replacement

policy, total preemption cost can be computed soundly by accumulating the preemption cost

to reload each L1 cache block. The soundness of this approach can intuitively be explained

as follows: once an L1 cache block is reloaded in the cache after preemption, it can only be

evicted by the intra-task cache conflicts. Since L1 cache is always accessed, in the presence

of LRU cache replacement policy, the amount of intra-task cache conflicts does not change due

to preemption. Therefore, the CRPD computation in previous literature searches only for the

next possible use of a particular cache block after the preemption point [28; 33]. If the next use

of a cache block C is an L1 cache hit after preemption (or an L1 cache miss in the absence of

preemption), no preemption cost is accounted for cache block C.

Due to the indirect effect of preemption, the amount of intra-task cache conflicts generated

in the L2 cache may increase after preemption. Therefore the reasoning, as described in the

preceding, may lead to underestimation in CRPD computation in the presence of L2 cache.

The situation can be explained by Figure 8.3(a). Assume m,m1,m2 map to the same L1 and

L2 cache set as shown in Figure 8.3(a). Figure 8.3(a) demonstrates a sequence of memory

references m1 m m1 m2 m. In the absence of preemption, the L1 and L2

cache contents are shown at the left of each memory reference. The corresponding L1 and L2

cache contents are shown at the right of each memory reference after preemption. Note that the

last access to m is an L2 cache hit in the absence of preemption, but an L2 cache miss after

138

m

m1

m2

m

m1

m m1

m1m

m1 m

m m1

m1m2

mm2

L2 hit

L1

L2

L1

L2

L2

L1

L1

L2

L2

L1

L1

L2

m

m

m1

m1

m

m

m2 m1

m1m2

(preemption point)

m1 evicted by
preempting task

L2 miss

Before

Preemption
After

Preemption

LRU age LRU age

m’

m

m

m1

m2

m

L1

L2

m

m

m

m

L1

L2

m1 m

m

L1

L2

L1

L2

m2 m1

mm2

L1

L2m

m

m

L1

L2

m

L1

L2

m1 m

m

L1

L2

m2 m1

m2

X

X

X

X

X

X

L2 hit L2 miss

Preemption point

(m has one cache

conflict in L1 and L2)

r2

Before

Preemption

LRU age
LRU age

After
Preemption

(a) (b)

m1

m2

m

m1

m’

m

m3

m’

m2

m1

m1

m2

m1

m2

m1

m1m2

m m2

m1

m2

m m2

m1

m2

m’ m

m1

m2

m

m2m

m’

m2

m1

L2

L2

L2 hit

L2

L1

L2 L2

L1

L1

L1

L2

L1

L2

L1

L1

ref(m)

LRU age

LRU age

m1

m2

m

m1

m’

m

m3

m’

m2

Preemption point

(m1, m2 and m

evicted)

L1

L2 m
L2 miss

ref(m)

LRU age

(c) (d)
m1

m2

m

m1

m’

m

m3

m’

m2

Preemption point

(m1, m2 and m

evicted)

L2 miss

L1

L2

m1

m1

L1

L2

m1

m1m’

m

m1

m m’

L1

L2

ref(m)

LRU age

m1

m2

m

m1

m’

m

m3

m’

m2

Preemption point

(m1, m2 and m

evicted)

L2 miss

m1

m2

m2 m

m1

m2

m2m’

L1

L2

L2

L1

ref(m)

LRU age

(e) (f)

Figure 8.3: For all the figures, LRU age direction has been indicated. The direction of the arrow
labelled “LRU age” points to the older age blocks. (a): Due to the indirect effect of preemption,
preemption cost must go through all the memory references (not just all the memory blocks).
The phenomenon is shown for memory block m. (b): In the figure, an L2 cache miss occurs
for the second access (but first access to L2 cache) of m after preemption. (c)&(d)&(e)&(f):
Demonstrating the indirect effect of preemption. (c): L1 and L2 cache contents in the absence
of preemption, (d)&(e)&(f): The solid paths are the executed paths (in the order (d)→(e)→(f))
after preemption. L1 and L2 cache contents after preemption are shown when the solid path is
executed.

139

preemption. Consider a CRPD analysis framework which is tailored for an LRU replacement

policy based L1 cache. Such a CRPD analysis framework will only look till the first access of

m, which is an L1/L2 cache miss even in the absence of preemption. Therefore, no preemption

cost is added for the L1/L2 cache block corresponding to m — leading to an underestimation in

the CRPD computation as shown by our example.

The example in Figure 8.3(b) shows the necessity of considering memory references (instead

of memory blocks) even in the absence of indirect effect. Assume that m1 and m2 conflict with

m in L1 cache, but only m2 conflicts with m in L2 cache. m′ does not conflict with any of

m, m1 or m2 in both the cache levels. The example shows that the second access of m after

preemption (r2) suffers one L2 cache miss. This is due to the reason that L2 cache is not always

accessed. Therefore, the inter-task L2 cache conflict (denoted by “X” in Figure 8.3(b)) is only

realized at r2 (i.e. when the L2 cache was accessed to fetch m).

Our next example discusses the following question: How many times a particular memory

reference ref(m) may suffer an L2 cache miss due to the indirect effect of preemption? If

ref(m) is not accessed inside any loop, clearly, ref(m) can suffer at most one L2 cache miss

after preemption. Therefore, the more interesting scenario occurs when ref(m) is accessed

inside some loop.

Figure 8.3(c) shows a sequence of memory reference in the absence of preemption. For the

sake of illustration, we shall assume the following:

• m and m′ map to the same L1 and L2 cache set.

• m1 and m2 map to the same L2 cache set as m but m, m1 and m2 all map to different

L1 cache sets.

• m3 is a loop header and has three different paths to ref(m). m3 does not conflict in

cache with m, m′, m1 or m2.

Note that the above mapping is possible when the L1 cache has more number of sets than

the L2 cache. Figure 8.3(c)-(f) only demonstrate a portion of L1 and L2 cache which is relevant

for this discussion. For example, we do not show the mapping of m or m′ in L1 cache, as it is

irrelevant for our current discussion. Figure 8.3(c) clearly shows that ref(m) was an L2 cache

hit and an L1 cache miss in the absence of preemption.

Figure 8.3(d)-(f) shows the execution of three different paths reaching ref(m) after the

preemption. The solid line represents the executed path. After executing the path shown in

140

Figure 8.3(d), m is first loaded in L1 and L2 cache. Since m1 was evicted from L1 cache by the

preempting task, it is loaded in both the L1 and L2 cache as shown in Figure 8.3(e) — generating

an additional L2 cache conflict to memory block m. As a result ref(m) suffers an L2 cache

miss at the end. Since m2 was also evicted from the L1 cache, m2 also generates an additional

L2 cache conflict to memory block m, as shown in Figure 8.3(f). Consequently, ref(m) suffers

a second L2 cache miss due to the indirect effect of preemption.

This example shows that ref(m) suffers three L2 cache misses due to preemption: the

first L2 cache miss (i.e. Figure 8.3(d)) is directly due to preemption, as m was evicted by the

preempting task. However, the last two L2 cache misses suffered by ref(m) result indirectly

through two different memory blocks (i.e. m1 and m2).

It is, however, infeasible to enumerate the different paths to a particular memory reference

as shown in Figure 8.3(d)-(f). Therefore, a reasonable question to ask is whether the number

of L2 cache misses due to the indirect effect of preemption is bounded. Our work shows that

this number is bounded and depends on the organization of L1 and L2 cache. More precisely,

we state the following properties: Assume an L1 (L2) cache with number of cache sets S1 (S2)

and associativity K1 (K2). For any memory reference ref(m), assume that IL2ind denotes the

number of additional L2 cache misses due to the indirect effect of preemption. We can prove

the following bounds (for proofs, refer to Section 8.4):

• If S1 > S2, IL2ind ≤ (S1
S2

)K1 − 1.

• If S1 ≤ S2 ∧K1 > K2, IL2ind ≤ K1 −K2.

• If S1 ≤ S2 ∧K1 ≤ K2, IL2ind ≤ 1.

Nevertheless, the third cache organization (S1 ≤ S2 ∧ K1 ≤ K2) is the most common

and is available in most deployed hardwares. Apart from bounding the number of L2 cache

misses for a realistic cache architecture, the above properties also show that why the other

cache organizations are not desirable for getting real time performance.

8.3 CRPD Analysis

In this section, we shall describe the CRPD computation in detail. We shall first show the CRPD

computation for a two-level non-inclusive cache hierarchy without cache sharing (i.e. using the

141

framework described in Figure 10.2). Subsequently, we shall show the extension of our CRPD

analysis framework for shared caches in multi-cores.

8.3.1 Flow Analysis

Foundation Throughout our discussion in the following, we shall assume that S1 (S2) denotes

the number of cache sets in the L1 (L2) cache. On the other hand, K1 (K2) represents the

associativity of the L1 (L2) cache.

CRPD computation revolves around the concept of useful cache block (UCB). A UCB is

a block that must be cached before preemption and may be used later [33]. As the previous

literature are based only on L1 cache, we first need to define the notion of UCB in a 2-level

cache hierarchy.

Definition 8.3.1. (Useful cache block in two-level cache) With respect to a specific preemption

point p, a memory blockm is characterized by a tuple (age1, age2) where age1 ∈ [1,K1]∪{∞}

and age2 ∈ [1,K2] ∪ {∞}. This characterization is defined as follows:

• m must be cached at p (either in L1 cache or in L2 cache or in both).

• m may be used at program point q that must be reached from p without m being evicted

from both the L1 and L2 cache, and

• At program point q, the LRU age of memory block m is age1 (age2) in the L1 (L2) cache.

If m is not cached in L1 (L2) at p or m is evicted from the L1 (L2) cache before reaching

q, age1 (age2) is equal to∞.

According to the definition,mmight be used from L1 or L2 cache in the absence of preemp-

tion. Therefore, the inter-task cache interference generated to m may lead to additional cache

reload latency in the preempted task.

Example 8.3.2. Consider the preemption point shown in Figure 8.2. Memory block m is con-

tained exclusively in the L1 cache at its next use beyond the preemption point. On the other

hand, memory block m′ is contained exclusively in the L2 cache at its next use beyond the pre-

emption point. Therefore, according to the Definition 8.3.1, we categorize memory block m and

m′ as follows: m 7→ (2,∞), m′ 7→ (∞, 2).

In the following, we shall describe two different flow analysis. The backward flow analysis

computes the useful cache blocks with respect to a program point p. On the other hand, the

142

forward flow analysis computes the set of memory blocks which were L1 cache hits in the

absence of preemption and are reachable to program point p. Note that an L1 cache hit may

become an L1 cache miss after preemption and consequently, it may generate additional L2

cache conflict. Therefore, the forward flow analysis is particularly important while computing

the indirect effect of preemption (as demonstrated in Figures 8.3(e)-(f)).

In the following discussion, we shall use the term memory reference to represent any static

memory reference in the program. Note that different memory references may access the same

memory block. This distinction is necessary as we show in Figure 8.3(a) that a sound CRPD

computation may require to inspect the different references of the same memory block.

Backward flow analysis Assume that M represents the set of all memory blocks that could

be accessed in a program. The domain of the analysis (D) is a cartesian product of two sets as

follows:

D : M× (Dc ∪ {>}) (8.1)

Dc : {0, 1, . . . ,K,∞}× {0, 1, . . . ,K,∞} (8.2)

where > is an additional element in the abstract domain to capture the uncertain information

during analysis, K = max(K1,K2) and∞ represents numbers ≥ K + 1. Dc is used to capture

the inclusion pattern of a memory block in the two-level cache hierarchy.

We additionally define the following function which is used throughout the discussion:

∆ : N× N→ N

∆(cu1, cu2) =


0, if cu1 ≤ K1;

LAT1, if cu1 > K1 ∧ cu2 ≤ K2;

LAT1 + LAT2, otherwise.

(8.3)

LAT1 and LAT2 represent the fixed L1 and L2 cache miss latencies, respectively. Therefore, ∆

computes the access latency of a memory block from its given inclusion pattern in the two-level

143

cache hierarchy. For clarity, we shall sometimes use the notation ∆(cu) where cu will denote a

tuple (cu1, cu2) and we shall capture the elements cu1 and cu2 by cu(1) and cu(2), respectively.

Dc is a partially ordered set. We define the partial order � between a pair of elements

cu1, cu2 (∈ Dc) as follows:

cu1 � cu2 ⇔ ∀ce ∈ Dc. ∆(cu1 � ce)−∆(cu1) ≤ ∆(cu2 � ce)−∆(cu2) (8.4)

where� denotes the element-wise addition operation for the tuples inDc. Intuitively, cu1 � cu2

(i.e. cu2 is partially ordered higher than cu1) if and only if cu2 results in equal or more cache

reload latency compared to cu1 in the presence of any additional cache conflict. However, it is

possible that cu1 � cu2 and cu2 � cu1. Therefore, for the purpose of our analysis, we introduce

a join semi-lattice Dc ∪ {>} to define the least upper bound operator (i.e. the join operator) on

the respective elements. > is an element in the abstract domain such that ∀cu ∈ Dc. cu � >.

We can now define the least upper bound operator
⊔

on the set Dc ∪ {>} as follows:

⊔
: (Dc ∪ {>})× (Dc ∪ {>})→ Dc ∪ {>} (8.5)

⊔
(cu1, cu2) =



>, if cu1 = > ∨ cu2 = >;

cu2, if cu1 � cu2;

cu1, if cu2 � cu1;

>, otherwise.

We first perform the must cache analysis (using [9] and [12] for L1 and L2 cache analysis)

on the preempted task. As an outcome of must cache analysis, we obtain the abstract cache

content at each program point. Let us assume that the tuple MustAgem,p captures the LRU

ages of memory block m (in both the cache levels) immediately before the program point p and

as computed by the must cache analysis. If m is not in some cache level (L1 or L2), the LRU

age of m corresponding to the cache level is considered∞. With the above definitions, we can

now define the abstract transfer function of our backward flow analysis as follows:

τ : D× P→ D

144

τ((m, CU), p) =


(m, CU), if mp 6= m;

(m,MustAGEm,p), otherwise.
(8.6)

where CU ∈ Dc, P denotes the set of all program points and mp denotes the memory block

accessed at program point p. The abstract join operation to combine multiple abstract cache

states can be defined as follows:

ĴD : 2D → D

ĴD(D) =
⋃
m∈M
{(m, CUm) | CUm =

⊔
d∈D
CUm,d} (8.7)

where CUm,d = {CU | (m, CU) ∈ d} and
⊔

denotes the least upper bound operator as de-

scribed in Equation 8.6.

Our abstract domain (D) is initialized with (m, (∞,∞)) for all the memory blocks m ∈M.

At each program point, we check the accessed memory block and apply our transfer function τ

as described in Equation 8.6. Since the analysis is a backward flow analysis, the abstract cache

state at the exit of a basic block is computed by combining all the abstract cache states at the

entry of its successors (through the join operation in Equation 8.7). The analysis terminates

when a fixed-point is obtained at each program point.

Intuitively, the backward flow analysis records the next possible usage of a memory block

m beyond a certain program point. Therefore, the backward flow analysis is used to estimate

the set of useful cache blocks (Definition 8.3.1) at each program point.

Forward flow analysis With respect to a program point p, the forward flow analysis computes

a set of memory blocksMp where each m ∈Mp satisfies the following two conditions:

• m must be accessed along one of the paths starting from the entry point of the program

and ending at p. We call such references of m reachable references to p.

• At least one of the reachable references of m (w.r.t. p) must be an L1 cache hit in the

absence of preemption.

Therefore, the abstract domain of the analysis is all possible subsets of memory blocks accessed

in the program (i.e. 2M). The abstract transfer and join operations can simply be defined as

145

follows:

τ ′ : 2M × P→ 2M

τ ′(M, p) =


M∪ {mp}, if mp ∈MustACSp,1;

M, otherwise.
(8.8)

where MustACSp,1 denotes the content of L1 cache immediately before the program point

p, as computed by must cache analysis [9]. The abstract join operation simply performs a set

union at the control flow merge points.

The forward flow analysis starts with the empty set and at each program point, we apply the

transfer function τ ′. The abstract cache state at the entry of each basic block is computed by

taking a simple set union of all the abstract cache states at the exit of its predecessors.

Analysis of the preempting task To compute the cache reload latency accurately, we need to

know the set of cache blocks possibly used by the preempting task. The set of used cache blocks

by the preempting task is called the evicting cache blocks (ECB) [28]. Since we consider general

set-associative caches, for each cache set, we compute the maximum number of cache blocks

used by the preempting task. ECBs can easily be computed by performing a may cache analysis

on the preempting task (using [12]). Let us assume MayACSe,1(i) and MayACSe,2(i) denote

the content of L1 and L2 abstract cache set i, respectively, at the exit of the preempting task and

after the may cache analysis. For each memory block m used by the preempted task, we define

a tuple CEm as follows:

CEm = (|MayACSe,1(Sm,1)|, |MayACSe,2(Sm,2)|) (8.9)

Memory block m is mapped to cache set Sm,1 (Sm,2) in the L1 (L2) cache. The tuple CEm
captures the maximum number of cache blocks accessed by the preempting task, that map to

the same cache set as m (at both the cache levels). Since may cache analysis always computes

an over-approximation of cache content [9], Equation 8.9 ensures an over-approximation on the

number of used cache blocks by the preempting task.

146

8.3.2 Preemption delay computation

In this section, we shall show the CRPD computation using the information generated by i)

backward flow analysis, ii) forward flow analysis and iii) must cache analysis [9; 12]. We shall

assume the following terminologies:

• CUm,p : Fixed point computed by the backward flow analysis with respect to a memory

block m and a program point p. Therefore, CUm,p ∈ Dc ∪ {>}.

• RSref : Assume memory reference ref at program point p. RSref captures the fixed

point computed by the forward flow analysis with respect to p.

With the notion of CUm,p andRSref , we define a quantity IDref,p as follows:

IDref,p = {m | m 6= ∗ref ∧m ∈ RSref ∧ CUm,p 6= (∞,∞)

∧ CUm,p(1) + CEm(1) > K1

∧ Sm,2 = S∗ref,2} (8.10)

where ∗ref represents the memory block accessed by memory reference ref and Sm,2 repre-

sents the L2 cache set in which m is mapped.

Intuitively, a memory block m ∈ IDref,p if all of the following holds:

• mmust be accessed along some path starting from the entry node and ending at ref (since

m ∈ RSref),

• ref must be reachable from at least one reference of m which is an L1 cache hit in the

absence of preemption (since m ∈ RSref),

• m must be a useful cache block (Definition 8.3.1) with respect to program point p (since

CUm,p 6= (∞,∞)), and

• m might be accessed from the L2 cache after preemption (since CUm,p(1) + CEm(1) >

K1) and generate L2 cache conflict to ∗ref (since Sm,2 = S∗ref,2).

If we consider p as the preemption point, IDref,p captures an over-approximation on the set

of memory blocks, which might generate additional intra-task L2 cache conflicts to ∗ref after

preemption. Therefore, in the presence of preemption by a high priority task, any intra-task

147

cache conflict generated to memory reference ref is either taken into account by must cache

analysis or captured through the set of memory blocks in IDref,p.

Recall from Figure 8.3(a) that a sound CRPD computation may require to inspect the differ-

ent references of the same memory block. Therefore, in the following discussion, we shall use

the term ref for any static memory reference in a program. With respect to a preemption point

p, we compute the following three components:

DCRTm,p,1 DCRTm,p,1 computes the additional cache reload latency for memory block m

when m is accessed for the first time after preemption (e.g. in Figure 8.3(a), it computes the

additional cache reload latency for memory block m1).

DCRTref,p,2 If memory reference ref was an L1 cache miss and L2 cache hit in the absence

of preemption, DCRTref,p,2 computes the additional cache reload latency when ref is first

executed after preemption (in Figure 8.3(b) it computes the additional cache reload latency for

r2).

ICRTref,p If memory reference ref was an L1 cache miss and L2 cache hit in the absence

of preemption, ICRTref,p computes the total cache reload latency incurred due to the indi-

rect effect of preemption (in Figures 8.3(e)-(f), it computes two additional L2 cache misses for

ref(m)).

Note that the additional L1 cache misses due to preemption are captured by the quantity

DCRTm,p,1. Therefore, DCRTref,p,2 and ICRTref,p need to inspect only the memory refer-

ences which were L1 cache miss and L2 cache hit, in the absence of preemption. DCRTm,p,1

andDCRTref,p,2 are computed as follows (in the following, we use ∗ref to represent the mem-

ory block accessed by ref):

148

DCRTm,p,1 =



0, if CUm,p = > ∧ CEm = (0, 0);

∆(CUm,p(1) + CEm(1), CUm,p(2) + CEm(2)

+IDm,p)−∆(CUm,p), if CUm,p 6= >;

LAT1 + LAT2, otherwise.

(8.11)

where IDm,p = max
ref :∗ref=m

|IDref,p|. Clearly, if the cache sets used by m are unused by the

preempting task (i.e. CEm = (0, 0)), no additional cache reload latency is accounted. The

second case in Equation 8.11 computes the additional cache reload latency by accounting the

additional cache conflicts generated after preemption. Note that for L1 cache, we only consider

inter-task cache conflicts (i.e. CEm(1)). However, for L2 cache, we need to consider both the

inter-task cache conflict (i.e. CEm(2)) and additional intra-task cache conflicts (i.e. IDm,p)

generated due to the preemption.

DCRTref,p,2 =



0, if DCRT∗ref,p,1 = LAT1 + LAT2

∨ CU∗ref,p = (∞,∞);

0, if MustAGE∗ref,ref (2) + CE∗ref (2)

+|IDref,p| ≤ K2;

LAT2, otherwise.

(8.12)

MustAGEm,ref (2) captures the maximum LRU age of a memory block m in the L2 cache,

immediately before the reference ref (computed by must cache analysis [9; 12]). The first case

of Equation 8.12 captures the scenario when L2 cache reload latency of ∗ref has already been

considered during the computation of DCRT∗ref,p,1. Therefore, the first case avoids double

counting the L2 cache miss latency for the same memory block ∗ref . We combine the effect of

149

above two components (i.e. Equations 8.11-8.12) as follows:

DCRTm,p = DCRTm,p,1 + max
ref :∗ref=m

DCRTref,p,2 (8.13)

Intuitively,DCRTm,p captures an upper bound on the cache reload latency for the following

two scenarios:

• Memory block m is accessed for the first time after preemption (e.g. m1 in Figure 8.3(a))

• Memory block m is accessed for the first time from L2 cache after preemption and the

corresponding reference was an L2 cache hit in the absence of preemption (e.g. r2 in

Figure 8.3(b)).

If m has been reloaded in the L2 cache after preemption, m can be evicted only due to

the intra-task L2 cache conflicts. Note that the intra-task L2 cache conflict may increase after

preemption (indirect effect as shown in Figures 8.3(e)-(f)). Consider a memory reference ref

which was an L1 cache miss and L2 cache hit in the absence of preemption. The cache reload

latency due to the indirect effect can be computed as follows:

ICRTref,p = IL2ind ×


0, if MustAGE∗ref,ref (2) + |IDref,p| ≤ K2;

LAT2, otherwise.
(8.14)

From the discussion in Section 8.2, we have shown that a memory reference ref can suffer

more than one L2 cache misses due to the increased intra-task L2 cache conflicts (Figure 8.3(e)-

(f)). The upper bound on the number of this additional L2 cache misses is given by IL2ind

(refer to Section 8.4 for the proof).

Final CRPD computation In the preceding, we have discussed the computation of direct and

indirect effect of preemption with respect to a program point p. The CRPD captures the sum of

all cache reload delays maximized over the set of all program points (P). If REFL2 represents

all memory references that are L1 cache misses and L2 cache hits in the absence of preemption,

150

the final value of CRPD can be computed as follows:

CRPDfinal = max
p∈P

(
∑
m∈M

DCRTm,p +
∑

ref∈REFL2

ICRTref,p) (8.15)

8.3.3 Handling shared caches in multi-cores

In the previous section, we have described the CRPD analysis for a two-level cache hierarchy.

However, we have not specifically focused on shared caches in multi-core. In the following,

we shall show how our framework can easily be adapted for CRPD analysis in the presence of

shared L2 caches.

Issues with shared caches In the presence of a shared cache, additional complications arise

due to the inter-core cache conflicts. Assume t1 and t2 are two concurrently running tasks on

two different cores. On the other hand, t′ is a high priority task assigned to the same core in

which t1 is running. Therefore, t′ may preempt t1 during its execution. Inter-core conflicts

from t2 may evict memory blocks used by t1 from the shared L2 cache, thereby reducing the

number of memory blocks to consider for CRPD computation of t1 in the presence of t′. On the

other hand, inter-core conflicts from t2 may make a memory block in t1 older in the shared L2

cache set (considering LRU cache replacement policy), resulting in more opportunities for t′ to

evict the same memory block. Due to the above mentioned contrasting effects, CRPD may both

increase and decrease due to the presence of inter-core cache conflicts.

Preempted

task

L1 cache

analysis analysis

L2 cache

task

Preempting

analysis

L1 cache

analysis

L2 cache

blocks

cache

Evicting

Backward

flow analysis

flow analysis

Useful

due to preemption

Indirect effect

blocks

cache

Forward

CRPD computation

Shared cache

conflict analysis

Figure 8.4: CRPD analysis framework in the presence of shared caches

151

Analysis framework extension Our extended framework is shown in Figure 8.4. In the pre-

vious section, we have used must cache analysis [9; 12] on the preempted task for computing

CRPD. In the presence of shared caches, additional cache conflicts due to cache sharing are

analyzed using [15]. As a result, our CRPD analysis framework uses the must cache content

obtained after applying both [9] and [15] to deal with the shared caches. The extension due to

the handling of shared caches has been highlighted by the dotted box in Figure 8.4. The must

cache analysis using both [9] and [15] accounts the cache misses due to the intra-task and inter-

core cache conflicts. Therefore, our CRPD analysis framework computes only the additional

cache misses that are not accounted during intra-task and inter-core cache conflict analysis (i.e.

during the must cache analysis using [9] and [15]).

8.4 Soundness of analysis

In this section, we shall provide the soundness proof of our CRPD analysis framework.

Structure of the soundness proofs

Soundness of over-approximated ECB It is always sound to over-approximate the set of

evicting cache blocks (ECB). Recall that the CRPD computation in our framework revolves

around three quantities – DCRTm,p,1, DCRTref,p,2 and ICRTref,p (Equations 8.11-8.14).

Equations 8.11-8.14 clearly show that an over-approximation of ECB will only overestimate the

value of DCRTm,p,1, DCRTref,p,2 and ICRTref,p, keeping the overall CRPD analysis sound.

Property 8.4.1 establishes that the set of ECBs is always over-estimated using our framework.

Soundness of WCET+CRPD Since CRPD analysis is normally used with WCET analysis

[33], our approach guarantees a sound estimation of the sum of WCET and CRPD. As a result,

if a memory reference is predicted cache miss by WCET analysis in both the L1 and L2 cache,

we do not consider any additional cache miss penalty for the same memory reference during

CRPD analysis. However, it is possible that the same memory reference may suffer different

delays after preemption along different paths in the program. The least upper bound operator

defined in Equation 8.6 ensures that we always account for the maximum among all possible

cache reload delays. Properties 8.4.2-8.4.6 show that the soundness of our CRPD analysis is

preserved by the partial order defined in Equation 8.4. More precisely, we show that the three

key components of our CRPD computation (i.e. DCRTm,p,1,DCRTref,p,2 and ICRTref,p) are

152

always over-estimated using the partial order defined in Equation 8.4. Finally, Property 8.4.7

ensures that we always consider a safe upper bound on the latency suffered by any memory

reference.

Number of cache misses due to the indirect effect of preemption Recall that the presence

of cache hierarchy may introduce multiple cache misses for the same memory reference after

preemption. Such a scenario occurs due to the increased intra-task cache interference after

preemption. We call this effect of preemption as indirect effect. We had introduced the bound

on the number of cache misses due to the indirect effect in Section 8.2 (bound on IL2ind). In

Theorem 8.4.10, we formally prove this bound on the number of cache misses due to the indirect

effect of preemption.

8.4.1 Detailed proofs

In the following, we shall discuss certain crucial properties to justify the correctness of our

analysis. We use the following terminologies for the following discussion: S1 (S2) denotes the

number of cache sets in the L1 (L2) cache. K1 (K2) denotes the associativity of the L1 (L2)

cache.

As before, we shall use the term memory reference to capture any static memory reference

in the program. Using this terminology, we can distinguish the memory references that access

the same memory block.

Property 8.4.1. Set of evicting cache blocks computed by Equation 8.9 always overestimates

the actual set of evicting cache blocks in L1 and L2 cache.

Proof. May cache analysis always computes an over-approximation of cache content at each

program point [9; 12]. Equation 8.9 uses the L1 and L2 cache content after may analysis for

computing CEm. Moreover, the may cache content is checked at the exit of the preempting task

(in Equation 8.9). If a cache line is used by the preempting task in any execution, the same

cache line must be used in the abstract may cache set computed at the exit of the preempting

task. Consequently, the set of evicting cache blocks computed by our analysis (at both the

cache levels) always over-approximates the actual set of evicting cache blocks in any concrete

execution.

Recall that we had defined a join semi-lattice Dc ∪ {>} and its associated partial order in

153

Equation 8.4. Assume that CUm,p captures the fixed point computed by the backward flow anal-

ysis with respect to a memory block m and a program point p. Therefore, CUm,p ∈ Dc ∪ {>}.

The following discussions show that the partial order defined in Equation 8.4 preserves the

soundness of CRPD analysis. This leads to a property that the abstract join operation performed

during the backward flow analysis (Equation 8.7) does not affect the soundness of CRPD com-

putation.

Property 8.4.2. If CUm,p 6= (∞,∞) and CUm,p 6= > 6= CUm,q, then both of the following

properties must hold when CUm,p � CUm,q:

• CUm,p(1) ≤ CUm,q(1) or CUm,q(1) > K1

• CUm,p(2) ≤ CUm,q(2) or CUm,q(2) > K2.

Proof. We prove this by contradiction. Let us assume that CUm,q(1) < CUm,p(1) ≤ K1. We

shall show that our assumption will lead to a contradiction CUm,p � CUm,q.

We first construct a tuple ce ∈ Dc as follows:

• ce = (max(K1 + 1− CUm,p(1), 0),max(K2 + 1− CUm,p(2), 0))

Therefore, we have the following:

CUm,p(1) + ce(1) = CUm,p(1) + max(K1 + 1− CUm,p(1), 0) ≥ K1 + 1 (8.16)

However, as CUm,p(1) > CUm,q(1), we also have:

CUm,q(1) + ce(1) = CUm,q(1) + max(K1 + 1− CUm,p(1), 0) ≤ K1 (8.17)

Since CUm,p(1) + ce(1) ≥ K1 + 1, ∆(CUm,p � ce) > LAT1 (recall that LAT1 represents

the fixed L1 cache miss latency). On the other hand, since CUm,q(1)+ce(1) ≤ K1, ∆(CUm,p�

ce) = 0.

According to our assumption in the beginning, CUm,q(1) < CUm,p(1) ≤ K1. Therefore, all

of the following relationships must hold:

• ∆(CUm,p) = ∆(CUm,q) = 0,

• ∆(CUm,p � ce)−∆(CUm,p) > 0, and

• ∆(CUm,q � ce)−∆(CUm,q) = 0

154

As a result, we have CUm,p � CUm,q, but ∆(CUm,p � ce) −∆(CUm,p) > ∆(CUm,q � ce) −

∆(CUm,q). This leads to a contradiction of the partial order defined in Equation 8.4.

In a similar fashion, we can assume that CUm,q(2) < CUm,p(2) ≤ K2 and reach a contra-

diction that CUm,p � CUm,q.

Recall that we use a backward flow analysis to compute the useful cache blocks (as stated

in Definition 8.3.1) in the context of a two-level cache hierarchy. Intuitively, the above property

ensures that we always capture the maximum LRU age of the respective memory blocks during

the backward flow analysis.

Property 8.4.3. If CUm,p � CUm,q holds for any memory block m, then for any memory refer-

ence ref , IDref,p ⊆ IDref,q holds (computed by Equation 8.10).

Proof. We prove this by contradiction. Let us assume that CUm,p � CUm,q for any memory

blockm, but IDref,p * IDref,q for some memory reference ref . There must exist one memory

block m such that m ∈ IDref,p, but m /∈ IDref,q. Therefore, according to Equation 8.10, one

the following conditions must hold:

• (P1) CUm,p 6= (∞,∞), but CUm,q = (∞,∞)

• (P2) CUm,p(1) + CEm(1) > K1, but CUm,q(1) + CEm(1) ≤ K1

According to the partial order defined in Equation 8.4, we have ∀ cu ∈ Dc. (∞,∞) � cu.

Therefore, P1 reaches a contradiction, as (∞,∞) 6= CUm,p � CUm,q = (∞,∞).

According to Property 8.4.2, CUm,p(1) ≤ CUm,q(1) (since CUm,p � CUm,q). Therefore,

CUm,p(1) + CEm(1) ≤ CUm,q(1) + CEm(1). This leads to a contradiction to P2 as mentioned

in the preceding.

Property 8.4.4. If CUm,p � CUm,q for any memory block m, then for any memory block m,

DCRTm,p,1 ≤ DCRTm,q,1.

Proof. According to Property 8.4.3, if CUm,p � CUm,q, IDref,p ⊆ IDref,q. Therefore,

|IDref,p| ≤ |IDref,q|. Recall that

• IDm,p = maxref :∗ref=m |IDref,p|, and

• IDm,q = maxref :∗ref=m |IDref,q|.

155

Since, |IDref,p| ≤ |IDref,q|, IDm,p ≤ IDm,q. CEm captures the number of evicting cache

blocks mapping to the same cache set as m in L1 and L2 cache. Since IDm,p ≤ IDm,q, we

have the following two properties:

CUm,p(2) + CEm(2) + IDm,p ≤ CUm,p(2) + CEm(2) + IDm,q (8.18)

and using Equation 8.3, we also have

∆(CUm,p(1) + CEm(1), CUm,p(2) + CEm(2) + IDm,p)

≤ ∆(CUm,q(1) + CEm(1), CUm,p(2) + CEm(2) + IDm,q)

(8.19)

We construct a tuple cea as follows:

• cea = (CEm(1), CEm(2) + IDm,q).

Since CUm,p � CUm,q, from the definition of partial order (Equation 8.4), we have:

∆(CUm,q � cea)−∆(CUm,q)

≥ ∆(CUm,p � cea)−∆(CUm,p)

= ∆(CUm,p(1) + CEm(1), CUm,p(2) + CEm(2) + IDm,q)−∆(CUm,p)

≥ ∆(CUm,p(1) + CEm(1), CUm,p(2) + CEm(2) + IDm,p)−∆(CUm,p)

(using Equation 8.19) (8.20)

Therefore, from Equation 8.11 we get DCRTm,p,1 ≤ DCRTm,q,1.

Property 8.4.5. If CUm,p � CUm,q holds for any memory block m, then for any memory block

m, DCRTm,p ≤ DCRTm,q also holds.

Proof. From Property 8.4.4, we have DCRTm,p,1 ≤ DCRTm,q,1 for any memory block m.

Therefore, our claim can be contradicted only if the following condition holds:

• max
ref :∗ref=m

DCRTref,p,2 > max
ref :∗ref=m

DCRTref,q,2.

According to Equation 8.12, the above condition can be satisfied if and only if one of the fol-

lowing conditions hold:

156

• (P1) CU∗ref,p 6= (∞,∞), but CU∗ref,q = (∞,∞).

• (P2) MustAGE∗ref,ref (2) +CE∗ref (2) + |IDref,p| > K2, but MustAGE∗ref,ref (2) +

CE∗ref (2) + |IDref,q| ≤ K2.

• (P3) DCRTm,p,1 = LAT1 + LAT2.

Recall that ∗ref represents the memory block accessed by a memory reference ref and the term

MustAGEm,ref (2) captures the maximum LRU age of a memory block m in the L2 cache,

immediately before the reference ref (computed by must cache analysis [9; 15]). However,

according to the partial order defined in Equation 8.4, (∞,∞) is the least element of the join

semi-lattice Dc ∪ {>}. Therefore, the condition P1 mentioned above violates our assumption

that CUm,p � CUm,q holds for any memory block m. As a result, P1 is infeasible.

On the other hand, from Property 8.4.3, we get IDref,p ⊆ IDref,q. Therefore, |IDref,p| ≤

|IDref,q|. Consequently, we get

MustAGE∗ref,ref (2)+CE∗ref (2)+|IDref,p| ≤MustAGE∗ref,ref (2)+CE∗ref (2)+|IDref,q|

(8.21)

Equation 8.21 contradicts P2 mentioned in the preceding. Therefore, P2 is also infeasible.

Finally, recall that DCRTm,p is used to compute the maximum cache reload delay when m

is accessed for the first time from L1 or L2 cache after preemption. Therefore, the maximum

value of DCRTm,p is bounded by LAT1 + LAT2 (i.e. the maximum possible cache miss

latency). If DCRTm,q,1 = LAT1 + LAT2, we have already accounted the maximum cost to

reload the memory block m for the first time after preemption. As a result, the possibility of P3

also does not affect the over-approximation of DCRTm,q.

Hence, DCRTm,p ≤ DCRTm,q holds for any memory block m.

Property 8.4.6. If CUm,p � CUm,q for any memory block m, then for any memory reference

ref , ICRTref,p ≤ ICRTref,q (Equation 8.14).

Proof. According to Property 8.4.3, if CUm,p � CUm,q holds for any memory block m, the in-

clusion relation IDref,p ⊆ IDref,q holds for any memory reference ref . Therefore, |IDref,p| ≤

|IDref,q|. As a result, our claim directly follows from the definition in Equation 8.14.

Property 8.4.7. Assume any memory reference ref in the preempted task. The latency consid-

ered for ref in our analysis always overestimates the latency suffered by ref in any concrete

157

execution.

Proof. Assume m is the memory block accessed by ref . In the presence of LRU cache re-

placement policy, the amount of inter-task cache conflicts (generated by the preempting task)

can only affect the first reference of a memory block m after preemption. L1 cache is always

accessed. Therefore, if we want to compute the effect of preemption in the L1 cache, it is suf-

ficient to check the first reference of m after the preemption point. For L2 cache, however, it is

not sufficient to check only the first reference of m. This is due to the fact that L2 cache is not

accessed if the referenced memory block is found in the L1 cache. In the following, therefore,

we distinguish between the two cases:

• First memory access of block m after preemption, and

• all next accesses of block m after preemption.

Case I: m is accessed first time after preemption Let us assume MustAGEm,ref (∈ Dc)

captures the maximum LRU ages of memory block m (computed by the must cache analysis

using [9; 15]) in L1 and L2 cache before the memory reference ref . Therefore, our analysis

framework computes the latency for memory reference ref as follows:

∆(MustAGEm,ref) +DCRTm,p,1 (8.22)

With respect to a program point p and a memory block m, assume that CUm,p denotes the

fixed-point computed by our backward flow analysis. Therefore, CUm,p ∈ Dc ∪ {>}.

Due to the join operation (refer to Equation 8.7) performed during our backward flow anal-

ysis, the following partial-order relationship must hold:

MustAGEm,ref � CUm,p (8.23)

Expanding Equation 8.22, we get the following value of the overall latency computed for mem-

158

ory reference ref :

∆(MustAGEm,ref) + ∆(CUm,p(1) + CEm(1),

CUm,p(2) + CEm(2) + IDm,p)−∆(CUm,p)

≥ ∆(MustAGEm,ref) + ∆(MustAGEm,ref (1) + CEm(1),

MustAGEm,ref (2) + CEm(2) + IDm,p)−∆(MustAGEm,ref)

(using Equation 8.4 and Equation 8.23)

= ∆(MustAGEm,ref (1) + CEm(1),MustAGEm,ref (2) + CEm(2) + IDm,p)(8.24)

Correctness of must analysis ([9; 15]) ensures that MustAGEm,ref is always over-estimated

with respect to any concrete execution. CEm is computed through may cache analysis ([12])

and the over-estimation of CEm has been discussed in Property 8.4.1. Finally, Property 8.4.3

ensures the over-estimation of IDm,p.

Therefore, the above processing always ensures an overestimation of the actual latency in-

curred for memory reference ref in any concrete execution.

Case II: All non-first accesses of m after preemption If ref is not the first reference of

memory block m after preemption, it can face additional cache reload latency due to the follow-

ing reasons:

• (P1) ref is the first access to L2 cache after preemption and ref was an L2 cache hit in

the absence of preemption (e.g. r2 in Figure 8.3(b)).

• (P2) ref suffers an L2 cache miss due to the indirect effect of preemption (e.g. ref(m)

in Figure 8.3(e)-(f)).

Property 8.4.5 together with the must cache analysis ensures that we consider an upper bound

on the L2 cache misses due to the scenario P1. On the other hand, Property 8.4.6, must cache

analysis and the bound on IL2ind (refer to Theorem 8.4.10) ensure that we consider an upper

bound on the number of L2 cache misses due to the indirect effect of preemption (scenario

P2).

The following properties formally establish the bound on IL2ind, as discussed in Section

8.2.

159

ref(M1,1) M1,1

M2,1ref(M2,1)

Mi,1ref(Mi,1)

MK2,1ref(MK2,1)

Mref(M)

ref(M1,2) M1,2

ref(M2,2)

ref(Mi,2) Mi,2

MK2,2ref(MK2,2)

Mref(M)

M2,2

ref(m1,2)ref(M1,1)

ref(M2,1)

ref(Mi,1)

ref(M)

M1,1

M2,1

Mi,1

MK2,1ref(MK2,1)

M1,2

ref(Mi−1,2)

ref(Mi,2)Mi,2

Mi−1,2

M
Mi,2 cannot reside in
L1 cache unless reloaded
along the above path

(a) (b) (c)

Figure 8.5: Bounding the indirect effect of preemption when S1 ≤ S2 andK1 ≤ K2. ref(Mi,1)
and ref(Mi,2) are L1 cache hits in the absence of preemption, but access the L2 cache after
preemption. (a)&(b): Indirect preemption effect created on ref(M), (c): a scenario which
shows that (a)&(b) cannot happen together

Property 8.4.8. Assume two memory blocks m1 and m2 which map to the same L2 cache set.

If S1 ≤ S2, m1 and m2 map to the same L1 cache set as well.

Property 8.4.9. If S1 > S2, at most (S1
S2

)K1 cache blocks in the L1 cache map to the same L2

cache set.

Theorem 8.4.10. Consider any memory reference ref(M) in the preempted task that accesses

a memory block M . Assume ref(M) was an L2 cache hit and an L1 cache miss in the absence

of preemption. Further assume that ref(M) suffers IL2ind number of L2 cache misses due to

the indirect effect of preemption. IL2ind is bounded as follows:

• if S1 ≤ S2 and K1 ≤ K2, IL2ind ≤ 1,

• if S1 ≤ S2 ∧K1 > K2, IL2ind ≤ K1 −K2, and

• if S1 > S2, IL2ind ≤ (S1
S2

)K1 − 1.

Proof. If ref(M) resides outside of any loop, our claim is trivially satisfied, as ref(M) can be

executed at most once after the preemption. Therefore, in the following, we are concerned only

about the case when ref(M) is accessed within a loop.

Recall that the indirect effect of preemption may occur when some memory references ac-

cess the L2 cache only after preemption, but they do not access the L2 cache in the absence of

preemption (as demonstrated through Figure 8.2).

160

The basic idea of all the three proofs is as follows: assume that we want to impose a bound

B on IL2ind. For a memory reference ref(M), we first construct B different program paths

which may result in the eviction of M after the preemption — thereby generating B level 2

cache misses for ref(M) after the preemption. If each of these B level 2 cache misses are

generated due to the indirect effect of preemption, each of the B constructed path must contain

at least one memory reference which access the L2 cache only after preemption (and not in the

absence of preemption). Subsequently, we show the impossibility of constructing a B + 1-th

path (say PB+1) in a similar fashion. We shall show that any such PB+1 will contain only

memory references that are either L1 cache hit after preemption or L1 cache miss even in the

absence of preemption. As a result, PB+1 cannot lead to an L2 cache miss for ref(M) due to

the indirect effect of preemption.

S1 ≤ S2 ∧ K1 ≤ K2 If M is evicted from the L2 cache, M must have faced K2 unique

conflicts since its last reload into the L2 cache. Let us assume one program path P1 :=

ref(M1,1) . . . ref(Mi,1) . . . ref(MK2,1) ref(M) (as shown by Figure

8.5(a)) which accesses K2 unique memory blocks {M1,1, . . . ,Mi,1, . . . ,MK2,1} mapping to

the same L2 cache set as M . If all the references in {ref(M1,1), . . . , ref(MK2,1} access the

L2 cache in the absence of preemption, M would be evicted from the L2 cache after accessing

ref(MK2,1) even in the absence of preemption. This leads to a contradiction that ref(M) is an

L2 cache hit in the absence of preemption. Therefore, to consider the indirect effect, there must

be one memory reference, say ref(Mi,1) ∈ {ref(M1,1), . . . , ref(Mi,1), . . . , ref(MK2,1)},

which does not generate L2 cache conflict in the absence of preemption (due to an L1 cache

hit), but ref(Mi,1) generates L2 cache conflict after preemption (as Mi,1 could be evicted from

the L1 cache by the preempting task).

Now consider any other program path P2 := ref(M1,2) . . . ref(Mi,2) . . .

ref(MK2,2) ref(M), (as shown by Figure 8.5(b)) which could create similar indirect pre-

emption effect on memory reference ref(M) after the execution of P1. Assume a memory

reference ref(Mi,2) ∈ {ref(M1,2), . . . , ref(Mi,2), . . . , ref(MK2,2)}, which was an L1 cache

hit in the absence of preemption, but will access the L2 cache after preemption (as Mi,2 can be

evicted from L1 cache by the preempting task). Since L1 cache is always accessed, ref(Mi,2)

can be an L1 cache hit (in the absence of preemption) only if the following condition holds:

• Mi,2 is accessed in the program path P := ref(M1,1) . . . ref(Mi,1) . . .

161

ref(MK2,1) ref(M) . . . ref(M1,2) . . . ref(Mi−1,2). (as shown by

Figure 8.5(c)). Otherwise, Mi,2 cannot exist in the L1 cache after P1 is executed. This is

because K2 ≥ K1 and K2 unique memory blocks M1,1, . . . ,MK2,1 are also mapped to

the same cache set as M (since S1 ≤ S2). Therefore, M will be evicted from L1 cache

by the set of memory blocks M1,1, . . . ,MK2,1 after P1 is executed.

However, with the above condition,Mi,2 is already reloaded after preemption and before the

memory reference ref(Mi,2), which makes ref(Mi,2) an L1 cache hit even after preemption.

On the other hand, if Mi,2 is not reloaded before the memory reference ref(Mi,2), ref(Mi,2)

will be an L1 cache miss even in the absence of preemption. Both of these scenarios lead to

contradictions with our initial assumption.

S1 ≤ S2 ∧ K1 > K2 In the above construction of P , Mi,2 may not be evicted from the L1

cache if K1 > K2. Therefore, we first construct K1 −K2 program paths P1, . . . ,PK1−K2 —

all leading to ref(M) as follows:

• P1 := ref(M1,1) . . . ref(Mi,1) . . . ref(MK2,1) ref(M)

• P2 := ref(M1,2) . . . ref(Mi,2) . . . ref(MK2,2) ref(M)

• . . .

• PK1−K2 := ref(M1,K1−K2) . . . ref(Mi,K1−K2) . . . ref(MK2,K1−K2)

ref(M)

where {ref(Mi,1), . . . , ref(Mi,K1−K2)} are the set of memory references which were L1 cache

hits in the absence of preemption but access the L2 cache after preemption. Let us construct

another path, say, PK1−K2+1 := ref(M1,K1−K2+1) . . . ref(Mi,K1−K2+1) . . .

ref(MK2,K1−K2+1) ref(M), where ref(Mi,K1−K2+1) accesses the L2 cache only after

preemption, but not in the absence of preemption. After the execution of P1,P2, . . . ,PK1−K2 ,

there are at least K1 unique memory block accesses in the L1 cache. Therefore, Mi,K1−K2+1 is

either accessed before executing the reference ref(Mi,K1−K2+1) (in which case, the memory

reference ref(Mi,K1−K2+1) must be an L1 cache hit even after preemption), or Mi,K1−K2+1

is not in the L1 cache while executing the reference ref(Mi,K1−K2+1) (even in the absence of

preemption). In both the cases, we reach a contradiction.

162

S1 > S2 Assume that B = (S1
S2

)K1 − 1. We construct B + 1 program paths all leading to the

memory reference ref(M) as follows:

• P1 := ref(M1,1) . . . ref(Mi,1) . . . ref(MK2,1) ref(M)

• P2 := ref(M1,2) . . . ref(Mi,2) . . . ref(MK2,2) ref(M)

• . . .

• PB := ref(M1,B) . . . ref(Mi,B) . . . ref(MK2,B) ref(M)

In the above, {ref(Mi,1), ref(Mi,2), . . . , ref(Mi,B)} are the set of memory references which

access the L2 cache only after preemption but not in the absence of preemption.

Suppose we want to construct another program path PB+1 := ref(M1,B+1) . . .

ref(Mi,B+1) . . . ref(MK2,B+1) ref(M), where ref(Mi,B+1) accesses the L2

cache only after preemption, but not in the absence of preemption. After P1,P2, . . . ,PB are

executed, there are at least (S1
S2

)K1 unique memory block accesses in the L1 cache ((S1
S2

)K1

memory blocks are {Mi,1, . . . ,Mi,B} ∪ {M}) mapping to the same L2 cache set as memory

block M . According to Property 8.4.9, there could be at most (S1
S2

)K1 blocks in L1 cache that

may map to the same L2 cache set as M . Therefore, Mi,B+1 must have been accessed along

the path P1 P2 . . . PB . . . ref(Mi−1,B+1). In this case, ref(Mi,B+1) will be

an L1 cache hit even after preemption. If Mi,B+1 is not accessed along the path P1 P2

. . . PB . . . ref(Mi−1,B+1), Mi,B+1 must have been evicted from the L1 cache by

the set of memory blocks {Mi,1, . . . ,Mi,B}∪{M} before executing ref(Mi,B+1). As a result,

ref(Mi,B+1) was an L1 cache miss even in the absence of preemption. As a result, we reach a

contradiction with our assumption.

8.5 Extension

Nested and multiple preemption

In the preceding, we have described the CRPD computation for a single preemption. Our frame-

work can easily be extended with nested preemption. Recall that our framework computes a set

of evicting cache blocks (ECB) using may cache analysis [12]. To handle nested preemption,

we simply need to take the union of all the ECBs from all the higher priority tasks. More pre-

cisely, assume that T1, T2, . . . , Tn are the set of tasks in decreasing order of priority and we

163

want to compute the CRPD for Tn. A may cache analysis is performed for each of the tasks

T1, T2, . . . , Tn−1. The set of ECBs computed for T1, T2, . . . , Tn−1 are then merged (i.e. set

union) together to produce a final estimation of ECBs. Our rest of the framework remains un-

changed. Since we perform a set union of all the possible ECBs, the estimated set of ECBs

clearly over-approximates the set of memory blocks accessed by the set of all preempting tasks

in any concrete execution.

As shown in [34], multiple preemption creates additional difficulties in the presence of set-

associative caches. The technique proposed in [34] can be used in an exactly same fashion with

our framework. For a sound preemption delay computation, [34] requires the set of evicting

cache blocks (ECB) to be an over-approximation over any execution of the preempting task.

Since we use may cache analysis to estimate the set of ECBs (as computed by Equation 8.9), we

indeed over-approximate the set of ECBs over any execution of the preempting task. Secondly,

the computation in [34] is based on the following insight: if a memory block in the preempted

task may be evicted by the interaction of a set of preempting tasks T1, T2, . . . , Tn, then the same

memory block may be evicted by the sequential composition T1T2 . . . Tn of the set of tasks. This

insight also holds in the presence of cache hierarchy. Therefore, our framework can be used

off-the-shelf with [34] to handle multiple preemption.

Other cache hierarchies

In this paper, we present a CRPD analysis framework for a two-level non-inclusive cache hierar-

chy. In multi-core architectures, inclusive cache hierarchy may limit performance when the size

of the largest cache is not significantly larger than the sum of the smaller caches. Therefore, pro-

cessor architects sometimes resort to non-inclusive cache hierarchies [90]. On the other hand,

inclusive cache hierarchies greatly simplify the cache coherence protocol. We plan to explore

inclusive cache hierarchies for CRPD computation in future.

8.6 Experimental evaluation

Experimental setup

We have chosen medium to large size benchmarks from [2], which are generally used to vali-

date timing analysis. The code size of the benchmarks ranges from 2779 bytes (bsort100) to

118351 bytes (nsichneu), with an average code size of 18500 bytes. Throughout our evalua-

164

tion, we shall assume that each task has been statically mapped to a particular core and all the

tasks have fixed static priorities. We compile each benchmark into simplescalar PISA (Portable

Instruction Set Architecture) [81] — a MIPS like instruction set architecture. The control flow

graph (CFG) of each benchmark is extracted from its PISA compliant binary and is used for all

the analysis results reported here.

We choose cnt and compress from [2] to generate different amount of inter-task cache

conflicts. cnt (which is a small program having a code size of 2880 bytes) is used to generate

low inter-task cache conflict, whereas, compress (which is a relatively large program having

a code size of 13411 bytes) is used to generate relatively high inter-task cache conflict. We also

conduct experiments for private as well as shared L2 caches. The default micro-architectural

setup is captured by Figure 10.7(a) when the L2 cache is private to each core and by Fig-

ure 10.7(b) when the L2 cache is shared among cores. For the experiments featuring a shared

L2 cache, we use qurt (code size 4898 bytes) and statemate (code size 52618 bytes) from

[2] to generate low and high inter-core cache interferences, respectively.

To validate our analysis method, the simplescalar toolset [81] was extended to support the

simulation of shared L2 cache. Original simplescalar toolset supports cycle accurate simulation

in the presence of L1 and L2 caches. However, the simplescalar toolkit does not support the

simulation of shared caches in the presence of multiple cores. Such a simplescalar extension

was developed in our prior work [40; 92]. The extended simplescalar framework is also cycle

accurate. The key to such extension is to modify the main simulation loop for multiple cores.

Each iteration of the main simulation loop updates the execution states on each core – mimicking

the changes in execution states for each cycle on each core. As a result, the state of the shared

cache is also updated appropriately for each cycle. Currently, the simulation infrastructure is

limited to the simulation of homogeneous processor cores – meaning that each processor core

runs at the same frequency.

As part of our work in this paper, we have extended the multi-core simplescalar developed

in our prior work [40; 92] to capture the effect of preemption. We have implemented features

inside the simulator by which a task can be preempted by a higher priority task and after the

higher priority task finishes execution, the preempted task will resume. Before the preemption

takes place, the pipeline state of the preempted task is flushed. This is acceptable, as we just

want to measure the number of additional cache misses due to preemption. Such a measurement

from simulation will help to evaluate the precision of our CRPD analysis framework. However,

165

it is worthwhile to mention that the search space for measuring the worst-case preemption delay

is huge (as the preemption point is unknown). Therefore, the observed CRPD in our experiments

may highly under-estimate the actual worst-case CRPD.

qurt / statemate

Low

compress)
(cnt /

priority
High

priority

L1 cache L1 cache

(1−way, 1 KB) (1−way, 1 KB)

Core 2Core 1

Main Memory

L2 cache L2 cache

(2−way, 2 KB) (2−way, 2 KB)

qurt / statemate

Low

compress)
(cnt /

priority
High

priority

L1 cache L1 cache

(1−way, 1 KB) (1−way, 1 KB)

Core 2Core 1

Main Memory

L2 cache

(2−way, 2 KB)

(a) (b)

Figure 8.6: We use either cnt or compress [2] to generate inter-task cache conflict. (a)
Default architecture used for the results reported as “preemption + no L2 cache sharing”. (b)
Default architecture used for the results using shared cache. Either qurt or statemate [2] is
used to generate inter-core cache conflicts.

Our default system configuration uses a direct-mapped, 1 KB L1 cache and a 2-way asso-

ciative, 2 KB L2 cache, both having 32 bytes cache block size. L1 cache miss penalty is 6 cycles

and L2 cache miss penalty is 30 cycles.

We report the analysis overestimation ratio for the following evaluation. Overestimation ra-

tio compares the analysis result (using our CRPD analysis framework) with the results observed

from real execution (using our modified simulation infrastructure). To compare the overestima-

tion solely due to the CRPD analysis, we record both the WCET overestimation and the overes-

timation of the quantity WCET + #p.CRPD , where #p captures the number of preemptions.

#p is chosen in a fashion so that the value of WCET and the value of #p.CRPD are compa-

rable. In the absence of preemption, we plot the WCET overestimation ratio, as the low priority

task will not be interrupted by the high priority task. If the preemption is enabled, the low pri-

ority task can be preempted by the high priority task. Therefore, we record the overestimation

of WCET + #p.CRPD for the low priority task. The estimation is taken using our CRPD

analysis framework and Chronos WCET analysis tool [23]. The quantity WCET + #p.CRPD

for a program is measured by running the same program for a few inputs, with the preemption

enabled by a high priority task (as implemented in the simulation infrastructure) and recording

the maximum execution time over the different inputs.

166

 0

 0.5

 1

 1.5

 2

 2.5

edn+cnt

matmult+cnt

fdct+cnt

adpcm+cnt

bsort100+cnt

jfdctint+cnt

expint+compress

nsichneu+compress

ludcmp+compress

fir+compress

ns+compress

st+compress

O
ve

re
st

im
at

io
n

ra
tio

Benchmarks (low priority + high priority)

WCET and WCET+CRPD overestimation

no preemption + no L2 cache sharing
preemption + no L2 cache sharing

no preemption + L2 cache shared with qurt

preemption + L2 cache shared with qurt
no preemption + L2 cache shared with statemate

preemption + L2 cache shared with statemate

Figure 8.7: WCET + #p.CRPD overestimation for the task set used from [2]. A combination
of A + B along the x-axis denotes the scenario when task A is preempted by task B (where
applicable)

WCET +#p.CRPD overestimation

The soundness of our CRPD analysis is guaranteed only when used in conjunction with the

WCET analysis (as motivated in [33]). Therefore, only the sum of WCET and CRPD can be

compared with the measurement. Figure 8.7 shows the combined WCET and CRPD overes-

timation ratio in the presence of different benchmarks from [2]. Figure 8.7 clearly shows that

our analysis generates precise estimates in most of the cases. Benchmark nsichneu is an

exception. nsichneu is a benchmark with over two hundred branch instructions and many

infeasible paths. Therefore, the overestimation largely results from the path analysis during the

WCET computation (as evidenced by the results labeled “no preemption” in Figure 8.7).

Analysis result sensitivity w.r.t L1 and L2 cache

Figure 8.8(a) shows our analysis result sensitivity with respect to different L1 cache sizes and

configurations. Similarly, Figure 8.8(b) shows the analysis result sensitivity with respect to

different L2 cache sizes and configurations. Increasing the L1 cache size usually increases the

number of useful cache blocks, as a bigger L1 cache can hold more cache blocks to be reused

later. Consequently, CRPD may increase with bigger L1 cache, as more cache blocks can be

replaced by the preempting task. However, increasing the associativity usually decreases the

CRPD. This is expected, as high associativity caches reduce cache conflict misses. Therefore,

the additional inter-task cache interferences may not be able replace some of the useful cache

blocks in a 2-way associative L1 cache, as compared to a direct-mapped L1 cache of the same

167

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

1-way, 256 bytes

2-way, 256 bytes

1-way, 512 bytes

2-way, 512 bytes

1-way, 1KB

2-way, 1KB

O
ve

re
st

im
at

io
n

ra
tio

L1 cache size

Average WCET and WCET+CRPD overestimation ratio with respect to L1 cache size

no preemption + no L2 cache sharing
preemption + no L2 cache sharing

no preemption + L2 cache shared with qurt

preemption + L2 cache shared with qurt
no preemption + L2 cache shared with statemate

preemption + L2 cache shared with statemate

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

2-way, 2KB

4-way, 2KB

2-way, 4KB

4-way, 4KB

2-way, 8KB

4-way, 8KB

O
ve

re
st

im
at

io
n

ra
tio

L2 cache size

Average WCET and WCET+CRPD overestimation ratio with respect to L2 cache size

no preemption + no L2 cache sharing
preemption + no L2 cache sharing

no preemption + L2 cache shared with qurt

preemption + L2 cache shared with qurt
no preemption + L2 cache shared with statemate

preemption + L2 cache shared with statemate

(b)

Figure 8.8: CRPD and WCET analysis sensitivity with respect to (a) L1 cache configuration
and (b) L2 cache configuration

size. In the same manner, increasing the L2 cache size usually increases the CRPD due to the

replacement of more useful cache blocks. However, after a certain size limit of L2 cache, many

useful cache blocks are not replaced due to the reduced cache interference. As a result, CRPD

also decreases. Figures 8.8(a)-(b) show that our analysis is precise except for very small L1

caches in multi-cores (e.g. 256 bytes). This is because of the difficulties in analyzing the inter-

core cache conflicts, as the overestimation also raises in the absence of preemption (refer to

Figure 8.8(a)).

Effect of cache sharing

It is also worth mentioning that measured CRPD (using our simulation infrastructure) can be

negative in the presence of shared caches. Since the lifetime of a task is shifted due to the pre-

emption, it may face reduced inter-core interference after preemption. As a result, preemption

of a low priority task may result in a lower number of cache misses in the shared L2 cache —

168

Task Description code size (bytes)
T1 navigation task 6496
T2 stabilisation task 2744
T3 SPI serial link control 1 1840
T4 GPS control 4048
T5 fly by wire servo control 1696
T6 radio control 5520
T7 SPI serial link control 2 992

Table 8.1: Papabench task set used in the evaluation

leading to a negative CRPD value. In our measurements, we indeed found such scenario. Never-

theless, we cannot model this scenario in our analysis, as it may require to model an unbounded

number of thread interleaving patterns in concurrent programs. Therefore, the CRPD computed

by our analysis is always positive.

Indirect effect of preemption

We have separately measured the cache reload latency due to the indirect effect of preemption

(as computed by Equation (8.14)). Moreover, we have analyzed this effect for all the three dif-

ferent cases reported in Theorem 8.4.10 (i.e. for S1 ≤ S2 ∧K1 ≤ K2, S1 ≤ S2 ∧K1 > K2 and

S1 > S2). In general, due to the structure of the programs, the additional cache reload latency

resulting from the indirect effect is minimal. In the worst case (over all the used benchmarks

from [2]), the indirect effect of preemption is around 8% of the total CRPD cost computed by

our analysis.

A case study - papabench

We have also evaluated our framework on a freely available embedded software papabench

[93], a derivation from the unmanned aerial vehicle (UAV) control software Paparazzi. The

controller of papabench mainly contains two modules, fly by wire and autopilot.

fly by wire module is responsible for managing radio-command orders, whereas the au-

topilot module runs the navigation and stabilization tasks of the aircraft. The controller runs

in two modes, namely the manual mode and the automatic mode. We evaluate our framework

on the tasks shown in Table 8.1. The salient features of the tasks and their code sizes are also

included in Table 8.1. We evaluate our framework for the different preemption scenarios which

may appear in the real execution.

169

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

T1+{T2}

T1+{T3}

T4+{T5}

T5+{T6}

T2+{T6}

T1+{T2,T6}

O
ve

re
st

im
at

io
n

ra
tio

Preemption scenario

WCET and WCET+CRPD overestimation

no preemption + no L2 cache sharing
preemption + no L2 cache sharing

no preemption + L2 cache shared with T7
preemption + L2 cache shared with T7

Figure 8.9: WCET + #p.CRPD overestimation for the task set used from papabench. A
combination of A + {B} along the x-axis denotes the scenario when taskA is preempted by the
set of tasks in B (where applicable)

Figure 8.9 demonstrates the combined WCET and CRPD overestimation for different pre-

emption scenarios in papabench. On average, our framework generates around 55% overes-

timation. For nested preemptions with multiple tasks (e.g. preemption of T1 using T2 and T6

as shown in Figure 8.9), the evicting cache blocks (ECB) are merged from all the high priority

tasks (e.g. evicting cache blocks from T2 and T6). We also observe that the overestimation in

the presence of cache sharing is usually less than the same with private caches. This is mostly

due to the difficulty in observing the true worst case of inter-task cache conflicts in the presence

of preemption.

Analysis time

We have performed all the experiments in an 8-core, Intel Xeon machine with a 4 GB of RAM

and running Fedora core 4 operating systems. Our analysis is fast, and finishes within a few

seconds for most of the experiments. The maximum time taken by our framework is 1 minute,

where we analyzed the biggest benchmarks of our test-suite (i.e. when we compute the CRPD

for task nsichneu with statemate being run in parallel on a different core).

8.7 Chapter summary

In this chapter, we have presented a CRPD analysis framework in the presence of (shared)

level two caches. We have shown that the presence of non-inclusive caches poses several new

challenges in CRPD estimation — mainly due to the variation in intra-task cache interferences

after preemption. We have proposed a theoretical bound on this additional intra-task cache

170

interference due to preemption and proposed a CRPD estimation framework using those bounds.

Our analysis framework is sound and our experiments with standard WCET benchmarks as well

as a real-life UAV controller application suggest that we can provide precise estimates for most

of the cases.

171

Chapter 9

Modeling Cache Coherence for WCET

Analysis

In this Chapter, we discuss the timing unpredictability arising due to the maintenance of cache

coherence in multi-core processors. The issue of cache coherence introduces unpredictable

cache coherence misses when an outdated shared data item is accessed. We propose a model

to statically bound the number of coherence misses. We also show the integration of such a

modeling into the existing WCET analysis framework.

9.1 Introduction

Multi-core processors introduce the problem of cache coherence in the presence of shared data.

If a shared data item resides in the private cache of a processor core C and the same data item

is modified by another core C′, the data item in the private cache of processor core C becomes

stale. Any access on a stale data item leads to a cache miss. A cache miss due to a stale data

item is widely known in the literature as a coherence miss. Accurately predicting the number of

coherence misses is significantly challenging. This is due to the fact that the cache coherence

misses depend on the interleaving pattern of different threads running on different cores. The

thread interleaving pattern is non-deterministic and it is, in general, infeasible to enumerate all

possible thread interleaving scenario.

In this chapter, we propose to model the cache coherence misses for WCET analysis. Our

modeling does not enumerate thread interleaving patterns and it can be applied for each core

in a compositional fashion. Using the existing research on data cache analysis for single core

172

Core 1

Main memory

cache coherence

Snooping

protocol

Shared bus

Core 2 Core n

Cache
controller

.................$I $D $I $D $I $D

Figure 9.1: Multi-core architecture used for coherence miss modeling

[27], we first perform private data cache analysis for each core ignoring the effect of coherence

misses. Subsequently, we check the shared data items that may potentially lead to stale data

references. We propose the modeling of cache coherence both in the presence of write-through

and write-back caches. For a write-back cache, we assume MESI cache coherence protocol [94].

However, our modeling of cache coherence miss can easily be adopted with minor changes in the

presence of other coherence protocols. Moreover, our modeling can work also in the presence of

synchronization constructs, which are widely used for parallel application to protect the access

of a shared data item.

Our modeling of cache coherence is tightly coupled with the WCET analysis. Our goal is to

predict the overall WCET of the application in the presence of shared data and cache coherence

protocol. Therefore, we are only interested in the additional misses to maintain cache coherency.

The data references which are analyzed as cache misses due to the intra-task cache conflicts

(e.g. using [27]) are not considered for detecting potential coherence misses. Due to the nature

of static analysis, some of the cache misses might be over-estimated while performing intra-task

cache analysis using [27]. Such data references may lead to coherence misses, but they will not

be considered in our coherence miss analysis (as such references are already predicted as cache

misses). Consequently, our modeling of cache coherence may under-estimate the number of

coherence misses in isolation, however, we guarantee the over-approximation of WCET using

our modeling of cache coherence misses.

173

9.2 Overview

System and application model We assume a timing-composable multi-core architecture as

shown in Figure 9.1. Each core has a private instruction and data cache. All the cores are

connected to main memory through a shared bus. We do not consider self modifying code and

therefore, we do not need to model the coherence misses due to the accesses of instruction

memory blocks. Data can be shared among the different threads running on different cores and

a cache coherence protocol guarantees the shared data coherency. We assume a well defined

separation between the private and shared data section of an application. Therefore, given a

memory block address, we can statically determine whether the memory block might be shared

among different threads of the application. An address analysis mechanism can statically pre-

dict the set of memory locations accessed by a load/store instruction. However, the problem of

statically predicting addresses has its own limitations. One such limitation includes the restric-

tion on using dynamic memory allocations. Such limitations are beyond the scope of our work

to address and we rely on the precision and soundness of existing address analysis techniques.

However, any progress in analyzing memory locations will directly improve the precision of our

coherence miss analysis.

For cache coherence, we assume a snoopy cache coherence protocol. Therefore, the cache

controller snoops the shared bus for different bus transactions sent by different cores. We model

an invalidation based cache coherence protocol. As a result, when a cache controller detects a

write bus transaction on a shared data item X , it invalidates the data item X if X resides in the

local cache of the cache controller. We propose the coherence miss modeling of both write-back

and write-through caches. For write-through caches, a coherence miss may only occur for a read

instruction and upon a coherence miss, the data item must be fetched from main memory. For

write-back caches, a coherence miss may occur for both read and write instruction. For a read

coherence miss in the presence of write-back cache, we assume that a successful completion of

read operation requires at most two bus transactions - first, for flushing the modified data item

into main memory and secondly, to read the same data item from main memory. On the other

hand, for a write coherence miss, we assume that a successful completion of the write operation

requires one additional bus transaction (which is for flushing the modified data item into main

memory) to maintain cache coherency.

174

on core A

Thread running

cache analysis

Private data

categorization

Refined PS/NC Downgrading from

PS to NC

Write−through cache

PS/NC categorization

of memory blocks

of core B

categorized PS

write access

categorized PS/NC

read access

WCET

computation

PS to NC

Downgrading from Downgrading from

PS/NC to NC−ST/NC−FT−ST/PS−ST

Write−back cache

Concurrent writes

on private cache

Concurrent writes

by core B

Refined cache

hit−miss categorization

Figure 9.2: Overview of our analysis framework

Overview of analysis framework In this section, we shall give an outline of our WCET

analysis framework in the presence of cache coherence misses. Figure 9.2 shows our overall

analysis framework for a multi-core system with two cores (core A and core B). Assume that

we want to analyze the WCET of the thread running on coreA. We first perform the private data

cache analysis of the program using [27] ignoring the effect of cache coherence. The private

data cache analysis by [27] classifies a memory block as persistence (PS) or unclassified (NC)

with respect to a program scope (e.g. loop nesting depth). For a write-through cache, the issue

of cache coherence does not need to downgrade an NC categorized memory block access. This

is due to the fact that an NC categorized memory access already considers both the possibilities

of a cache hit and a cache miss. As a result, for a write-through cache, the issue of cache

coherence cannot add any additional penalty for the NC categorized memory block accesses.

For a write-through cache, we only check the PS categorized memory accesses for possible

coherence misses. If there exists a concurrent write operation on a PS categorized memory

block, its categorization is downgraded to NC.

For a write-back cache, the situation is slightly more complicated than the same in a write-

through cache. For write-back caches, read and write accesses are handled separately. For

write-back caches, we need to estimate the set of dirty and shared memory blocks in the private

caches of different cores. To know whether a memory block might be modified in the private

cache, we use the may data cache analysis proposed in [51]. As the may data cache analysis

computes an over-approximation of data cache content, the computed cache content can be used

175

to find whether a write operation was performed on a cached memory block.

A PS categorized memory block write is downgraded to NC if there exists a concurrent write

operation on the same memory block. Note that such a downgrading will consider one cache

miss penalty during the WCET analysis for each such write access.

Downgrading a read access is non-trivial, as the read access of a memory block may suffer

two cache miss penalties (one for flushing the data item into main memory and the second for

reading the same data item from main memory) if the main memory is not updated or one cache

miss penalty if the main memory is updated. Therefore, we consider three possible downgrading

of a PS categorized memory block:

• NC : All accesses suffer at most one cache miss penalty.

• PS-ST : First access suffers at most two cache miss penalties because of a possibly stale

data reference, but all other accesses are cache hit.

• NC-ST : All accesses suffer at most two cache miss penalties because each of the ac-

cesses might be a stale data reference.

In a similar fashion, we consider two possible downgrading of a NC categorized memory block:

• NC-FT -ST : First access suffers at most two cache miss penalties because of a possibly

stale data reference, but all other accesses suffer at most one cache miss penalty.

• NC-ST : All accesses suffer at most two cache miss penalties because each of the ac-

cesses might be a stale data reference.

After all the cache access categorizations are updated, we use this cache access characteri-

zation of different memory blocks to compute the WCET of the thread running on core A.

9.3 Analysis

In this section, we shall discuss the computation of coherence cache misses in detail. Before

going into the details of our analysis, we first give a brief description of the parallel programming

model used for the cache analysis (in Section 9.3.1). Subsequently, we give a background on

the private data cache analysis of [27] in Section 9.3.2. Our modeling of coherence cache miss

is based on the work described in [27].

176

B5

(code A)

B1

B2 B3

B4

Bc

Br

/* code A */

join ("f");

/* code B */

fork ("f");

repeat

until (false)

fork

join

blocks
Basic

in "f"

(a)

(b)

L1:

L2:

Thread T

Figure 9.3: fork and join construct in a parallel program

9.3.1 Parallel programming model

We use the fork-join parallel programming model for our analysis. A fork construct cre-

ates a different thread of execution. The fork construct acts similar as the POSIX library

function pthread create. The join construct waits for a specific thread to terminate and

the functionality of the join construct is similar as the library function pthread join from

POSIX library. Given a program with appropriate fork and join constructs, we can build the

control flow graph (CFG) of the application with special control edges for distinguishing the

parallel constructs (i.e. fork and join).

Figure 9.3(a) shows a simple example with fork and join constructs. The parent thread

creates a different thread using fork at L1 and waits for the same thread to terminate before

the loop iteration ends. The created thread executes a function “f“ in each iteration of the loop.

Note that each iteration of the loop creates as well as terminates a thread. Figure 9.3(b) shows

the CFG of the program fragment shown in Figure 9.3(a) where the dotted edges capture the

thread parallel constructs and {B1, B2, B3, B4} are the set of basic blocks inside function f .

The control edge Bc→ B1 captures a fork and the control edge B4→ Br captures a join.

The set of basic blocks {B1, B2, B3, B4} can be executed in parallel with the basic block B5

and therefore, may invalidate some of the shared data items used in the basic block B5.

177

9.3.2 A review of scope based data cache analysis

For private data cache analysis (which ignores the effect of cache coherence), we use the scope

based data cache analysis proposed in [27]. For data cache analysis, we need to know the set of

addresses accessed by each load/store instruction. Therefore, a separate address analysis phase

is required which computes an upper bound on the set of addresses accessed by each load/store

instruction.

In [27], a scope is defined as the loop nesting depth. A data memory reference may access

different memory blocks in different iterations of a loop. For each memory block m accessed

by a particular load/store instruction and for each scope, [27] defines a set of iteration interval

(called as temporal scope) in which m could be accessed. A temporal scope L 7→ [x, y] of

memory block m captures that m can only be accessed between iteration x and iteration y

of loop L, but m can never be accessed before iteration x and after iteration y of loop L.

Such a temporal scope based partitioning is quite useful for data cache analysis, as different

memory blocks accessed by a load/store instruction may have totally disjoint temporal scopes

and therefore, may not conflict in the cache with each other.

Once the temporal scopes are computed for each data reference instruction, [27] employs

a scope based persistence analysis. Such a persistence analysis classifies each memory block

accessed by a data reference as persistence (PS) or unclassified (NC) with respect to a program

scope (i.e. loop nesting depth). Assume that a data reference instruction may access a memory

block m and the instruction resides inside two loops L1 and L2, L1 being the outer loop. Also

assume that the scope based data cache analysis computes m as PS at L1, but NC at L2. Such

an output captures that m cannot be evicted from cache during a single invocation of L2, but m

might be evicted from cache outside L2 and inside L1.

9.3.3 Foundation

Before going into the details of cache coherence modeling, we start with a few terminologies.

For a particular thread T , let us assume that F(T) denotes the program point where the thread

was created (i.e. the fork construct) and J (T) denotes the program point where the parent

thread of T calls the join for thread T . It is however possible that the parent thread never calls

the join construct for a child thread. This specific scenario is captured by assigning a special

value ⊥ to J (T).

178

We distinguish between a program scope and a thread scope. Different loop nesting levels

are considered different program scopes. On the other hand, a thread scope is defined as the

lifetime of a thread. A thread T is contained inside a loop L if and only if the following

condition holds:

• F(T) and J (T) are both enclosed by L. Additionally, J (T) post-dominates F(T).

If a thread T is contained inside loop L, we say that T ∈ resides(L). Note that if J (T) = ⊥,

T /∈ resides(L).

Additionally, we define the following terminologies which are used throughout the rest of

the chapter:

• Par(rw) : For any read or write operation rw in a thread T , Par(rw) denotes the set of

write operations in any other thread than T . Par(rw) can be computed from the control

flow graph with the added fork-join constructs (Figure 9.3). Each element of the set

Par(rw) is a tuple of the form (w, T ′), where w denotes a write operation performed by

T ′ (6= T).

• C(rw) : For any read or write operation rw in a thread T , C(rw) denotes the set of write

operations in any thread other than T which may interleave among different executions

of rw. Each element of the set C(rw) is a tuple of the form (w, T ′) where w denotes a

write operation performed by thread T ′ that may execute in parallel with T . C(rw) can be

computed simply from the control flow graph with the added fork and join constructs

as shown in Figure 9.3. Note that C(rw) ⊆ Par(rw).

• Irwm [L] : For a read or write instruction rw and a loop L, Irwm [L] captures the range of

iterations of L in which m is accessed. If m is not accessed by rw, Irwm [L] = ⊥. Note

that Irwm [L] can be computed by the address analysis proposed in [27].

A coherence miss can be generated only for a shared memory block. Therefore, for our

following discussions on coherence miss modeling, unless otherwise stated, we only consider

data references that may point to shared memory region.

9.3.4 Cache coherence modeling for write-through caches

For a write-through cache, a coherence miss may be generated only for a read access. A read

access on a shared data item may suffer a coherence miss if a concurrent write operation from a

179

different core can modify and therefore, invalidate the same shared data item.

Assume a read instruction which may access a memory blockm andm has been categorized

as persistence (PS) with respect to scope L after the private data cache analysis. We want to

check whether accessing m may lead to a coherence miss. The respective PS categorization for

m with respect to scope L is changed to NC if and only if the following condition holds:

∃w, T : (w, T) ∈ C(r) ∧ Iwm[L] 6= ⊥ ∧ (Iwm[L] ∩ Irm[L] 6= φ ∨ T /∈ resides(L)) (9.1)

Intuitively, the above condition captures the following scenarios:

• There is a write operationw which may execute in parallel with the thread executing r and

w may access the same memory blockm as also accessed by r ((w, T) ∈ C(r)∧Iwm[L] 6=

⊥).

• The write operation w and the read operation r might access the memory block m in the

same iteration of L (Iwm[L]∩ Irm[L] 6= φ) or the lifetime of thread T may exceed scope L

(i.e. T /∈ resides(L)). Note that if thread T is contained inside loop L and additionally,

r and w access m in disjoint iteration space of L, it is not possible that r will suffer any

coherence miss at scope level L due to the write performed by w on memory block m.

Example 9.3.1. Consider the CFG shown in Figure 9.3. Assume a read instruction r in basic

block B5 and a write instruction w in basic block B2 may access the same memory block m.

Therefore, (w, T) ∈ C(r). Assume the access of m by r is persistent, Irm[L] = [2, 5] and

Iwm[L] = [9, 16]. In this case, r cannot face any additional delay for m due to coherence miss.

However, if Iwm[L] = [3, 7], w can invalidate the copy of m in the private cache and therefore,

r might face coherence miss. As a result, the characterization of m at r will be changed to

unclassified (NC).

9.3.5 Cache coherence modeling for write-back caches

Write-back caches introduce additional difficulty, as the main memory might not always be

updated. Assume a thread which wants to read a shared data item. If the shared data item

is written by another thread in the cache, the modified data needs to be first flushed to main

memory. Subsequently, the thread issuing the read on the same data item will fetch the data

180

from main memory. We enhance the cache hit-miss categorization of a data reference to reflect

the additional scenarios arising due to cache coherence.

Cache hit-miss categorization Due to the reason mentioned in the preceding, we need the

following different access categorizations of a memory block in the presence of write-back

caches. All the following categorizations are scope-based, however, to keep the discussion

simple, we describe the categorizations without mentioning about scopes.

1. persistence (PS): A PS categorized memory block can never be evicted from the cache

and when the memory block is loaded for the first time, it does not have to wait for a

different core to flush the data item.

2. unclassified (NC): A NC categorized memory block can suffer at most one cache penalty

for any of its access.

3. persistence-stale (PS-ST): This categorization is required for a read access on shared

data memory block. A memory block is categorized PS-ST if the first access may suffer

two cache miss penalties, but all subsequent accesses lead to cache hit. If the data item is

modified by another thread before any occurrence of the corresponding read access and

the main memory is not updated, the first occurrence of the read access will suffer two

cache miss penalties (for flushing the data by a remote cache controller and reading it back

from main memory by the processor issuing the read). However, if no other write can be

performed for the subsequent occurrences of the read and the memory block accessed by

the read instruction cannot be evicted from the cache, we categorize the memory access

as PS-ST.

4. unclassified-first-stale (NC-FT-ST): Similar to PS-ST and it is also required for the read

access. A memory block is categorized NC-FT-ST if the first access may suffer two cache

miss penalties but all subsequent accesses can suffer at most one cache miss penalty.

5. unclassified-stale (NC-ST): This categorization is required for a read access on shared

data item. If the data item is modified by another thread and the main memory is not

updated, such a read operation will require two bus transactions – first, for flushing the

data into the main memory and secondly, to read the data back from the main memory.

Therefore, any such read access will incur a penalty equivalent to two cache misses.

181

Downgrading cache hit-miss categorization after private data cache analysis After the

private data cache analysis (i.e. using [27]), write accesses and the read accesses are considered

separately (as shown in Figure 9.2). Recall the following scenarios for the appearance of a

coherence miss:

• S1 : A write access suffers a coherence miss. This happens if the same data is modified

by another thread in its private cache without updating the main memory. In this case, the

dirty memory block in the private cache of the other thread need to be flushed.

• S2 : A read access suffers a coherence miss. In this case, the dirty memory block in the

private cache of the other thread needs to be flushed and read back, suffering two cache

miss penalties.

Assume a read or write instruction rw which accesses a memory block m and m has been

categorized as persistence (PS) or unclassified (NC) with respect to scope L after the private

data cache analysis phase. We want to check whether accessing m may lead to a coherence

miss.

Recall that a read access may suffer two cache miss penalties due to an inconsistent main

memory state. This happens when the data item is modified by another thread in the cache.

A PS categorized read access can be downgraded to NC, in which case the data for the read

access might be invalid in the private cache but the main memory is updated. As a result,

a single memory request is sufficient to complete the read request. On the other hand, a PS

categorized read access can also be downgraded to NC-ST, in which case the data for the read

access might be invalid in the private cache and at the same time, the main memory might also

be inconsistent. As a result, for write-back caches, we need to additionally find out the possibly

dirty (i.e. modified) memory blocks which may reside in the private cache of a different thread.

A memory block might be dirty if and only if a write operation is performed on the item while

cached. Therefore, for downgrading a PS categorized memory block by a read access r to

NC-ST, all of the following conditions must be satisfied:

• P1 : There exists a write operation w in thread T such that (w, T) ∈ C(r),

• P2 : Memory block m might be written by w, and

• P3 : Memory block m might be in the private cache of T when w is performed.

182

Condition P1 can be detected by the CFG with the fork-join constructs and condition

P2 can be detected by any address analysis technique. To detect the condition P3, we perform

a may cache analysis [51] on the application. The goal of may data cache analysis is to over-

approximate the cache content at each program point of the application. Since our goal is to get

an over-approximation of the cache content, for may cache analysis, we can ignore the effect

of cache coherence misses. We employ the may data cache analysis proposed in [51]. In the

following discussion, we shall assume that ACSmay,rw denotes the abstract may cache content

immediately before a read/write instruction rw.

Formally, the cache access categorization of a memory block m (accessed by a read/write

instruction rw) with respect to scope L is updated as follows:

• rw is a write instruction and rw is categorized PS: “PS” categorization is changed to

“NC” if and and only if the following condition holds:

∃w, T : (w, T) ∈ C(rw)∧Iwm[L] 6= ⊥∧(Iwm[L]∩Irwm [L] 6= φ∨T /∈ resides(L)) (9.2)

The above condition is similar to write-through cache as the coherence miss for a write

access may require at most one additional bus transaction.

• rw is a read instruction and rw is categorized PS: “PS” categorization is changed to “NC-

ST” if and only if the following condition holds:

∃w, T : (w, T) ∈ C(rw) ∧ Iwm[L] 6= ⊥ ∧ (Iwm[L] ∩ Irwm [L] 6= φ ∨ T /∈ resides(L))

∧m ∈ ACSmay,w (9.3)

If the above condition does not hold but the condition (9.2) holds for the read access, we

have m /∈ ACSmay,w. Therefore, m cannot be dirty in the private cache of a different

core and the main memory is updated for memory block m. Consequently, we change the

“PS” categorization to “NC”.

If both the conditions (9.3) and (9.2) do not hold for the read access, “PS” categorization

is changed to “PS-ST” if the following holds:

∃w, T : (w, T) ∈ Par(rw) ∧ (w, T) /∈ C(rw) ∧ Iwm[L] 6= ⊥ ∧m ∈ ACSmay,w (9.4)

183

In this case, only the first occurrence of rw may suffer two-cache miss penalties (since

the main memory may not be updated for memory block m) and rest all other accesses

will be cache hit.

• rw is a read instruction and rw is categorized NC: The modification is similar to the

modification of PS categorized memory blocks. “NC” categorization is changed to “NC-

ST” if the condition (9.3) holds for the read access (since the main memory may not be

updated for memory block m).

If the condition (9.2) does not hold, then “NC” categorization is changed to “NC-FT-

ST” if condition (9.4) holds (since the main memory may not updated only for the first

occurrence of rw).

Putting it all together in WCET analysis After the cache access categorizations are updated,

they are fed to the WCET analyzer. WCET analyzer is updated to be aware of the cache access

categorizations as follows:

• PS: At most one cache miss penalty for the first access and cache hit for all subsequent

accesses.

• NC: At most one cache miss penalty for each access.

• PS-ST: At most two cache miss penalties for first access and cache hit for all subsequent

accesses.

• NC-ST: At most two cache miss penalties for each access.

• NC-FT-ST: At most two cache miss penalties for first access and at most one cache miss

penalty for all subsequent accesses.

9.3.6 Cache coherence modeling in the presence of synchronization constructs

In our modeling, we have so far ignored any effect of synchronization constructs. However, in

general, shared data accesses are protected by exclusive accesses in the critical section. The

ISA of the processor usually includes atomic instructions, such as swap, test&set, load-link-

store-conditional (LL-SC) to implement critical section. In this section, we shall show how

the presence of synchronization constructs can be used to improve the analysis for predicting

coherence misses.

184

There are mainly two reasons in which the synchronization construct information can be

used to refine the value of predicted cache coherence misses:

• Synchronization constructs may create explicit ordering among different thread execu-

tions. This will refine the value of C(rw) for a read/write access rw, which in turn will

result in a refinement of cache coherence misses.

• Critical sections protected by locks executes in a monolithic fashion. More precisely, no

other thread can interleave the execution of a thread in the critical section, and as a result

cannot generate a coherence miss.

However, the synchronization constructs usually read and write shared variables and may gen-

erate additional coherence misses during their access. In this work, we shall assume that

the synchronization constructs are supported by two different instructions - lock(x) and

unlock(x), where x is a shared memory location.

Example 9.3.2. Consider Figure 9.3. Assume that B5 has two different accesses r1 and r2 of

a shared memory block m. Also assume that basic block B2 may have concurrent writes to m.

If B5 is not a critical section, both r1 and r2 may lead to coherence misses, in the worst case,

as the interleaving pattern of B5 and B2 is non-deterministic. However, if B5 is protected as a

critical section, it executes in a monolithic fashion and only the first of r1 or r2 can generate a

coherence miss, but not both.

In the presence of synchronization constructs, therefore, the analysis proceeds in a similar

fashion as described in previous section. However, inside a critical section, we ensure that the

downgrading of cache access categorization is considered for a particular memory block only

once, the very first of its access inside the critical section. The categorization for rest all other

accesses of the same memory block remains unaffected.

9.4 Example

In this Section, we shall work out an example to demonstrate our analysis framework.

The example and the corresponding control flow graph (CFG) are shown in Figure 9.4. Let

us assume that the set of read instructions are {r1, r2, r3, r4} and the set of write instructions

are {w1, w2}. The set of memory blocks accessed by each read/write instruction are shown

beside the respective instruction in the CFG. This set of memory blocks can be found by the

185

repeat

if (C1)

r1;

w1;

r2;

else

r3;

until (Cond)

fork (t’);

repeat

r4;

w2;

until (Cond’)

join (t’);

join(t);

fork (t);

/* code A */
write set = {m1,m2,m3}t

r1: {m1}

w1: {m2}

r2: {m3}
r3: {m’}

w2: {m5}

r4: {m4}
t’ write set = {m4,m5}

Code A

fork

join

fork

join

Figure 9.4: Example program and the respective control flow graph with fork-join constructs

address analysis technique (such as one proposed in [27]). The example program creates two

threads - t and t′ at different program points as shown in Figure 9.4. The code inside t and t′ are

not important for the discussion. However, using address analysis on t, t′ we know that the set of

possibly written memory blocks by t is {m1,m2,m3} and the set of possibly written memory

blocks by t′ is {m4,m5}. Additionally, for the sake of illustration, we assume the following:

• We have direct mapped data cache.

• m3 and m′ map to the same data cache set.

• m1, m2, m3, m4 and m5 all map to different data cache sets.

Our goal is to check the data cache access categorizations of all the read/write instructions

with respect to the global program scope.

Write-through cache For write-through caches, we are only interested in the set of read ac-

cesses i.e. {r1, r2, r3, r4}. r1 and r4 will be classified as persistence (PS) after private data

cache analysis. On the other hand, r2 will be classified as unclassified (NC), as the memory

186

block accessed by r2 (i.e. m3) might be evicted by m′. Coherence miss cannot degrade an NC

categorized access for write-through caches. Therefore, we concentrate only on r1 and r4.

For r1, we have C(r1) = φ, but for r4, we have C(r4) = (∗, t′). Therefore, using Equation

9.1, we change the categorization of r4 from PS to NC. However, the categorization of r1

remains unchanged. Note that the lifetime of t ends before r1 is first executed. Therefore, the

categorization of r1 remains unaffected even after our coherence miss analysis.

Write-back caches For write-back caches we need to consider the write accesses (i.e. {w1, w2})

and the read accesses (i.e. {r1, r2, r3, r4}) separately. Note that according to our assumption

only {r2, r3} are categorized as NC and reset of the accesses are categorized PS after the private

data cache analysis.

For w1, we have C(w1) = φ, but for w2, we have C(w2) = (∗, t′). Therefore, according

to Equation 9.2, the categorization of w1 remains unchanged, but the categorization of w2 is

changed to NC after coherence miss analysis.

For the read accesses, we have the following:

• C(r1) = φ, Par(r1) = (∗, t).

• C(r2) = φ, Par(r2) = (∗, t).

• C(r3) = φ, Par(r3) = (∗, t).

• C(r4) = (∗, t′), Par(r4) = {(∗, t), (∗, t′)}.

Both the conditions described in Equation 9.3 and Equation 9.2 do not hold for r1 and r2.

However, the condition described in Equation 9.4 holds for both r1 and r2. Therefore, the

categorization of r1 is changed to PS-ST (from PS) and the categorization of r2 is changed

to NC-FT -ST (from NC) after the coherence miss analysis. Note that both r1 and r2 might

face a stale data reference only for their first access. Since the memory block accessed by r3 is

not accessed by any parallel thread, none of the conditions in Equations 9.2-9.4 are satisfied for

r3. Therefore, the NC categorization for r3 remains unchanged.

Finally for r4, the condition described in Equation 9.3 is satisfied. Therefore, we change the

categorization of r4 to NC-ST after our coherence miss analysis.

187

9.5 Chapter summary

In this Chapter, we have discussed that the timing unpredictability in multi-core may not only

arise due to resource sharing, but also due to cache coherence. The challenge here lies in the

modeling of cache coherence misses which occur when a core attempts to access an outdated

data item from the private cache. We have proposed an analysis framework to bound the number

of coherence misses. Our modeling is compositional in nature and it can easily be integrated

with the state-of-the-art WCET analyzers.

188

Chapter 10

Static Bus Schedule aware Scratchpad

Allocation in Multiprocessors

In the concluding contribution of this dissertation, we shall point to an orthogonal direction to

achieve timing predictability. We shall discuss the use of our analysis framework for customized

compiler optimization. Specifically, we propose a scratchpad allocation framework to reduce the

shared bus traffic in multi-processors system on chip (MPSoC).

10.1 Introduction

Scratchpad memory (SPM) is a fast on-chip memory where the content of the scratchpad is

controlled by the compiler and/or managed explicitly by the user. Therefore, the cost of each

memory access is predictable in presence of SPM. Due to this predictability, scratchpads have

been widely adopted for real-time embedded software design instead of caches where the mem-

ory management is entirely transparent to the user/compiler. However, explicit memory man-

agement by user is cumbersome and error-prone. Thus extensive compiler support is required

for the content selection into scratchpad memories.

In this chapter, we study content selection in shared scratchpad memories for multi-processors

system on chip (MPSoC) running concurrent embedded softwares. Our goal is to reduce the

overall worst case response time (WCRT) of the application, represented as a set of task graphs.

MPSoCs usually contain an on-chip scratchpad memory attached locally to each processing el-

ement (PE). However, a particular PE can also access other PEs’ SPMs remotely. On the other

hand, the external (off-chip) memory is accessed through a shared bus among all the available

189

processors in the chip.

Clearly, a processing element incurs a variable amount of delay to access the shared bus due

to the bus contention introduced by other PEs. Since the requests serviced from on-chip SPMs

do not access the off-chip shared bus, shared bus traffic depends on the content selection into

the SPMs. On the other hand, content selection into an SPM depends on the latency incurred by

a main memory access which in turn depends on the waiting time to access the shared bus. The

inter-dependency between bus contention and scratchpad allocation motivates us to develop a

new SPM allocation technique. Our SPM allocation method incorporates the bus schedule and

hence results in a global performance optimization of the application. For the shared bus, we as-

sume a static bus schedule using a Time Division Multiple Access (TDMA) scheme. Processors

are statically assigned bus slots and the bus slots are allocated among the PEs in a round robin

fashion. An integrated SPM allocation framework that considers the timing effects of shared

bus in multi-processor platforms is the main contribution of our work.

To develop such an integrated SPM allocation framework for multi-processors, we face

many technical challenges. Since the SPM space is shared among multiple PEs, it is important to

use the shared scratchpad space as much as possible for all the critical tasks (i.e. all tasks lying in

the critical path of the application) which are responsible for higher WCRT. On the other hand,

if there are two processing elements PE1, PE2 and we fill up the shared SPM by randomly

placing items from the critical tasks of PE1, it may drastically limit the WCRT improvement

of the application if the tasks running on PE2 are also critical. Our global optimization scheme

creates a unified view of all the items accessed in different processors and iteratively allocates

the item(s) suffering from highest latencies to access the off-chip memory. We also employ an

optimization where variables from different independent tasks may share the same SPM space

through overlay due to their disjoint lifetimes. This leads us to more utilization of available

shared SPM space.

Our allocation technique is iterative and we have used a cycle accurate WCRT analyzer to

evaluate our approach. Our case study with real-life embedded applications such as an Un-

manned Aerial Vehicle (UAV) controller and an in-orbit spacecraft software reveals that we can

obtain significant WCRT reductions by appropriate content selection and overlay in SPM. We

have also compared our approach with existing scratchpad allocation scheme which locally op-

timizes the per-processor execution time without being aware of variable bus delays. We have

found that our approach can further improve the WCRT upto 70% compared to local scratchpad

190

PE-0 PE-1 PE-N

SPM-0 SPM-1 SPM-N

Shared off-chip data bus

Off-chip memory

External
Memory
Interface

MPSOC

……

switch

Figure 10.1: System Architecture

allocation schemes.

10.2 System and application model

In this paper, our focus is on a multi-processor architecture, as shown in Figure 10.1. The

architecture contains multiple processing elements (PEs) on a chip. Each PE owns a private

scratchpad memory. With respect to a specific PE, the SPMs of other PEs are referred to as

remote SPMs. A PE has dedicated access to its private SPM with minimum latency. A PE can

also access a remote SPM through the crossbar connecting the processors. Access to a remote

SPM is relatively slower than accessing private SPM but much faster than accessing the off-

chip memory. In this work, we assume that the latency to access remote SPM is bounded by a

small constant (since the on-chip links generally operate on high bandwidth, this is a reasonable

assumption). This kind of architecture essentially creates a virtually shared scratchpad memory

space (VS-SPM) among all the PEs [61]. If some item is not available in VS-SPM, a processor

can bypass the VS-SPM and fetch the memory block from slow external memory. A bypassing

VS-SPM space creates opportunities to avoid memory spill and reloading delay as compared

to its non-bypassing counterpart. Consequently, it leads to a fully predictable memory access

behavior of the underlying application. All traffic to/from the off-chip memory has to go through

a shared TDMA bus which is accessed in a round-robin fashion among all the available PEs.

All on-chip SPMs are non-coherent. This helps the architecture to be free of all coherence logic

required otherwise. Since the SPMs are non-coherent, there is always at most one copy of a

particular variable in VS-SPM.

191

We focus here only on scalar and array variables in data memory. We assume fully sepa-

rated buses and memories for both code and data. Therefore, we ignore bus traffic arising from

instruction memory accesses.

We model an application as a set of task graphs where each task is mapped to exactly one

PE. Each task graph is a directed acyclic graph which contains a number of tasks. Let us

assume {T1, . . . , TN} be the set of N tasks corresponding to all the task graphs. A directed

edge between two tasks Tx and Ty in a task graph signifies that task Ty cannot start execution

before Tx finishes execution. We assume a multi-tasking execution model and we use a fixed-

priority preemptive scheduling. Our goal is to derive a compile-time allocation of data variables

into VS-SPM and off-chip memory to reduce the application’s overall worst case response time

(WCRT).

10.3 Overview of our SPM allocation framework

Bus-delay aware
WCET analysis

Task
WCET

Total delay
(bus delay + memory latency)

to access variables along WCEP

WCRT analysis

Variable lifetime
and critical path

information

Bus aware SPM
allocator

Enough space?

SPM allocation
decision

Yes

Optimized
WCRT

No

Application task graph

Figure 10.2: Overview of SPM allocation framework

Figure 10.2 gives a high level description of our SPM allocation framework. A bus aware

and cycle accurate WCET analyzer computes WCETs of individual tasks together with the ex-

ternal memory access profile of each variable along the worst case execution path (WCEP).

WCRT analyzer uses a fixed priority preemptive scheduling and computes the WCRT of overall

application from individual WCETs of all tasks. As a by-product, the WCRT analyzer also pro-

duces the lifetime of each variable (the time interval between which a particular variable might

be accessed) and critical path of the application. The SPM allocator computes a set of allocation

decisions depending on the memory access profile of each variable and the critical path of the

192

M1 = 10 N = 10 M1 = 10
t = 0

iter1 PE-0 slot

L1 starts
t = 440

L1 L2 starts
C1 = 30

C2

PE-0 slot

PE-1 slot

M1 = 10

t = 20

t = 40

iter1

PE-1 slot

M2 = 10

t = 455
t = 465
Wait iter1

L1 L2 starts

t = 480
C2 = 55

C3 = 10 PE-1 slot

PE-0 slot
M1 = 10

t = 60

t 80

iter2

PE-1 slot

PE-0 slot
M2 = 10

t = 500
Wait

t = 490

iter2

M2 = 10 N = 5
t = 80

t = 400
L1 ends

M2 = 10
t = 520

t = 540
PE-0 slot

t = 530
L2

L1 ends

t = 650 L2 ends
Code executing in PE-0

Execution of L1
M2 = 10

PE-0 slot

M1 = 10

t = 660

C4 = 10

g

Memory latency = 10 cycles
Private SPM latency = 1 cycle
Remote SPM latency = 4 cycles

M1 = 10

t = 660

t = 680
PE-1 slot

t = 690

Wait

WCET = 690 cycles

Remote SPM latency 4 cycles
BUS is TDMA round robin with slot length = 20 cycles
Bus slots are interleaved between PE-0 and PE-1
Only shaded blocks represent load/store

(a)
t = 0

Execution of L1
PE-0 slot
M1 = 10

t = 0

t = 20
iter1

L1 starts

t = 360
L2 starts

PE-0 slot
t = 365

t = 310 PE-1 slot

PE-0 slot
M1 = 10

t = 40

t = 60
iter2

PE-1 slot

M2 = 10

t = 375

Wait
iter1

t = 400

PE 0 slot

PE-1 slot

PE 0 slot t = 60

t = 80

PE-1 slot

PE-0 slot
M2 = 10

t = 420
Wait

t = 410
iter2

t = 400 L1 ends

t = 455

M2 = 10
t = 440

t = 460
PE-0 slot

t = 450

t = 510

Execution
of L2

PE-1 slot

t = 570 L2 ends
M2 = 10

PE-0 slot

PE-1 slot
PE-0 slotM1 = 10

t = 520
t = 530

Execution of code after M1 allocated
to SPM (WCET = 581 cycles)

Execution of code after M2 allocated
to SPM (WCET = 530 cycles)

t = 581

(b)

Figure 10.3: (a) A sample code and its execution without SPM allocation (b) Execution of the
code by two possible SPM allocations

application. An allocation decision could be either to allocate some variable in shared SPM or to

revoke a previous allocation decision (i.e., to reclaim the space from a previous allocation deci-

sion and deallocate the corresponding variable(s) from SPM). Since a set of allocation decisions

might change the memory access statistics and the critical path, the critical path is re-computed

to produce a further set of allocation decisions.

It is important to note from Figure 10.2 that the only information flow from the bus aware

WCET analysis to our SPM allocator is in the form of an external memory access profile along

WCEP. The nature of shared bus is entirely hidden to the SPM allocator. Therefore, our SPM

allocator is independent of the nature of shared bus used by the underlying architecture. A bus-

delay aware SPM allocator is the primary focus of this work — we shall give the motivation

193

behind this now and discuss it further in Section 10.5.

An example Figure 10.3(a) shows a sample code and its execution at PE-0 in presence of

shared bus. “C” blocks in the control flow graph (CFG) represent computations without external

memory access. The number inside each block corresponds to the fixed cost of the computation.

Only shaded blocks (marked with “M”) in the CFG represent external memory accesses and

hence might suffer from variable bus delays. We assume an external memory latency of 10

cycles and TDMA bus slot length is 20 cycles. Let us first examine the execution patterns of two

loops (L1 and L2) when there is no scratchpad. Last two parts in Figure 10.3(a) demonstrate the

execution behaviors of L1 and L2. We observe that references to M2 frequently suffer additional

bus delays to access the off-chip memory. On the other hand, references to M1 hardly suffer any

additional bus delay due to a perfect alignment with corresponding bus slots most of the time.

Consequently, final WCET of the example program turns out to be 690 cycles.

We now consider an architecture with scratchpad memory (SPM). Let us assume that private

SPM latency is 1 cycle and remote SPM latency is 4 cycles. For simplicity, we assume that we

can allocate either M1 or M2 in the SPM but not both due to space constraints. A bus-unaware

greedy SPM allocation (e.g. in [57]) scheme allocates variables to SPM by traversing them in

decreasing order of their access frequencies. Since the access frequency of M1 (11) is higher

than that of M2 (5), a greedy bus-unaware SPM allocator will pick M1 as the potential candidate

to be allocated in the SPM. The modified execution flow is shown in the first part of Figure

10.3(b). Even though loop L1 can now be completed in fewer cycles, references to M2 still

suffer high bus delays. This leads to an optimized WCET of 581 cycles.

Now assume that we allocate M2 instead of M1 in the SPM (second part of Figure 10.3(b)).

Since M1 accesses are aligned to the beginning of bus slots, they will not encounter any addi-

tional bus delay as before. On the other hand, since M2 now has been allocated to SPM, its

references no more encounter any bus delay. This leads to a better optimized WCET of 530

cycles.

A bus-unaware SPM allocation algorithm does not take into account the bus delay encoun-

tered for memory accesses. In Figure 10.3, accesses of M1 inside loop L1 do not encounter

any bus delay. However, each access of M2 suffers additional bus delay. Careful examination

through Figure 10.3(a) reveals that references to M2 contribute more towards the program’s

WCET than the references to M1. Therefore, compared to M1, M2 is a better candidate for

194

SPM allocation in this example.

We shall illustrate the work-flow of our iterative SPM allocation framework by using Figure

10.4. Here we shall take two tasks T1 and T2 executing concurrently at PE-0 and PE-1 respec-

tively (Figure 10.4(a)). Task T1 is the same program as shown in Figure 10.3(a). We introduce

a new task T2 as shown in Figure 10.4(a). A careful illustration similar to Figure 10.3(a) reveals

that WCET of T2 is 480 cycles. Both the PEs have private SPMs (SPM-0 and SPM-1). We

assume both the tasks start execution at time 0. Our goal is to minimize the overall WCRT of

the application containing tasks T1 and T2.

M1 = 10
C1 = 30

N = 10
C5 = 40 N = 10C1 30

C2 = 55

C5 = 40

C6 = 55

C3 = 10
M2 = 10 N = 5

C4 = 10
M1 10

M3 = 10

M3 = 10

M1 = 10

Task T1 in PE‐0

Task T2 in PE‐1

M1 M2[0 690] [375 650]

SPM 0

M1 M2

M3

[0,690]

[455, 480]

[375,650]

SPM‐0

SPM‐1

M2

T1
T2

(t)

t = 530

t = 480

WCRT = 530 cycles

(empty)

Allocation (iteration 1)

(a) (b)
M1 M2

M3

[0,530]

[455, 480]

[375,510]

SPM‐0

SPM‐1

M2 T1 T2

t = 464

WCRT = 480 cycles

M1 t = 480

Allocation (iteration 2)

M1 M2

M3

[0,464]

[455, 480]

[405,450]

SPM‐0

SPM‐1

(M2, M3)

t = 464 t = 463

T1 T2

WCRT = 464 cycles

M1

Allocation (iteration 3)

(c) (d)

Figure 10.4: Iterative SPM allocation scheme shown on two tasks T1, T2 running on different
processors. Task T1 is same as the example in Fig. 10.3.

Our technique exploits the lifetime of variable access to efficiently use the shared SPM

space. Variable lifetime is indicated by an interval as shown in Figures 10.4(b)-(d). The interval

represents the time span from the earliest time the variable could possibly be accessed to the

latest time it could possibly be accessed. We construct an interference graph from these intervals

and produce a coloring of the graph. Each individual color represents a group of variables

which are accessed at disjoint time intervals. Interference graph is a globally unified graph

which considers all the variables accessed in different tasks running at different PEs. In very

first iteration of allocation (Figure 10.4(b)), we observe that the interference graph is a complete

graph. We choose M2 to allocate in SPM-0 as task T1 is in the critical path (having larger WCET

than T2) and previously, we observed that M2 suffers more memory latency to access than M1.

195

After allocation of M1 into SPM-0, WCRT reduces (becomes 530 cycles) but the critical path

does not change (i.e., task T1) and the interference graph still remains to be a complete graph

(Figure 10.4(c)). Therefore, our choice was to allocate M1 (accessed in task T1) into SPM-1

instead of M3 (accessed in task T2). This leads to a reduced WCRT of 480 cycles and we also

observe that the critical path has switched to task T2 (Figure 10.4(c)). More importantly, the

interference graph is no longer a complete graph as M2 and M3 are being accessed at disjoint

time interval (Figure 10.4(d)). Consequently, M2 and M3 can share the same space in SPM-0

and we allocate M3 too in SPM-0 (Figure 10.4(d)). After this final allocation, WCRT further

reduces to 464 cycles (recall that remote SPM latency was assumed to be 4 cycles).

Now assume the presence of a bus-unaware SPM allocator which locally optimizes per-

processor execution time (as described in [63]). It would have allocated M1 in SPM-0 (for M1

having higher access frequency than M2) and M3 in SPM-1 (as remote SPM allocation is not

considered), resulting in a final WCRT of 581 cycles. This example demonstrates the effec-

tiveness of our approach, as we can considerably improve the WCRT (464 cycles) compared to

[63].

10.4 Bus aware WCRT analysis

For bus-aware SPM allocation, we need to first perform a bus-aware WCET analysis of each

individual task. We use our previous work on bus-aware, cycle accurate WCET analysis in [40]

for the allocation framework.

The outcome of a single task analysis is a metric Cv attached to each variable v accessed

in the task. Cv represents the total contribution of variable v towards WCRT of the task. This

contribution includes the total waiting time to access the shared bus as well as the total off-chip

memory latency for all references of variable v in the worst-case path. A TDMA bus scheduling

policy is used where a bus slot is interleaved among all the PEs in a round-robin fashion. For

rest of the discussion, we shall assume that there are a total J number of processors and the bus

slot length assigned to each processor is Sl.

Computation of Cv A bus aware analysis computes the bus delay for each memory reference

that may potentially access the shared bus. However, precise computation of this bus delay

requires a virtual unrolling of all the loops. Our previous work in [40] uses an approximation

to align the start of each loop iteration at the beginning of a new bus schedule. The alignment

196

avoids the virtual unrolling but it requires additional alignment cost for each loop iteration and

this cost is included in the WCET computation. Artificial alignment of a loop iteration is not

necessary if the loop does not contain any memory reference that may access the shared bus.

Let us denote the average alignment cost of a single iteration of loop lp by ∆lp. To use the

analysis for bus aware SPM allocation, let us assume that freqmem represents the frequency

of an off-chip memory reference mem along the worst case execution path (WCEP) and ∂mem

is the bus delay computed by the analysis for memory reference mem. Further assume that

MEM(v) returns the set of all off-chip memory references of variable v and LP (mem) returns

the immediately enclosing loop of memory reference mem. Given the above, we compute Cv

as follows:

Cv =
∑

mem∈MEM(v)

(∂mem + LAT + ∆LP (mem))× freqmem (10.1)

LAT represents the off-chip memory latency. Note that ∆LP (mem) will disappear after all

the variables accessed inside LP (mem) are allocated in SPM. Therefore, variables incurring

high memory latency and accessed inside a loop with high alignment penalty are preferred for

SPM allocation. Consequently, ∆LP (mem) is added as a component for computing Cv. It is

interesting to notice that the SPM allocator takes only the value of Cv as input. Therefore, a

more accurate analysis for computing Cv might easily improve the result generated by our SPM

allocator.

Lifetime of a task WCET analysis is carried out initially and after each iteration of SPM al-

location algorithm. Let us assume wcet(ti, A) denotes the WCET of task ti under allocation

A. For lifetime computation, we assign four parameters to each task as follows: eStart(ti, A)

(earliest start time), eF inish(ti, A) (earliest finish time), lStart(ti, A) (latest start time) and

lF inish(ti, A) (latest finish time). Given an allocation A and the corresponding value of

wcet(ti, A), we can estimate the lifetime of task ti, defined as the interval between the lower

bound on the start time and the upper bound on the finish time of ti. Therefore, lifetime of a task

is captured by the interval [eStart(ti, A), lF inish(ti, A)]. This estimation takes into account

the dependencies among the tasks (partial ordering imposed by the task graph) as well as pre-

emptions. WCRT of the whole application containing N tasks under allocation A is thus given

197

by the following equation:

WCRTfinal = max
1≤i≤N

lF inish(ti, A)− min
1≤i≤N

eStart(ti, A) (10.2)

WCRT analysis of a single task We consider a fixed-priority preemptive scheduling. There-

fore, we need to consider the preemption cost of task ti. An application is periodic in nature. An

application is modeled as a task graph and one activation of the application is the completion of

this entire task graph. Therefore, all tasks in the task graph have a common period and deadline

which is the period of the entire application. We denote the priority of a task ti by pr(ti). Lower

numbers are considered to be higher priority. The assigned PE to a task ti is denoted by PE(ti).

Assume that the set of tasks which may preempt task ti is denoted by hp(ti). hp(ti) is defined

as follows:

hp(ti) = {tj | ti /∈ D(tj) ∧ tj /∈ D(ti) ∧ PE(tj) = PE(ti) ∧

pr(tj) < pr(ti) ∧ [eStart(tj , A), lF inish(tj , A)]

∩ [eStart(ti, A), lF inish(ti, A)] 6= φ} (10.3)

D(ti) denotes the set of tasks which depend (directly or indirectly) on task ti according

to the partial order imposed by the task graph. Therefore, hp(ti) denotes all higher priority

tasks whose lifetimes may overlap with that of ti in the same PE. WCRT of the task ti is then

computed by the following:

wcrt(ti, A) = wcet(ti, A) +
∑

tj∈hp(ti)

wcet(tj , A)

+ |hp(ti)| × J × Sl

(10.4)

Since each task has the same period and deadline, a higher priority task can preempt a lower

priority task executing in the same PE at most once. Preemption of a lower priority task will also

disturb the external memory access profile of the preempted task beyond the preemption point,

which may lead to additional bus delay. Consequently, the delay encountered for a preemption

198

can be at most the worst case execution time of the preempting task together with any additional

bus delay encountered for preemption. Note that |hp(ti)| × J × Sl bounds the additional bus

delay. We ignore the operating system overhead due to context switch. Nevertheless, an upper

bound on the context switch cost can easily be accounted during the WCRT computation of ti

(wcrt(ti, A)).

We have for each task ti: lF inish(ti, A) = lStart(ti, A) + wcrt(ti, A). Further, the

partial ordering of tasks in the task graph imposes the constraint that a task ti can start execu-

tion only after all its predecessors have completed execution. In other words, lStart(ti, A) ≥

lF inish(u,A) for all tasks u preceding ti in the partial order imposed by the application task

graph.

For WCRT analysis, we also need to compute the best case execution time (BCET) of each

task ti. BCET of ti under allocation A is denoted by bcet(ti, A). We use the following for

BCET computation: (i) unless a variable is already allocated to some remote SPM, its location is

considered to be the private SPM (i.e., no external memory access is considered when computing

bcet(ti, A)). (ii) no preemption cost needs to be considered for BCET (the best-case scenario).

Therefore, for each task ti: eF inish(ti, A) = eStart(ti, A) + bcet(ti, A). Further, due to

the partial ordering of tasks in the task graph, eStart(ti, A) ≥ eF inish(u,A) for all tasks u

preceding ti in the partial order imposed by the application task graph.

10.5 Bus-delay aware Scratchpad allocation

In this section, we describe our iterative SPM allocation algorithm in details. An optimal so-

lution in our setting is clearly infeasible. In presence of Q processing elements in the MPSoC,

each variable has Q + 1 possible places to reside (one in each SPM and the external memory).

Consequently, an exhaustive search requires to explore (Q+ 1)n possibilities with n variables,

which is clearly infeasible even if n is relatively small. Therefore, in the following discus-

sion, we propose an iterative heuristic which computes a solution very fast and still overpowers

previously proposed local scratchpad allocation schemes.

In the following discussions, private SPM of a task refers to the private SPM of the PE in

which the task is running and with respect to an SPM spmi, all tasks having private SPM spmi

are considered local. Similarly, remote SPM of a task refers to any SPM available in the MPSoC

other than the private SPM of the task.

199

Computation of variable lifetime An interval [lo(v), hi(v)] represents the lifetime of a vari-

able v. lo(v) indicates the earliest possible time v could possibly be accessed and hi(v) indicates

the latest possible time for an access to v. These intervals are computed initially and everytime

after an SPM allocation decision is finalized. Under allocation A, lo(v) and hi(v) are computed

as follows (assuming v is accessed in task ti):

lo(v) = eStart(ti, A) + min
ri∈fref(v)

bcet(ti, ri, A) (10.5)

hi(v) = lStart(ti, A) + max
ri∈lref(v)

wcet(ti, ri, A)

+
∑

tj∈hp(ti)

wcet(tj , A) + |hp(ti)| × J × Sl

(10.6)

Recall that eStart(ti, A) and lStart(ti, A) are the earliest and latest start times of task ti

under SPM allocation A. fref(v) and lref(v) represent the set of first and last references

(in topological order) to variable v in task ti respectively. bcet(ti, ri, A) and wcet(ti, ri, A)

represent the best case and worst case execution time spent from the beginning of task ti to

reference ri, under allocation A, respectively. To compute the latest reference time of variable

v, we need to consider the preemption cost. Recall that hp(ti) represents the set of all tasks

which may preempt task ti and |hp(ti)| × J × Sl bounds any additional bus delay introduced

due to preemption. Therefore, Equation 10.6 finds the latest possible time at which the variable

v is accessed.

Interference graph We use the lifetime information of variables to construct an interference

graph GI = (VI , EI). Nodes of this graph correspond to different variables. Recall that D(ti)

denotes the set of tasks which depend (directly or indirectly) on task ti . There exists an edge

between two nodes depicting variables u (accessed in task ti) and v (accessed in task tj) if the

following condition preduv holds:

200

preduv = [lo(u), hi(u)] ∩ [lo(v), hi(v)] 6= φ

∧ ti /∈ D(tj) ∧ tj /∈ D(ti) ∧ u 6= v

(10.7)

The condition preduv represents the scenarios where two different variables u and v might

be live at the same time and thus cannot share the same memory space. As shown in the pre-

ceding, two variables from two dependent tasks can never interfere. If u and v are accessed

by the same task ti, number of edges in GI is reduced by checking whether u and v can be

simultaneously live using classical liveness analysis.

SPM allocation using the interference graph Interference graph is used for sharing the avail-

able SPM space as much as possible. Each node of the interference graph is assigned a weight.

Nodes having higher weight values are given preference for SPM allocations. We want to place

data items which incur high memory latency (including bus delay) into the SPM so that external

memory access is not needed. At the same time, we want to optimize the critical path of the

application and consequently, we want to place data items which are accessed in the critical

path, into the SPM. Therefore, we assign a weight (gainv) to each vertex (v) in the interference

graph as follows:

gainv =


0, if v is not accessed in the critical path

or v is allocated in SPM

Cv, otherwise.

(10.8)

These weights are computed initially and everytime an SPM allocation decision is made.

Before going into the formal description of the technique, we define the following notations that

will be used for rest of the discussion:

• area : VI → N, area(vi) denotes the size of a variable represented by interference graph

node vi.

201

• size : 2VI → N, size(S) denotes the size of largest variable in set S that resides in

external memory. Note that, if S forms an independent set in the interference graph,

size(S) is the total space needed to allocate the entire set of variables S into the SPM.

• refi ⊆ VI : Set of variables accessed in some task assigned to PE i.

• spmi : Private SPM of PE i.

• SP : Set of all SPMs available in the MPSoC.

• capacity : SP → N, capacity(spmi) denotes the free space in spmi.

• location : VI → {SP ∪ ⊥}, location(vi) denotes the location of a variable vi. If vi is

in external memory, location(vi) = ⊥.

• ℘ : VI → 2VI , ℘(vi) denotes the set of variables sharing the same SPM space with vi due

to their disjoint lifetimes.

Formal description of the overall technique is given in Algorithm 4. There are mainly two

decisions associated with every iteration of Algorithm 4: first, finding a set of variables for

allocating in SPM (maxIndependentSet function in Algorithm 4) and secondly, finding space in

shared SPM to allocate this set of variables (findSPMspace function in Algorithm 4). Broadly,

our technique exhibits a search algorithm with limited backtracking. A choice made by the

algorithm can be either final or can be backtracked depending on whether the choice improves

application performance. The search algorithm terminates when no new choice can be made.

We apply graph coloring to the interference graph, the resulting colors will give us groups of

variables which are accessed at disjoint time interval. Graph coloring using the minimum num-

ber of colors is known to be NP-complete. Therefore, we employ Welsh-Powell algorithm [95],

a heuristic method that assigns the first available color to a node without restricting the num-

ber of colors to be used. Algorithm 4 follows a reduced backtracking technique. Let us define

weight of a particular color CL as the sum of weights (gainv) of all vertices colored with CL.

Each color in the interference graph represents an independent set and the independent set corre-

sponding to the maximum weighted color contribute a bigger chunk to the application’s overall

WCRT. Therefore, in each iteration of the algorithm, we choose a color that has the maximum

weight. If allocating an independent set IS into SPM reduces the WCRT of the application, we

finalize the allocation of IS and the location of variables representing set IS is never changed

202

Algorithm 4 MIS: SPM allocation by exploiting variable lifetime
1: Perform initial WCRT analysis to get the WCRT and critical path;
2: Construct interference graph GI and assign weight gainv to all its vertices;
3: backlog := φ;
4: repeat
5: repeat
6: ISmax := maxIndependentSet(GI);
7: gain :=

∑
v∈ISmax

gainv;

8: /* gain is reset in two conditions: (a) all variables in critical path are already allocated
in SPM, (b) GI = φ, and consequently ISmax = φ. The allocation is terminated at
this point */

9: if (gain = 0) then
10: Finalize SPM allocation;
11: return;
12: end if
13: (IS, occ,Rspm) := findSPMspace(ISmax);
14: /* If SPM space cannot be found for set ISmax, some previously allocated space is

reclaimed if available. Otherwise, largest variable in ISmax is removed from GI to
find a smaller independent set */

15: if (Rspm = φ) then
16: (ISm, occm, spmi) := max

(∗,occ,∗)
backlog;

17: if (occm > 0) then
18: capacity(spmi) := capacity(spmi) + occm;
19: recompute the critical path and the weights gainv;
20: backlog := backlog \ (ISm, occm, spmi);
21: else
22: Vmax := {vi ∈ IS | area(vi) = size(ISmax)};
23: GI := GI \ Vmax;
24: end if
25: end if
26: until (Rspm 6= φ)
27: capacity(Rspm) := capacity(Rspm)− occ;
28: recompute the critical path and the weights gainv;
29: if (WCRT is reduced after allocating IS in Rspm) then
30: backlog := φ;
31: recompute GI ;
32: else
33: /* remove the previously selected independent set from the interference graph and

continue allocation with the remaining graph */
34: backlog := backlog ∪ {(IS, occ,Rspm)};
35: GI := GI \ IS;
36: end if
37: until (GI = φ)

further. However, if allocating IS into SPM does not reduce the WCRT, we maintain it in a list

backlog as long as enough SPM space is available for WCRT improvement. When we run out

of space, we search through the backlog list to find a victim and reclaim the SPM space assigned

203

to it. The victim is chosen to be the one which occupies maximum amount of space among all

other elements in backlog list (the term max
(∗,occ,∗)

backlog in Algorithm 4 computes this victim).

If the list backlog is empty and there is not enough SPM space to allocate an independent set,

the largest variable from the chosen independent set is removed to find a smaller independent

set that can be accommodated in free SPM space. Size of backlog list represents the maximum

depth of backtracking. One could argue about the backtracking depth being nonzero (for zero

backtracking depth, an independent set is never allocated to shared SPM unless it reduces the

overall WCRT). However, we observe that more than one independent sets (say IS1 and IS2)

are often able to reduce the WCRT if allocated together into the SPM, whereas, WCRT might

not reduce if either IS1 or IS2 is allocated to SPM but not both. Therefore, even if the WCRT

is not reduced after an allocation decision, we expect that WCRT will reduce in future iterations

and we only discard such decision when there is not enough space for a new allocation (recall

that allocation decisions that did not lead to WCRT improvement, are maintained in a separate

list backlog). The above-mentioned situation is encountered very often when the cardinality of

an independent set is very small or the expected gain from the corresponding allocation deci-

sion is low. Consequently, WCRT may improve only by allocating more than one independent

sets together. Finally, the interference graph GI is recomputed only if the WCRT is reduced.

This is to ensure that the set of edges in GI monotonically decreases — a crucial property that

maintains the correctness of our algorithm (Theorem 10.5.2).

We use a heuristic as described in Algorithm 5 to find SPM space for a given independent set

ISmax. Note that we only need to find an SPM to allocate the independent set ISmax \ Vspm,

where Vspm(⊆ ISmax) is a set of variables already allocated in the SPM space. Choosing an

SPM for allocating a group of non-interfering variables has a space vs quality trade-off. Since,

a group of variables are sharing the space, it will create opportunities for more variables to be

accommodated in SPM. On the other hand, as the interference graph is a globally unified graph,

a group may consist of variables that are accessed in different processors. Therefore, if the group

is allocated the same space, some variables in the group might be accessed remotely and thereby

limit the WCRT improvement. Since a very limited amount of SPM is normally available in a

processor, our primary focus is to utilize the available space with maximum possible sharing.

Therefore, in the first step of our heuristic, we check whether the set of variables ISmax can

share SPM space with some variables already allocated in SPM. However, if our first step is

unsuccessful, we try to improve the WCRT by minimizing the latency incurred by the costliest

204

Algorithm 5 findSPMspace: Finding SPM space for a set of variables ISmax having disjoint
lifetimes. Total number of processors is J .

1: /* If some variable ∈ ISmax is already allocated in SPM, it is checked whether the space
can further be shared with the current set of variables ISmax */

2: Vspm := {vi ∈ ISmax | location(vi) ∈ SP};
3: IS := ISmax \ Vspm;
4: /* Required space in SPM for independent set ISmax */
5: occ := size(ISmax);
6: if (∃vi ∈ Vspm. occ ≤ area(vi) ∧

∧
x,y∈IS∪℘(vi)

¬predxy) then

7: return (IS, 0, location(vi));
8: end if
9: /* Try to minimize the latency incurred by the costliest subgroup in ISmax */

10: cg(i) :=
∑

v∈ISmax∩refi

gainv , ∀i ∈ [1,J];

11: if (∃i ∈ [1,J]. cg(i) = max
k∈[1,J]

cg(k) ∧ capacity(spmi) ≥ occ) then

12: return (IS, occ, spmi);
13: end if
14: /* Find a scratchpad having maximum remaining space and has least interference from

locally executing critical tasks */
15: intf := {u | u ∈ VI ∧ ∃v ∈ IS. preduv};
16: hr(spmi) := capacity(spmi)−occ∑

v∈intf∩refi

gainv
, ∀i ∈ [1,J];

17: if (∃i ∈ [1,J]. hr(spmi) ≥ 0 ∧ hr(spmi) = max
k∈[1,J]

hr(spmk)) then

18: return (IS, occ, spmi);
19: end if
20: return (IS, 0, φ);

subgroup in ISmax. A costliest subgroup is a set of variables in ISmax that are accessed in

the same processor and have maximum cumulative weight (sum of the elements’ weight gainv).

Consequently, if sufficient space is available, we allocate ISmax \ Vspm in the private SPM of

the processor accessing this costliest subgroup. In our final step, we choose an SPM that has

the maximum remaining space and has minimum interference with ISmax \ Vspm from locally

executing critical tasks. We try to minimize the possibility of high interference in the private

SPMs of critical tasks at this final stage.

Following three theorems highlight certain crucial properties of our allocation technique.

Theorem 10.5.1. Set of edges in the interference graph monotonically decreases over different

iterations of Algorithm 4.

Proof. We prove this by contradiction. In Algorithm 4, we recompute GI if and only if WCRT

is reduced. Let us assume a specific recomputation of GI as Gm+1
I = (V m+1

I , Em+1
I) and

assume that the set of variables allocated to SPM is Am+1. Further assume, the immediate

205

last recomputation of GI was GmI = (V m
I , EmI) and had a set of SPM-allocated variables Am.

Clearly, Am ⊆ Am+1 and VI \Am+1 ⊆ VI \Am where VI is the set of all variables. More over,

locations of the set of variables Am are never changed after computing GmI . By contradiction,

assume EmI ⊂ Em+1
I . When computing WCRT with allocation Am (Am+1), location of the set

of variables VI \Am (VI \Am+1) is taken as off-chip memory to exploit the worst-case scenario.

On the other hand, BCET computation under allocation Am (Am+1) takes the location of the

set of variables VI \ Am (VI \ Am+1) as private SPM to exploit the best-case situation. Close

inspection of Equation 10.7 reveals that the property EmI ⊂ Em+1
I can only be satisfied in

following two conditions: first, WCRT of some task (or task fragment) is comparatively higher

with allocation Am+1 than with allocation Am. It is not possible as Am ⊆ Am+1 and on-

chip SPMs have lower latencies than off-chip memory. Secondly, BCET of some task (or task

fragment) is more with allocation Am than with allocation Am+1. By a similar reasoning we

argue that it is also not possible as VI \ Am+1 ⊆ VI \ Am and private SPM has the lowest

latency.

Theorem 10.5.2. Set of variables sharing the same space in SPM can never have interfering

lifetimes across different iterations of SPM allocation in Algorithm 4.

Proof. Two variables vi and vj could be allocated at the same space in shared SPM only if the

edge (vi, vj) /∈ EI . However, according to Theorem 10.5.1, set of edges in GI monotonically

decreases. Therefore, the property (vi, vj) /∈ EI must be satisfied in all future iterations of

Algorithm 4 (i.e., after the iteration where vi and vj had been alloted the same SPM space).

Consequently, set of variables occupying the same space can never have interfering lifetimes.

Time complexity We propose the following theorem to analyze the complexity of our iterative

allocation framework:

Theorem 10.5.3. Let us assume |VI | is the total number of variables in the interference graph.

Total number of iterations in our framework (bound of the outer loop in Algorithm 4) cannot

exceed |VI |(|VI |+1)
2 .

Proof. Let us assume that after a specific recomputation of GI , X is the number of variables

residing in off-chip memory and T (X) is the number of remaining iterations in Algorithm

4. In the worst case scenario, T (X) follows the recurrence T (X) = T (X − 1) + X . In

206

the worst case, interference graph could be a complete graph in every iteration, making the

size of selected independent set by maxIndependentSet exactly 1. Consequently, at most X

iterations might be required to finalize an SPM allocation decision (because all previous X − 1

choices may not lead to WCRT reduction and subsequently put into the backlog list). Assume

that the variable vX is chosen for SPM allocation at X-th iteration. Note that, if WCRT is not

improved after allocating vX , Algorithm 4 will be terminated. Similarly, if WCRT improves

after successfully allocating all X variables in SPM, Algorithm 4 also terminates as there are

nothing more to allocate in SPM. Therefore, to visualize the worst case situation, we assume

that backlog list is emptied out at X-th iteration to accommodate vX in SPM and allocation of

vX improves the WCRT. Since allocation of vX leads to X − 1 variables in off-chip memory, it

will require T (X − 1) iterations more for Algorithm 4 to terminate. Solving the recurrence we

get T (X) = X(X+1)
2 . Since there are a total of |VI | nodes in the interference graph, maximum

number of iterations in Algorithm 4 is bounded by |VI |(|VI |+1)
2 .

In practice, though, above theoretical bound is not reached. It is mostly because of the two

reasons: first, the interference graph is hardly a complete graph in any iteration and secondly,

search depth to finalize an allocation decision is much lower than the number of variables resid-

ing in off-chip memory. We shall see in the experimental section that our framework converges

quickly.

10.6 Experimental evaluation

Benchmarks We have used two real-life embedded applications to evaluate our scratchpad

allocation schemes. Our first case study corresponds to a large fragment of DEBIE-I DPU Soft-

ware [82], an in-situ space debris monitoring instrument developed by Space Systems Finland

Ltd. We model this fragment as a task graph, shown in Figure 10.5. The number beside each

task in Figure 10.5 shows the assignment of tasks to different PEs. Code size of the tasks varies

from 448 bytes to 23288 bytes (average code size 8825 bytes) whereas the data size varies from

18 bytes to 66972 bytes (average data size 55448 bytes).

Our second case study is the Unmanned Aerial Vehicle (UAV) control application from

papabench [96], a derivation from the real-time embedded UAV control software Paparazzi.

The controller consists of two main functional units, fly by wire and autopilot, which are inter-

connected by SPI serial link. fly by wire unit is responsible for managing radio-command orders

207

tc‐sby

hm‐sby1

hm‐sby2 su‐sby1

su‐sby2

su‐sby3

4

2

31

4

4

Figure 10.5: Task graph extracted from DEBIE-DPU

fbw0

fbw1

fbw2

fbw3

fbw4

fbw5

fbw6

ap0

ap1

ap2

ap3

ap4

ap5

ap6

ap7

fbw8 fbw9

fbw7

ap8

ap9

ap10

ap12

ap11

ap13

ap14

ap15

ap17

ap16

ap18

ap19

fbw10

fbw11fbw12

1

1

1

1

2

2

2

1

1
1 1 1 1

4

4

4

4 3

3

3

4
4

1
2 1

3

3

3

3

3

4

4

4

Figure 10.6: Task graph of papabench

and servo-commands, while autopilot runs the navigation and stabilization tasks of the aircraft.

One scenario in the manual mode is modeled as a task graph and is shown in Figure 10.6. The

number beside each task in Figure 10.6 shows the assignment of tasks to different PEs. Code

size of the tasks varies from 96 bytes to 6468 bytes (average code size 1903 bytes) whereas the

data size varies from 130 bytes to 1878 bytes (average data size 1105 bytes).

Experimental setup We have implemented our allocation algorithm inside a cycle accurate

WCRT analyzer. Our full experimental setup is shown in Figure 10.7. We shall use the ter-

minologies shown in Figure 10.7 for rest of the discussion in this section. Let us assume WC

represents the scenario where all variables are accessed from external memory. Similarly, BC

represents the scenario where all variables are accessed from private SPM. Therefore, WC and

BC provide upper and lower bound of optimized WCRT value respectively. To check the im-

provement by our SPM allocator (result shown by “MIS” in Figure 10.7), we measure the ratio

208

worst case path

Execution frequency of
variables along worst case

path

Bus delay analysis

decision

SPM allocation

analysis

analysis

WCRT

WCET

Task

Bus aware allocator

in shared SPMaccessed along
encountered for variables

total delay

SPM allocation

decision

condition
end

condition
end

All variables
in external
memory

Task

WCET

WCRT

analysis

analysis

Classical WCET

WCET

Task

WCRT

analysis

Allocation decisions

generated by MIS

SIM(WC) SIM(MIS) MIS NOBUSWC BC

analysis
Classical WCET

Application task graph

WCRT

in private SPM

Bus unaware allocator

All variables

in private SPM

Bus−aware WCET
analysis

simulation with
random input

simulation with
random input

Figure 10.7: Experimental setup

WC
MIS − 1. Clearly, BC is a measurement of best possible scenario when all variables are ac-

cessed from private SPM and WC
BC − 1 bounds the best possible improvement. We compare

our improved WCRT with a bus-unaware allocator (result shown by “NOBUS” in Figure 10.7)

that optimizes the content selection in individual private SPMs (similar to the SPM allocator

described in [63]). Improvement from NOBUS is similarly measured as WC
NOBUS − 1. We also

check the effect of our Algorithm on average case response time (ACRT) by running the applica-

tion using random inputs with and without our final SPM allocation decision (results shown by

“SIM(MIS)” and “SIM(WC)” in Figure 10.7 respectively). Both “SIM(WC)” and “SIM(MIS)” are

obtained using a cycle accurate simulator. ACRT improvement using our technique is measured

209

Size of Analysis
interference graph statistics

Benchmark Nodes Edges Iterations Time WC (cycles)
debie 283 27688 99 88 secs 3773× 106

papabench 506 16872 210 119 secs 515× 103

Table 10.1: Problem size, analysis time and WCRT

as SIM(WC)
SIM(MIS) − 1.

We assume a single in-order pipeline for each processor. Each processor can access its

private SPM in a single cycle. Our experimental results (i.e. WCRT of the application) mainly

depend on four different micro-architectural parameters whose default values are configured as

follows: i) total size of shared scratchpad space (relative to total data size in the application):

10%, ii) remote SPM latency: 4 cycles, iii) off-chip memory latency: 30 cycles, iv) round-robin

TDMA bus slot length: 50 cycles and v) number of PEs: 4. We have carried out experiments

with two processors and with four processors. For all experiments with two PEs, we combine

the tasks running in PE 2 and PE 3 to run in one PE and combine rest of the tasks to run in

another PE. We perform all our experiments in a 3 GHz Pentium IV machine having 1 GB of

RAM and running Ubuntu 8.10 as the operating system. Table 10.1 gives an idea about the

problem size and time taken by our iterative SPM allocator in default configuration. The time

shown in Table 10.1 features the total time, including the time taken by repeated computations

of bus-aware WCET and SPM allocation decisions by Algorithm 4. In general, none of our

reported experiments takes more than 2 minutes to complete.

Sensitivity of WCRT reduction with respect to SPM size Figures 10.8(a)-10.8(b) demon-

strate WCRT improvement for different SPM size. SPM size is chosen in a way such that suffi-

cient amount of interferences take place among all data items (to accommodate them in shared

SPM space). Above figures clearly demonstrate that we can obtain significant WCRT reduction

by using our SPM allocator. For debie, an upper bound on WCRT improvement or the measured

ratio WC
BC − 1× 100% is 1500% (700%) using 4 PEs (2 PEs). Similarly, for papabench, the up-

per bound on WCRT improvement is 710% (410%) using 4 PEs (2 PEs). WCRT is consistently

improved with bigger SPM size, which is expected as the interferences among data items reduce

with bigger SPM size. Interferences among data items also reduce when more processors are

used. Since debie has much smaller number of tasks compared to papabench, the reduction in

interferences for papabench is much higher compared to debie when more processors are used.

We observe the situation in our result – for debie, WCRT improvement hardly gets affected with

210

more processors, whereas for papabench, WCRT is improved upto 100% when 4 processors are

used instead of 2. Finally, our SPM allocator can improve the WCRT considerably compared to

a bus-unaware allocator — with a maximum improvement being more than 60%.

Sensitivity of WCRT reduction with respect to bus slot length We have also measured the

sensitivity of our allocator with bus slot length. This measurement is shown in Figures 10.8(c)

-10.8(d). Average improvement from our SPM allocator is 52% (46%) for debie (papabench)

when compared with a bus-unaware SPM allocator over a bus slot length range of 40-80 cycles.

Summary of other results To test the robustness of our approach, we have measured its

sensitivity with different remote SPM latencies. Figure 10.8(e) demonstrates this result both for

papabench and debie. In contrast to the bus unaware allocator, WCRT improvement from our

SPM allocator decreases with increased remote SPM latency, as fetching memory blocks from

remote SPM now takes more time. Nevertheless, the rate of decrement is quite low (maximum

5%) and the average improvement over bus unaware allocator remains at 55% over a range of

4-12 cycles remote SPM latency. We have also checked the WCRT improvement by varying

off-chip memory latency. When checked with different off-chip memory latencies over a range

of 10-50 cycles, the percentage reduction in WCRT remains similar (to Fig. 10.8). Finally, we

have also measured the effect of our WCRT oriented optimization on average case response time

(ACRT). Unfortunately, the inputs to debie are not available in public domain, which prevents

us from running simulation and producing ACRT in debie. Therefore, we present the result of

ACRT improvement for papabench (in Figure 10.8(f)). As our SPM allocator aims to optimize

WCRT and the critical path, we observe that reduction in ACRT is not much compared to the

same in WCRT. As evidenced by Figure 10.8(f), ACRT is reduced by 130% on average over a

varying range of scratchpad size.

10.7 Extensions and Future Work

Applications using shared variables Our current implementation does not handle shared

variables among different tasks. More precisely, our allocation framework only considers the

set of variables which are accessed by exactly one task. However, our allocation method can be

modified to deal with shared variables as follows: first, there will be at most one copy of each

shared variable in the SPM space to maintain coherency. Secondly, a shared variable may be

211

accessed by critical as well as non-critical tasks. Therefore, when we compute the metric gainv

(refer to Equation 10.8) for a shared variable v, gainv is set to be the sum of Cv values only

in the critical tasks (i.e., references to shared variable v in all non-critical tasks are ignored).

Thirdly, lifetime of a shared variable must take into account all the tasks (in application) in

which the shared variable might possibly be accessed. In future, we plan to extend our work to

include shared variables.

Other multi-processor architectures Our underlying architecture contains a crossbar to ac-

cess fast on-chip memories. However, some of the architectures [97] use a fast on-chip bus

for accessing a remote SPM. Since the on-chip buses operate on high bandwidth, remote SPM

latency is still bounded by a small constant. Consequently, our SPM allocation framework can

be applied without modification.

ACRT optimization Interference graph in our SPM allocation framework is used for finding

a group of variables having disjoint lifetimes. Therefore, interference graph can also be used

for other kind of optimization which allows SPM space sharing among different variables. Only

driving factor for WCRT oriented optimization is the assigned gainv metric for each variable

v. For ACRT optimization, a trace can be collected using a simulator, which will include the

external memory access profile along the most frequently accessed path π. gainv will represent

the total latency incurred (including the bus delay) to access variable v along π. Only non-trivial

task is to efficiently recompute gainv after an allocation decision. In future, we plan to check

the efficacy and scalability of our allocation framework for ACRT guided optimization.

10.8 Chapter summary

In this Chapter, we have discussed how our analysis framework can be used to achieve execution

time predictability through compiler optimization. Specifically, we have presented a scratchpad

allocation framework for multi-processor system-on-chip (MPSoC) platforms. The prime nov-

elty in our work is to incorporate the bus schedule into the multi-processor scratchpad allocation

scheme. Our allocation framework exploits the shared scratchpad space available in MPSoCs,

and considers variable lifetimes to efficiently utilize the available shared scratchpad space. As

evidenced by our experiments, our scratchpad allocation scheme is able to significantly reduce

the WCRT of real-life embedded applications. Our results are also considerably better when

212

compared with an existing SPM allocation framework. Our allocation method is efficient and

thus the scalability of our framework is evident.

213

 0

 1

 2

 3

 4

 5

 6

 7

5% 10% 15% 20% 25%

Im
p

ro
v
e

m
e

n
t

ra
ti
o

Scratchpad size (relative to total data size)

WCRT improvement of Debie w.r.t different scratchpad size

Impr. with NOBUS (4 PE)
Impr. with MIS (4 PE)

Impr. with NOBUS (2 PE)
Impr. with MIS (2 PE)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

5% 10% 15% 20% 25%

Im
p

ro
v
e

m
e

n
t

ra
ti
o

Scratchpad size (relative to total data size)

WCRT improvement of Papabench w.r.t different scratchpad size

Impr. with NOBUS (4 PE)
Impr. with MIS (4 PE)

Impr. with NOBUS (2 PE)
Impr. with MIS (2 PE)

(a) (b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

40 50 60 70 80

Im
p

ro
v
e

m
e

n
t

ra
ti
o

Bus slot length (in cycles)

WCRT improvement of Debie w.r.t different bus slot length

Impr. with NOBUS (4 PE)
Impr. with MIS (4 PE)

Impr. with NOBUS (2 PE)
Impr. with MIS (2 PE)

 0

 0.5

 1

 1.5

 2

 2.5

40 50 60 70 80

Im
p

ro
v
e

m
e

n
t

ra
ti
o

Bus slot length (in cycles)

WCRT improvement of Papabench w.r.t different bus slot length

Impr. with NOBUS (4 PE)
Impr. with MIS (4 PE)

Impr. with NOBUS (2 PE)
Impr. with MIS (2 PE)

(c) (d)

 0

 0.5

 1

 1.5

 2

4 6 8 10 12

Im
p

ro
v
e

m
e

n
t

ra
ti
o

Remote SPM latency (cycles)

WCRT improvement w.r.t different remote SPM latency

Impr. with NOBUS (Debie)
Impr. with MIS (Debie))

Impr. with NOBUS (Papabench)
Impr. with MIS (Papabench)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

5% 10% 15% 20% 25%

Im
p

ro
v
e

m
e

n
t

ra
ti
o

Scratchpad size (relative to total data size)

ACRT vs WCRT improvement of Papabench w.r.t different scratchpad size

Impr. with SIM(MIS) Impr. with MIS

(e) (f)

Figure 10.8: Experimental evaluation of our allocation framework

214

Chapter 11

Discussion and Future Work

In this chapter, we shall conclude this dissertation by briefly summarizing the contribution and

pointing to a number of possible future directions.

Contribution

In this dissertation, we have primarily focused on the problem of execution time predictability

in multi-core platform. Our contribution in this direction is two-fold: first, we have modeled

and developed an analysis framework for statically predicting the worst case execution time

(WCET) of a program running on multi-core. Our analysis framework takes into account the

modeling of key shared resources in multi-core (e.g. shared cache and shared bus) and it is

also capable of analyzing the complex timing interactions among the shared resources and basic

micro-architectural features. We have performed a detailed evaluation of our analysis frame-

work to show its usefulness for predicting the WCET of a program. We have also shown how

such an analysis framework can be used to find the different sources of WCET overestimation

in multi-core platform. The second primary contribution of this dissertation is to show the ap-

plicability of this analysis framework in a popular compiler optimization. We have shown that

the analysis result can be used to perform scratchpad allocation in customized MPSoCs, which

in turn reduces the timing unpredictability arising due to shared bus traffic.

Future work

Extension of basic multi-core WCET analysis Even though we have provided a basic frame-

work for WCET analysis in multi-cores, it is worthwhile to mention a few important extensions

to this basic framework. One such extension could be the modeling of I/O peripherals. In this

215

dissertation, we have only considered the operations performed by a processor. In the presence

of I/O peripherals, additional interferences might exist, such as in shared caches and in shared

buses. Such interferences are caused by concurrent requests from processors and I/O peripherals

[44]. Therefore, modeling such interferences will be an important contribution towards a more

accurate estimation of WCET. Other important extensions could be the integration of advanced

micro-architectural features, such as branch target buffers (e.g. using [98]), load-store units [99]

into our basic WCET analysis framework. Our current WCET analysis tool for multi-core does

not include the modeling of data caches. In future, we plan to integrate the modeling of data

caches (e.g. using [27]) into our multi-core, WCET analysis framework. Finally, for multi-

threaded programs, synchronization constructs are generally used to protect shared variable

accesses. In this dissertation, we have only modeled the cache coherence misses. However, in

the presence of synchronization constructs, a thread may spend time in acquiring the respective

synchronization locks - leading to additional delay in execution. The delay introduced due to

the synchronization constructs have not been modeled in our framework. Modeling such delay

will also be an important contribution towards the WCET analysis of multi-threaded embedded

software.

Customized hardware for real-time embedded systems With the ever increasing demand of

embedded systems, multi-core processors are quickly being adopted in the embedded computing

world. Our dissertation has looked into the challenges and their possible solutions in moving

towards multi-processing for hard real-time systems. We hope that our work will inspire future

research in adopting multi-processing for hard real-time systems. We believe that the ideas

developed in this dissertation can be used to build customized hardware for running hard real-

time applications. Such a customized hardware should target to design the part of hardware for

time-predictable execution with acceptable loss of performance. The time predictability at the

different stages of the design can be computed by a similar analysis framework proposed in this

dissertation. Whereas, the research community has already looked into building time predictable

hardware [43; 44], previous approaches had mostly ignored the benefit of any WCET analysis

framework targeted towards multi-core and have tried to reuse the WCET analysis in single

core. Therefore, we believe a combined approach of multi-core WCET analysis and designing

time-predictable hardware will lead to a notable contribution towards adopting multi-processing

for hard real-time computing.

216

Energy estimation for real-time computing Whereas in our dissertation we have focused on

performance analysis, there exists another critical aspect related to hard real-time computing

— namely the energy consumption. It is well known that the complexity of a processor has

grown several magnitudes greater than the battery technology has evolved. When today’s mobile

devices are using multi-processing in fast growing pace, it is still of great concern to run any

critical application in such mobile devices. The battery life poses a threat to run such critical

applications, as it is clearly undesirable if the mobile device gets switched off while running a

critical application. Therefore, the prediction of energy consumption is also of prime importance

for such applications. In past years, worst-case energy estimation has been proposed in [100]

for single core processors. The solution proposed in [100] has used the progress in single core

WCET analysis research to estimate energy for real-time applications. Therefore, we hope

that the techniques developed in this dissertation will inspire the future research of adopting

advanced mobile devices for real-time applications.

217

Bibliography

[1] P. Lokuciejewski, H. Falk, and P. Marwedel. WCET-driven cache-based procedure posi-

tioning optimizations. In ECRTS, 2008.

[2] WCET benchmarks. http://www.mrtc.mdh.se/projects/wcet/

benchmarks.html.

[3] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. B. Whalley, G. Bernat,

C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. P. Puschner, J. Staschulat,

and P. Stenström. The worst-case execution-time problem - overview of methods and

survey of tools. ACM Trans. Embedded Comput. Syst., 7(3), 2008.

[4] V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen. Efficient detection and exploita-

tion of infeasible paths for software timing analysis. In DAC, pages 358–363, 2006.

[5] J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper. Automatic derivation of loop

bounds and infeasible paths for wcet analysis using abstract execution. In RTSS, 2006.

[6] C. A. Healy, M. Sjödin, V. Rustagi, D. B. Whalley, and R. v. Engelen. Supporting timing

analysis by automatic bounding of loop iterations. Real-Time Systems, 18(2/3), 2000.

[7] D. Cordes, H. Falk, and P. Marwedel. A fast and precise static loop analysis based on

abstract interpretation, program slicing and polytope models. In CGO, 2009.

[8] Y-T. S. Li, S. Malik, and A. Wolfe. Performance estimation of embedded software with

instruction cache modeling. ACM Trans. Des. Autom. Electron. Syst., 4(3), 1999.

[9] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and precise wcet prediction by separated

cache and path analyses. Real-Time Systems, 18(2/3), 2000.

[10] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static anal-

ysis of programs by construction or approximation of fixpoints. In POPL, 1977.

218

http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

[11] C. Ferdinand and R. Wilhelm. On predicting data cache behavior for real-time systems.

In LCTES, 1998.

[12] D. Hardy and I. Puaut. WCET analysis of multi-level non-inclusive set-associative in-

struction caches. In RTSS, 2008.

[13] M. Langenbach, S. Thesing, and R. Heckmann. Pipeline modeling for timing analysis.

In SAS, 2002.

[14] A. Colin and I. Puaut. Worst case execution time analysis for a processor with branch

prediction. Real-Time Systems, 18(2/3), 2000.

[15] Y. Li et al. Timing analysis of concurrent programs running on shared cache multi-cores.

In RTSS, 2009.

[16] T. Lundqvist and P. Stenström. Timing anomalies in dynamically scheduled micropro-

cessors. In Proceedings of the 20th IEEE Real-Time Systems Symposium, RTSS, 1999.

[17] X. Li, A. Roychoudhury, and T. Mitra. Modeling out-of-order processors for wcet anal-

ysis. Real-Time Systems, 34(3), 2006.

[18] X. Li, T. Mitra, and A. Roychoudhury. Modeling control speculation for timing analysis.

Real-Time Systems, 29(1), 2005.

[19] C. A. Healy, R. D. Arnold, F. Mueller, M. G. Harmon, and D. B. Walley. Bounding

pipeline and instruction cache performance. IEEE Trans. Comput., 48(1), 1999.

[20] F. Stappert, A. Ermedahl, and J. Engblom. Efficient longest executable path search for

programs with complex flows and pipeline effects. In CASES, 2001.

[21] Ilog, Inc. Solver CPLEX, 2003. http://www.ilog.fr/products/cplex/.

[22] L. Ju et al. Performance debugging of Esterel specification. In CODES+ISSS, 2008.

[23] X. Li et al. Chronos: A timing analyzer for embedded software. Science of Computer

Programming, 2007. http://www.comp.nus.edu.sg/˜rpembed/chronos.

[24] aiT AbsInt. http://www.absint.com/ait.

[25] R.T. White, C.A. Healy, D.B. Whalley, F. Mueller, and M.G. Harmon. Timing analysis

for data caches and set-associative caches. In RTAS, 1997.

219

http://www.ilog.fr/products/cplex/
http://www.comp.nus.edu.sg/~rpembed/chronos
http://www.absint.com/ait

[26] R. Sen and Y. N. Srikant. WCET estimation for executables in the presence of data

caches. In EMSOFT, 2007.

[27] B. K. Huynh, L. Ju, and A. Roychoudhury. Scope-aware data cache analysis for WCET

estimation. In RTAS, 2011.

[28] C.G. Lee et al. Analysis of cache-related preemption delay in fixed-priority preemptive

scheduling. IEEE Trans. Comput., 47(6), 1998.

[29] H. S. Negi, T. Mitra, and A. Roychoudhury. Accurate estimation of cache-related pre-

emption delay. In CODES+ISSS, 2003.

[30] H. Tomiyama and N. D. Dutt. Program path analysis to bound cache-related preemption

delay in preemptive real-time systems. In CODES, 2000.

[31] Y. Tan and V.J. Mooney. Integrated intra- and inter-task cache analysis for preemptive

multi-tasking real-time systems. In SCOPES, 2004.

[32] J. Staschulat and R. Ernst. Multiple process execution in cache related preemption delay

analysis. In EMSOFT, 2004.

[33] S. Altmeyer and C. Burguiere. A new notion of useful cache block to improve the bounds

of cache-related preemption delay. In ECRTS, 2009.

[34] S. Altmeyer, C. Maiza, and J. Reineke. Resilience analysis: tightening the CRPD bound

for set-associative caches. In LCTES, 2010.

[35] J. Yan and W. Zhang. WCET analysis for multi-core processors with shared L2 instruc-

tion caches. In RTAS, 2008.

[36] R. Alur and M. Yannakakis. Model checking of message sequence charts. In CONCUR,

1999.

[37] D. Hardy, T. Piquet, and I. Puaut. Using bypass to tighten WCET estimates for multi-core

processors with shared instruction caches. In RTSS, 2009.

[38] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and C. Ferdinand. Mem-

ory hierarchies, pipelines, and buses for future architectures in time-critical embedded

systems. IEEE Trans. on CAD of Integrated Circuits and Systems, 28(7), 2009.

220

[39] A. Andrei, P. Eles, Z. Peng, and J. Rosen. Predictable implementation of real-time appli-

cations on multiprocessor systems-on-chip. In VLSI Design, pages 103–110, 2008.

[40] S. Chattopadhyay, A. Roychoudhury, and T. Mitra. Modeling shared cache and bus in

multi-cores for timing analysis. In SCOPES, 2010.

[41] T. Kelter et al. Bus aware multicore WCET analysis through TDMA offset bounds. In

ECRTS, 2011.

[42] M. Lv et al. Combining abstract interpretation with model checking for timing analysis

of multicore software. In RTSS, 2010.

[43] M. Paolieri et al. Hardware support for wcet analysis of hard real-time multicore systems.

In ISCA, 2009.

[44] R. Pellizzoni et al. A predictable execution model for cots-based embedded systems. In

RTAS, 2011.

[45] I. Puaut. Wcet-centric software-controlled instruction caches for hard real-time systems.

In ECRTS, 2006.

[46] D. B. Kirk. SMART (strategic memory allocation for real-time) cache design. In IEEE

Real-Time Systems Symposium, 1989.

[47] J. E. Sasinowski and J. K. Strosnider. A dynamic programming algorithm for cache/mem-

ory partitioning for real-time systems. IEEE Trans. Computers, 42(8), 1993.

[48] X. Vera, B. Lisper, and J. Xue. Data caches in multitasking hard real-time systems. In

RTSS, 2003.

[49] X. Vera, B. Lisper, and J. Xue. Data cache locking for higher program predictability. In

SIGMETRICS, 2003.

[50] W. Zhao, D. Whalley, C. Healy, and F. Mueller. WCET code positioning. In RTSS, 2004.

[51] S. Chattopadhyay and A. Roychoudhury. Unified cache modeling for wcet analysis and

layout optimizations. In IEEE Real-Time Systems Symposium, 2009.

[52] R. Banakar, S. Steinke, B-S. Lee, M. Balakrishnan, and P. Marwedel. Scratchpad mem-

ory: design alternative for cache on-chip memory in embedded systems. In CODES,

2002.

221

[53] S. Udayakumaran and R. Barua. Compiler-decided dynamic memory allocation for

scratch-pad based embedded systems. In CASES, 2003.

[54] P.R. Panda, N.D. Dutt, and A. Nicolau. On-chip vs. off-chip memory: the data parti-

tioning problem in embedded processor-based systems. ACM Transactions on Design

Automation of Electronic Systems (TODAES), 5(3):682–704, 2000.

[55] P. R. Panda, A. Nicolau, and N. Dutt. Memory Issues in Embedded Systems-on-Chip:

Optimizations and Exploration. 1998.

[56] O. Avissar, R. Barua, and D. Stewart. An optimal memory allocation scheme for scratch-

pad-based embedded systems. ACM Transactions on Embedded Computing Systems,

1(1), 2002.

[57] V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen. WCET centric data allocation to

scratchpad memory. In RTSS, 2005.

[58] J.-F. Deverge and I. Puaut. WCET-directed dynamic scratchpad memory allocation of

data. In ECRTS, 2007.

[59] S. Steinke, L. Wehmeyer, B. Lee, and P. Marwedel. Assigning program and data objects

to scratchpad for energy reduction. In DATE, 2002.

[60] H. Falk and J.C. Kleinsorge. Optimal static WCET-aware scratchpad allocation of pro-

gram code. In DAC, 2009.

[61] M.T. Kandemir, J. Ramanujam, and A.N. Choudhary. Exploiting shared scratch pad

memory space in embedded multiprocessor systems. In DAC, 2002.

[62] V. Suhendra, C. Raghavan, and T. Mitra. Integrated scratchpad memory optimization and

task scheduling for MPSoC architectures. In CASES, 2006.

[63] V. Suhendra, A. Roychoudhury, and T. Mitra. Scratchpad allocation for concurrent em-

bedded software. ACM Trans. Program. Lang. Syst., 32(4), 2010.

[64] M. Gschwind. The cell broadband engine: exploiting multiple levels of parallelism in a

chip multiprocessor. Int. J. Parallel Program., 35(3), 2007.

[65] D. Hardy and I. Puaut. WCET analysis of multi-level non-inclusive set-associative in-

struction caches. In IEEE Real-Time Systems Symposium, 2008.

222

[66] F. Mueller. Timing predictions for multi-level caches. In LCTES, 1997.

[67] B. Lesage, D. Hardy, and I. Puaut. WCET analysis of multi-level set-associative data

caches. In WCET, 2009.

[68] M. Lv et al. Combining abstract interpretation with model checking for timing analysis

of multicore software. In RTSS, 2010.

[69] S. Chattopadhyay and A. Roychoudhury. Scalable and precise refinement of cache timing

analysis via model checking. In RTSS, 2011.

[70] E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. In TACAS,

2004.

[71] E. Clarke et al. Bounded model checking using satisfiability solving. Form. Methods

Syst. Des., 19, 2001.

[72] G. Balakrishnan et al. Model checking x86 executables with codesurfer/x86 and wpds++.

In CAV, 2005.

[73] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated random testing. In

PLDI, 2005.

[74] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and automatic generation of

high-coverage tests for complex systems programs. In OSDI, 2008.

[75] KLEE. The KLEE Symbolic Virtual Machine. http://klee.llvm.org.

[76] LLVM. The LLVM compiler infrastructure. http://llvm.org.

[77] STP. The STP Constraint Solver. http://sites.google.com/site/

stpfastprover.

[78] ARM. ARM Cortex-A9 MPCore processor. http://www.arm.com/pdfs/

ARMCortexA-9Processors.pdf.

[79] G. Varghese et al. Penryn: 45-nm next generation Intel core-2 processor. In IEEE Asian

Solid-State Circuits Conf., 2007.

[80] S. Tam Rusu et al. A 65-nm Dual-Core Multithreaded Xeon processor with 16-MB L3

Cache. IEEE Journal Of Solid State Circuits, (1), 2007.

223

http://klee.llvm.org
http://llvm.org
http://sites.google.com/site/stpfastprover
http://sites.google.com/site/stpfastprover
http://www.arm.com/pdfs/ARMCortexA-9Processors.pdf
http://www.arm.com/pdfs/ARMCortexA-9Processors.pdf

[81] T. Austin, E. Larson, and D. Ernst. Simplescalar: An infrastructure for computer system

modeling. Computer, 35(2), 2002.

[82] European Space Agency. DEBIE – First standard space debris monitoring instru-

ment, 2008. Available at: http://gate.etamax.de/edid/publicaccess/

debie1.php.

[83] Intel. Intel Core-2 Duo Processor. http://www.intel.com/products/

processor/core2duo/index.htm.

[84] J. Reineke, D. Grund, C. Berg, and R. Wilhelm. Timing predictability of cache replace-

ment policies. Real-Time Systems, 37(2), 2007.

[85] D. Grund and J. Reineke. Abstract interpretation of FIFO replacement. In Static Analysis

Symposium, 2009.

[86] D. Grund and J. Reineke. Precise and efficient FIFO-replacement analysis based on static

phase detection. In Euromicro Conference on Real-Time Systems, 2010.

[87] D. Hardy and I. Puaut. WCET analysis of instruction cache hierarchies. Journal of

Systems Architecture - Embedded Systems Design, 57(7), 2011.

[88] C. Berg. PLRU cache domino effects. In International Workshop on Worst-Case Execu-

tion Time (WCET) Analysis, 2006.

[89] D. Grund and J. Reineke. Toward precise PLRU cache analysis. In International Work-

shop on Worst-Case Execution Time (WCET) Analysis, 2010.

[90] M. M. Zahran, K. Albayraktaroglu, and M. Franklin. Non-inclusion property in multi-

level caches revisited. I. J. Comput. Appl., 14(2), 2007.

[91] Chronos for multi-cores: a WCET analysis tool for multi-cores. http://www.comp.

nus.edu.sg/˜rpembed/chronos-multi-core.html.

[92] S. Chattopadhyay et al. A unified WCET analysis framework for multi-core platforms.

In RTAS, 2012.

[93] F. Nemer, H. Cassé, P. Sainrat, J.P. Bahsoun, and M. De Michiel. Papabench: a free

real-time benchmark. In WCET Workshop, 2006.

224

http://gate.etamax.de/edid/publicaccess/debie1.php
http://gate.etamax.de/edid/publicaccess/debie1.php
http://www.intel.com/products/processor/core2duo/index.htm
http://www.intel.com/products/processor/core2duo/index.htm
http://www.comp.nus.edu.sg/~rpembed/chronos-multi-core.html
http://www.comp.nus.edu.sg/~rpembed/chronos-multi-core.html

[94] P. Stenström. A survey of cache coherence schemes for multiprocessors. Computer,

23(6), 1990.

[95] D. J. A. Welsh and M. B. Powell. An upper bound for the chromatic number of a graph

and its application to timetabling problems. The Computer Journal, 10(1), 1967.

[96] F. Nemer, H. Cassé, P. Sainrat, J.P. Bahsoun, and M. De Michiel. Papabench: a free

real-time benchmark. In WCET Workshop, 2006.

[97] M. Gschwind. The Cell broadband engine: exploiting multiple levels of parallelism in a

chip multiprocessor. Int. J. Parallel Program., 35(3), 2007.

[98] D. Grund, J. Reineke, and G. Gebhard. Branch target buffers: WCET analysis framework

and timing predictability. Journal of Systems Architecture, 57(6), 2011.

[99] M. A. Maksoud and J. Reineke. An empirical evaluation of the influence of the load-store

unit on WCET analysis. In WCET, 2012.

[100] R. Jayaseelan, T. Mitra, and X. Li. Estimating the worst-case energy consumption of

embedded software. In IEEE Real Time Technology and Applications Symposium, 2006.

225

	Declaration
	Acknowledgements
	Contents
	Abstract
	Related Publications
	List of Tables
	List of Figures
	Introduction
	Real-time embedded systems
	Analysis of hard real-time systems
	Can we use software testing to find WCET?

	Motivation and thesis overview
	Organization of the chapters

	WCET Analysis Background
	Static WCET analysis
	Example
	Chapter summary

	Literature Review
	Cache analysis of a single task
	Inter-task cache conflict analysis
	Shared cache analysis
	Shared bus modeling
	Time predictable micro-architecture and execution model
	Memory optimization for execution time predictability
	Cache locking and cache partitioning
	Changing layout of memory blocks
	Scratchpad memory
	Scratchpad allocation techniques

	Unified Cache Modeling for WCET Analysis and Layout Optimizations
	Technical Contributions
	Assumptions
	Overview of our cache analysis
	Details of Cache Analysis
	Analysis results
	WCET-centric code and data layout
	Chapter Summary

	Modeling Shared Cache for Timing Analysis
	Introduction
	A background on existing cache analysis
	Our proposed analysis framework
	General framework
	A general code transformation framework
	Refinement of inter-core cache conflicts
	An extension to a generic cache analysis framework
	Optimizations

	Implementation and evaluation using CBMC
	Implementation
	Experimental setup
	Evaluation

	Cache conflict refinement through symbolic execution
	KLEE symbolic execution engine
	Cache conflict refinement

	Implementation and evaluation using KLEE
	Implementation
	Evaluation
	Discussion

	Chapter summary

	Modeling Shared Cache and Bus for Timing Analysis
	System and Architectural Model
	Overview
	Bus aware WCET analysis
	WCRT Estimation

	Experimental evaluation
	Extensions
	Chapter summary

	A Unified WCET Analysis Framework for Multi-core Platforms
	Introduction
	Background
	Overview of our analysis
	Interaction of shared resources with pipeline
	Interaction of shared cache with pipeline
	Interaction of shared bus with pipeline

	WCET computation under multiple bus contexts
	Execution context of a basic block
	Bounding the execution count of a bus context

	Effect of branch prediction
	Effect on cache for speculative execution
	Effect on bus for speculative execution
	Computing the number of mispredicted branches

	WCET computation of an entire program
	Soundness and termination of analysis
	Overall idea about soundness
	Detailed proofs

	Experimental evaluation
	Extension of shared cache analysis
	Review of cache analysis for FIFO replacement
	Analysis of shared cache with FIFO replacement
	Interaction of FIFO cache with pipeline and branch predictor
	Experimental result
	Other cache organizations

	Chapter summary

	Cache Related Preemption Delay Analysis for Shared Cache
	Introduction
	Overview of our analysis
	CRPD Analysis
	Flow Analysis
	Preemption delay computation
	Handling shared caches in multi-cores

	Soundness of analysis
	Detailed proofs

	Extension
	Experimental evaluation
	Chapter summary

	Modeling Cache Coherence for WCET Analysis
	Introduction
	Overview
	Analysis
	Parallel programming model
	A review of scope based data cache analysis
	Foundation
	Cache coherence modeling for write-through caches
	Cache coherence modeling for write-back caches
	Cache coherence modeling in the presence of synchronization constructs

	Example
	Chapter summary

	Static Bus Schedule aware Scratchpad Allocation in Multiprocessors
	Introduction
	System and application model
	Overview of our SPM allocation framework
	Bus aware WCRT analysis
	Bus-delay aware Scratchpad allocation
	Experimental evaluation
	Extensions and Future Work
	Chapter summary

	Discussion and Future Work

