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Abstract

Reactive systems, such as communication protocols, that continuously interact
with execution environments, form the foundation of critical software infrastructure.
Any bugs or vulnerabilities within these systems may lead to severe consequences.
Reactive systems, therefore, must be continuously and automatically secured against
vulnerabilities. Unlike transformational systems such as compilers and parsers,
which have been the subject of extensive research, suitable techniques for automated
testing of reactive systems are still severely lacking. Developers of reactive systems
traditionally rely on model checking for validation. Although model checking is a
verification technique, it is primarily used for bug finding in practice. While effective,
its scalability and usability problems limit its widespread adoption.

In this thesis, we develop automated testing techniques that are effective, scalable,
and usable for finding bugs in reactive systems. Greybox fuzzing, known for its low
barrier to entry, is a promising technique in this regard. Unfortunately, greybox
fuzzing is traditionally designed to test transformational systems automatically and
is less effective for reactive systems. Reactive systems are difficult to test due to
their inherent statefulness, where sending the same input messages twice might yield
a different response every time. This thesis is built to address this core challenge.
To achieve this, we develop a new technical method that synergizes the concepts of
model checking with advances in greybox fuzzing. Our technical method seeks to
achieve bug-finding capabilities close to model checking while still maintaining the
usability and scalability of greybox fuzzing.

We have used this method to address the statefulness problem in different contexts.
Specifically, we advance greybox fuzzing to detect violations of stateful properties,
those expressed in Linear-time Temporal Logic (LTL), going far beyond simple
oracles such as crashes and memory safety errors. Furthermore, we leverage the
capability of Large Language Models (LLMs) to address the long-standing challenge
of state identification in single-node systems, especially protocol implementations. To
address distributed systems with distributed states, we introduce a greybox-fuzzing
technique, where we leverage Lamport timelines to visualize the states of distributed
systems and build a reactive fuzzer to adaptively inject inputs based on observed

states. To capture states in complex environments, we develop an automated

vii



method using greybox fuzzing to generate the effect of different environmental states,
providing a practical alternative to traditional environment modeling.

The body of work represents a practical advance in automated validation of
reactive systems and a conceptual advance in greybox fuzzing. To date, our released
open-sourced tools have discovered over 100 vulnerabilities in widely-used reactive
systems, more than 50 of which are security-critical vulnerabilities registered as
CVEs at the US National Vulnerability Database. These make a step forward
toward building more secure and reliable reactive systems. Beyond the reactive
systems investigated in this thesis, an increasing number of stateful reactive systems
are emerging. Moving forward, we would like to see a much broader type of
stateful reactive systems being checked routinely using effective, scalable, and usable

techniques.

viil



List of Figures

2.1

3.1
3.2

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

High-level abstractions of transformational systems (a) and reactive

systems (b). . . ...

Biichi automata accepting traces satisfying "¢. . . . . .. ... ... ..

The architecture of LTL-FuzzER. . . . . . . . . . . .. . ... ....

Structure of RTSP client requests in (a), and a PLAY client request from
Lived55in (b). . . . . ..o
The state machine for the RT'SP protocol from RFC 2326. . . . . . ..
Grammar for the RTSP PLAY client request. . . . . . . . .. ... ..
Types of client requests in the answer set and the corresponding occur-
rence times for each type. . . . . .. ..o
The next types of client requests generated by the LLM in each state.
The types in gray induce state transitions, the ones in orange appear in
the suitable state but do not trigger state transitions, and the ones in
blue appear in the inappropriate states. Each segment represents one
distinct message type. . . . . ...
Example of the model prompt and the responding response for extracting
the RTSP grammar. . . . . . .. .. ... ... ... ... .......
Workflow of the grammar-based mutation using the PLAY request of the
RTSP protocol as the example. . . . . . ... .. ... ... ... ...
Example of the model prompt and the responding response for enriching
initial seed corpus (we omit the details of messages). . . . . ... ...
The prompt template for obtaining the next client request that can induce

the server’s state transition to other states. . . . . . . . . . . . ... ..

ix

23
32

47
48
50

52

o4

58

60

63



5.1

5.2

5.3

6.1

6.2
6.3

6.4

6.5

A timeline of the Dqlite membership rollback bug. Gray vertical rectan-
gles correspond to node downtimes. . . . . . .. ... L
The central observe-orient-decide-act loop in MALLORY. A centralised
mediator collects events from observers distributed at the nodes in the
SUT, and drives the test execution. Faults decided by MALLORY are
enacted by JEPSEN. . . . . ... Lo
The trends in the average number of distinct states within 24 hours across

10 runs. . ...

(a) is a calculator application with the full environment, including regular
file I/O, standard streams, and socket/event fds to various system services.
(b) is a simplified environment with a single input/output (windowing
system socket), where all other interactions are not captured. . . . . . .
Overview of the program environment fuzzer EFvuzz. . . . . . . . . ..
Mlustration of the underlying fuzzing algorithm. Here, the example pro-
gram reads from file descriptor 0, then interacts with socket (file descriptor
3). The fuzzer faithfully replays a previously recorded interaction @, as
well as several mutant interactions D/®@/®/@/®/®. Each mutant in-
teraction is generated by mutating at least one input system call from the
faithful replay. This causes the program’s behavior to diverge, including
exit with error @/@®), system call reordering @/©®, new 1/0 system call
@, and a crash ®. The program state {INIT,READY, DISPLAY, CLOSING}
between select system calls is also illustrated. . . . . .. ... ... ..
Hlustration of the global ordering (o) for faithful replay and a local
ordering (@) for relaxed replay. The relaxed replay partitions ¢ into a
set of miniqueues (Q[fd]) indexed by the file descriptor, each of which
defines a local ordering specific toeach fd. . . . . .. ... .. ... ..
Code covered over time by AFLNET, NYX-NET and £FUZZ across 10

runs of 24 hours on PROFUZZBENCH subjects. . . . . . . . .. .. ...

84

88

101

113
116

119

125



List of Tables

3.1

3.2

3.3

3.4
3.5

4.1

4.2

4.3

4.4

4.5

4.6

4.7

5.1
5.2

5.3

“wo»n

Mapping between atomic propositions and program locations (“..” indi-
cates omitted loop entries). . . . . ...
Detailed information about our subject programs. . . . . . . . .. . ..
Statistics of violations found on the LTL-property set. . . . .. .. ..
Performance of four tools in finding the violations of LTL properties.

Zero-day Bugs found by LTL-FuUzzER; for several of them CVEs have

been assigned but CVE ids are not shown. . . . . . . .. .. ... ...

Processed results of client requests after being sent to the server.. . . .
Detailed information about our subject programs. . . . . . . . .. . ..
Average number of state transitions for our CHATAFL and the baselines
AFLNET and NSFUzz in 10 runs of 24 hours. . . . . . . . . ... ...
Average number of states and the improvement of CHATAFL compared
with AFLNET and NSFuzz. . . ... ... ... ... ... .....
Average number of branches covered by our CHATAFL and the baselines
AFLNET and NSFUzz in 10 runs of 24 hours. . . . . . . . ... .. ..
Improvements in terms of branch coverage compared with baseline if we
enable each strategy one by one. . . . . . ... ... oL
Statistics of nine zero-day vulnerabilities discovered by CHATAFL in

widely-used and extensively-tested protocol subjects. . . . . .. .. ..

Detailed information about our subject programs. . . . . . .. .. ...
Statistics of distinct state numbers achieved by MALLORY compared to
that achieved by JEPSEN. . . . . . . ...
Statistics of reproduced known bugs and the performance of both MAL-

LORY and JEPSEN in exposing these bugs. . . . . .. .. .. ... ...

X1

20
33
34
35

42

93
67

67

67

70

70

73

98

102



5.4

6.1
6.2

6.3

6.4

6.5

6.6

6.7

Statistics of the zero-day bugs discovered by MALLORY in rigorously
tested systems; a total of 22 previously unknown bugs, 18 bugs confirmed

by their developers, and 10 software vulnerabilities. . . . . . . . ...

Subject programs used in the evaluation. . . . . . . .. .. ... ...
Statistics of bugs discovered by EFuUzz; a total of 33 previously unknown
bugs found, 24 bugs confirmed by developers, 16 bugs assigned CVE IDs,
and 16 bugs fixed. (Note that, each color represents a distinct category
of applications) . . . . . . . ...
Number of unique bugs found by AFLNET, NYX-NET and £FUZZ on
subjects of network protocols. . . . . ... ..o
Average branch coverage across 10 runs of 24 hours achieved by EFuUzz
compared to AFLNET and Nyx-NET. . .. ... ... ... .. ...
Fuzzing throughput (execs/s) in 10 runs of 24 hours achieved by EFuzz
compared to AFLNET and Nyx-NET. . .. ... ... ... .. ...
Improvement of code coverage achieved by £FUZZ in comparison to
ablation tools EF1 and EF2. The results show that the impact of
behavior divergence handling and fuzzing feedback is significant. . . . .
Statistical analysis of relaxed replay proposed by £FuUzz, including the
frequency of the executions resorting to relaxed replay (#Freq.), the total
number of system calls executed in each tree branch (#TotalSysCs), the
number of system calls resorting to relaxed replay in each tree branch
(#RelaxSysCs), and the point at which a tree branch starts to resort to
relaxed replay (#StartPoint). . . . . . . .. ... oL

Xii

105

130

132

135

135

137

139



CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Reactive systems represent a fundamental category of software systems, distinct
from transformational systems in both behavior and purpose. Broadly speaking,
software systems can be categorized as transformational or reactive [67]. At an
abstract level, transformational systems can be viewed as mapping functions that
take inputs, apply predefined transformations to them, and produce corresponding
outputs. Typical examples of transformational systems include compilers and parsers.
In contrast, many software applications in our daily lives cannot be characterized as
simple, one-shot transformations. Instead, they continuously interact with complex
execution environments: receiving input messages from environments, updating
their internal states, and sending back responses. These systems are inherently
non-terminating. Such systems are known as reactive systems.

Reactive systems are ubiquitous in the interconnected world today, where in-
teraction and communication among software components are paramount. Servers,
distributed systems, control systems, and autonomous systems (e.g., self-driving
cars) are all instances of reactive systems. In addition, reactive systems form the
backbone of critical infrastructure. For example, communication protocols such
as OpenSSL are the most exposed components of every software system that is
directly or indirectly connected to the Internet. A single bug in such a system can
have catastrophic consequences. The infamous Heartbleed vulnerability [120] in
OpenSSL, for example, led to severe data leakage and huge financial loss. Therefore,
it is important to find bugs early before they lead to any consequences.

However, finding bugs in reactive systems is difficult. For software systems, one
of the most practical and widely-used methods is automated testing, but automated

testing of reactive systems presents significant challenges. The key challenge stems
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from the inherent statefulness of reactive systems: sending the same message twice
might yield a different response every time, depending on their states. Any effective
testing techniques for reactive systems must, therefore, validate whether each state
behaves as expected. Yet identifying states in real-world system implementations is
hard. Due to large codebases and complex program behaviors, it is not trivial to
determine which variables carry states.

Fuzz testing (i.e., fuzzing) has emerged as one of the most promising automated
testing techniques [20], which continuously generates inputs and reports those that
crash the program. Greybox fuzzing has gained significant attention from both
industry and academia due to its scalability and low barrier to entry. Greybox
fuzzing leverages lightweight code-coverage feedback (e.g., branch coverage [167, 57])
from the program to select interesting inputs, thereby steering the search. This
technique is particularly effective for testing stateless transformational systems,
where the same input almost produces the same output. However, for stateful
reactive systems, code-coverage feedback becomes less effective for input selection,
as even the same input may lead to different outputs depending on the internal
states of the systems.

Traditionally, stateful reactive systems are validated using model checking [60,
162]. Although model checking is a verification technique, its common usage in
practice is for bug finding. In model checking, reactive systems are modeled as
finite-state machines and then checked against the desired properties, where the
states are explicitly identified. This approach is effective in checking stateful reactive
systems, especially safety-critical software systems. Unfortunately, while using it to
check today’s software applications, it suffers from the well-known state-explosion
problem. In addition, modeling is not trivial, which usually requires much manual
effort and expertise. As noted in the prior works [33, 19], building a model often
takes multiple person-years and also demands years of PhD-level expertise. Such
requirements are rarely feasible in the current testing environment.

In this thesis, we develop automated testing techniques that are effective, scalable,
and usable for stateful reactive systems. To this end, at the technical layer, we
synergize the concepts of model checking with recent advances in greybox fuzzing
and bring statefulness to the greybox fuzzing world. Our goal is to approach the

bug-finding capabilities of model checking without providing formal verification
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guarantees, while still maintaining the scalability and usability of greybox fuzzing.
Along this line, we have addressed the statefulness problem of reactive systems
in various dimensions: in temporal logic properties [105], in single-node systems
(especially network protocols) [107], in distributed systems [109], and also in complex
execution environments [106]. We also reflect on the stateful fuzzing of reactive

systems and discuss open problems in this regard [108].

Research Overview. In the following, we give an overview of our approaches.

« How can we find violations of stateful properties in practice? Reactive
systems are often expected to satisfy complex security and reliability properties
that span sequences of states. For example, in the FTP protocol, a user is
allowed to copy files into their directory only after successfully logging in.
Violations of such stateful properties can lead to severe security issues, such
as authorization bypasses. Finding such violations traditionally relies on
verification techniques like model checking, which is usually considered beyond
the reach of testing techniques. To address this problem, we transport the
concept of model checking into greybox fuzzing without increasing the barrier
to entry. We introduce LTL-FuzzgeRr [105], which uses greybox fuzzing to
find violations of linear-time temporal logic (LTL) properties. Unlike model
checking, which requires constructing a model of the system, LTL-FUZZER uses
greybox fuzzing to directly conduct the search on the system implementations
for finding violating traces, thereby eliminating the need for manual modeling.
We evaluated LTL-FUZZER on the real-world implementations of network
protocols. Among 50 properties extracted from network Request for Comments
(RFCs), LTL-FuzzgR found 15 previously unknown violations for both liveness

and safety properties.

« How can we effectively explore the state space of stateful network
protocols? Protocol implementations are essential components of internet-
facing servers, enabling communication between servers and clients, and also
forming a critical attack surface. However, their inherently stateful and reactive
nature makes them difficult to test. Finding a vulnerability in a specific state

requires sending the right input messages in the right order. Without knowledge
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of the message formats and state machines, it is difficult for a testing tool
to explore the state space. While such information for widely-used protocols
is publicly available in documents (e.g., RFCs), these documents are often
hundreds of pages long and written in natural language, making them difficult
for automated tools to interpret and utilize. The recent advances in large
language models (LLMs) have demonstrated the ability to answer specific
questions about diverse documents. This opens up the opportunity to develop
a protocol fuzzer that interacts with LLMs to retrieve relevant information from
RFCs. Based on this, we developed CHATAFL, an LLM-guided protocol fuzzer
that uses the LLM to bring the state-exploration capability of model checking
into greybox fuzzing. When applied to widely-used protocol implementations,
CHATAFL improves state exploration by six times faster and covers about
30% of states compared to state-of-the-art approaches. CHATAFL is also
among the first to demonstrate the utility of LLMs in addressing security

challenges.

How can we effectively explore the state space of stateful distributed
systems? Beyond single-node systems, stateful reactive systems can also
operate in distributed settings, such as distributed databases. It is more
challenging to test stateful distributed systems. Distributed systems are usually
large-scale with multiple nodes, follow complex communication protocols such
as Raft and Paxos, and exhibit more complex program behaviors—each node
has its own state, while the nodes also communicate with each other. How
could we effectively explore the state space in distributed systems? We
develop MALLORY, a lightweight way to test distributed systems. At its
core, MALLORY employs Lamport diagrams to visualize states of distributed
systems, which form the state feedback function to guide the fuzzing search.
Moreover, MALLORY itself is a reactive system, dynamically deciding inputs
to inject based on observed states to maximize state exploration. MALLORY
provides a third solution to validating distributed systems alongside software
model checking and stress testing, and takes a trade-off between usability
and effectiveness. In widely-used and rigorously-tested distributed systems

(e.g., MongoDB and ScyllaDB), it achieved 54.27% more states than the
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state-of-the-art technique.

« How can we capture different environmental states in practice? States
also exist in complex program execution environments. Reactive systems are
not executed in isolation but rather interact with complex execution envi-
ronments that drive program behaviors. To comprehensively explore diverse
program states, it is critical to account for the influence of execution envi-
ronments. However, capturing environmental states presents a significant
challenge for any testing, analysis, and verification techniques. Environment
modeling is the dominant approach in this regard; however, it requires signifi-
cant effort and expertise from developers. We provided an alternative solution
to environmental modeling, reducing the reliance on manual intervention. We
developed £FuUzz, which advances the search of greybox fuzzing over the full
execution environment and applies selective mutations to produce the effect of
different environments. All these are done automatically without resorting to
modeling and manual effort. In our evaluation, EFuzz could explore over 30%
more program behaviors than existing techniques, and it quickly discovered
a bunch of environment-inducing vulnerabilities in commonly used programs

and libraries.

Contributions. We summarize the contributions of this thesis in the following

three key perspectives.

o From a problem perspective, to the best of our knowledge, we provide the
first effective, scalable, and usable method to the long-standing problem:
automated validation of stateful reactive systems. We identify statefulness
as the core difficulty and then develop a technical method that synergizes
model checking and greybox fuzzing to address it. This technical method
has demonstrated effectiveness across a range of stateful contexts, including
temporal properties, system implementations, and execution environments.
Our reflection on AFLNET, as a representative practical approach for reactive
systems, further shows the impact of a practical way to validate reactive

systems in industry, academia, and even education.
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o From a practical perspective, we have open-sourced all developed tools to
foster further research and adoption. To date, these tools have found over
200 bugs in widely-used stateful reactive systems, with more than 50 of which
are security-critical vulnerabilities registered as CVEs at the US National
Vulnerability Database, making a step forward toward more secure and reliable
reactive systems. The practical utility of these tools has garnered substantial

interest from industries that seek to integrate them into their daily workflows.

o From the technical perspective, we extend the scope of traditional greybox
fuzzing, which has largely focused on stateless transformational systems, into
the domain of stateful reactive systems. Furthermore, we transport the
key capabilities of model checking, such as property violation detection and
systematic state exploration, into a more scalable and usable greybox fuzzing
framework. In this way, we can enjoy the practical benefits of model checking,

although there are no formal verification guarantees.

Thesis Organization. The remainder of this thesis is organized as follows. Chapter
2 provides the background on reactive systems and commonly used bug-finding
techniques. Chapter 3 introduces LTL-FUZZER, a testing method designed to find
violations of stateful properties. In Chapter 4, we detail our approach CHATAFL for
automatically identifying states in network protocols. Chapter 5 presents a greybox
fuzzing technique MALLORY for exploring the state space in distributed systems.
Chapter 6 explores an alternative to environment modeling—&E¥FUZzZ, demonstrating
how greybox fuzzing can capture the effects of different environmental states. Chapter
7 reviews related work, and Chapter 8 concludes the thesis with a summary of these
techniques, reflections on the impact of practical validation approaches for reactive

systems, and discussions of future research directions.
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Chapter 2

Background

In this chapter, we introduce the background on reactive systems and related

bug-finding techniques.

2.1 Reactive Systems

The term reactive systems was first introduced by David Harel and Amir Pnueli
in the 1980s [67] to describe a class of systems fundamentally different from trans-
formational systems. At a high level of abstraction, transformational systems (as
shown in Figure 2.1 (a)) can be understood as computational entities that process a
set of inputs, apply predefined transformations to them, and produce the correspond-
ing outputs. Transformational systems are usually static and self-contained, with
operations concluded once the input-output transformation is complete. Typical
examples of transformational systems include compilers, which transform source
code into executable machine code, and parsers, which analyze structured input
formats like XML files to generate syntactic or semantic analysis results.

In contrast, reactive systems are characterized by their continuous and dynamic

L
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(a) Transformational System (b) Reactive System

Figure 2.1: High-level abstractions of transformational systems (a) and reactive
systems (b).
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interactions with their environment (as shown in Figure 2.1 (b)). Instead of perform-
ing a single, finite transformation, they continuously respond to external stimuli or
events by transitioning between states and producing outputs that, in turn, influence
their surroundings. Reactive systems maintain ongoing, real-time interactions with
their environment. By design, reactive systems are non-terminating. Given this
definition, we can see that reactive systems are pervasive in our daily lives, from the
smartphone in our pockets to large-scale could applications.

Reactive systems are typically implemented as stateful, to achieve continuous and
dynamic interactions with environments. Reactive systems maintain internal states
to record past communication history and system configurations. In practice, the
state can be carried through program variables or other structures, depending on the
specific system implementation. When a reactive system receives new environmental
input, it generates a response based on its internal state. As a result, in different
states, even the same input executed twice might yield a different response each time.
This is known as the statefulness problem of reactive systems. For example, in the
Real-Time Streaming Protocol (RTSP) illustrated in Figure 4.2, a Play command
successfully initiates media playback only if the system is in the READY state;
otherwise, the operation would fail.

This statefulness problem presents a unique challenge when testing reactive
systems. Specifically, the reliability of reactive systems depends not only on a
single state, but on a sequence of states that evolve over time—often described
using temporal-logic properties. Validating state-dependent properties is inherently
difficult for traditional testing techniques. We address this challenge in Chapter 3.
Furthermore, effective testing of reactive systems requires validation that each state
behaves as expected, making state identification critical but also challenging. In
certain domains, such as communication protocols, states are explicitly defined within
formal or semi-formal specifications like state machines (as shown in Chapter 4).
However, in distributed systems, state identification becomes significantly more
complex due to the immense complexity of states and the fact that states are located
across multiple components (as shown in Chapter 5). In addition, the internal
states of reactive systems are tightly coupled with the states of their execution
environment, including configuration files, databases, user interactions, and other

environmental resources. Capturing such vast and complex execution environments
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poses yet another significant challenge, which is addressed in Chapter 6.

2.2 Formal Verification

Finding bugs in software systems, including reactive systems, is a long-standing
problem in both industry and academia. The approaches to tackling this problem
have been forked into two pathways: formal verification and software testing. Formal
verification systematically explores all program paths to prove that a program
satisfies a given specification, whereas software testing searches specific execution
paths determined by test inputs. In this section, we introduce and discuss the
principles and techniques of formal verification.

Formal verification [103] aims to prove or disprove the correctness of a system
with respect to a given formal specification or property. Among the various formal
verification techniques, model checking [39] is one of the most widely studied and
applied. Model checking verifies whether a finite-state model of a system satisfies
a specified property. Although model checking is fundamentally a verification
technique, it is extensively used in practice for bug finding, which is widely adopted
by the developers of reactive systems. Formally, model checking can be expressed
as follows: M |= ¢, where M is a finite-state model for the system, and ¢ is the
desired property. This process involves a systematic and exhaustive exploration of

the model M to find violations of the property ¢, which are also bugs in the system.

2.2.1 System Modeling

Model checking requires constructing a model of the system implementation,
typically represented as a finite-state machine, to enable systematic and exhaustive
exploration. However, reactive systems are naturally non-terminating and have an
enormous number of states, which exacerbates the state explosion problem. For such
infinite models, counterexample-guided abstraction refinement (CEGAR) [36, 37] is
introduced to address it. CEGAR addresses this problem in two stages: abstraction,
which simplifies a model by grouping states into a finite representation, and refine-
ment, which increases the precision of the abstraction whenever a counterexample is
found to check whether the counterexample is spurious.

In addition, reactive systems are not executed in isolation, but rather interact with
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a complex execution environment such as libraries, kernel, and drivers, which drives
the program behaviors. A dominant approach for handling different environments
is environment modeling, which is used by verification and analysis methods. To
verify an open software system that interacts with the environment, model-checking
methods typically describe the environment as a separate process. This process
captures an over-approximation of possible behaviors that could be exhibited by
real, concrete environments. The environment process is then composed of the
open software system, forming a closed system which can then be subjected to
search. Environment synthesis for model checking has been studied in works such
as [147]. These approaches depend on user-provided specifications to implement a
safe approximation of the environment, and do not use concrete environments to
demonstrate program errors.

Despite its theoretical rigor, building these system models often requires much
manual effort and expertise. Prior studies have reported that writing abstract models
can take multiple person-years of effort [33]. In addition, it requires years of PhD-
level expertise [19]. In some cases, the specification is even larger than the code being
verified. This usability barrier severely limits the use of model checking in practice,

although model checking can provide the highest level of security guarantees.

2.2.2 Temporal Logic Properties

The properties to be verified are often described in temporal logics, such as
linear-time temporal logics (LTL) [76, 53], which we adopt in this thesis to formalize
the properties of systems. LTL provides a formal specification mechanism to
quantitatively describe the desired behaviors of a system over time. It is a modal
temporal logic in which modalities express how properties hold across sequences of

states along a linear progression of time.

LTL Syntax. The set of LTL formulas is defined as follows, where AP is a set of

atomic propositions and p € AP:
Yop u=true | false [p | [PVl Ane | X | Fy |Gy Up | YRe

Here, 1 and ¢ represent formulas built from atomic propositions. The temporal
operator X1 (next) asserts that ¢) holds in the next state. The operator F (finally)
means that ¢ holds at some point in the future, while Gt (globally) requires that

10
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¥ holds in all future states. The formula ©»U¢p (until) means that 1) must hold
continuously until ¢ eventually holds. In contrast, 1) Ry (release) states that ¢ must
hold until (and including the point at which) ¢» becomes true; if 1) never becomes
true, ¢ must hold indefinitely. Common formula transformations are as follows:

Y—=pi=9P Vo

Fy :=true U ¢

G = —~F—

YRy = ~(—pU—v)
LTL Semantics. LTL formulas are interpreted over infinite sequences of sets of

atomic propositions, known as traces. A trace m = pg, p1, p2, P3, ..., where p; € AP is

a mapping 7 : N — 247 We denote by 7* the suffix of 7 starting from the position

i, i, ™ = Pi, Pit1, Digas -
For a trace m = pg, p1,p2,ps3, ... and i € N, the satisfaction relation for LTL

formulas is defined inductively over the formula structure:

e TEpifpep

« TE Wif

TEYVeifTE YormEe

TE Xy if Y

7 YUp if thereis i > 0 such that ©'f ¢ and 7 =1 for all 0 < k < i

A trace 7 satisfies an LTL formula ¢ if 7 | ¢.

Safety and Liveness Properties. LTL formulas can express two key classes of
properties: safety and liveness. Safety properties assert that “something bad never
happens”. Intuitively, a safety property is violated by a finite prefix of a trace.
Formally, a property ¢ is a safety property if every violation of ¢ has a finite bad
prefix—i.e., a finite trace that cannot be extended to any trace satisfying ¢. Liveness
properties, in contrast, assert that “something good eventually happens”. They
cannot be violated by any finite prefix, meaning that any finite trace can potentially
be extended to satisfy the property.

More formally, every LTL formula can be decomposed into a conjunction of

safety and liveness components. A commonly used syntactic characterization is that:

11
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o A formula ¢ = Gp is a safety property if p is a formula referring only to the

current and past states (i.e., a pure past formula).

A liveness property can often be expressed in the form F(p; A f;) for Vt € T
where T is a finite index set, the formula p; is a pure past formula, and f; is a

satisfiable pure future formula.

2.2.3 Automata-Theoretic Model Checking

The automata-theoretic approach provides a uniform algorithm framework for
model checking linear-time properties [149]. It is widely adopted in existing model
checkers such as SPIN [72] and SMV [35]. In this approach, when checking a system
against an LTL formula ¢, the standard method is to translate the negation of ¢ into
Biichi automata A-,. Any trace accepted by A-, represents a counterexample that
violates the original LTL property ¢. Given a system model M, the LTL property ¢
is satisfied by M (denoted M |= ¢), if and only every trace m of M satisfies ¢(7 = ¢).
In practice, to verify whether M satisfies ¢, we check the emptiness of the language
of the product automata M x A-4. If the language is non-empty, it indicates that
M violates the LTL property ¢. In the subsequent step, the system model is further

refined to determine whether the violation is real or spurious.

2.3 Software Testing

Software testing is a practical and cost-effective approach to finding bugs by
executing programs with various inputs. Among modern testing techniques, fuzzing
[20] is one of the most effective techniques to automatically find vulnerabilities
in large-scale software systems. It works by continuously generating inputs and
reporting those that trigger crashes. Broadly, fuzzing techniques can be classified

into three categories: blackbox fuzzing, greybox fuzzing, and whitebox fuzzing.

2.3.1 Blackbox Fuzzing

Blackbox fuzzing generates new inputs without leveraging any internal knowledge
of the program under test. Basically, it includes two variants: mutation-based and

generation-based fuzzing. Mutation-based fuzzing starts with a set of initial inputs,

12
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known as seeds, and applies random mutation operators to generate new inputs.
This process is repeated iteratively until a specified timeout is reached.

Generation-based fuzzing is more commonly used for testing reactive systems
than mutation-based fuzzing. Several generation-based fuzzers have been developed
in both academic and industrial settings, including BooFuzz [81] in academia and
tools like Peach [52] for network protocols and JEPSEN [88] for distributed systems in
industry. These fuzzers generate message sequences by traversing a predefined state
model, often represented as a finite state machine or a graph. For each message, they
leverage data models or grammars to construct syntactically valid inputs, which are
then used to stress-test the system under test.

The effectiveness of generation-based fuzzers largely depends on the completeness
and accuracy of the provided state and data models. These models are normally
written manually, based on the developers’ understanding of the protocol specification
and sample network traces between the client and the server. However, such manually
crafted models may fail to accurately reflect the actual system implementation.
Protocol specifications are often hundreds of pages long and written in natural
languages. Developers of implementations may misinterpret the specifications, such

as adding new states and transitions.

Algorithm 1: Greybox Fuzzing

Input: Seed Input S, Program F,

Output: Crashing Inputs Sk

Py < INSTRUMENT (F)

repeat

s <— CHOOSENEXT (5)

p + ASSIGNENERGY (5)

for ¢ from 1 to p do

s <= MUTATEINPUT (s)

if ISCrASH (s, Py) then

‘ add s’ to S

else if ISINTERESTING (s, Pf) then
L add s’ to S

—
<

—_
—_

: until timeout reached or abort-signal

13
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2.3.2 Greybox Fuzzing

Greybox fuzzing leverages lightweight feedback (e.g., branch coverage) to select
the interesting inputs and then steer the fuzzing search. Greybox fuzzing takes
a balance between blackbox fuzzing and whitebox fuzzing. The core algorithm
is shown in Algorithm 1. At compile time, greybox fuzzing instruments specific
control locations in the program (line 1) to collect feedback on code execution during
runtime. The process begins with an initial queue of seed inputs provided by the
user. The greybox fuzzer iteratively selects inputs from the queue for the mutation
(line 3), with the time spent on mutating each input determined by an assigned
energy value (line 4).

The selected seed inputs are then mutated using various mutation operators (e.g.,
bit flipping or byte insertion) to generate new inputs (line 6). Each generated input
is executed to determine whether it causes the program to crash; Any crashing inputs
are saved as outputs (lines 7-8). If a newly generated input exercises previously
unseen program behaviors based on runtime feedback, it is considered “interesting”
and added to the seed queue for further exploration (lines 9-10). This iterative
process allows the fuzzer to use code coverage feedback to progressively explore
deeper and more complex execution paths.

Popular greybox fuzzers include AFL [167] and LIBFUzZZER [98]. The main
advantages of this technique lie in its scalability, which scales to very large-scale
programs, and its usability, which requires almost no manual effort and expertise
during setup. However, most existing greybox fuzzers are primarily designed for
testing transformational programs, such as compilers and parsers. In these programs,
the same input almost produces the same output, making code coverage a reliable

metric for selecting interesting seeds and steering the search.

2.3.3 Whitebox Fuzzing

Whitebox fuzzing relies on symbolic execution to systematically generate inputs,
where each input exercises a different program path. Symbolic execution is a
program analysis technique. In symbolic execution, program inputs are labeled as
symbolic variables instead of concrete values. During execution, program variables

are represented as symbolic expressions over these input symbols, and the analysis
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tracks how these expressions evolve throughout the execution.

As the program executes symbolically, it accumulates a set of logical constraints
(i.e., path constraints) that describe the requirements for reaching a particular
execution path. Fach path condition is a conjunction of constraints that must hold
for the corresponding path to be feasible. These path conditions are then solved
using Satisfiability modulo theories (SMT) solvers to produce concrete program
inputs that drive execution along specific paths.

Popular symbolic execution engines include KLEE [27] and SAGE [64]. Symbolic
execution is particularly effective for generating high-coverage test cases, uncovering
deep bugs, and verifying program properties. However, it faces challenges such as
path explosion and the computational cost of constraint solving, which limit its

scalability on large or complex programs.
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Chapter 3

Finding Stateful Property Violations

In this chapter, we introduce a greybox fuzzing framework to find violations
of Linear-time Temporal Logic (LTL) properties. Our framework takes as input a
sequential program written in C/C++ and an LTL property. It finds violations, or
counterexample traces, of the LTL property in stateful software systems; however,
it does not achieve verification. Our work substantially extends directed greybox
fuzzing to witness arbitrarily complex event orderings. We note that existing
directed greybox fuzzing approaches are limited to witnessing reaching a location or
witnessing simple event orderings like use-after-free. At the same time, compared
to model checkers, our approach finds the counterexamples faster, thereby finding
more counterexamples within a given time budget.

Our LTL-FuUzZER tool, built on top of the AFL fuzzer, has been shown to
be effective in detecting bugs in well-known protocol implementations, such as
OpenSSL and Telnet. We use LTL-FUZZER to reproduce known vulnerabilities
(CVESs), to find 15 zero-day bugs by checking properties extracted from RFCs (for
which 12 CVEs have been assigned), and to find violations of both safety as well as
liveness properties in real-world protocol implementations. Our work represents a
practical advance over software model checkers—while simultaneously representing a
conceptual advance over existing greybox fuzzers. Our work thus provides a starting
point for understanding the unexplored synergies among software model checking,

runtime verification, and greybox fuzzing.

3.1 Introduction

Software model checking is a popular validation and verification method for

reactive stateful software systems. It is an automated technique to check temporal
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logic properties (constraining event orderings in program execution) against a
finite state transition system. Model checking usually suffers from the state space
explosion problem; this is exacerbated in software systems, which are naturally
infinite-state. To cope with infinitely many states, the research community has
looked into automatically deriving a hierarchy of finite state abstractions via predicate
abstractions and abstraction refinement of the program’s data memory (e.g., see
[12]). Whenever a counterexample trace is found in such model checking runs, the
trace can be analyzed to find (a) whether it is a spurious counterexample introduced
due to abstractions, or (b) the root cause/bug causing the counterexample. This
has rendered model checking a useful automated bug-finding method for software
systems.

Runtime verification is a lightweight and yet rigorous verification method, which
complements model checking [16, 96, 94]. In runtime verification, a single execution of
a system is dynamically checked against formally specified properties (e.g., temporal
logic properties). Specifically, formal properties specify the correct behaviors of a
system. Then the system is instrumented to capture events that are related to the
properties being checked. During runtime, a monitor collects the events to generate
execution traces and checks whether the traces conform to the specified properties.
When the properties are violated, it reports violations. Runtime verification aims to
achieve a lightweight but not full-fledged verification method. It verifies software
systems at runtime without the need to construct models about software systems and
execution environments. However, to generate effective execution traces, software
systems are required to be fed many inputs. These inputs are usually obtained
manually or via random generation [94]; therefore, runtime verification may take
much manual effort and explore many useless inputs in the process of exposing
property violations.

Parallel to the works in software model checking and runtime verification, greybox
fuzzing methods [167, 98] have seen substantial recent advances. These methods
conduct a biased random search over the domain of program inputs, to find bugs
or vulnerabilities. The main advantage of greybox fuzzing lies in its scalability to
large software systems. However, greybox fuzzing is only a testing (not verification)
method, and it is mostly useful for finding witnesses to simple oracles such as crashes

or overflows. Recently, there have been some extensions of greybox fuzzing methods
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towards generating witnesses of more complex oracles, such as tests reaching a
location [21]. However, generating inputs and traces satisfying a complex temporal
property remains beyond the reach of current greybox fuzzing tools. Thus, today’s
greybox fuzzing technology cannot replace the bug-finding abilities of software model
checking and runtime verification.

In this work, we take a step forward in understanding the synergies between
software model checking, runtime verification, and greybox fuzzing. Given a sequen-
tial program and a Linear-time Temporal Logic (LTL) property ¢, we construct
the Biichi automata A, accepting —¢, and use this automata to guide the fuzzing
campaign. Thus, given a random input that exercises an execution trace w, we
can check the “progress” of 7 in reaching the accepting states of A4, and derive
from A4, the events that are needed to make further progress in the automata.
Furthermore, in general, traces accepted by A, are infinite in length and visit an
accepting state infinitely often. To accomplish the generation of such infinite-length
traces in the course of a fuzzing campaign, we can take snapshots of the application
states (at selected program locations) and detect whether an accepting state of A_,
is being visited with the same program state. The application state snapshot can
also involve a state abstraction if needed, in which case the counterexample trace
can be subsequently validated via concrete execution.

We present a fuzzing-based technique that directs fuzzing to find violations of
arbitrary LTL properties. To the best of our knowledge, no existing fuzzing technique
is capable of finding violations of complex constraints on event orderings such as
LTL properties. Existing works on greybox fuzzing are limited to finding witnesses
of simple properties, such as crashes or use-after-free. This is the main contribution
of our work: algorithms and implementation of our ideas in a tool that can validate
any LTL property, thereby covering a much more expressive class of properties than
crashes or use-after-free. Our work adapts directed greybox fuzzing (which directs
the search towards specific program locations) to find violations of temporal logic
formulae. We realize our approach for detecting violations of LTL properties in
a new greybox fuzzer tool called LTL-Fuzzer. LTL-FUZZER is built on top of
the AFL fuzzer [167] and involves additional program instrumentation to check if
a particular execution trace is accepted by the Biichi automaton representing the

negation of the given LTL property.
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We evaluated LTL-FUzZER on well-known and large-scale protocol implementa-
tions such as OpenSSL, OpenSSH, and Telnet. We show that it efficiently finds bugs
that are violations of both safety and liveness properties. We use LTL-FUZZER to re-
produce known bugs/violations in the protocol implementations. More importantly,
for 50 LTL properties that we manually extracted from Request-for-Comments
(RFCs), LTL-FuzzERr found 15 new bugs (representing the violation of these prop-
erties), out of which 12 CVEs have been assigned. These are zero-day bugs that
have previously not been found. We make the dataset of properties and bugs
found available with this work. We expect that in the future, other researchers
will take forward the direction in this work to detect temporal property violations
via greybox fuzzing. The dataset of bugs found by LTL-FUZZER can thus form a
baseline standard for future research efforts. The dataset and tool are available at

https://github.com/1tlfuzzer/LTL-Fuzzer.

3.2 Approach Overview

At a high level, our approach takes a sequential program P and a Linear-time
Temporal Logic (LTL) property ¢ as inputs. The atomic propositions in ¢ refer to
predicates over the program variables that can be evaluated to true or false. An
example is a predicate x > y in which x and y are program variables. Our approach
identifies program locations at which the atomic propositions in the LTL property
may be affected. For this, we find program locations at which the values of variables
in the atomic proposition and their aliases may change.! Our technique outputs
a counterexample, i.e., a concrete program input that leads to a violation of the
specification. Counterexample generation proceeds in two phases. In the first phase,
the program P is transformed into P’. For this, we use code instrumentation to
monitor program behaviors and state transitions during program execution. We
check these against the provided LTL property. In the second phase, a fuzzing
campaign is launched for the program P’ to find a counterexample through directed
fuzzing.

We illustrate our technique with an FTP implementation called Pure-FTPd.?

'In general, our approach requires an alias analysis to map the atomic propositions to program
locations.
2https://www.pureftpd.org/project/pure-ftpd/
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Table 3.1: Mapping between atomic propositions and program locations (“..” indi-
cates omitted loop entries).

Predicate Atomic Prop. Locations
quota__activated = true a (ftpd.c,6072)
. . (safe_rw.c,12)
user__dir__size > user__quota 0 (safe_rw.c,3)
_ (ftpd.c,4444)
msg__quota__exceeded = true n (Ftpd.c, 3481)
loop__entry = true l (ftpd.c,4067) ...

Pure-FTPd is a widely-used open-source FTP server that complies with the FTP
RFC.? Here is a property described in the RFC that an FTP implementation must
satisfy. The FTP server must stop receiving data from a client and reply with
code 552 when user quota is exceeded while receiving data. Code 552 indicates
that the allocated storage is exceeded. Throughout this work, we will use this
FTP property—as represented by ¢—to illustrate how our technique finds property
violations in Pure-FTPd.

3.2.1 LTL Property Construction

We start by manually translating the informal property in the RFC into an LTL
property ¢. For this, we search the Pure-FTPd source code using keywords APPE and
552. Source code analysis reveals that (1) Pure-FTPd implements a quota-based
mechanism to manage user storage space, and it works only when activated, and (2)
the command APPE is handled by the function dostor (), in which user_quota_size
is checked when receiving data. When the quota is exceeded, the server replies
with code 552 (MSG_QUOTA_EXCEEDED) via the function addreply (). We therefore
construct the property ¢ as

-F(aNF(oNG-m)) (3.1)

The negation of ¢ is thus
F(a N F(oNG-n))

where definition of atomic propositions a, 0, n appear in Table 3.1.
Next, we identify program locations where the values of variables in atomic

propositions in ¢ may change at runtime. A simple example is the proposi-

3https://www.w3.org/Protocols/rfc959/

20


https://www.w3.org/Protocols/rfc959/

CHAPTER 3. FINDING STATEFUL PROPERTY VIOLATIONS

tion quota_ activated = true, which corresponds to the program location where
quota checking is enabled in Pure-FTPd. In another statement, user dir_size >
user__quota, we consider the first statement of functions that are used to store
data in user directories. As a result, whenever data is written to user directo-
ries, those functions will be invoked, and this proposition will be evaluated, i.e.,
all cases where the user quota is exceeded will be captured in an execution. For
msg_quota__exceeded = true, we identify function invocations of addreply (552,
MSG_QUOTA_EXCEEDED. ..) which are a reply to clients when the quota is exceeded.
Specific program locations for each atomic proposition are listed in Table 3.1. Their
corresponding code snippets are shown in Code 3.1, Code 3.2, Code 3.3, and Code 3.4.
Here, we show one code snippet per atomic proposition. For convenience, we use a
tuple (I, p, ¢,) in which [ denotes a program location, p is an atomic proposition, and
¢, represents the predicate for the atomic proposition p. At the end of our manual
LTL property generation process, we output a list L. comprising such tuples. For
the example property, the manual process of writing down the predicates and the

accompanying tuples was completed by one of the authors in 20 minutes.

6063 #ifdef QUOTAS
6064 case ’n’: {

6072 user_quota_size *= (1024ULL * 1024ULL);
6073 + if (1)1
6074 + generate_event ("a");
6075 + if (liveness) record_state();
6076 + }
Code 3.1: Enabling the user quota option:<ftpd.c, 6072>.
12 safe_write(const int fd, comnst void * const buf_,
13 size_t count, const int timeout)
14 {
15 + if(user_dir_size > user_quota){
16 + generate_event ("o");
17 + if (liveness) record_state();
18 + }

Code 3.2: Writing to user directories:<safe rw.c, 12>.
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3.2.2 Program Transformation

After deriving the property ¢ and the list of tuples L, we transform program P
into P’, which can report a failure at runtime whenever ¢ is violated. We perform this
program transformation using two instrumentation modules: (1) Event generator,
which generates an event when a proposition in ¢ is evaluated to true at runtime; (2)
Monitor, which collects the generated events into an execution trace and evaluates

if the trace violates ¢. If a violation is found, the monitor reports a failure.

4442 afterquota:

4443 if (overflow > 0) {

4444 addreply (552, MSG_QUOTA_EXCEEDED, name);
4445 + if (1){

4446 + generate_event ("n");

4447 + if (liveness) record_state();

4448 + }

Code 3.3: Replying msg_quota_ exceeded:<ftpd.c, 4444>.

4066 for (;;) {

4067 + if(1){

4068 + generate_event ("1");

4069 + if (liveness) record_state();
4070 + }

Code 3.4: Entry of a loop statement:<ftpd.c. 4067>.

Event Generator. To detect changes in ¢’s proposition values during program
execution, the event generator injects event generation statements at specific program
locations. To do so, the generator takes the list L produced in the previous step
as input. For each tuple (/,p,c,) € L, the generator injects a statement if (c,)
generate_event ("p"); at the program location [, such that an event associated
with p can be generated when condition ¢, is satisfied. For instance, the program
location (ftpd.c,6072) corresponds to the proposition variable a (quota__activated =
true) and the enabling condition is true. The generator then inserts a statement
if (1) generate_event("a"); at line 6072 in ftpd.c (see Code 3.1). Consequently,
whenever (ftpd.c,6072) is reached, an event associated with a is generated and

recorded at runtime. Instrumentation for the other tuples appears in Code 3.2,
Code 3.3, and Code 3.4.
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Figure 3.1: Biichi automata accepting traces satisfying ~¢.

Monitor. The monitor module inserts a monitor into program P to verify if the
program behavior conforms to property ¢ at runtime. Specifically, the monitor
produces a trace 7 by collecting events that are generated during execution (by the
instrumented code). It then converts the negation of ¢ to a Biichi automata A-,
and checks whether A-, accepts 7. If the trace is accepted, the monitor reports
a failure, i.e., ¢ does not hold in P. In our Pure-FTPd example, the negation of
¢ is F(a A F(o AN G—n)), and the converted Biichi automata A-, is illustrated in
Figure 3.1.

Checking Safety Properties. A Biichi automata accepts a trace 7 if and only if 7
visits an accepting state of the automata “infinitely often” (e.g., state 2 in Figure 3.1).
For the negation of a safety property (7¢), the Biichi automata A-4 accepts all
traces which reach an accepting state, since all traces reaching an accepting state
will loop there infinitely often. Since only a finite prefix of the trace is relevant
for obtaining the counter-example of a safety property, the monitor thus outputs a
counterexample if it witnesses a trace that leads to an accepting state in the Biichi
automata A .

Checking Liveness Properties. The Biichi automata of the negation of ¢ accepts
a trace 7 if and only if 7 visits an accepting state of A-,4 “infinitely often” (e.g.,
state 2 in Figure 3.1). For instance, an infinite trace a, o, (v)* in which v # n will be
accepted by A-,. Formally, such a trace has the form 7 = 7y (72)“ (|72] # 0), where 7y
starts in an initial state of the Biichi automata A-4 and runs until an accepting state
s of A-,, and 75 runs from the accepting state s back to itself. Witnessing a trace
7 = 711(72)% in which 75 occurs “infinitely many times” is difficult in practice, since a
fuzz campaign visits program executions which are necessarily of finite length. A

straightforward approach to tackle this difficulty is to detect a loop in the trace and

m

terminate execution when witnessing the loop occurs m times, e.g., 7 = 71, 7970 - - -

This approach is insufficient because witnessing 75 for m times does not guarantee
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To occurs infinitely often, for instance for (i=0; i<m+2; i++){... ...} may
generate 1 for m times but stops generating 7 after i==m+1.

In this work, we record program states when events associated with atomic
propositions occur in the execution and detect a state loop in the witnessed trace.
If the execution of the state loop produces 75, that means, trace 75 can be generated
infinitely many times by repeatedly going through the state loop. As a result, we
assume that the witnessed trace can be extended to an infinite 71(72)“ shaped trace.
Consider the following two sequences witnessed in the execution

Te = €0€1 """ €i€iy1 """ Cith€i~ " Cith
loop body
Ts = 5051+ ‘méﬂhﬂ ©rtSita2n
where 7, is a sequence of events associated with atomic propositions that occur
in the execution and 7, is a sequence of program states that are recorded when
events occur, for instance, s; indicates the program state that is recorded when the
event e; occurs. Suppose s; is identical to s;ip11, then s;---s;1,41 is a state loop

and its loop body is s; - - - 5;44. Whenever s; takes input I, that leads to s;

“Sithtl
from s;, 511, s; will transition to s; itself. We assume that the system under test is
a reactive system taking a sequence of inputs and it is deterministic, that is, the
same input always leads to the same program behavior in the execution. Thus,
€;€i11 - €ip can be generated infinitely many times by repeatedly executing input

1

si-siynes ON state s;. Trace 7, = e - - ei—1(€; - eip)® can be generated by running

input I, ...s, (1, ), where I,. . is an input that leads to state s; from sy and

Si " Si+h+1
I

s;i-siynis 18 an input that leads to s; from s; 4541

As explained, the occurrence of a state loop in the execution is evidence that the
witnessed trace can be extended to an infinite 7 (7)“ shaped trace. We leverage
this idea to find a violation of a liveness property. When witnessing a trace in the
execution that can be extended to a 71(72)“ shaped trace that is accepted by Biichi
automata A-,, we consider a violation of the liveness property has been found.
Hence, for liveness property guided fuzzing, we enrich the program transformation
of P to P’ as follows: (1) instrumenting a function call that records the current
program state when an event appears in a transition label of A, occurs in the
execution (shown in Code 3.1-Code 3.4)—specifically, function call record_state()

takes the current program state and generates a hash code for the state at runtime;
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(2) instrumenting event-generating and state-recording statements at the entries of
for and while loop statements in the program to observe possible loops in fuzzing.
Code 3.4 shows the instrumentation of a for loop statement in Pure-FTPd. More
detailed and specific optimizations about state saving for checking liveness properties

appear in Section 3.5.

3.2.3 Witnessing Event Sequences

Since program P’, generated in the previous step, reports a failure when ¢ is
violated, we can find a counterexample for ¢ by fuzzing P’. An input that leads
to such a failure is a counterexample. However, finding an input of this kind is
challenging because it has to generate an execution in which certain events occur
in a specific order. In our running example of Pure-FTPd, the quota mechanism
must be activated first in the execution, then user quota must be exceeded, and
finally the execution must enter a loop in which no msg quota_ exceeded is sent
back to the client. Existing directed fuzzing approaches like AFLGO [21] aim to
direct fuzzing towards a particular program location and cannot drive execution
through multiple program locations in a specific order. We now discuss our Biichi

automata guided fuzzing in the next section.

3.3 Biichi Automata Guided Fuzzing

Given an LTL property ¢ to be checked, automata-theoretic model checking
of LTL properties [150] constructs the Biichi automata A4 accepting all traces
satisfying —¢. In this section, we will discuss how A, can be used to guide
fuzzing. First, we design a mechanism to generate an input whose execution passes
through multiple program locations in a specific order. We design this mechanism

by augmenting a greybox fuzzer in two ways.

o Power scheduling. During fuzzing, the power scheduling component tends to
select seeds closer to the target on the pre-built inter-procedural control flow
graph. Thus, the target can be reached efficiently. To achieve this, we use the
fuzzing algorithm of AFLGo [21].
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o Input prefix saving. This component observes execution and records input

elements that have been consumed when reaching a target.

As mentioned, we focus on fuzzing reactive systems that take a sequence of inputs.
The mechanism we follow involves directing fuzzing toward multiple program lo-
cations in a specific order. Consider a sequence of program locations I,y ---1,,.
Our approach works as follows: first, it takes [; as the first target and focuses on
generating an input that leads to [;. Meanwhile, it observes execution and records
the prefix 7; that leads to ;. Next, it takes [y as the target and focuses on exploring
the space of inputs starting with prefix i, i.e., keeping generating inputs starting
with 7;. As a result, an input that reaches [, via [; can be generated.

Based on the above mechanism of visiting a sequence of program locations,
we develop an automata-guided fuzzing approach. The approach uses the Biichi
automata A-, instrumented in program P’ and observes the progress that each trace
makes on A-, at runtime, e.g., how many state transitions are made towards the
accepting state. To guide fuzzing, the approach saves the progress each input achieves
on A-, and uses it to generate inputs that make further progress. Specifically, it
saves the progress for each input by recording state transitions that are executed
on A-4 and the input prefix that leads to those transitions. Consider input ¢y and
its trace 7y goes from initial state sy to state s,, on automata A-4. The achieved
progress is represented as a tuple (x}, §), where z) is the shortest prefix of iy whose
execution trace goes from sy to s, and z{ is the state transition sequence s - - - s,
visited. Such progress tuples are stored in a set X and are used to guide fuzzing.

For input generation, the approach takes a tuple from X" and uses it to generate
inputs that make further progress. Consider a tuple (z%,z°): z° records state
transitions on automata A-4 which input prefix z* has led to. Thus, we can query
A-4 with 2° to find a transition that makes further progress, i.e., a state transition
that gets closer to an accepting state of A-4. In the example, assuming z° is state
0 in Figure 3.1, then the transition from state 0 to state 1 will be identified since
state 1 is closer to the accepting state 2. Suppose ¢ is the next progressive state
transition of z°, then we can further query A-, to obtain atomic propositions that
trigger transition t. Then, by querying the map between atomic propositions and

program locations, we can identify program locations for those atomic propositions.
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In the example, an atomic proposition a triggers the transition from state 0 to state
1 and its corresponding program location is (ftpd.c,6072), as shown in Table 3.1.

From the above we can define criteria for input to make further progress: (1) its
execution has to follow the path that an input prefix 2° has gone through such that
the generated trace can go through state transitions x*; and, (2) subsequently the
execution reaches one of program locations that are identified above to ensure the
generated trace takes a step further in A-.

To generate inputs of this kind, our mechanism for generating inputs that traverse
a sequence of program locations in a specific order comes into play. Assume [; is one
of the program locations identified above, for making further “progress” in A,;. The
mechanism takes [; as the target and keeps generating inputs that start with the
prefix z° until generating an input that starts with the prefix z° and subsequently
visits location [;. This is how our approach uses tuples in X' to generate inputs that
make further “progress” towards an accepting state in the Biichi automata A .

The detailed fuzzing algorithm is now presented.

3.4 Fuzzing Algorithm

Algorithm 2 shows the workflow of our counterexample-guided fuzzing. To find a
counterexample, the algorithm guides fuzzing in two dimensions. First, it prioritizes
the exploration of inputs whose execution traces are more likely to be accepted by
A-,. Specifically, if the trace of the prefix of an input reaches a state that is closer
to an accepting state on A-,, then its trace is more likely to be accepted. The
algorithm selects input prefixes whose traces have been witnessed to get close to
an accepting state and keeps generating inputs starting with them (shown in line 5
and line 10). Secondly, the algorithm focuses on generating inputs whose execution
makes further progress on A-4. Given an input prefix, the algorithm finds a state
transition ¢ that helps us get closer to an accepting state in A-,, and finds the
atomic propositions which enable t to be taken (line 6). For the atomic propositions
enabling transition ¢, we identify the corresponding program locations (line 7). Then
we attempt to generate inputs that reach the program location in the execution and
trigger the program behavior associated with the atomic proposition. As a result,

the generated trace can make further progress in A-4. To generate inputs that reach

27



CHAPTER 3. FINDING STATEFUL PROPERTY VIOLATIONS

Algorithm 2: Counterexample-Guided Fuzzing

Input: P’: The transformation of program under test

Input: A-4: Automata of negation of property under test

Input: map: Map between propositions and program locations
Input: flag: True for liveness properties

Input: total time: Time budget for fuzzing

Input: target_time: Time budget for reaching a program location

Procedure Fuzz(FP', A-,, map, flag, total time, target time)

So < getInitState(A-y) ;

X« {{0,s0)} > Starting with init state of A-
for time < total time do

(x!, 25) < selectPrefix(X) ;

p < selectTargetAtomicProposition(A-g4,z}) ;

| + selectProgramLocationTarget(map,p) ;

for time’ < target_time do

// D: Feedback of CFG distance

/] Spower: Power schedule algorithm

9: I + generateInput(D, Spower) ;
10: I' + replacePrefix([,z!) ;
11: d,{x', %) < evaluate(P', I, flag);
12: D+ DuU{d};
13: X+ XU {(z, 2%}

a particular program location, we leverage the algorithm proposed in AFLGO (lines
8-14). Its idea is to assign more power to seeds that are closer to the target on a
pre-built control flow graph such that the generated inputs are more likely to reach
the target. The time budget for reaching a target is configurable, via parameter
target_time.

For prefix selection (line 5), the algorithm defines a fitness function to compute

a fitness value for each prefix tuple. Given a tuple (x%, %), its fitness value is

ls 1

=it

where [, is the length of =7 and [, is the length of the shortest path from the last
state of z§ to an accepting state on A-4 and [; is the length of input prefix z}. As
shown in the formula, a prefix tuple has a higher fitness value if the last state of x}
is closer to an accepting state on 4-, and the input prefix is shorter. Heuristically,

by extending such a prefix, our fuzzing algorithm is more likely to generate an input
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whose execution trace is accepted by A-,. Prefix tuples with higher fitness values
are prioritized for selection.

For atomic proposition selection (line 6), we adopt a random selection strategy.
Consider tuple (z%, x$) and the last state of xf is s;, the algorithm identifies atomic
propositions that make a progressive transition from s, on A-, as follows: if state s; is
not an accepting state of A-,, any atomic proposition that triggers a transition from
s; towards an accepting state is selected. If state s; is an accepting state, any atomic
proposition that triggers a transition from s; back to itself is selected. For simplicity,
the algorithm randomly selects one from the identified atomic propositions. When
the selected proposition p has multiple associated program locations, we randomly
select one of them as a target. The main consideration for adopting a random
strategy is to keep our technique as simple as possible. Moreover, these strategies

can be configured in our tool.

3.5 State Saving

4315 if(...(max_filesize >= (off_t) 0 &&
(max_filesize=user_quota_size - quota.size)
< (off_t) 0 )){

4322 goto afterquota;
4323 }

Code 3.5: Quota checking:<ftpd.c. 4315>.

In liveness property verification, LTL-FUZZER detects a state loop in the wit-
nessed trace. If a state loop is detected, LTL-FUZzZER assumes the current trace
can be extended to a lasso-shaped trace 7(72)“. This works with a concrete rep-
resentation of program states, however in reality state representations of software
implementations are always abstracted. State representations that are too abstract
may miss capturing variable states that are relevant to the loop, which leads to
false positives. State representations that are too concrete may contain variable
states that are irrelevant to the loop, such as a variable for the system clock, which
leads to false negatives. To be practical, LTL-FUZZER takes a snapshot of the

application’s registers and addressable memory and hashes it into a 32-bit integer,

29




CHAPTER 3. FINDING STATEFUL PROPERTY VIOLATIONS

which is recorded as a state. Addressable memory indicates two kinds of objects:
(1) global variables (2) objects that are explicitly allocated with functions malloc()
and alloca(). Such a convention was also adopted in previous works on infinite
loop detection [28, 138].

Furthermore, LTL-FUZZER only records a program state for selected program
locations, not for all program locations. Specifically, we only save states for the
program locations associated with the transition labels of the automata A4 where
¢ is the liveness property being checked. Note that a transition label in A, is
a subset of atomic propositions [151, 150]. The full set of atomic propositions is
constructed by taking the atomic propositions appearing in ¢ and embellishing this
set with atomic propositions that we introduce for the occurrence of each program
loop header (such as [ in Table 3.1). If the transition label involves a set L of
atomic propositions, we track states for only those atomic propositions in L which
correspond to loop header occurrences. The goal here is to quickly find possible
infinite loops by looking for a loop header being visited with the same program state.
Hence for the transition label !n in our running example, we only store states for
the program locations corresponding atomic proposition [ in Table 3.1.

In the example shown in Section 3.2, LTL-FUZZER witnesses a state generated
at program location (ftpd.c,4067) (shown in Code 3.4) that has been observed
before and at the same time the witnessed trace is accepted by A-4. In this case,
LTL-FuzzER reports a violation of the LTL property ¢ shown in Page 20. To
validate if the violation is spurious, we check if the observed state loop can be
repeated in the execution. Our analysis shows that a chunk of data was read during
the execution of the state loop and the chunk of data was from a file uploaded
by the client. We duplicated the chunk of data in the uploaded file and reran the
experiment, and found the state loop was repeated. That means the witnessed
trace can be extended to a 71(72)* shaped trace, which visits the accepting state of
the automata accepting —¢ (Figure 3.1) infinitely many times. Thus, the reported
violation is not spurious.

We further analyzed the root cause of the violation. It shows there was a
logical bug in the quota-checking module. As shown in Code 3.5, the assignment
of max_filesize occurs in a conditional statement and is never executed because

max_filesize’s initial value is -1. To fix the bug, we created a patch and submitted
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a pull request on the Github repo of Pure-FTPd, which has been confirmed and

verified.

3.6 LTL-Fuzzer Implementation

We implement LTL-FUZZER as an open-source tool built on top of AFL, which
comprises two main components: instrumentor and fuzzer. In the following, we

explain these components.

3.6.1 Instrumentation Module

AFL comes with a special compiler pass for clang that instruments every branch
instruction to enable coverage feedback. By extending this compiler, we instrument
a program under test at three levels: specific locations, basic blocks, and the
application.

Specific locations. LTL-FUzzER takes a list of program locations at which
program behaviors associated with a property under test might occur. At each of
the given program locations, the instrumentation module injects two components:
event generator and state recorder. Event generator is a piece of code that generates
an event when the provided condition is satisfied at run-time. The state recorder is
a component that takes a snapshot of program states and generates a hash code for
the state when the given program location is reached in the execution.

Basic blocks. LTL-FUzzER guides fuzzing to a target using the feedback on how
close to the target input is, as explained in Section 3.3. At runtime, LTL-FUZZER
requires the distance from each basic block to the target on the CFG (control flow
graph). The instrumentor instruments a function call in each basic block at runtime.
The function call will query a table that stores distances from each block to program
locations associated with the given property (i.e., targets). The distance from a
basic block to each program location is computed offline with the distance calculator
component that is borrowed from AFLGo [21].

Applications. For a program under test, the instrumentation module injects a
monitor into the program. During fuzzing, the monitor collects events generated by
instrumented event generators and produces execution traces. For property checking,

the monitor leverages Spot libraries [143] to generate a Biichi automata from the
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Figure 3.2: The architecture of LTL-FUZZER.

negation of an LTL property and validates these traces. The instrumentation module
also instruments an observer in the program that monitors the execution of inputs; it
maps a given suitable execution trace prefix to the input event sequence producing it
so that the occurrence of the prefix can be detected by the observer, during fuzzing.
The fuzzing process then seeks to further extend this prefix with “suitable” events

as described in the following.

3.6.2 Fuzzer

Figure 3.2 shows the Fuzzer component’s architecture. It mainly comprises
two modules: prefiz controller and fuzz engine. LTL-FUZZER saves input prefixes
whose execution traces make transitions on the automata and reuse them for further
exploration (Section 3.3). At runtime, the prefix controller conducts three tasks:
(1) collecting prefixes reported by the monitor instrumented in the program under
test and storing them into a pool; (2) selecting a prefix from the pool for further
exploration according to Algorithm 2; (3) identifying the target program location
based on the selected prefix. The fuzz engine is obtained by modifying AFL [167].
It generates inputs starting with a given input prefix. To reach a target, our fuzzer
integrates the power scheduling component developed in AFLGoO [21] to direct
fuzzing. In LTL-FUZZER, we direct execution to reach a target after the execution
of an input prefix. Thus, the fuzz engine collects no feedback, such as coverage data,
during the execution of the input prefix and only collects feedback data after the

execution of the input prefix is completed.

32



CHAPTER 3. FINDING STATEFUL PROPERTY VIOLATIONS

3.7 Evaluation

In our experiments, we seek to answer the following questions:

RQ.1 Effectiveness: How effective is LTL-FuUzzER at finding LTL property viola-

tions?

RQ.2 Comparison: How does LTL-FUZZER compare to the state-of-the-art valida-

tion tools in terms of finding LTL property violations?

RQ.3 Usefulness: How useful is LTL-FUZZER in revealing LTL property violations

in real-world systems?

3.7.1 Subject Programs

Table 3.2 lists the subject programs used in our evaluation. This includes 7

open-source software projects that implement 6 widely-used network protocols. We

selected these projects because they (1) are reactive software systems that L'TL-

FuzzER is designed for, (2) include appropriate specification documents from which

LTL properties can be generated, and (3) are widely used and have been studied.

Finding bugs in such real-world systems is thus valuable.

Table 3.2: Detailed information about our subject programs.

Project Protocol #SLOC InPreviousWork GithubStars
ProFTPD FTP 210.8k [115] 339
Pure-FTPd FTP 52.9k [115] 435
Liveb55 RTSP 52.5k [126] [115] 526
OpenSSL TLS 286.7k [73] [115] [43] 16.3K
OpenSSH SSH 98.3k [60] [115] 1.5K
TinyDTLS DTLS 63.2k [58] [115] 43
Contiki-Telnet | TELNET 353.4k [73] 3.4K

3.7.2 Experimental Setup

To answer the research questions, we conducted three empirical studies on the

subject programs.
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Table 3.3: Statistics of violations found on the LTL-property set.

Prop ‘ CVE-ID Type of Vulnerability ‘ Program Version
PrF; | CVE-2019-18217 Infinite Loop ProFTPD 1.3.6
PrF; | CVE-2019-12815 Illegal File Copy ProFTPD 1.3.5
PrFs; | CVE-2015-3306  Improper Access Control ProFTPD 1.3.5
PrF, | CVE-2010-3867  Illegal Path Traversal ProFTPD 1.3.3

LVy CVE-2019-6256  Improper Condition Handle | Live555 2018.10.17
LVy CVE-2019-15232  Use after Free Liveb55 2019.02.03
LV3 CVE-2019-7314  Use after Free Liveb55 2018.08.26
LV, CVE-2013-6934 Numeric Errors Liveb55 2013.11.26
LVs CVE-2013-6933  Improper Operation Limit Live555 2011.12.23
SH, CVE-2018-15473 User Enumeration OpenSSH  7.7pl

SHy CVE-2016-6210  User Information Exposure | OpenSSH  7.2p2

SLy CVE-2016-6309  Use after Free OpenSSL 1.1.0a
SLs CVE-2016-6305  Infinite Loop OpenSSL 1.1.0

SLs CVE-2014-0160  Tllegal Memory Access OpenSSL 1.0.1f

3.7.2.1 Effectiveness of LTL-Fuzzer

We evaluate LTL-FUzzER'’s effectiveness by running it on a set of LTL properties
in subject programs where violations are already known; we check the number of
LTL properties for which LTL-FUzZER can find violations. To create such a dataset,
we collect event ordering-related CVEs (so that they can be captured as a temporal
property) that are disclosed in subject programs, e.g., an FTP client copies files
from the server without logging in successfully. Specifically, for each subject, we
select 10 such CVEs with criteria: (1) reported recently (during 2010-2020); (2)
include instructions to reproduce the bug; (3) relevant to event orderings. Then we
manually reproduce them with the corresponding version of the code. If a CVE is
reproducible, then we write the property in LTL and put it in our dataset of LTL
properties. Based on the aforementioned criteria, we collected 14 CVEs in 7 subjects
as shown in Table 3.4; these LTL properties can be found in our dataset* and the
appendix of our arxiv paper.> Our goal is to check experimentally if LTL-FUzZZER

can find violations of these LTL properties.

4https://github.com/ltlfuzzer /LTL-Fuzzer /tree /main /Itl-property
Shttps://arxiv.org/abs/2109.02312
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Table 3.4: Performance of four tools in finding the violations of LTL properties.

Prop LTL-Fuzzer AFLiTL AFLGo L+NuSMV
Time(h) | Time(h) A5 | Time(h) A;s | Time(h) A
PrEy 462 T/O 1.00 T/O 1.00 T/O 1.00
PrFy 0.95 2.01 0.84 T/O 1.00 T/O 1.00
PrFy 1.14 1.89 0.76 T/O 1.00 T/O 1.00
PrFy 2.06 5.17 0.85 T/O 1.00 T/O 1.00
Lv; 5.29 11.13 1.00 11.47 1.00 T/O 1.00
LV, 0.22 1.42 0.91 1.46 0.92 T/O 1.00
LV; 1.27 4.18 0.98 T/O 1.00 T/O 1.00
Lv, 2.73 2.58 0.40 2.21 0.39 T/O 1.00
LVs 1.80 1.99 0.63 1.45 0.33 T/O 1.00
SH, 0.18 0.17 0.44 T/O 1.00 24.00 1.00
SH, 0.19 0.19 0.50 T/O 1.00 24.00 1.00
SLq 3.77 6.00 0.74 6.58 0.82 T/O 1.00
SLy 1.45 T/O 1.00 T/O 1.00 T/O 1.00
SLs 1.11 7.31 1.00 T/O 1.00 T/O 1.00
Total Violations 14 12 5 2
Average Time (hours) 1.91 6.57 17.08 24.00
Speed-Up — 3.44x 8.93 % 12.55x%

LT /O represents tools cannot expose vulnerabilities within 24 hours for 10 experimental runs.
We replace T/O with 24 hours when calculating average usage time.
2 Statistically significant values of A5 are shown in bold.

3.7.2.2 Comparison with Other Tools

We evaluate LTL-FUZZER and state-of-the-art techniques on the LTL property
dataset above and compare them in terms of the number of LTL properties for which
each technique finds the violations and the time that is used to find a violation. For
state-of-the-art techniques, we reviewed recent and well-known techniques in model
checking, runtime verification, and directed fuzzing domains. We chose the following

techniques for comparison with LTL-FUZZER.

« AFLGO [21]. It is a well-known directed greybox fuzzer that drives execution
to a target with a simulated annealing-based power schedule that assigns more
energy to inputs that hold the trace closer to the target. We take it as a baseline

tool.

e AFLyry. It is an implementation that enables AFLGO to detect an LTL
property violation. Specifically, AFLyr, powers AFLGO with only the LTL test

oracle such that it can report an error when the given LTL property is violated
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in the execution. By comparing with AFLyrr,, we evaluate how effective our
automata-guided fuzzing strategy is in finding LTL property violations. Note
that AFLpr, is also a tool built by us, but it lacks the automata-guided fuzzing
of LTL-FuUzZER.

e L4+NUSMV. It combines model learning and model checking to verify prop-
erties in a software system. Specifically, it leverages a learning library called
LearnLib [77] to build a model for the software system and then verifies given
properties on the learned model with the well-known model checker NuSMV [35].
In the paper, we indicate it with L4+NUSMYV. This technique was published at
CAV 2016 [59] and has been subsequently adopted in recent works such as [156]
and [58].

We briefly summarize why we did not include certain other model-checkers and
fuzzers, and all runtime verification tools for comparison. Model checking tools
CBMC [38], CPAChecker [18], Seahorn [66], SMACK [133], UAutomizer [69], DI-
VINE [15] cannot support LTL property verification. Schemmel’s work [138], pub-
lished at CAV 2018 partially supports LTL property verification. SPIN [72] supports
LTL property verification but only works with the modeling language Promela [129],
and the tool provided in SPIN for extracting models from C programs failed to
work on our subject programs. Some model checking tools [73, 139], and directed
fuzzing tools (like UAFL [155], Hawkeye [31], and TOFU [158]) we reviewed, are
not publicly available.

Finally, all of the available runtime verification tools [54] (like JavaMOP [80],
MarQ [136], and Mufin [44]) cannot check LTL properties in C/C++ software systems.
Furthermore, our method is conceptually different and complementary to runtime
verification—our method generates test executions, while runtime verification checks
a test execution. While the combination of our method with runtime verification is

possible, a comparison is less meaningful.

3.7.2.3 Real-World Utility

In this study, we read the RFC specifications that these subject programs follow
to extract temporal properties and describe them in LTL. Then we use LT L-FuUzzER

to check these properties on the subject programs.
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Configuration Parameters. Following fuzzing evaluation suggestions from the
community [89], we run each technique for 24 hours and repeat each experiment
10 times to achieve statistically significant results. For the initial seeds, we use
seed inputs provided in PROFUzzZBENCH [115] for all subjects. PROFUZzZBENCH
is a benchmark for stateful fuzzing of network protocols, which contains a suite of
representative open-source network protocol implementations. For Contiki-Telnet,
which is not contained in PROFUZZBENCH, we generate random inputs as its initial
seeds. For LTL-FUZZER, we need to specify the time budget for reaching a single
program location, and we configure it with 45 minutes for each target. For AFLGO
and AF Ly, we need to provide a target for an LTL property being checked. We
specify the target by randomly selecting from program locations that are associated
with atomic propositions that trigger the transition to an accepting state on the
automata of the negation of the property. In the example in Section 3.2, we chose
one of the loop entries as the target since proposition o triggers the transition to
the accepting state shown in Figure 3.1 and it corresponds with the loop entries.
For execution environments, we conducted experiments on a physical machine with
64 GB RAM and a 56-core Intel(R) Xeon(R) E5-2660 v4 CPU, running a 64-bit
Ubuntu TLS 18.04 as the operating system.

3.7.3 Experimental Results

3.7.3.1 Effectiveness (RQ.1)
Table 3.4 shows property violations found by LTL-Fuzzgr for the 14 LTL

properties derived from known CVEs. The first column shows identifiers of the
properties being checked. The corresponding LTL properties and their descriptions
can be found in our dataset. Columns 2-5 represent CVE-IDs, types of vulnerabilities
that CVEs represent, subject names, and subject versions, respectively. Column
“LTL-FuzzER” shows the time that is used to find a violation by LTL-FUzZZER. As
shown in Table 3.4, LTL-FUZZER can effectively detect violations of LTL properties
in the subjects. It successfully detected the violation for all 14 LTL properties in
the dataset. On average, it took LTL-FUzzER 1.91 hours to find a violation.
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LTL-FuzzEeRr is found to be effective in finding LTL property violations, detecting

violations for all 14 properties derived from known CVEs.

3.7.3.2 Comparison (RQ.2)

As shown in Table 3.4, the last three main columns show the time that is
used for comparison techniques to find a violation on the 14 LTL properties in the
experiment. Note that “T/O” indicates a technique failed to find the violation for
an LTL property in the given time budget (i.e., 24 hours). To mitigate randomness
in fuzzing, we adopted the Vargha-Delaney statistic Ay [152] to evaluate whether
one tool significantly outperforms another in terms of the time that is used to find a
violation. The A;s is a non-parametric measure of effect size and gives the probability
that a randomly chosen value from data group 1 is higher or lower than one from
data group 2. It is commonly used to evaluate whether the difference between
two groups of data is significant. Moreover, we also use the Mann-Whitney U test
to measure the statistical significance of performance gain. When it is significant
(taking 0.05 as a significance level), we mark the Ay, values in bold.

LTL-FuzzeRr found violations of all of the 14 LTL properties, followed by
AFLyr, (12), AFLGoO (5), and L4+NUSMV (2). We note that AF Ly, is also
a tool built by us; it partially embodies the ideas in LTL-FUZZER and is meant
to help us understand the benefits of automata-guided fuzzing. In terms of the
time that is used to find a violation, LTL-FUzzER is the fastest (1.91 hours),
followed by AFLyry, (6.57 hours), AFLGO (17.08 hours), and L4+NUSMV (24.00
hours). In other words, LTL-FUZZER is 3.44x, 8.93x, 12.55x faster than AF Ly,
AFLGO, and L+NUSMYV, respectively. For CVE-2013-6934 and CVE-2013-6933,
AFLGO performed slightly better than other techniques, while AF Ly, exhibited
the same performance as LTL-FUzzER for CVE-2018-15473 and CVE-2016-6210.
We investigated these 4 CVEs and found that triggering those vulnerabilities is
relatively straightforward. They can be triggered without sophisticated directing
strategies. As a result, other techniques achieve a slightly better performance than
LTL-FuzzgeR for these four CVEs. In terms of the Alg statistic, LT L-FUZZER

performs significantly better than other techniques in most cases.
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LTL-FuzzER found violations of all 14 LTL properties in the experiment.
AFLy1,, AFLGO, and L4+NUSMYV found 12, 5, and 2 property violations,
respectively. LTL-FUZZER is 3.44x, 8.93x, 12.55x faster than AFLyr,, AFLGO,
and L4+NUSMV.

3.7.3.3 Real-World Utility (RQ.3)
In this study, we evaluate the utility of LTL-FuUzzZER by checking whether

it can find zero-day bugs in real-world protocol implementations. We extract 50
properties from RFCs that our subject programs follow (aided by comments in the
source code of the programs) and write them in linear-time temporal logic. The
details of the 50 LTL properties can be found in our dataset. In the experiment,
LTL-FuzzER achieved a promising result. Out of these 50 LTL properties, L'TL-
Fuzzer discovered new violations for 15 properties, which are shown in Table 3.5.
We reported these 15 zero-day bugs to developers and all of them got confirmed
by developers. We reported them on the Common Vulnerabilities and Exposures
(CVE) system (see https://cve.mitre.org/) and 12 of them were assigned CVE IDs.
Out of 15 reported violations, 7 have been fixed at the time of the submission of our
paper. Notably, LTL-FUzzER shows effectiveness in finding violations for liveness
properties. In the experiment, LTL-FUZZER successfully found violations for 4
liveness properties which are PrFy, SLs, T Dy, and PuFs. All 4 violations were
confirmed by developers, i.e., they are not spurious results. Moreover, to discover
violations for these 4 liveness properties, LTL-FUZZER only recorded 6, 11, 4, and 9
states, respectively. Since every state is recorded as a 32-bit integer, the memory

consumption for recording states is thus found to be negligible in our experiments.

Among 50 LTL properties extracted from protocol RFCs, LTL-FuzzER found 15
previously unknown violations in protocol implementations, and 12 of these have

been assigned CVEs.

3.7.4 Threats to Validity

There are potential threats to the validity of our experimental results. One

concern is external validity, i.e., the degree to which our results can be generalized
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to and across other subjects. To mitigate this concern, we selected protocol imple-
mentations that are widely used and have been frequently evaluated in previous
research (as shown in Table 3.2). We may have made mistakes in converting informal
requirements into LTL properties. To reduce this kind of bias, we let two authors
check generated properties and remove those on which they do not agree, or do not
think are important properties.

In principle, LTL-FUZZER can report false positives due to incorrect instrumen-
tation, e.g., if we fail to instrument some target locations for an atomic proposition.
We mitigate the risk of false positives by checking the reported counterexamples and
validating that they are true violations of the temporal property being checked. We
add here that we did not encounter such false positives in any of our experiments.

Another concern is internal validity, i.e., the degree to which our results minimize
systematic error. First, to mitigate spurious observations due to the randomness
in the fuzzers and to gain statistical significance, we repeated each experiment 10
times and reported the Vargha-Delaney statistic Ays. Secondly, our LTL-FUZzZER
implementation may contain errors. To facilitate scrutiny, we make LTL-FUzzZER

code available.

3.8 Conclusion

In this chapter, we present LTL-FUZZER, a linear-time temporal logic guided
grey-box fuzzing technique, which takes Linear-time Temporal Logic (LTL) properties
extracted from informal requirements such as RFCs and finds violations of these
properties in C/C++ software implementations. Our evaluation shows that LTL-
FuzzER is effective in finding property violations. It detected 15 LTL property
violations in real-world protocol implementations that were previously unknown;
12 of these zero-day bugs have been assigned CVEs. We make the dataset of
LTL properties and our tool available for scrutiny. Arguably, we could compare
LTL-Fuzzer with more model checkers and fuzzers, experimentally. At the same
time, we have noted that many model checkers were found to be not applicable for
checking arbitrary LTL properties of arbitrary C/C++ software implementations.
Moreover, the problem addressed by LTL-FUZZER is certainly beyond the reach

of fuzzers since fuzzers cannot detect temporal property violations. Overall, we
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believe our work represents a practical advance over model checkers and runtime

verification, and a conceptual advance over greybox fuzzers.
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Table 3.5: Zero-day Bugs found by LTL-FUZZER; for several of them CVEs have
been assigned but CVE ids are not shown.

Prop‘ Project ‘ Description of violated properties Bug Status
TinyDTLS If thg server is in the WAIT_.CLIENtfHELLO §tate and receives CVE-2021-
TD, a ClientHello request with valid cookie and the epoch .
(0.9-rcl) . 42143, Fixed
value 0, must finally give ServerHello responses.
If the server is in WAIT_CLIENTHELLO state and receives
TDy TinyDTLS a ClientHello request with valid cookie but not 0 epoch | CVE-2021-
(0.9-rcl) value, must not give ServerHello responses before receiving | 42142, Fixed
ClientHello with 0 epoch value.
TinyDTLS If thc? server is in the WAIT’_CLIEI\!THEI_’.LO stat.e and receives CVE-2021-
TDs a ClientHello request with an invalid cookie, must reply .
(0.9-rcl) . 42147, Fixed
HelloVerifyRequest.
If the server is in the DTLS_HT_CERTIFICATE_REQUEST
. state and receives a Certificate request,
TDs (T()lgﬂlng)LS must give a DTLS_ALERT HANDSHAKE FAILURE or 402\1/55; 2%116 q
' DTLS_ALERT_DECODE_ERROR response, or set Client_Auth ’
to be verified.
After the server receives a ClientHello request without
TinyDTLS renegotiation extension and gives a ServerHello response,
TP (0.9-rcl) then receives a ClientHello again, must refuse the renego- Confirmed
tiation with an Alert.
After the server receives a ClientHello request and gives a
TinyDTLS ServerHel.lo respon§e, then receives a ClientKeyExchange CVE-2021-
TD1o (0.9-rc1) request with a different epoch wvalue than that of 19141, Fixed
ClientHello, server must not give ChangeCipherSpec re- ’
sponses.
After the server receives a ClientHello request and gives
TDys TinyDTLS a ServerHello response, then receives a ClientHello re- | CVE-2021-
(0.9-rcl) quest with the same epoch value as that of the first one, | 42146
server must not give ServerHello.
If the server receives a ClientHello request and gives a
Dy, TinyDTLS HelloVerifyRequest response, and then receives a over- | CVE-2021-
(0.9-rcl) large packet even with valid cookies, the server must refuse | 42144, Fixed
it with an Alert.
oTy Contiki- After WILL request is received and the corresponding option | CVE-2021-
Telnet (3.0) | is disabled, must send DO or DONT responses. 40523
Contiki- After DO request is received and the corresponding option
OT Telnet (3.0) | is disabled, must send WILL or WONT responses. Confirmed
oT, Contiki- After WONT request is received and the corresponding option | CVE-2021-
Telnet (3.0) | is disabled, must not give responses. 38311
Contiki- After DONT request is received and the corresponding option
CTs Telnet (3.0) | is disabled, must not give responses. Confirmed
CTho Contiki- Before Disconnection, must send an Alert to disconnect | CVE-2021-
Telnet (3.0) | with clients. 38387
OTy, Contiki- If conducting COMMAND without AbortOutput, the response | CVE-2021-
Telnet (3.0) | must be same as the real execution results. 38386
PuF- Pure-FTPd | When quota mechanism is activated and user quota is | CVE-2021-
°1 (1.0.49) exceeded, must finally reply a quota exceed message. 40524, Fixed
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Chapter 4

Testing Stateful Protocols

How to find security flaws in a protocol implementation without a machine-
readable specification of the protocol? Facing the internet, protocol implementations
are particularly security-critical software systems where inputs must adhere to a
specific structure and order that is often informally specified in hundreds of pages in
natural language (RFC). Without some machine-readable version of that protocol,
it is difficult to automatically generate valid test inputs for its implementation that
follow the required structure and order. It is possible to partially alleviate this
challenge using mutational fuzzing on a set of recorded message sequences as seed
inputs. However, the set of available seeds is often quite limited and will hardly
cover the great diversity of protocol states and input structures.

In this chapter, we explore the opportunities of systematic interaction with
pre-trained large language models (LLMs), which have ingested millions of pages of
human-readable protocol specifications, to draw out machine-readable information
about the protocol that can be used during protocol fuzzing. We use the knowledge
of the LLMs about protocol message types for well-known protocols. We also checked
the LLM’s capability in detecting “states” for stateful protocol implementations by
generating sequences of messages and predicting response codes. Based on these
observations, we have developed an LLM-guided protocol implementation fuzzing
engine. Our protocol fuzzer CHATAFL constructs grammars for each message type
in a protocol, and then mutates messages or predicts the next messages in a message
sequence via interactions with LLMs. Experiments on a wide range of real-world
protocols from PROFUZZBENCH show significant efficacy in state and code coverage.
Our LLM-guided stateful fuzzer was compared with state-of-the-art fuzzers AFLNET
and NSFuzz. CHATAFL covers 47.60% and 42.69% more state transitions, 29.55%
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and 25.75% more states, and 5.81% and 6.74% more code, respectively. Apart from
enhanced coverage, CHATAFL discovered nine distinct and previously unknown
vulnerabilities in widely-used and extensively-tested protocol implementations while

AFLNET and NSFuUzz only discovered three and four of them, respectively.

4.1 Introduction

The development of an automatic vulnerability discovery tool for protocol im-
plementations is particularly interesting both, from a practical and from a research
point of view.

From a practical point of view, protocol implementations are the most exposed
components of every software system that is directly or indirectly connected to the
internet. Protocol implementations thus constitute a critical attack surface that
must be automatically and continuously rid of security flaws. A simple arbitrary
code execution vulnerability in a widely-used protocol implementation renders even
the most secure software systems vulnerable to malicious remote attacks.

From a research point of view, protocol implementations constitute stateful
systems that are difficult to test. The same input executed twice might give different
outputs every time. Finding a vulnerability in a specific protocol state requires
sending the right inputs in the right order. For instance, some protocols require an
initialization or handshake message before other types of messages can be exchanged.
For the receiver to properly parse that message and progress to the next state, the
message must follow a specific format. However, by default, we can assume neither
to know the correct structure nor the correct order of those messages.

Mutation-based protocol fuzzing reduces the dependence on a machine-readable
specification of the required message structure or order by fuzzing recorded message
sequences [126, 130, 8, 114]. The simple mutations often preserve the required
protocol while still corrupting the message sequences enough to expose errors.
However, the effectiveness of mutation-based protocol fuzzers is limited by the
quality and diversity of the recorded seed message sequences, and the available
simple mutations do not help in the effective coverage of the otherwise rich input or
state space.

To foster the adoption of a protocol among the participants of the internet, almost
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all popular, widely-used protocols are specified in publicly available documents,
which are often hundreds of pages long and written in natural language. What if we
could programmatically interrogate the natural language specification of the protocol
whose implementation we are testing? How could we use such an opportunity to
resolve the challenges of existing approaches to protocol fuzzing?

In this work, we explore the utility of large language models (LLMs) to guide
the protocol fuzzing process. Fed with many terabytes of data from websites and
documents on the internet, LLLMs have recently been shown to accurately answer
specific questions about any topic, at all. An LLM like ChatGPT 4.0 has also
consumed natural-language protocol specifications. The recent, tremendous success
of LLMs provides us with the opportunity to develop a system that puts a protocol
fuzzer into a systematic interaction with the LLM, where the fuzzer can issue very
specific tasks to the LLM.

We call this approach LLM-guided protocol fuzzing and present three concrete
components. Firstly, the fuzzer uses the LLM to extract a machine-readable grammar
for a protocol that is used for structure-aware mutation. Secondly, the fuzzer uses
the LLM to increase the diversity of messages in the recorded message sequences
that are used as initial seeds. Lastly, the fuzzer uses the LLM to break out of a
coverage plateau, where the LLM is prompted to generate messages to reach new
states.

Our results for all text-based protocols in the PROFUZZBENCH protocol fuzzer
benchmark [115] demonstrate the effectiveness of the LLM-guided approach: Com-
pared to the baseline (AFLNET [126]) into which our approach was implemented,
our tool CHATAFL covers almost 50% more state transitions, 30% more states, and
6% more code. CHATAFL shows similar improvements over the state-of-the-art
(NSFuzz [130]). In our ablation study, starting from the baseline we found that
enabling (i) the grammar extraction, (ii) the seed enrichment, and (iii) the saturation
handler one by one allows CHATAFL to achieve the same code coverage 2.0, 4.6,
and 6.1 times faster, respectively, as the baseline achieves in 24 hours. CHATAFL
is highly effective at finding critical security issues in protocol implementations.
In our experiments, CHATAFL discovered nine distinct and previously unknown
vulnerabilities in widely-used and extensively-tested protocol implementations.

In summary, our paper makes the following contributions:
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o We build a large language model (LLM) guided fuzzing engine for protocol
implementations to overcome the challenges of existing protocol fuzzers. For
deeper behavioral coverage of such protocols, on-the-fly state inference is
needed—which is accomplished by interrogating an LLM, like ChatGPT,

about the state machine and input structure of a given protocol.

o We present three strategies for integrating an LLM into a mutation-based
protocol fuzzer, each of which explicitly addresses an identified challenge of
protocol fuzzing. We develop an extended greybox fuzzing algorithm and

implement it as a prototype CHATAFL. The tool is publicly available at
https://github.com/ChatAFLndss/ChatAFL

o We conducted experiments that demonstrate that our LLM-guided stateful
fuzzer prototype CHATAFL is substantially more effective than the state-
of-the-art AFLNET and NSFUzz in terms of the coverage of the protocol
state space and the protocol implementation code. Apart from enhanced
coverage, CHATAFL discovered nine previously unknown vulnerabilities in

widely-used protocol implementations, the majority of which could not be
found by AFLNET and NSFuzz.

4.2 Background and Motivation

We start by introducing the main technical concepts in protocol fuzzing and
elucidating the key open challenges that we seek to address in this work. We then

provide some background on large language models and our motivation.

4.2.1 Protocol Fuzzing

In order to facilitate the systematic and reliable exchange of information on
the Internet, all participants agree to use a common protocol. Many of the most
widely-used protocols have been designed by the Internet Engineering Task Force
(IETF) and published as Request for Comments (RFC). These RFCs are mostly
written in natural language and can be hundreds of pages long. For instance, the

Real Time Streaming Protocol (RTSP) 1.0 protocol is published as RFC 2326 and is
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Method g URL I§Version CRLF
Header Filed Name | ;| Value | CRLF

Header Filed Name |:| Value | CRLF
CRLF

(a) Structure of RTSP client requests.

PLAY rtsp://127.0.0.1:8554/aacAudioTest/ RTSP/1.0\r\n

CSeq: 4\r\n

User-Agent: ./testRTSPClient (LIVE555 Streaming Media v2018.08.28)\r\n
Session: 000022B8\r\n

Range: npt=0.000-\r\n

\r\in

(b) Example of RTSP PLAY client request from Live555.

Figure 4.1: Structure of RTSP client requests in (a), and a PLAY client request
from Liveb55 in (b).

92 pages long.! As internet-facing software components, protocol implementations
are security-critical. Security flaws in protocol implementations have often been
exploited to achieve remote code execution (RCE).

A protocol specifies the general structure and order of the messages to be
exchanged. An example of the structure of an RTSP message is shown in Figure 4.1:
Apart from a header specifying message type (PLAY), address, and protocol version,
the message consists of key-value pairs (key: value) separated by carriage return
and line feed characters (CRLF; \r\n). The required order of RT'SP messages is
shown in Figure 4.2: Starting from the INIT state, only a message of type SETUP or
ANNOUNCE would lead to a new state (READY). To reach the PLAY state from
the INIT state, at least two messages of specific types and structures are required.

A protocol fuzzer automatically generates message sequences that ideally follow
the required structure and order of that protocol. We can distinguish two types
of protocol fuzzers. A generator-based protocol fuzzer [3, 81, 52] is given machine-
readable information about the protocol to generate random message sequences
from scratch. However, a protocol implementation itself, the manually written

generator often only covers a small portion of the protocol specification, and its

IRFC 2326 (RTSP): https://datatracker.ietf.org/doc/html/rfc2326.
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Teardown

Describe/ : Play/Setup/Options/
- Setup/Options/
Options/ GetParameter/
Teardown SetParamGetParameter SetParameter
Setup/ £\
Announce Play @
Teardown Pause
Record
Teardown
RECORD
Record /Setup/Options/

SetParameter/GetParameter

Figure 4.2: The state machine for the RTSP protocol from RFC 2326.

implementation is tedious and error-prone [126].

A mutation-based protocol fuzzer [126, 130] uses a set of pre-recorded message
sequences as seed inputs for mutation. The recording ensures that the message
structure and order are valid while mutational fuzzing will slightly corrupt both
[126]. In fact, all recently proposed protocol fuzzers, such as AFLNET [126] and
NSFuzz [130] follow this approach.

Challenges. However, as a state-of-the-art (SOTA) approach, mutation-based

protocol fuzzing still faces several challenges:

(C1) Dependence on initial seeds. The effectiveness of mutation-based protocol
fuzzers is severely limited by the provided initial seed inputs. The pre-recorded
message sequences will hardly cover the great diversity of protocol states and input

structures as discussed in the protocol specification.

(C2) Unknown message structure. Without machine-readable information
about the message structure, the fuzzer cannot make structurally interesting changes
to the seed messages, e.g., to construct messages of unseen types or to remove,

substitute, or add an entire, coherent data structure to a seed message.

(C3) Unknown state space. Without machine-readable information about the
state space, the fuzzer cannot identify the current state or be directed to explore

previously unseen states.
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4.2.2 Large Language Models

Emerging pre-trained Large Language Models (LLMs) have demonstrated im-
pressive performance on natural language tasks, such as text generation [24, 153, 34]
and conversations [146, 119]. LLMs have also been proven effective in translating
natural language specifications and instructions into executable code [55, 78, 32].
These models have been trained on extensive corpora and possess the ability to
execute specific tasks without the need for additional training or hard coding [25].
They are invoked and controlled simply by providing a natural language prompt.
The degree to which LLMs understand the tasks depends largely on the prompts
provided by users.

The capabilities of LLMs have various implications for network protocols. Net-
work protocols are implemented in accordance with the RFCs, which are written
in natural language and available online. Since LLMs are pre-trained on billions
of internet samples, they should be capable of understanding RFCs as well. Ad-
ditionally, LLMs have already demonstrated strong text-generation capabilities.
Considering messages are in text format to be transmitted between servers and
clients, generating messages for LLMs should be straightforward. These capabilities
of LLMs have the potential to address the open challenges of mutation-based protocol
fuzzing. Moreover, the inherently automatic and easy-to-use attributes of LLMs
align harmoniously with the design concept of fuzzing.

Motivation. In this work, we propose to use LLMs to guide the protocol fuzzing.
To alleviate the dependence on initial seeds (C1), we propose to ask the LLM to add
a random message to a given seed message sequence. But does this really increase
the diversity and the validity of the messages? To combat the unknown structure of
messages (C2), we propose to ask the LLM to provide machine-readable information
about the message structure (i.e., the grammar) for every message type. But how
good are those grammars compared to the ground truth and which message types
are covered? To navigate the unknown state space (C3), we propose to ask the LLM,
given the recent message exchange between fuzzer and protocol implementation,
to return a message that would lead to a new state. But does this really help us
transition to a new state? We will investigate these questions carefully within the

following case study.
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PLAY <Value> RTSP/1.0\r\n
CSeq: <Value>\r\n
User-Agent: <Value>\r\n
Session: <Value>\r\n

Range: <Value>\r\n

\n\n

Figure 4.3: Grammar for the RTSP PLAY client request.

4.3 Case Study: Testing Capabilities of LLMs for
Protocol Fuzzing

In our study, we selected the Real Time Streaming Protocol (RTSP), along with
its implementation Live555? from PROFUZZBENCH [115]. RTSP is an application-
level protocol for control over the delivery of data with real-time properties. Liveb555
implements RTSP in accordance with RFC 2326, functioning as a streaming server
in entertainment and communications systems to manage streaming media servers.
It is included in PROFUZzZBENCH, a widely-used benchmark for stateful fuzzers of
network protocols [126, 8, 130]. PROFUzzZBENCH comprises a suite of representative
open-source network servers for popular protocols, with Live555 being among them.
Therefore, the study results on Liveb55 would be a strong indication of whether
LLMs can effectively guide protocol fuzzing. Our study was carried out in the state-
of-the-art ChatGPT model.? In this section, we mainly demonstrate the capabilities
of LLMs. Our approach and the corresponding prompts will be discussed more

precisely in Section 4.4.

4.3.1 Lifting Message Grammars: Quality and Diversity

We ask the LLM to provide machine-readable information about the message
structure (i.e., the grammar), and we evaluate the quality of the generated grammars
and the diversity of message types covered w.r.t. the ground truth. To establish
the ground-truth grammar, two authors spent a total of 8 hours in reading the RFC
2326, and manually and individually extracting the corresponding grammar with the
perfect agreement. We finally extracted the ground-truth grammar for 10 types of
client requests specific to the RTSP protocol, each consisting of about 2 to 5 header

2Live555 available at http://www.1live555.com/
3 Available at https://platform.openai.com/docs/models/gpt-3-5

20


http://www.live555.com/
https://platform.openai.com/docs/models/gpt-3-5

CHAPTER 4. TESTING STATEFUL PROTOCOLS

fields. Figure 4.3 shows the PLAY message grammar, corresponding to the grammar
of the PLAY client request shown in Figure 4.1. The PLAY grammar includes 4
essential header fields: CSeq, User-Agent, Session, and Range. Additionally, certain
request types have specific header fields. For example, Transport is specific to
SETUP requests, Session applies to all types except SETUP and OPTIONS, and
Range is specific to PLAY, PAUSE, and RECORD requests.

To obtain the LLM grammar for analysis, we randomly sampled 50 answers from
the LLM for the RTSP protocol and consolidated them into one answer set.* As
shown in Figure 4.4, the LLM generates grammars for all ten message types that we
expected to see appear in over 40 answers from the LLM. Additionally, the LLM occa-
sionally generated 2 random types of client requests, such as “SET__DESCRIPTION";
however, each random type only appeared once in our answer set.

Furthermore, we examined the quality of the LLM-generated grammar. For 9
out of the 10 message types, the LLM produced a grammar that is identical to the
ground-truth grammar extracted from RFC for all answers. The only exception
was the PLAY client request, where the LLM overlooked the (optional) “Range”
field in some answers. Upon further examination of the PLAY grammar in the
entire answer set, we discovered that the LLM accurately generated the PLAY
grammar, including the “Range” field, in 35 answers but omitted it in 15 answers.
These findings demonstrate the LLM’s ability to generate highly accurate message

grammar, which motivates us to leverage grammar to guide mutation.

The LLM generates machine-readable information for the structures of all types
of RTSP client requests that match the ground truth, although there is some

stochasticity.

4.3.2 Enriching Seed Corpus: Diversity and Validity

We ask the LLM to add a random message to a given seed message sequence and
evaluate the diversity and validity of the message sequences. In PROFUZZBENCH,
the initial seed corpus of Live5b5 comprises only 4 types of client requests out of 10

present in the ground truth: DESCRIBE, SETUP, PLAY, and TEARDOWN. The

“We discuss the prompt engineering in Section 4.4.1.
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Figure 4.4: Types of client requests in the answer set and the corresponding
occurrence times for each type.

absence of the remaining 6 types of client requests leaves a significant portion of
the RTSP state machine unexplored, as shown in Figure 4.2. While it is possible
for the fuzzers to generate the missing six types of client requests, the likelihood
is relatively low. To validate this observation, we examined seeds generated by
state-of-the-art fuzzers AFLNet and NSfuzz, and none of these missing message
types were generated. Therefore, it is crucial to enhance the initial seeds. Can we
use the LLM to generate client requests and augment the initial seed corpus?

It would be optimal if the LLM could not only generate accurate message contents
but also insert the messages into the appropriate locations of the client-request
sequence. It is known that the servers of network protocols are typically stateful
reactive systems. This feature determines that for a client request to be accepted by
servers, it must satisfy two mandatory conditions: (1) it appears in the appropriate
states, and (2) the message contents are accurate.

To investigate this capability of the LLM, we requested it to generate 10 messages
for each of the 10 types of client requests, resulting in a total of 100 client requests.’
Subsequently, we verified whether the client requests were placed in the appropriate
locations within a given client-request sequence. For this purpose, we compared them
against the RTSP state machine shown in Figure 4.2, because the message sequences
should transit based on the state machine. Once we ensured that a sequence of

client requests was accurate based on the state machine, we sent it to the Live555

5We discuss the detailed model prompt in Section 4.4.2.
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Table 4.1: Processed results of client requests after being sent to the server.

Status ‘ Accepted Unsupported Session-Mismatch
Ratio | 55.1% 20.4% 24.5%

server. By examining the response code from the server, we could determine if the
message content was accurate, thereby double-checking the message order as well.

Our study results demonstrate that LLM is capable of generating accurate
messages and enriching the initial seeds. 99% of the collected client requests were
placed in the accurate positions. The only exception is that a “DESCRIBE” client
request was inserted after the “SETUP” client requests. As only one exception
appeared, we consider the LLM performance to be acceptable. We sent the client-
request sequences to the Liveb55 server and the processed results were shown in
Table 4.1. Approximately 55% of client requests can be directly accepted by the
server with the successful response code “2xx”. However, unsuccessful cases are not
due to lacking capability of the LLM. In the unsuccessful set, 20.4% of the messages
happened because Live555 does not support the functionality for “ANNOUNCE” and
“RECORD?”, despite being included in its RFC. The remaining cases were attributed
to incorrect session IDs in the “PLAY”, “TEARDOWN”, “GET_PARAMETER”
and “SET PARAMETER” requests. A session ID is dynamically assigned by
the server and included in the server response. Since the LLM lacks this context
information, it is not able to generate a correct session ID. However, when we
replaced the session ID with the correct one, all of these messages were accepted by
the server.

For our approach, we developed two methods to improve the LLM’s capability of
incorporating correct session IDs when provided with additional context information.
We first included the server’s responses in the prompt and then requested the LLM
to generate the same types of messages. At this time, the generated client requests
were directly accepted by the server. Furthermore, we attempted to include the
session IDs into the given client-request sequence, and then the LLM also accurately

inserted the same values into these messages and produced correct results.
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Figure 4.5: The next types of client requests generated by the LLM in each state. The
types in gray induce state transitions, the ones in orange appear in the suitable state
but do not trigger state transitions, and the ones in blue appear in the inappropriate
states. Each segment represents one distinct message type.

The LLM is able to generate accurate messages and has the capability to enrich

the initial seeds.

4.3.3 Inducing Interesting State Transitions

We give the LLM the message exchange between fuzzer and the protocol im-
plementation and ask it to return a message that would lead to a new state. We
evaluate how likely the message induce a transition to a new state. Specifically, we
provide the LLM with existing communication history, enabling a server respectively
to reach each state (i.e., INIT, READY, PLAY, and RECORD). Afterward, we
query the LLM to determine the next client requests that can affect the server’s
state. To mitigate the influence of the LLM’s stochastic behavior, we prompted the
LLM 100 times for each state.
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Figure 4.5 shows the results. Each pie chart demonstrates the results for each
state. Each segment in each pie chart represents a distinct type of client request.
The gray portion represents the percentage of client-request types that can lead
to state change. The orange ones represent the message types that appear in the
appropriate states but do not trigger any state transition (so there is no state
change). The blue ones represent the types that appear in the inappropriate state
that would be directly rejected by the server. From Figure 4.5, we can see that
there are 81%, 74%, 89%, and 69% client requests, respectively, that can induce
state transitions to different states. Additionally, approximately 17%, 16%, 10%,
and 30% client requests can still be accepted and processed by the server although
they do not trigger the state change. These messages are still potentially useful to
cover more code branches although they failed to cover more states. Besides, there
is also a small percentage of inappropriate messages, which account for about 2%,
10%, 1%, and 1% in our case study. These results demonstrate that the LLMs have
the capability to infer the protocol states albeit with extremely occasional mistakes.

Moreover, the generated types of client requests exhibit diversity. The LLM
successfully generated client requests that encompass all state transitions for each
individual state. Besides, the LLM also generated 2 to 5 appropriate types of client
requests. These results further demonstrate the potential of the LLM to guide
fuzzing, enabling it to surpass the coverage plateau and explore a wide range of

state transitions.

Of the LLM-generated client requests, 69% to 89% induced a transition to a

different state, covering all state transitions for each individual state.

4.4 LLM-Guided Protocol Fuzzing

Motivated by the impressive capabilities demonstrated by the LLMs in the case
study (Section 4.3), we develop LLM-guided protocol fuzzing (LLMPF) to tackle
the challenges of existing mutation-based protocol fuzzing (EMPF).

Algorithm 3 (without the gray-shaded text) specifies the general procedure of
the classical EMPF approach. The input is the protocol server under test Py, the

corresponding protocol p, the initial seed corpus C, and the total fuzzing time T.
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The output consists of the final seed corpus C' and the seeds Cx that crash the server.
In each fuzzing iteration (lines 7-34), EMPF selects a progressive state s (line 7),
and the sequence M (line 8) that exercises s to steer the fuzzer in exploring the
larger space. To ensure that the selected state s is exercised, M is split into three
parts (line 9): M, the sequence to reach s; My, the portion selected for mutation;
and M3 is the remaining subsequence. Subsequently, EMPF assigns the energy
for M (line 10) to determine mutated times and then mutates it into M’ with
(structure-unaware) mutators (line 16). This mutated sequence is then sent to the
server (line 23). EMPF saves M’ that lead to crashes (lines 24-25) or increase code
or state coverage (lines 27-28). If the latter, it updates the state machine (line 29).
This process is repeated until the assigned energy runs out (line 10), at which point
the next state is selected.

For our LLMPF approach, we augment the baseline logic of EMPF by incorpo-
rating the grayed components: (1) Extract the grammar by prompting the LLM
(line 2) and utilize the grammar to guide the fuzzing mutation (lines 12-14) (Sec-
tion 4.4.1); (2) query the LLM to enrich the initial seeds (line 3) (Section 4.4.2);
and (3) leverage the LLM’s capability to break out of a coverage plateau (lines 4,
19-21, 26, 30 and 32) (Section 4.4.3). Now we will introduce each component.

4.4.1 Grammar-Guided Mutation

In this section, we will introduce the approach to extracting grammar from the

LLM and then leveraging the grammar to guide the structure-aware mutation.

4.4.1.1 Grammar Extraction

Before the fuzzer can ask the LLM to generate a grammar for structure-aware
mutation [127], we encountered one immediate challenge: How to obtain a machine-
readable grammar for the fuzzer? The fuzzer operates on a single machine and is
restricted to parsing a predetermined format. Unfortunately, the responses generated
by the LLM typically are in a natural language structure with considerable flexibility.
If the fuzzer is to understand the LLM’s responses, the LLM should consistently
answer queries from our fuzzer in a predetermined format. An alternative option
would involve manually converting the LLM’s responses to the desired format.

However, this approach would compromise the fuzzer’s highly automated nature,
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Algorithm 3: LLM-guided Protocol Fuzzing

Input: Fy: protocol implementation
Input: p: protocol name

Input: C: initial seed corpus
Input: T': total fuzzing time
Output: C: final seed queue
Output: Cx: crashing seeds

1: Py < INSTRUMENT (Fp)

2: Grammar G < CHATGRAMMAR (p)

3: C + C U ENrICHCORPUS (C, p)

4: PlateauLen < 0

5: StateMachine S <+ ()

6: repeat

7 State s «+— CHOOSESTATE (.5)

8: Messages M, response R < CHOOSESEQUENCE (C, s)
9: (My, My, M3) < M (i.e., split M in subsequences, s.t. My is the message

sequence to drive Py to arrive at state s, and message My is selected to be
mutated).

10: for i from 1 to ASSIGNENERGY (M) do

11: if Plateaulen < MaxPlateau then

12: if UNIFORMRANDOM () < € then

13: My’ + GRAMMARMUTATE (Ms, G)
14: M+ <M1, Mg/, M3>

15: else

16: | M’ < (M;, RANDMUTATE (My), Ms)
17: else

18: My’ < CHATNEXTMESSAGE (M1, R)

19: M’ «+ <M1, Mgl, M3>

20: PlateauLen < 0
21: R' < SENDTOSERVER (Py, M')
22: if ISCRASHES (M’, Py) then

23: Cx +— Cx U {M’}

24: PlateauLen < 0
25: else if ISINTERESTING (M’, Py, S) then

26: C+ CU{(M,R)}

27: S < UPDATESTATEMACHINE (S, R’)

28: PlateauLen < 0
29: else

30: L PlateauLen < PlateauLen + 1

31: until timeout T reached or abort-signal

o7



CHAPTER 4. TESTING STATEFUL PROTOCOLS

which is less desirable. Therefore, the issue at hand is how to make the LLM answer
questions in the desired format.

One common paradigm involves fine-tuning models to achieve proficiency in a
specific task [92]. Similarly, when it comes to the LLM, fine-tuning the prompt
becomes necessary. This is because the LLM can perform specific tasks by simply
providing natural language prompts, without the need for additional training or
hard coding. Hence, the fuzzer prompts the LLM to generate the message grammar

of the protocol under test. However, the scope for prompt fine-tuning is extensive.

—(_Prompt ', N O { Model Output ]—\
Instruction:
For the RTSP, protocol, all of client
request grammar is: 1.|DESCRIBE:
. DESCRIBE <Value> RTSP/1.0\r\n,
Desired Format: ¢ Cseq: <Value>\r\n,
Shot-1: User-Agent: <Value>\r\n,
For the RTSP protocol, the PLAY Accept: <Value>\r\n,
client request grammar is: \r\n}
PLAY: {PLAY <Value> RTSP/1.0\r\n,
Cseq: <Value>\r\n, 2.ISETUP:
User-Agent: <Value>\r\n, { SETUP <Value> RTSP/1.0\n\n,
Session: <Value>\r\n, Cseq: <Value>\r\n,
Range: <Value>\r\n, User-Agent: <Value>\r\n,
\n\n} Transport: <Value>\r\n,
Shot-2: \r\n}

For the HTTP protocol, the GET client
request grammar is:
\G ET: {GET <Value>\r\n}

2N J

Figure 4.6: Example of the model prompt and the responding response for extracting
the RTSP grammar.

To make the LLM generate a machine-readable grammar, we ultimately employ
in-context few-shot learning [24, 145] within the domain of prompt engineering. With
the increasing understanding of LLMs, many prompt engineering approaches have
been proposed [24, 157, 161]. In-context learning serves as an effective approach
to fine-tuning the model. Few-shot learning is utilized to enhance the context with
a few examples of desired inputs and outputs. This enables the LLM to recognize
the input prompt syntax and output patterns. With in-context few-shot learning,
we prompt the LLM with a few examples to extract the protocol grammar in the

desired format.
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Figure 4.6 illustrates the model prompt used to extract the RTSP grammar. In
this prompt, the fuzzer provides two grammar examples from two different protocols
in the desired format. In this format, we retain the message keywords in the
grammar, which we consider to be immutable, and replace the mutable regions with
the “(Value)”. Notice that, to guide the LLM in properly generating grammar, we
utilize two shots instead of relying on a single example. This helps prevent the LLM
from strictly adhering to the given grammar and potentially overlooking important
facts.

In addition, another issue was revealed in our case study: the LLM may occa-
sionally generate stochastic answers, such as “SET DESCRIPTION”. Fortunately,
these instances are rare. To address the stochastic nature of the minority-sampled
generation, we engage in multiple conversations with the LLM and consider the ma-
jority of consistent answers as the final grammar. This approach shares similarities
with self-consistency checks [157] in the domain of prompt engineering, but it does
not occur in chain-of-thought prompting.

Through these approaches, the fuzzer is able to effectively obtain accurate
grammar from the LLM across various protocols. The model output shown in
Figure 4.6 demonstrates a portion of the RT'SP grammar derived from the LLM. In
practice, the LLMs are occasionally not sensitive to the word “all” in this prompt,
resulting in them generating only part of grammar types. To resolve this issue, we
just simply prompt the LLMs again to ask about the remaining grammar.

Before commencing the fuzzing campaign (see line 2 of Algorithm 3 in the
overview), our LLMPF approach engages in a conversation with the LLM to obtain
the grammar. Subsequently, this grammar is saved into the grammar corpus G,
which is utilized for structure-aware mutation throughout the entire campaign. This
design is intended to minimize the overhead of interacting with the LLM while
ensuring optimal fuzzing performance. Following that, we elaborate on the approach

to provide guidance for structure-aware fuzzing based on the extracted grammar.

4.4.1.2 Mutation Based on Grammar

Using the grammar corpus extracted from the LLM, LLMPF conducts structure-
aware mutations of the seed message sequences. In previous work [74], researchers

employed the LLM to generate variants of given inputs by tapping into their ability
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4 )

Grammar Corpus PLAY <Value> RTSP/1.0 \r\n
1 CSeq: <Value>\r\n

: | User-Agent: <Value>\r\n
Session: <Value>\r\n
Range: <Value>\r\n

\\n PLAY Grammar J

f (DMatch ‘ @Mark mutable
Grammar regions

PLAY rtsp://127.0.0.1:8554/aacAudioTest/ RTSP/1.0\r\n

CSeq: 4\r\n

User-Agent: ./testRTSPClient (LIVES55 Streaming Media v2018.08.28)\r\n
Session: 000022B8\r\n

Range: Npt=0.000-\r\n PLAY Request
\r\n

PLAY

-

Figure 4.7: Workflow of the grammar-based mutation using the PLAY request of
the RTSP protocol as the example.

to comprehend input grammar. However, the limitation posed by the conversation
overhead restricts the frequency of interactions with the LLM. In our approach, we
adopt a different strategy. LLMPF utilizes the extracted grammar to guide the
mutations. The fuzzer extracts the grammar just once, enabling it to incorporate the
grammar throughout the entirety of the fuzzing campaign. We leave opportunities
to escape the coverage plateau in Section 4.4.3. Here, we proceed to introduce the
workflow of mutation based on the extracted grammar.

In line 9 of Algorithm 3, the fuzzer chooses the message portion M for mutation as
part of the algorithm design. Let us assume M, consists of multiple client requests,
one of which is the PLAY client request of the RTSP protocol. Our mutation
approach guided by grammar is illustrated in Figure 4.7. It shows the workflow for
mutating one single RTSP PLAY client request. Specifically, when presented with
the PLAY client request, LLMPF first matches it with the corresponding grammar.
To expedite the matching process, we maintain the grammar corpus in the map
format: G = {type — grammar}. Here, type represents the types of client requests.
LLMPF uses the first line of each grammar as the label for message types. The

grammar corresponds to the concrete message grammar. Using the message type,

60



CHAPTER 4. TESTING STATEFUL PROTOCOLS

LLMPF retrieves the corresponding grammar. Subsequently, we employ regular
expressions (Regex) to match each header field in the message with the grammar,
marking regions as mutable falling under “(Value)”. In Figure 4.7, these mutable
regions identified are highlighted in blue. During mutation, LLMPF only selects
these regions, ensuring the messages retain valid formats. However, if no grammar
match is found, we consider all regions mutable.

To preserve the fuzzer’s capability of exploring some corner cases, we continue
to employ the structure-unaware mutation approach from the classical EMPF, as
demonstrated in line 16 of Algorithm 3. Nonetheless, LLMPF conducts structure-
aware mutations with a higher likelihood, considering that valid messages hold a

greater potential for exploring a larger state space.

4.4.2 Enriching Initial Seeds

Motivated by the ability of the LLM to generate new messages and insert
them into the appropriate positions within the provided message sequence (cf.
Section 4.3.2), we propose to enrich the initial seed corpus used for fuzzing (line 3
of Algorithm 3). However, there are several challenges that our approach must first
tackle: (i) How to generate new messages that carry the correct context information
(e.g., the correct session ID in the RTSP protocol)? (ii) How to maximize the
diversity of the generated sequences? (iii) How to prompt the LLM to generate the
entire modified message sequence from the given seed message sequence?

As for Challenge (i), we found that the LLM can automatically learn the required
context information from the provided message sequence. For instance, for our
experiments, PROFUZZBENCH already possesses some message sequences as initial
seeds (although they lack diversity). The initial seeds of PROFUZzZBENCH are
constructed by capturing the network traffic between the tested servers and the
clients. Thereby, these initial seeds contain correct and sufficient context information
from the servers. Hence, when prompting the LLM, we include the initial seeds from
ProFUZzZBENCH to facilitate the acquisition of the necessary context information.

As for Challenge (ii), the fuzzer determines which types of client requests are
missing in the initial seeds, i.e., what types of messages should be generated by the

LLM to enrich the initial seeds. In Section 4.4.1, we have obtained the grammar for
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all types of client requests; thus, identifying the missing types in initial seeds is not a
difficult issue. Let us revisit the grammar prompt shown in Figure 4.6. The prompt
includes the names of message types (i.e., PLAY and GET), and correspondingly,
the message names are also included in the model output (e.g., DESCRIBE and
SETUP). We utilize this information to maintain a set of message types: AllTypes
= {messageType}, and one map from grammars to the corresponding type: G271 =
{grammar — type}.

While detecting the missing message types, we first utilize the grammar corpus
GG obtained in Section 4.4.1 and the grammar-to-type map G2T to obtain existing
message types and maintain them into a set (i.e., FrxistingTypes). Consequently,
the missing message types are in the complement: MissingTypes = (AllTypes -
FEzisting Types). We then instruct the LLM to generate the missing types of messages
and insert them into the initial seeds; thereby, our approach is based on existing
initial seeds but enriches them. To avoid excessively long initial seeds, we evenly
select and add two missing types at a time in a given message sequence. This allows
us to control the length and diversity of the initial messages.

As for Challenge (iii), to ensure the validity of the generated message sequence,
we design our prompt in the continuation format (i.e., “the modified sequence of
client requests is:”). In practice, the obtained responses can be directly utilized as the
seeds, with the exception of removing the newline character (\n) at the beginning
or adding any missing delimiters (\r\n) at the end. An illustrative example is
presented in Figure 4.8. In this case, we instruct the LLM to insert two types of
messages, “SET_PARAMETER” and “TEARDOWN” into the given sequence.

The modified sequence is shown on the right.

4.4.3 Surpassing Coverage Plateau

Exploring unseen states poses a challenge for stateful fuzzers. To better under-
stand this challenge, let us revisit the RTSP state machine illustrated in Figure 4.2.
Assume the server is currently in the READY state after accepting a sequence
of client requests. If the server intends to transition to different states (e.g., the
PLAY or RECORD state), the client must send corresponding PLAY or RECORD

requests. In the context of the fuzzing design, the fuzzer assumes the role of the
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For the|RTSP protocol, the following
is one sequence of client requests:

DESCRIBE rtsp://...

DESCRIBE rtsp://....
SETUP rtsp://...
SETUP rtsp://...

PLAY rtsp://...
PLAY rtsp://...

SET_PARAMETER rtsp://...

Please add the|SET PARAMETER
and TEARDOWN client requests in
the accurate locations, and the

modified sequence of client request is:j

\C

TEARDOWN rtsp://...

- J

Figure 4.8: Example of the model prompt and the responding response for enriching
initial seed corpus (we omit the details of messages).

client. While the fuzzer possesses the capability to generate messages that induce
state transitions, it requires the exploration of a considerable number of seeds. There
is a high likelihood that the fuzzer may fail to generate suitable message orders to
cover the desired state transitions [126, 8]. Consequently, a substantial portion of
the code space remains unexplored. Therefore, it is important to explore additional
states in order to thoroughly test stateful servers. Unfortunately, accomplishing this
task proves challenging for existing stateful fuzzers.

In this work, when the fuzzer becomes unable to explore new coverage, we refer to
this scenario as the fuzzer entering a coverage plateau. Motivated by the study results
in Section 4.3.3, we utilize the LLM to assist the fuzzer in surpassing the coverage
plateau. This occurs when the fuzzer is unable to generate interesting seeds within a
given time period. We quantify this duration based on the number of uninteresting
seeds continuously generated by the fuzzer. Specifically, throughout the fuzzing
campaign, we maintain a global variable called PlateaulLen to keep track of the
number of uninteresting seeds continuously observed thus far. Before commencing
the fuzzing campaign, PlateauLen is initialized to 0 (Line 4 of Algorithm 3). During
each fuzzing iteration, PlateauLen is reset to 0 if we encounter a seed that crashes
the program (line 26) or when the coverage increases (line 30). Otherwise, if the

seed is deemed uninteresting, PlateauLen is incremented by 1 (line 32).
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( 1
s | Prompt Template | ~N
In the [protocol-name] protocol, the communication history between
the [protocol-name] client and the [protocol-name] server is as follows:
Communication history:

[Put the communication history here]

The next client request that can induce the server’s state transition to
other states is:

Desired format of one real client request:

[Put one real message example from the initial seed corpus here]

N\ J

Figure 4.9: The prompt template for obtaining the next client request that can
induce the server’s state transition to other states.

Based on the value of PlateauLen, we determine whether the fuzzer has entered
the coverage plateau. If PlateauLen does not exceed MaxPlateau, the predefined
maximum length of the coverage plateau (line 11), our LLMPF mutates messages
using the strategy introduced earlier. The value of MazPlateau is specified by users
and provided to the fuzzer. However, when PlateaulLen surpasses MaxPlateau, we
consider the fuzzer to have entered the coverage plateau. In such case, LLMPF
will utilize the LLM to overcome the coverage plateau (lines 19-21). To achieve
this, we employ the LLM to generate the next suitable client requests that may
induce state transitions to other states. The prompt template is shown in Figure 4.9.
We provide the LLM with the communication history between servers and clients;
i.e., the client requests and the corresponding server responses. To ensure that the
LLM generates an authentic message rather than message types or descriptions,
we demonstrate the desired format by extracting any message from the initial seed
corpus. Subsequently, the LLM infers the current states and generate the next client
request M,'. This request acts as a mutation of the original M, and is inserted into
the message sequence M’ which is then sent to the server.

Let us reconsider the RTSP example. Initially, the server is in the INIT state.
Upon receiving the message sequence M; = {SETUP}, it responds with Ry =
{200-OK}, transitioning to the READY state. Subsequently, the fuzzer encounters a
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coverage plateau, where it fails to generate interesting seeds. Upon noticing this,
we stimulate the LLM by presenting the communication history H = {SETUP,
200-OK}. In response, the LLM is highly likely to reply a PLAY or RECORD
message, as indicated by the study results in Section 4.3.3. These messages lead the

server to transition to a different state, overcoming the coverage plateau.

4.4.4 Implementation

We implemented this LLM-guided protocol fuzzing (c¢f. Algorithm 3) into
AFLNET [126], called CHATAFL, to test protocols written in C/C++. AFLNET is
one of the most popular mutation-based open-source protocol fuzzers.® It maintains
an inferred state machine and uses state and code feedback to guide the fuzzing
campaign. The identification of the current state involves parsing the response codes
from servers’ response messages. A seed is considered interesting if it increases state
or code coverage. CHATAFL continues to utilize this approach while seamlessly

integrating the three aforementioned strategies into the AFLNET framework.

4.5 Experimental Design

To evaluate the utility of Large Language Models (LLMs) for tackling the
challenges of mutation-based protocol fuzzing of text-based network protocols, we

seek to answer the following questions:

RQ.1 State coverage. How much more state coverage does CHATAFL achieve

compared to baseline?

RQ.2 Code coverage. How much more code coverage does CHATAFL achieve

compared to baseline?

RQ.3 Ablation. What is the impact of each component on the performance of
CHATAFL?

RQ.4 New bugs. Is CHATAFL useful in discovering previously unknown bugs in

widely-used and extensively-tested protocol implementations?

6Available at https://github.com/aflnet/aflnet; 689 stars at the time of writing.
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To answer these questions, we follow the recommended experimental design for

fuzzing experiments [89, 23].

4.5.1 Configuration Parameters

In order to decide saturation, we set the maximum length of the coverage plateau
(MazPlateau) to 512 non-coverage-increasing message sequences. This value was
determined through a heuristic screening approach. In preliminary experiments, we
found 512 to be a reasonable setting for MaxPlateau, achieved within approximately
10 minutes. Setting the value too small would cause CHATAFL to overly query the
LLM, while setting it too large would lead CHATAFL to remain stuck for too long
instead of benefiting from our optimization (cf. Section 4.4.3). Once the coverage
plateau is reached, CHATAFL prompts the LLM to generate message sequences
that surpass the coverage plateau (Section 4.4.3). To limit the cost of LLM prompts,
we set a quarter of MaxPlateau as the maximum number of ineffective prompts.

As a large language model (LLM), we used the gpt-3.5-turbo model. In accordance
with the recommendation to employ a low temperature for precise and factual
responses [132, 157], a temperature of 0.5 was used to extract the grammar and
enrich the initial seeds (cf. Section 4.4.1 & Section 4.4.2). To generate new messages,
J. Qiang et al. [74] found for greybox fuzzing, a temperature of 1.5 is optimal. Hence,
we set a temperature of 1.5 to break out of the coverage plateau (cf. Section 4.4.3).
When extracting the grammar, for the self-consistency check [157], we use five
repetitions. As confirmed in our case study (c¢f. Section 4.3.1), we found five

repetitions sufficient to filter out incorrect cases.

4.5.2 Benchmark and Baselines

Table 4.2 presents the subject programs that are used in our evaluation. Our
benchmark consists of six text-based network protocol implementations, including
five widely-used network protocols (i.e., RT'SP, FTP, SIP, SMTP, and DAAP). These
subject programs cover all text-based network protocols in PROFUZZBENCH, a
widely-used benchmark for evaluating stateful protocol fuzzers [126, 114, 130, 141].
The protocols cover a wide range of applications, including streaming, messaging, and

file transfer. The implementations are mature and widely used both in enterprises
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Table 4.2: Detailed information about our subject programs.

Subject Protocol #LOC #Stars Version
Liveb55 RTSP 57k 631 31284aa
ProFTPD FTP 242k 445  6le62le
PureFTPD FTP 29k 572 10122d9
Kamailio SIP 939k 1,915 a220901
Exim SMTP 118k 662 d6abalb
forked-daapd | DAAP 79k 1,718  2cal0d9

Table 4.3: Average number of state transitions for our CHATAFL and the baselines
AFLNET and NSFUzz in 10 runs of 24 hours.

. Comparison with AFLNet Comparison with NSFuzz

Subject ChatAFL = =
AFLNet Improv SpedUp A;3|NSFuzz Improv SpedUp A;,
Live555 160.00 83.80 90.98% 228.62x 1.00{ 90.20 77.38% 63.09x 1.00
ProFTPD 246.70| 172.60 42.91%  7.12x 1.00| 181.20 36.11%  4.97x 1.00
PureFTPD 281.80| 216.90 29.91%  5.61x 1.00| 206.10 36.72%  7.94x 1.00
Kamailio 130.00 99.90 30.14%  5.53x 1.00| 105.30 23.42%  4.58x 1.00
Exim 108.40 62.70 72.98% 40.27x 1.00| 69.50 55.97% 13.25x 1.00
forked-daapd 25.40 21.40 18.65%  1.58x 1.00| 20.10 26.52%  1.79x 0.86
AVG \ —] — 47.60% 48.12x | — 42.69% 15.94x —

Table 4.4: Average number of states and the improvement of CHATAFL compared
with AFLNET and NSFuzz.

Subject ‘ ChatAFL ‘ AFLNet Improv ‘ NSFuzz Improv ‘ Total
Liveb55 14.20 10.00  41.75% 11.70  21.16% 15
ProFTPD 28.70 22.60  26.84% 24.30  17.81% 30
PureFTPD 27.90 25.50 9.37% 24.00  16.20% 30
Kamailio 17.00 14.00  21.43% 15.10 12.50% 23
Exim 19.50 14.10  38.19% 14.40  35.42% 23
forked-daapd 12.10 8.70  39.74% 8.00  51.39% 13
AVG — —  20.55% | — 5% —

and by individual users. For each protocol, we selected implementations that are
popular and suitable for use in real-world applications. Security flaws in these
projects can have wide-reaching consequences.

As baseline tools, we selected AFLNET and NSFuzz-v. Since our tool CHATAFL
has been implemented into AFLNET, every observed difference between CHATAFL

and AFLNET can be attributed to our changes to implement LLM guidance.
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AFLNET [126] is a popular open-source, state-of-the-art, mutation-based, code-
and state-guided protocol fuzzer. NSFuzz-v [130] extends AFLNET to get a better
handle on the protocol state space. It identifies state variables through static analysis
and uses state variable values as fuzzer feedback to maximize the coverage of the
state space. The underlying idea is very similar to that of SGFuzz [8] which was
published around the same time but implemented into LibFuzzer [98]. SGFUzz also
uses the sequence of state variable values to implicitly capture the coverage of the
protocol state space. Other protocol fuzzers, like STATEAFL [114] and BooFuzz
[81] have previously been (unfavourably) compared to AFLNET or NSFuzz-v, i.e.,

the tools that we use as baselines.

4.5.3 Variables and Measures

In order to evaluate the effectiveness of CHATAFL versus the baseline fuzzers,
we measure how well the protocol fuzzers cover the state space of the protocol and
the code of the protocol implementation. The key idea is that a protocol fuzzer
cannot find bugs in uncovered code or states. However, coverage is only a proxy
measure for the bug-finding ability of a fuzzer [89, 23]. Hence, we complement the
coverage results with bug-finding results.

Coverage. We report the coverage of both, the code and the state space.
To evaluate code coverage, we measure the branch coverage achieved using the
automated tooling provided by the benchmarking platform PROFuzzBENCH [115].
To evaluate the coverage of the state space, we measure (i) the number of distinct
states (state coverage) and the number of transitions between these states (transition
coverage) using automatic tooling provided by the benchmarking platform. Like
the authors of AFLNET and PROFUzZzZBENCH, in the absence of ground truth
state machines for the tested protocols, we define distinct states traversed by a
message sequence the set of unique response codes that are returned by the server.
To mitigate the impact of randomness, we report the average coverage achieved
across 10 repetitions of 24 hours.

Bugs. To identify bugs, we execute the tested programs under the Address
Sanitizer (ASAN). CHATAFL stores the crashing message sequences, and then we
use the AFLNet-replay utility provided by AFLNET to reproduce the crashes and
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debug the underlying causes. We distinguish different bugs by analyzing stack traces
reported by ASAN. Finally, we report these bugs to their respective developers for

confirmation.

4.5.4 Experimental Infrastructure

All experiments were conducted on a machine equipped with an Intel(R) Xeon(R)
Platinum 8468V CPU. This machine has 192 logical cores running at 2.70GHz. It
operates on Ubuntu 20.04.2 LTS with 512GB of main memory.

4.6 Experimental Results

4.6.1 State Space Coverage (RQ.1)

Transitions. Table 4.3 shows the average number of state transitions covered
by our tool CHATAFL versus the two baselines AFLNET and NSFuzz-v. To
quantify the improvement of CHATAFL over the baselines, we report the percentage
improvement in terms of transition coverage achieved in 24 hours (Improv), how
much faster CHATAFL can achieve the same transition coverage as the baseline in
24 hours (Speed-up), and the probability that a random campaign of CHATAFL
outperforms a random campaign of the baseline (12112, Vargha-Delaney measure of
effect size [6]).

Compared to both baselines, CHATAFL exercised a greater number of state
transitions and significantly sped up the state exploration process. On average,
CHATAFL exercised 48% more state transitions than AFLNET. Specifically, in
the Liveb55 subject, CHATAFL increased the number of state transitions by 91%
compared to AFLNET. Furthermore, CHATAFL explored the same number of
state transitions 48x faster than AFLNET, on average. In comparison to NSFuzz,
CHATAFL covered 43% more state transitions on average and achieved the same
number of state transitions 16x faster. For all subjects, the Vargha-Delaney effect
size 12112 > 0.86 indicates a substantial advantage of CHATAFL over both AFLNET
and NSFUZzz in exploring state transitions.

States. Table 4.4 shows the average number of states covered by our tool

CHATAFL versus the two baselines AFLNET and NSFUzz-v and the corresponding
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Table 4.5: Average number of branches covered by our CHATAFL and the baselines
AFLNET and NSFUzz in 10 runs of 24 hours.

. Comparison with AFLNet Comparison with NSFuzz

Subject ChatAFL = =
AFLNet Improv SpedUp A;3|NSFuzz Improv SpedUp Ajs
Liveb55 2,928.40| 2,860.20 2.38%  9.61x 1.00|2,807.60 4.30% 21.60x 1.00
ProFTPD 5,143.30| 4,763.00 7.99%  4.04x 1.00|4,421.80 16.32% 21.96x 1.00
PureFTPD 1,134.30( 1,056.30 7.39%  1.60x 0.91|1,041.10 8.96% 1.60x 1.00
Kamailio 10,064.00| 9,404.10 7.02% 12.69x 1.00|9,758.70 3.13%  2.95x 1.00
Exim 3,789.40| 3,647.60 3.89%  4.27x 1.00(3,564.30 6.32% 11.33x 0.77
forked-daapd| 2,364.80| 2,227.10 6.18%  4.63x 1.00(2,331.30 1.43% 1.66x 0.70
AVG — — 581% 6.14x — —  6.74% 10.18x —

Table 4.6: Improvements in terms of branch coverage compared with baseline if we
enable each strategy one by one.

) CL1 CL2 CL3
Subject CLO = = =
Improv SpedU A;s |Improv SpedU A;s|Improv SpedU A;,
Liveb55 2,860.20| 0.28% 1.60x 0.89| 1.49% 8.45x 1.00| 2.38%  9.61x 1.00
ProFTPD |4,763.00| 3.63% 2.45x 0.60| 5.27% 3.69x 0.63| 7.99% 4.04x 1.00
PureFTPD |1,056.30| 6.67% 1.34x 0.61| 6.70% 1.36x 0.86| 7.39% 1.60x 0.91
Kamailio 9,404.10] 0.60% 1.75x 0.96| 2.24% 8.92x 1.00| 7.02% 12.69x 1.00
Exim 3,647.60| 2.36% 2.48x 0.52| 2.54% 2.36x 0.58| 3.89% 4.27x 1.00
forked-daapd |2,227.10| 4.67% 2.48x 0.68| 4.93% 2.98x 1.00| 6.18%  4.63x 1.00
AVG \ —| 3.04% 2.02x —|386% 4.63x —|581% 6.14x —

percentage improvement. Clearly, CHATAFL outperformed both AFLNET and
NSFuzz. Specifically, CHATAFL covered 30% more states than AFLNET and 26%
more states than NSFuUzz, respectively. To put the number of covered states in
the context of the total number of reachable states, the last column of Table 4.4
shows the total number of states that have been covered by any of the three tools
in any of the ten runs of 24 hours. We can see that the average fuzzing campaign of
CHATAFL covers almost all reachable states. For instance, in the case of Live555,
CHATAFL covers an average of 14.2 out of 15 states, while AFLNET and NSFuzz
only manage to cover 10 states and 11.7 states, respectively. Only for Kamailio
CHATAFL covers a smaller proportion of the reachable state space (avg. 17; max.
20 of 23 states). Nevertheless, CHATAFL still outperforms the baselines in terms of

state coverage.
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In terms of state coverage, on average, CHATAFL covers 48% and 43% more
state transitions than AFLNET and NSFuzz, respectively. Compared to the
baseline, CHATAFL covers the same number of state transitions 48 and 16 times

faster, respectively. In addition, CHATAFL also explores a substantially larger

proportion of the reachable state space than both AFLNET and NSFuzz.

4.6.2 Code Coverage (RQ.2)

Table 4.5 shows the average branch coverage achieved by CHATAFL and the
baselines AFLNET and NSFuzz across 10 fuzzing campaigns of 24 hours. To
quantify the improvement of CHATAFL over the baselines, we report the percentage
improvement in terms of branch coverage in 24 hours (Improv), how much faster
CHATAFL can achieve the same branch coverage as the baseline in 24 hours (Speed-
up), and the probability that a random campaign of CHATAFL outperforms a
random campaign of the baseline (/112).

As we can see, for all subjects, CHATAFL covers more branches than both
baselines. Specifically, CHATAFL covers 5.8% more branches than AFLNET with a
range from 2.4% to 8.0%. When compared to NSFuzz, CHATAFL covers 6.7% more
branches. In addition, CHATAFL covers the same number of branches 6x faster
than AFLNET and 10x faster than NSFuzz. For all subjects, the Vargha-Delaney
effect size flu > 0.70 demonstrates a substantial advantage of CHATAFL over both

baselines in terms of code coverage achieved.

In terms of code coverage, on average, CHATAFL covers 5.8% and 6.7% more
branches than AFLNET and NSFuUzz, respectively. In addition, CHATAFL

achieves the same number of branches 6 and 10 times faster than AFLNET and

NSFuzz, respectively.

4.6.3 Ablation Studies (RQ.3)

CHATAFL implements three strategies to interact with the LLM to overcome

the challenges of protocol fuzzing:

o S4) grammar-guided mutation,
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o Sp) enriching initial seeds, and

» Sc) surpassing coverage plateau.

To evaluate the contribution of each strategy towards the increase in coverage,

we conducted an ablation study. For this purpose, we developed four tools:
o CLO: AFLNET, i.e., all strategies all are disabled,
o CL1: AFLNET plus grammar-guided mutation (S,),

o CL2: AFLNET plus grammar-guided mutation (S4) and enriching initial
seeds (Sg), and

o CL3: AFLNET plus all strategies (S4 + Sp + S¢), i.e., CL3 is CHATAFL.

Table 4.6 shows the results in terms of branch coverage in a similar format we
have used previously (Improv, Speed-up, and 12112). However, compared to previous
tables, crucially the results in terms of improvement, speed-up, and Ay, effect size are
shown in the inverse direction. For instance, for ProFTPD, the configuration CL3
(i.e., CHATAFL) achieves 8% more branch coverage than the baseline configuration
CLO (i.e., AFLNET). The difference in improvement between two neighboring
configurations (shown in parenthesis) quantifies the effect of the strategy that is
enabled. For instance, for ProFTPD, the configuration CL2 only achieves a 5.3%
improvement, which is 2.7 percentage points (pp) less than CL3, demonstrating the
effectiveness of strategy Sc which was enabled from CL2 to CL3.

Overall. All the strategies contributed to the improvement of branch coverage,
and none of the strategies had a negative impact on branch coverage. Specifically,
CL1 resulted in an average increase of 3.04% in branch coverage compared to CLO.
CL2 exhibited an average increase of 3.9%, while CL3 showed the highest average
increase of 5.9% in branch coverage. Furthermore, CL1 achieved the same branch
coverage 2x faster than CLO, CL2 achieved the same branch coverage with a 5x
speed-up, and CL3 demonstrated a 6x faster achievement. Therefore, enabling all
three strategies proved to be the most effective approach.

Strategy S4. We evaluated the impact of strategy Sa (i.e., grammar-based
mutation). In ProFTPD, PureFTPD, Exim, and forked-daapd, CL1 increased the
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Table 4.7: Statistics of nine zero-day vulnerabilities discovered by CHATAFL in
widely-used and extensively-tested protocol subjects.

ID‘Subject Version ‘Bug Description

Live555  2023.05.10|Heap use after free in handling PLAY client requests

Live555  2023.05.10|Heap use after free in handling SETUP client requests
Liveb555  2023.05.10|Use after return in handling DESCRIBE client requests
Livebb5  2023.05.10|Use after return in handling SETUP client requests

Liveb55  2023.05.10|Heap buffer overflow in handling stream

Liveb55  2023.05.10|Memory leaks after allocating memory for stream parameters
Live555  2023.05.10|Heap use after free in calling sendDataOverTCP

ProFTPD 61e621e |Heap buffer overflow while parsing FTP commands

Kamailio a220901 |[Memory leaks after allocating memory in parsing config files

© 00 J O U = W N

branch coverage by 2.4% to 6.7%. However, in the remaining two subjects Live555
and Kamailio, although CL1 also improved the branch coverage, it only increased
by 0.28% and 0.60%, respectively. Upon investigating the implementations of these
two subjects, we discovered that their implementations do not strictly adhere to the
message grammar. The messages with missing or incorrect header fields can still be
accepted by their servers.

Strategy Sp. When compared to CL1, which only enabled strategy S4, we
observed the contribution of strategy Sp. On average, enabling the strategy led to
0.82% more branches covered. Strategy Sp significantly increased branch coverage in
Live555, ProFTPD, and Kamilio by 1.21% to 1.64%, while it only increased branch
coverage by about 0.03% to 0.26% in the other three subjects. For the latter three
subjects, PROFUZZBENCH included nearly all types of client requests; therefore,
there is not much chance to increase seed diversity.

Strategy S¢. When comparing CL3 to CL2, we can observe that enabling
strategy S¢ significantly increased the branch coverage by 0.69% to 4.78%. Specifi-
cally in ProFTPD and Kamailio, strategy S helps increase 2.72% and 4.78% branch

coverage, respectively.

Overall, every strategy contributes to varying degrees of improvement in branch
coverage. Enabling strategies S4, Sg, and S¢ one by one allows us to achieve the

same branch coverage 2.0, 4.6, and 6.1 times faster, respectively.
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4.6.4 Discovering New Bugs (RQ.4)

In this experiment, we evaluate the utility of CHATAFL by checking whether
it is able to discover zero-day bugs in our subject programs. For this purpose, we
utilized CHATAFL on the latest versions of our subjects, running 10 repetitions
over 24 hours. In the course of the experiment, CHATAFL produced promising
results, as demonstrated in Table 4.7.

A total of nine (9) unique and previously unknown vulnerabilities were discovered
by CHATAFL, despite extensive testing conducted by AFLNET and NSFuzz.
Vulnerabilities were found in three of the six tested implementations and encompass
various types of memory vulnerabilities, including use-after-free, buffer overflow, and
memory leaks. Moreover, these bugs have potential security implications that can
result in remote code execution or memory leakage. We reported these bugs to the
respective developers. Out of the 9 bugs, 7 have been confirmed by the developers,
and 3 have already been fixed by now (the time of paper submission). We have
requested CVE IDs for the confirmed bugs.

We utilized AFLNET and NSFUZzz to detect these 9 vulnerabilities. Both
AFLNET and NSFUzz were configured with the same subject versions to run an
equal duration (i.e., 10 repetitions over 24 hours) as CHATAFL. However, AFLNET
was only able to discover three of them (i.e., bugs #5, #6, and #9), and NSFuzz
was able to discover four of them (i.e., bugs #5, #6, #7, and #9). In addition,
AFLNET and NSFUzz did not find any additional bugs.

To understand the contributions of the LLM guidance, we conducted a more
detailed investigation of Bug #1, a heap-use-after-free vulnerability. This bug
occurs when the allocated memory for the usage environment of a particular track is
deallocated during processing PAUSE client requests. Subsequently, this memory is
overwritten upon receiving the PLAY client request, leading to a heap-use-after-free
issue.

In order to trigger this bug, it is necessary to involve several types of client
requests: SETUP, PLAY, and PAUSE. However, the PAUSE client requests were not
included in the initial seeds used in previous works. While it is theoretically possible
for fuzzers to generate such client requests, it is unlikely. We examined all the seeds

generated by AFLNET and NSFUZz in our experiments and found that none of
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them produced the PAUSE client requests in any of the runs. However, CHATAFL
prompts the LLM to add the PAUSE client requests during the enrichment of the
initial seeds (cf. Section 4.4.2).

Once the required client requests are available, triggering this bug necessitates
sending specific messages to the server that cover particular states and state transi-
tions. Specifically, these messages should cover three states as shown in Figure 4.2:
INIT, READY, and PLAY. Additionally, several state transitions need to be covered:
INIT — READY, READY — PLAY, PLAY — READY, and then READY —
PLAY again. The fuzzer itself has the potential to cover these states and state
transitions with diverse seeds. Additionally, the LLM can provide guidance to the
fuzzer in order to cover them. For instance, during the PLAY states, the LLM
can generate the next client request, PAUSE, to execute the PLAY — READY
transition (cf. Section 4.4.3).

Lastly, we should not ignore the contribution of structure-aware mutation. To
trigger this bug, a minimal message sequence is required: SETUP — PLAY —
PAUSE — PLAY. Omitting any of these messages will render the bug untriggerable.
Existing mutation-based fuzzers, with their structure-unaware mutation approach,
have a high likelihood of breaking the message structures and rendering them invalid.
In contrast, by utilizing the grammar derived from the LLM, structure-aware

mutation efficiently maintains the validity of messages.

N
CHATAFL discovered 9 distinct, previously unknown bugs while AFLNET and

NSFuzz only discovered 3 and 4 of those, respectively. AFLNET and NSFUzz did
not find any additional bugs, either. Seven of the nine bugs (7/9) are potentially

security-critical.

4.6.5 Experience on Manual Effort

During the CHATAFL’s usage, no manual effort was needed to run the experi-
ments for all protocols shown in Table 4.2. Specifically, when extracting grammar
from the LLM, we utilize the prompt shown in Figure 4.6. During protocol testing,
only the protocol name (e.g., RT'SP) in the Instruction part is changed. Under
Desired Format, Shot-1 and Shot-2 serve as examples for the LLM to print the
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grammar in the given machine-readable structure so that CHATAFL can parse the
printed grammar. We spent an hour obtaining these exemplary shots, but this setup
is a one-time effort; subsequent testing of other protocols requires no additional
manual effort. With the grammar obtained from the LLM, the structure-aware
mutations are fully automatic (c¢f. Section 4.4.1).

To enrich initial seeds, we utilize the prompt template in Figure 4.8. The
entire prompt is automatically generated from this prompt template when utilizing
CHATAFL for protocol testing. The protocol name and an existing message sequence
are automatically pasted into this template. In addition, the names for the message
types under generation are sourced from the model output in Figure 4.6. In soliciting
the LLM’s assistance to overcome coverage plateaus, we generate the complete
prompt using the template in Figure 4.9. Therefore, there is no manual effort needed
to utilize CHATAFL.

CHATAFL is designed to test text-based protocols with publicly available RFCs.
The specifications for most protocols are documented in these publicly available
RFCs, which are included as training data for the LLM. However, for certain
proprietary protocols, whose RFCs are not included in the LLM training data,
CHATAFL may not perform optimally when testing them.

4.7 Conclusion

Protocol fuzzing is an inherently difficult problem. As compared to file processing
applications, where the inputs to be fuzzed are given as file(s), protocols are typically
reactive systems that involve sustained interaction between system and environment.
This poses two separate but related challenges: a) to explore uncommon deep
behaviours leading to crashes, we may need to generate complex sequences of valid
events and b) since the protocol is stateful, this also implicitly involves on-the-fly
state inference during fuzz campaign (since not all actions may be enabled in a
state). Moreover, the effectiveness of fuzzing heavily depends on the quality of the
initial seeds, which serve as the foundation for fuzzing generation.

In this work, we have demonstrated that for protocols with publicly available
RFCs, LLMs prove to be effective in enriching initial seeds, enabling structure-aware

mutation, and aiding in state inference. We evaluated CHATAFL on a wide range
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of protocols from the widely-used PROFUZzZBENCH suite. The results are highly
promising: CHATAFL covered more code and explored a larger state space in
significantly less time compared to the baseline tools. Furthermore, CHATAFL
found 9 zero-day vulnerabilities, while the baseline tools only discovered 3 or 4 of

them.
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Chapter 5

Testing Stateful Distributed Sys-
tems

In this chapter, we present MALLORY: the first framework for greybox fuzz-
testing of distributed systems. Unlike popular blackbox distributed system fuzzers,
such as JEPSEN, that search for bugs by randomly injecting network partitions
and node faults or by following human-defined schedules, MALLORY is adaptive. It
exercises a novel metric to learn how to maximize the number of observed system
behaviors by choosing different sequences of faults, thus increasing the likelihood
of finding new bugs. Our approach relies on timeline-driven testing. MALLORY
dynamically constructs Lamport timelines of the system behaviour and further
abstracts these timelines into happens-before summaries, which serve as a feedback
function guiding the fuzz campaign. Subsequently, MALLORY reactively learns
a policy using Q-learning, enabling it to introduce faults guided by its real-time
observation of the summaries.

We have evaluated MALLORY on a diverse set of widely-used industrial distributed
systems. Compared to the start-of-the-art blackbox fuzzer JEPSEN, MALLORY
explores 54.27% more distinct states within 24 hours while achieving a speed-up
of 2.24x. At the same time, MALLORY finds bugs 1.87x faster, thereby finding
more bugs within the given time budget. MALLORY discovered 22 zero-day bugs
(of which 18 were confirmed by developers), including 10 new vulnerabilities, in
rigorously-tested distributed systems such as Braft, Dqlite, and Redis. 6 new CVEs

have been assigned.
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5.1 Introduction

A common approach to finding bugs in distributed systems in practice is stress-
testing, in which the system is subjected to faults (e.g., network partitions, node
crashes) and its behaviour is checked against a property-based specification. This
approach is implemented by tools like JEPSEN [88], a testing framework that is
well-known for its effectiveness in finding consistency violations in distributed
databases [101]. An alternative to stress-testing is systematic testing, commonly
known as software model checking. In this approach, the system under test is placed
in a deterministic event simulator and its possible schedules are systematically
explored [93, 100, 49, 169, 45]. The simulator exercises different interleavings
of system events by reordering messages and injecting node and network failures.
Systematic testing is well-suited to finding “deep” bugs, which require complex event
interleavings to manifest, but is relatively heavyweight, as it requires integration with
the system under test either in the form of a manually-written pervasive test harness
or a system-level interposition layer. While not as effective at finding deep bugs,
stress-testing is widely used due to its low cost of adoption and good effort-payout

ratio.

Problem statement. We make the following observation: in terms of the ease-
of-use/effectiveness trade-off, blackbox fuzzing of sequential programs is similar
to stress-testing of distributed systems, while whitebox fuzzing corresponds to
software model checking. However, unlike in the sequential case, there is no greybox
fuzzing approach for distributed systems. Our goal is to explore this opportunity by
extending JEPSEN with the ability to perform observations at runtime about the
behaviour of the system and to adapt its testing strategy based on feedback derived
from those observations. In doing so, we are not aiming to match the thoroughness
of systematic testing, but to provide a more effective and principled way to conduct
stress-testing while maintaining its ease of use.

Challenges. In the last decade, developing a greybox fuzzer for sequential programs
has become more streamlined, due to fuzzers like AFL [167]. In short, AFL works by
generating and mutating inputs to a program being tested, aiming to trigger crashes
or other unexpected behavior. It uses a feedback-driven approach, keeping track of

inputs that cause the program to take new code paths and prioritizing mutations
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that are likely to explore these paths further. Attempting to adapt the greybox

approach to JEPSEN-style distributed system testing leads us to three questions:

Q1 What is the space of inputs to a distributed system that could be explored
adaptively?

Q2 What observations are relevant for a distributed system and how should they

be represented?
Q3 How can one obtain feedback from the observations?

Question Q1 is already answered by JEPSEN: the role of “inputs” for distributed
systems is played by schedules, that can be manipulated by injecting faults. Even
though JEPSEN can control the fault injection, in the absence of a good feedback
function, it (a) requires human-written generators to explore the domain of schedules
if something more than random fault injection is required [4] and (b) repeatedly
explores equivalent schedules.

To answer Q2, we recall perhaps the most popular graphical formalism to
represent interactions between nodes in distributed systems: so-called Lamport
diagrams (a.k.a. timelines), i.e., graphs showing relative positions of system events,
as well as causality relations between them [90, 104]. Such diagrams have been
used in the past to visualize executions in distributed systems [17]. We use them
as distributed analogues of “new code paths” from sequential greybox fuzzing. In
other words, being able to observe and record new shapes of Lamport diagrams is
an insight that brings AFL-style fuzzing to a distributed world.

To make our approach practical, we also need to address Q3. The problem with
using observed Lamport diagrams to construct a feedback function is that in practice,
no two different runs of a distributed system will produce the same timeline. That
is, such new observations will always produce new feedback, even though in practice
many runs are going to be equivalent for the sake of testing purposes—something we
need to take into account.! As a solution, we present a methodology for extracting

feedback from dynamically observed timelines by abstracting them into concise

LA sequential analogue of concrete distributed timelines would be a trace of all memory
operations—too precise to recognise equivalent executions.
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happens-before summaries, which provide the desired trade-off between the feedback

function’s precision and effectiveness.

Contributions. The solutions to Q1-Q3 provide a versatile conceptual framework
for greybox fuzzing of distributed systems. Building on these insights, we present
our main practical innovation: MALLORY, the first greybox fuzzer for distributed
systems. Unlike the blackbox testing approach of JEPSEN that requires human-
written schedule generators, MALLORY reactively learns them by (a) observing the
behaviour of the system under test as it executes and (b) rewarding actions that
uncover new behaviour. Below, we detail the design, implementation, and evaluation

of MALLORY.

o Timeline-driven testing: dynamically constructing Lamport diagrams (time-
lines) of the system under test as it runs, and further abstracts the timelines
into happens-before summaries. It is used to define a feedback function guiding

greybox fuzzing.

o Reactive fuzzing: a reactive method for making optimal decisions to achieve
maximised behaviour diversity. It reactively learns a policy using Q-learning
to decide what actions to take in observed states, to incrementally construct a

schedule.

o End-to-end implementation of MALLORY: a fuzzing framework for distributed
systems. MALLORY extends the widely used JEPSEN framework—MALLORY
can be seen as an adaptive generator of schedules for JEPSEN tests. The tool

is publicly available at

https://github.com/dsfuzz/mallory

o Comprehensive evaluation of MALLORY on several widely-used industrial
distributed system implementations. In our experiments, MALLORY covers
54.27% more distinct states within 24 hours and achieves the same state
coverage about 2.24x faster than JEPSEN. In terms of reproducing existing
bugs, MALLORY speeds up the bug finding by 1.87x and finds 5 more bugs

compared to JEPSEN. Moreover, in rigorously-tested distributed systems,
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MALLORY found 22 previously unknown bugs, including 10 new security
vulnerabilities and 6 newly assigned CVEs. Out of these 22 bugs, 18 bugs have
been confirmed by their respective developers. In our experiments, JEPSEN

could only detect 4 of these bugs.

5.2 Overview

In this section, we illustrate the workflow of our technique for adaptively detecting

anomalies in distributed systems.

5.2.1 Bugs in Distributed Systems

As a motivating example, let us consider a known bug in the implementation of
the Raft consensus protocol [118] used by Dqlite, a widely-used distributed version
of SQLite developed by Canonical.?

The purpose of using a consensus protocol in a distributed system is to ensure
the system maintains a consistent and reliable state even in the presence of faults.
In Raft, one of the most widely used consensus protocols, a single leader accepts
client requests and replicates them to all nodes that persist them as log entries.
Conflicting entries in a Raft cluster can appear when different nodes receive different
log entries during a network partition. Over time, the number of replicated entries
might grow very large, which, in turn, might cause issues if certain nodes need to be
brought up-to-date after having experienced a temporary downtime. To address this
issue, Raft periodically takes a snapshot of the current system state, discarding old
log entries whose outcome is reflected in the snapshot. Additionally, nodes can be
removed from the cluster or join it, thus changing the configuration of the system
as it runs. When a configuration change is initiated, the current leader replicates
a configuration change entry to all the nodes in the cluster. A new configuration
becomes permanent once it has been agreed upon and committed by a majority of
the nodes, yet a server starts using it as soon as the configuration entry is added
to its log, even before it is committed [118, §6]—a fact that is important for our

example. If there is a failure during the process of agreeing on a new configuration,

2Available at https://dqlite.io; 3.4k stars on GitHub at the time of writing.
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145 int membershipRollback (struct raft *r){

146 500

158 // Fetch last committed configuration entry
159 entry = logGet (&r->log, r->config_index);
160 assert (entry != NULL);

176 }

986 static int deleteConflictingEntries (){

987 500

1007 // Discard uncommitted config changes

1008 if (uncommitted_config_index >=entry_index){
1009 rv = membershipRollback(r);

1010 }

1042 %

Code 5.1: Simplified Dglite code for membership rollback.

such as a network partition, the new configuration may not be fully replicated to
the majority, in which case the leader node will attempt to perform a membership
rollback by adopting the last committed configuration entry from its log.

The bug in question occurs during a membership rollback happening immediately
after performing a snapshot operation, leading to a failure to restore the last
committed configuration [75]. Code 5.1 shows the affected fragment of the actual
implementation in Dqlite, which deals with removing conflicting entries during node
recovery. In case there is an uncommitted configuration entry among the conflicting
entries to remove, a Dqlite server has to first roll back to the previously committed
membership configuration via membershipRollback (line 1009). When this happens
after a snapshot operation, which has removed the last committed configuration
entry, the assertion on line 160 gets violated.

To show how this rather subtle bug can be triggered in a real-world environment,
consider a run of a Dqlite cluster depicted in Figure 5.1. The initial cluster comprises
five servers S1—S5, with S} assumed to be a leader. Server S, requests (to the leader
S1) to be removed from the cluster. Upon receiving this request, leader S; appends
the configuration change entry into its log () and attempts to replicate it to all
other members, but only succeeds to do so for Sy (D), failing to reach Sz, Sy, and
S5 due to a sudden partition in the network. At the same time, the number of log
entries at the server Sy reaches a threshold value, prompting it to take a snapshot
(@), while already using the latest configuration (which has not been agreed upon

by the majority), thus, discarding the old configuration entry from the snapshot. To
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Figure 5.1: A timeline of the Dqlite membership rollback bug. Gray vertical

rectangles correspond to node downtimes.

make things worse, S; crashes at the same time. Although the network of S3, Sy,
and S5 recovers soon after, the cluster has already lost its leader. At some point,
a new leader election is initiated (details omitted), with S5 eventually becoming
the leader and attempting to synchronise logs across the nodes (@)). Prompted to
do so, Sy detects a conflicting entry in its log (i.e., the uncommitted configuration
change (D)) and deletes it (@). It then attempts to retrieve the last committed
configuration entry to roll back the membership (), which is long gone due to the
prior snapshotting (@), triggering the assertion violation at line 160 of Code 5.1.

5.2.2 Fuzzing Distributed Systems via Jepsen

As demonstrated by the example, identifying a bug in a distributed system in
some cases boils down to constructing the right sequence of faults, such as network
partitions and node removals, resulting in an execution that leads to an inconsistent
state and, subsequently, to the violation of a code-level assertion or of an externally
observable notion of consistency (e.g., linearisability [70]). The state-of-the-art
fuzzing tool JEPSEN provides a means to randomly generate sequences of faults with
the goal of discovering such bugs.

Algorithm 4 provides a high-level overview of the workings of JEPSEN (let us
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Algorithm 4: Fuzzing with JEPSEN and MALLORY
Input: By system under test (SUT)
Input: Nem, Faults: a nemesis and the faults it can enact
Input: Oracles: a set of test oracles for bug detection
Input: S: number of steps in each schedule
Input: T total time budget for testing
Output: Bugs: a set of bugs detected

1: P; < instrumentSystem (%)

2: Policy < { initState, Faults}

3: repeat

4: curState < initState

5: repeat

6: fault < Policy.getNextFault ( curState)

T Nem.enactFault(fault)

8: events < observeSystemUnderTest (Py)

9: timeline < constructTimeline (events)

10: nextState < abstractTimeline (timeline)

11: rwd < calculateReward (curState, fault, nextState)
12: Policy «+ learn (Policy, curState, fault, rwd)
13: curState <— nextState
14: until maximum steps S reached
15: resetSystemUnderTest (Pr)

16: until time budget 7" exhausts
17: Bugs < Oracles.identifyBugs (events)

ignore the grayed fragments for now). JEPSEN requires a lightweight harness for
the system under test to define how to start and stop it, to enact faults, introduce
client requests, and collect logs (line 1). For brevity, Algorithm 4 does not show
the set-up of the SUT at the beginning of each test or the introduction of client
requests, which the SUT is constantly subjected to by client processes. Importantly,
JEPSEN allows the user to define testing policies (a.k.a. “generators”) responsible
for introducing specific types of external inputs or faults (line 2). The main fuzzing
loop of JEPSEN is shown in lines 3-16 of the algorithm.

During each run of the outer loop, the framework generates a system-specific
external input or fault (line 6) via a policy, and enacts it using a nemesis—a special
process, not bound to any particular node, capable of introducing faults. Such
inputs may, for example, be the decision to remove a node from the system, as,

e.g., is done by node S in our running example. As the system is executing, the

85



CHAPTER 5. TESTING STATEFUL DISTRIBUTED SYSTEMS

framework records its observations (line 8) for future analysis to detect the presence
of bugs or specification violations (line 17). This process continues until the time
budget T is exhausted (line 16). The test run is segmented into schedules of S steps
each, after which the system is reset (line 15).

Getting back to our example, we can see that the membership rollback bug
can be exposed by the scheduled sequence of inputs/faults that first initiates the
removal of Sy from the cluster and then creates a network partition (#{S1, 52},
#{S3, 54, 55}), followed by node a crash of S;. Randomly generating this particular
sequence of faults via JEPSEN, while possible, is somewhat unlikely. The reason is:
before coming across this schedule, JEPSEN may try many others, each making very
little difference to the system’s observable behaviour, e.g., by randomly crashing
a number of nodes. In our experiments, JEPSEN failed to detect this membership
rollback bug (i.e., Dqlite-323 in Section 5.4.3) within 24 hours.

However, with just a little insight into the system, one can conjecture that
enacting a partition right after a configuration change leads to novel system states
more often than, e.g., performing another configuration change, thus, increasing the
likelihood of witnessing a new, potentially bug-exposing, behaviour. Our goal is to
retrofit JEPSEN so it could derive these insights at run time and adapt the policies

accordingly.

5.2.3 Learning Fault Schedules from Observations

The high-level idea behind MALLORY, our fuzzing framework, is to enhance
JEPSEN with the ability to learn what kinds of faults and fault sequences are most
likely going to result in previously unseen system behaviours. To achieve that, we
augment the baseline logic of Algorithm 4 by incorporating the grayed components
that keep track of the observations made during the system runs. The first change is
to add instrumentation to the system under test (line 1) to record significant events
(e.g., taking snapshots or performing membership rollbacks in Figure 5.1) during
the execution, additional to those JEPSEN already records, i.e., client requests, and
responses. More interestingly, the fault injection policy is now determined not just
by the kinds of faults and inputs that can be enacted, but by the latest abstract

state of the system, whose nature will be explained in a bit and that is taken to be
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some default initState at the start of the fuzzing campaign (line 2).

The main addition consists of lines 9-13 of the algorithm. Now, while running the
system, the fuzzer collects sequences of events recorded by the instrumented nodes,
as well as message-passing interactions between them; the exact nature of events and
how they are collected will be described in Section 5.3.1. The information about the
recorded events and their relative ordering is then used to construct a (Lamport-style)
timeline and subsequently summarised to obtain the new abstract state nextState
(lines 9-10)—the design of these two procedures, detailed in Section 5.3.2, is the
central technical contribution of our work. The newly summarised abstract state
is used to calculate the reward rwd by estimating how dissimilar it is compared
to abstract states observed in the past (line 11). Finally, the reward is used to
dynamically update the policy, after which the loop iteration repeats with the
updated abstract state (lines 12-13).

Postponing until Section 5.3 the technicalities of computing abstract states, cal-
culating rewards, and updating the policy, let us discuss how the introduced changes
might increase the likelihood of discovering the bug-inducing system behaviour
from Figure 5.1. We now pay attention to the six kinds of events ((D-©)) that can be
recorded in the system, as well as their relative happens-before ordering is computed
across multiple nodes. Consider a fault injection policy that introduces a sequence of
node removals (such as Fault;). After triggering several configuration changes (i.e.,
event (1)), such a policy will not introduce many new behaviours in a long run, which
will prompt our adaptive fuzzer to prefer other faults, e.g., network partitions. By
iterating this process, observing new behaviours (i.e., different event sequences) in
the form of novel abstract states and de-prioritising policies that have not generated
new behaviours, the fuzzer will eventually discover a sequence of faults leading to
the membership rollback bug.

It is important to note that the fact that a particular policy has not produced
a new abstract state (i.e., a new observable behaviour) in a particular run does
not necessarily mean that it needs to be discarded for good. Due to the nature of
the applications under test, MALLORY, similarly to JEPSEN, does not provide a
fully deterministic way to inject faults, hence some behaviours might depend on
the absolute timing of faults. This is taken into account by MALLORY’s learning

(cf. Section 5.3.3), which leaves a possibility for such a policy to be picked again in
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the future, albeit, with a lower probability.

In our experiments, due to MALLORY’s adaptive learning, the membership
rollback bug was discovered in 8.68 hours (JEPSEN failed to discover it in 24 hours).
In the following, we give a detailed description of MALLORY’s design (Section 5.3) and
provide thorough empirical evidence of its effectiveness and efficiency for discovering

non-trivial bugs in distributed systems (Section 5.4).

5.3 Mallory Framework

Observe Orient
Network packets " " BE oE ob

SUT requests & Q'ﬁ = : )
responses AREXCRECRXC Learner Nemesis

Instrumented ﬁﬁiﬁﬁé:o’f§2ff

events

Eventibatch
Observer

Enact fault on SUT

<
<

4 A

Figure 5.2: The central observe-orient-decide-act loop in MALLORY. A centralised
mediator collects events from observers distributed at the nodes in the SUT, and
drives the test execution. Faults decided by MALLORY are enacted by JEPSEN.

At its core, MALLORY implements an adaptive observe-orient-decide-act (OODA)

loop:

o Observe—observe each node’s internal behaviour and intercept all network

communication between nodes;

o Orient—construct a global Lamport timeline of the system’s behaviour to
obtain a bird’s eye view of the execution, and abstract the timeline into a man-
ageable representation, called a happens-before summary, used to understand
the current state of the system and to determine the effectiveness of previous

actions;

o Decide—choose a fault to inject based on the current observed summary and

the past execution history;
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o Act—inject the fault and repeat the loop.

Unlike whitebox fuzzers, which rely on encapsulating the system under test in
an event simulator [49, 122], MALLORY operates on the actual system in its normal
distributed environment—a firm requirement to minimise the friction (i.e., adoption
effort). In particular, MALLORY does not have the luxury of being able to “pause”
the system and observe its state before deciding what actions to take, as it operates
in real-time, in a reactive manner. This means MALLORY itself is a distributed
system, which complicates its implementation slightly. Nonetheless, its architecture
is designed to hide this as much as possible from users, as will become apparent.

To explain MALLORY’s design, we will walk through an entire observe-orient-

decide-act loop, step by step, gradually introducing its architectural components.

5.3.1 Observing System Under Test

MALLORY’s first task is to observe the system under test (SUT). Broadly, there
are three types of observations that we can make: (1) network observations, which
capture communication between nodes in the SUT (e.g., a packet was sent from node
A to node B and received by node B), (2) external observations, which capture the
input-output behaviour of the system (e.g., requests and responses for a database),
and (3) internal observations, which capture a node’s internal behaviour (e.g., a
function was executed, a conditional branch was taken, an error message was logged).
In the following, we use “observation” and “event” interchangeably.

Events happen on a particular node at a particular time. However, as is well
known, in a distributed system there is no globally shared notion of time. We
postpone the explanation of how MALLORY constructs a global timeline without
assuming precise clock synchronisation and without tagging messages with vector
clocks. For now, it suffices to say that each event carries a node identifier and a
monotonic timestamp returned by the node’s system clock.

Below, we outline how MALLORY observes the defined above types of events
capturing the patterns of communication (Section 5.3.1.1), externally observable

input/output (Section 5.3.1.2), and internal behaviour of the nodes (Section 5.3.1.3).
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5.3.1.1 Packet Interception

To keep our framework lightweight and require as little modification of the system
under test as possible, we capture TCP and UDP packets at the IP network layer
using Linux’s firewall infrastructure, rather than require users to instrument the
application layer to identify protocol-level messages.

By necessity, MALLORY’s architecture is distributed, matching the structure

of the SUT. As shown in Figure 5.2, MALLORY consists of a number of observer
processes, one at each node, that observe local events (bottom half of the figure),
and a central mediator process that collates information from all observers and
coordinates the execution of the test (large blue rectangle in the top half). At every
node, the observer, which the JEPSEN test harness starts before the system under
test, installs a NETFILTER firewall queue that intercepts all IP packets sent to or
from the node. During the test, the kernel copies packets to the observer process in
user space, where each packet is assigned a monotonic timestamp, recorded, and
then emitted unchanged.
Mediator interception. Observers collect packet events in batches and forward
those to the mediator periodically, by default every 100ms. Rather than include the
entire packet in the batch, which would entail trebling network traffic, observers
only record and send to the mediator a 64-bit packet identifier obtained from the
source and destination IP addresses and ports and from the IP and UDP or TCP
headers’ identifiers, respectively. Yet we do want the mediator to have access to the
packet contents: for instance, the content of messages might determine what is the
best fault to introduce. To achieve this, we set up the test environment that the
SUT executes in such that all packets pass through the node running the mediator.
Concretely, we place each node on its own separate (virtual) Ethernet LAN, with
the mediator acting as the gateway for all the LANs. The MALLORY mediator
acts as a man-in-the-middle for all packets in the SUT. It can then reconstruct
the identifier for each packet, and cross-reference it with the batches received from
the sending and receiving nodes’ observers to determine the respective timestamps.
The mediator, unlike the observer, which is passive, is active and implements a full
user-space firewall using NETFILTER. It can delay and drop packets when instructed
to do so by the decide step of the OODA loop.
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Using this infrastructure, the mediator builds up a complete picture of the system

under test’s communication.

5.3.1.2 Requests and Responses

The observations about input/output of nodes are made at the application layer.

We built MALLORY on top of JEPSEN, and reuse JEPSEN’s infrastructure to
define the test harness that: (a) sets up and starts the SUT, (b) defines and executes
a workload (a sequence of client requests to the SUT), (c) enacts faults (e.g., crashing
a node), and (d) checks the validity of the SUT’s response to the workload. JEPSEN
already captures requests and responses for validity checking (e.g., for linearisability),
and we hook into this existing code, attach monotonic timestamps to events, and

relay them to the mediator reactively.

5.3.1.3 Code Instrumentation

The final kind of observation we make is at the code level. We want MALLORY
to be able to peek into the internal workings of the SUT, beyond what is observable
to clients of the system or to eavesdroppers on the network. For this, we reuse the
compile-time instrumentation infrastructure used by greybox fuzzers (e.g., AFL) for
sequential programs. Like those fuzzers, MALLORY adds instrumentation code to
the SUT to capture and expose runtime information about the program’s execution.
The key question is: what about the execution should we capture?

In our early experiments, we used the notion of edge coverage, the type of
instrumentation that has become standard for fuzzing sequential programs due to its
empirically-observed effectiveness. It maintains a global bitmap of code edges, and
increments an approximate counter for each edge that is traversed during program
execution. At the end of the execution, the bitmap serves as a summary of “what
the program did,” and is used by the fuzzer to assign energy and mutate its input
during subsequent runs. This is a great metric for certain kinds of programs, e.g.,
command-line utilities and file-parsing libraries, but—as we quickly discovered—not
particularly meaningful for distributed systems. The goal in fuzzing sequential
programs is to generate inputs that go “deep” into a program and explore all “cases”
(i.e., conditional branches). For such programs, the thoroughness of exploration

is naturally defined in terms of code coverage. But this is not the case at all for
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distributed systems. Distributed systems tend to be implemented as reactive event
loops and run almost the same code for every request, with minor variations. Code
coverage metrics tend to saturate very quickly when testing such systems.

A natural behavioural metric for distributed systems, which we came to adopt,
is that of the event trace. Executions in a distributed system are distinguished
not so much by which events happen, but by the order in which they happen.
Moreover, as has been empirically observed, what tends to uncover bugs are specific
subsequences of events, e.g., A before B before C, with potentially many events
between them [165]. The disadvantage of event traces compared to code coverage
is that the former can become very large and expensive to store and operate on,
especially if every basic block is instrumented. To alleviate this issue, for now we
require from the user a small amount of manual annotation of the SUT’s code, in the
form of //INSTRUMENT FUNC and //INSTRUMENT BLOCK comments, to indicate which
basic blocks and functions are “interesting” and should be tracked by MALLORY.

Our instrumentation creates a POSIX shared memory object accessible by the
observer process, and stores in it a fixed-size global array of events along with
an atomic index. We implement a LLVM pass that assigns a unique ID to every
annotated basic block and function in the SUT, and inserts the hooking code at the
start of the block or function. During program execution, this code gets a monotonic
timestamp and records the event in the global array at a fresh position. The observer
process periodically reads the shared memory object, copies the trace, and resets

the counter; it also includes the trace in the periodic batch it sends to the mediator.

5.3.2 Making Sense of Observations

For the second phase of the loop, MALLORY needs to make sense of the events
it received from observers. The goal of this phase is to transform the “raw” event
data into a form more amenable to analysis and decision-making. For this purpose,
MALLORY leverages timeline-driven testing. At the core of MALLORY’s OODA loop
lie its view of the world, a dynamically constructed Lamport timeline of events in
the SUT, and its model of the world, a user-defined abstraction of the timeline.
MALLORY first builds a birds-eye view of the SUT’s execution by constructing a

global timeline, then makes sense of the timeline by abstracting it into a summary
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consisting of its “essential” parts, which is used to judge the effectiveness of previous
actions and to decide which faults to introduce next.

As the system is executing, the MALLORY mediator receives batches of events
from all the observers and adds them to a single global timeline. Every event
is associated with a particular node in the SUT and has an attached monotonic
timestamp from that node’s system clock. In the mediator, MALLORY constructs the
timelines using these events. After having a Lamport timeline describing the system’s
behaviour, obtained in almost real-time, we use it to drive our fuzzing campaign.
More concretely, we want our decisions to adapt the system’s behaviour and drive the
execution towards new behaviours. But what counts as novel behaviours? A naive
approach is to use the timeline itself as feedback for our decision: we want to see
timelines different from what we have seen before. This does not work because the
timeline is a low-level representation of the system’s behaviour; all observed timelines
are unique, even discounting event timestamps and packet contents. Clearly, to
be able to operate effectively with timelines, we need in some fashion to abstract
them into “what really matters”. Eliminating timestamps and packets is a form of
abstraction, but it is not enough: we need something a bit more clever. In default,
MALLORY summarizes the constructed timelines into happens-before pairs. The
result is a summary of the timeline’s events that captures some of the history’s
essential aspects, and which we use in the next stage to decide which faults to

introduce.

5.3.3 Making Decisions with Q-Learning

Equipped with a way to understand the behaviour of the SUT, in the form of
timeline abstractions, MALLORY must decide which actions to take in response to
what it observes.

For fuzzing sequential programs, mutation-based power scheduling has become
the standard approach to generate novel inputs for the program under test based
on observations: test inputs that exercise new behaviours are stored and mutated
many times to obtain new inputs. However, this technique is ill-suited for testing
distributed or reactive systems. The issue is that in the mutation-based paradigm,

behavioural feedback is given for the whole input to the system under test (SUT)
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after execution ends. This is reasonable for sequential programs, but not for reactive
programs—the (temporal and causal) connection between fault introduced and
behaviour induced is lost. Indeed, we want our fuzzer itself to be reactive and
give behavioural feedback after every action taken rather than only at the end of a
long schedule. This complements JEPSEN’s generative fuzzing approach by giving
behavioural feedback after every generated fault and makes MALLORY adapt in
real-time to the SUT.

The concept of timeline-driven testing is key to how MALLORY adapts to the SUT.
To decide which faults to introduce into the SUT, MALLORY employs Q-learning [159,
160], a model-free reinforcement learning approach. Q-learning enables an agent to
dynamically learn a state-action policy, i.e., a pairing between the observed state of
the environment and the optimal action to take. Based on the observed states, this
policy guides the agent in selecting actions to take. After performing an action, the
agent receives an immediate reward, which further refines the policy. By associating
observed states with optimal actions, the agent maximises the expected rewards
over its lifetime.

Q-learning can be seamlessly integrated into our distributed system fuzzer. With
this approach, our fuzzer (i.e., the agent) learns a policy throughout the fuzzing
campaign, which serves as a guide to explore diverse states. Specifically, during the
fuzz campaign, our fuzzer observes the state s; € S of the SUT, and then employs
the learned policy to select a fault a; € A (i.e., an action) to introduce, causing it to
transition to the next state s;,1. Simultaneously, the fuzzer receives an immediate
reward r; < R(s;, a;, S;4+1). Using the received reward, our fuzzer further refines the
policy 7 : § — A. Subsequently, our fuzzer selects the next fault 7(s) to introduce.
Over time, our fuzzer progressively learns an optimal policy that maximises the
number of distinct states observed (i.e., rewards). In the following, we elaborate
this process further.

Capturing States. In the context of Q-learning, states should represent the
behaviour of the environment. As elaborated in Section 5.3.2, to describe the
behaviour of the SUT, we adopt the timeline abstractions (e.g., a set of happens-
before pairs). To incorporate Q-learning into our framework, we take a hash of the
timeline abstractions to serve as abstract states. However, while computing states, we

encounter a challenge due to the sensitivity and precision of our timeline abstractions.
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In order to improve the learning speed of the state-action policy, we aim to treat
states that differ only insignificantly as identical. Using a standard hash function
proves ineffective, as it tends to be overly sensitive to minor variations in the timeline
abstraction. Such variations can arise even when the system is operating without
any injected faults, owing to the inherent non-deterministic nature of distributed
systems.

To address this issue, we adopt MinHash, a locality-sensitive hash function that

maps similar input values to similar hash values. In our specific case, to decide
whether an observed timeline abstraction corresponds to a new distinct state, we
hash it into a signature and then compare this signature to those of previously
encountered states. We classify a state as distinct if the similarity falls below a
threshold €. To choose ¢, we conduct a calibration stage before fuzzing by running
the SUT without any faults and under constant load and observing the timeline
abstractions thus obtained. The convention in [114, 102], which we also adopt, is
to choose an e value that makes 90% of such “steady” states coincide.
Learning the Policy. In our approach, the policy 7 is represented as a Q-table,
where each column corresponds to a specific type of fault, and each row represents a
distinct state. The available fault types are provided by the fuzzer and enabled at
the start of the fuzzing campaign. As new distinct states are observed and added,
the rows dynamically increase to accommodate them. Within the Q-table, each
cell stores the Q-value for a state-action pair. When a new distinct state is added
to the table, the Q-values for each state-action pair associated with that state are
initialised to 0. With this setup, the process of refining the policy becomes simplified,
involving adjustments to the Q-values.

Q-values are updated in response to rewards. After executing a fault, the fuzzer
receives an immediate reward determined by the reward function. The reward
function is devised based on our goal. Since the goal is to maximise the number
of distinct states observed, we set our reward function to give a constant negative
reward (-1) to states that have been observed previously. This approach incentivises

MALLORY to steer the SUT towards unobserved behaviors, promoting exploration.
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We design the reward function as follows:

Risi.ar5101) = =1, if 5541 € Sopserved (5.1)

0, if siy1 & Sobserved
Once receiving the rewards, our fuzzer dynamically adjusts Q-values using the
Q-learning function Q: § x A — R, which determines the Q-value for a specific
state-action pair. When an action a; is executed, it leads to a new state s;; from

the previous state s; (i.e., s; — s;41). Subsequently, we update the Q-value as
follows:
Q(si,a;) + (1 —)Q(s;,a;) + « (R +ymax Q(Siy1, a’)) (5.2)

where a € (0, 1] indicates the learning rate and v € (0,1] is a discount factor.
The default values chosen for these parameters are @« = 0.1 and v = 0.6, which
we determined to work well empirically. With the Q-function, the new Q-value
is computed and subsequently updated into the Q-table. As the fuzz campaign
proceeds, our fuzzer gradually fine-tunes the Q-values, thus refining the policy to
make better decisions.
Getting Next Fault. When the SUT is in a state s, our fuzzer selects the next
action a based on the learned policy. In the current state s, we first obtain the
Q-values for all n actions and then utilise the softmax function to convert these
Q-values into a probability distribution D. The probability D(i) for each action a;
(i € n) is calculated as follows:

0 Q(s,a:)

‘;}:1 eg(svaj)

D(i) + (5.3)

To decide the next action to take, we sample from the probability distribution
D. To achieve this, we generate a random number p € [0, 1], and then check the
cumulative probability of D(i) until we identify the first action where the cumulative
probability exceeds p. This action is chosen as the next action to execute. Actions
with higher probabilities have a greater likelihood of being chosen, while actions
with lower probabilities still have a chance of being selected. This approach ensures
a balance between favoring actions with higher probabilities while maintaining the
possibility of choosing actions with lower probabilities.

Thus far, we have introduced each individual component of Algorithm 4. To

kickstart the fuzzing campaign, we set the default maximum steps as 12, each with
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a 2.5-second window. Following each schedule, there is a 5-second period allocated

to reset the system to a stable state.

5.4 Evaluation

We implement MALLORY on top of JEPSEN-0.2.7, to test distributed system
implementations written in C, C++, and Rust. To enable code-level instrumentation,
we created a LLVM compiler pass (similar to that used by AFL [167]) to add into
the compiled binary our event instrumentation, as described in Section 5.3.1.3. The
code implementing this pass measures roughly 1,000 lines of C/C++ code. The
observers at each node that collect events and the mediator which collates events
from all observers, intercepts packets, constructs and abstracts timelines, and learns
the policy required to guide fault injection, are implemented in Rust. The code for
these components measures roughly 9,000 lines of Rust code. To enact faults, we
implemented a linker in JEPSEN that asks MALLORY for the next fault to execute.

This linker consists of 140 lines of Clojure code.

5.4.1 Evaluation Setup

To evaluate the effectiveness and efficiency of MALLORY in exploring distinct pro-
gram behaviours and finding bugs in industrial distributed system implementations,

we have designed experiments to address the following questions:

RQ.1 Coverage achieved by Mallory. Can MALLORY cover more distinct

system states than JEPSEN?

RQ.2 Efficiency of bug finding. Can MALLORY find bugs more efficiently than

JEPSEN?

RQ.3 Discovering new bugs. Can MALLORY discover new bugs in rigorously-

tested distributed system implementations?

5.4.1.1 Baseline Tool

We selected JEPSEN as our baseline tool due to its popularity in stress-testing dis-

tributed system implementations. To our knowledge, JEPSEN is the only widely-used
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Table 5.1: Detailed information about our subject programs.

Subject Description Protocol Lang. #LOC #Stars
Braft Baidu Raft implementation Raft C++ 31.6k 3.5k
Dqlite Distributed SQL DBMS Raft C 54.2k 3.4k
MongoDB | Distributed NoSQL DBMS Raft C++  1121.6k 23.6k
Redis Distributed in-memory DBMS Raft C 211.4k 59.6k
ScyllaDB | Distributed NoSQL DBMS Raft/Paxos | C++ 122.4k 9.8k
TiKV Distributed key-value DBMS  Raft Rust 404.5k 13.0k

blackbox fuzzer in this domain. It has gained recognition for its user-friendliness and
has helped to uncover numerous bugs in real-world implementations of distributed
systems. By building on top of JEPSEN, we have developed MALLORY to enhance
the effectiveness of fuzzing while preserving JEPSEN’s ease of use. Another blackbox
fuzzer, called NAMAZU [113], is less popular and can only test Go/Java programs.

As described in the introduction, whitebox fuzzers such as MoDIsT [162] and
FLYMC [100] require an extensive manually-written test harness or heavy deter-
ministic control at the system level, and are used for systematic testing as opposed
to stress-testing. Due to their heavy-weight nature, they target a different use case

compared to MALLORY and are less practical to adopt in industry.

5.4.1.2 Subject Programs

Table 5.1 presents the subject programs included in our evaluation. It consists of
six open-source distributed system implementations written in C, C++4-, and Rust.
We selected these subjects because: (1) they are widely used in the industry, (2)
they can be instrumented by our LLVM pass, and (3) they have undergone rigorous
testing using JEPSEN either by contracting JEPSEN’s author?® or by rolling their
own JEPSEN test harness. Finding new bugs in these systems would be a strong

indication that MALLORY performs better than JEPSEN.

5.4.1.3 Event Annotations

To instrument code events, we annotated a total of 103 to 157 functions and basic
blocks in our subject programs using //INSTRUMENT FUNC and //INSTRUMENT BLOCK

forms. Specifically, we made 120 annotations for Braft, 108 annotations for Dqlite,

3Test reports are public at https://jepsen.io/analyses
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145 int membershipRollback (struct raft *r){

146 500

158 // Fetch last committed configuration entry
159 entry = logGet (&r->log, r->config_index);
160 assert (entry != NULL);

176 }

985 // INSTRUMENT_FUNC

986 static int deleteConflictingEntries (){

987 o0a

1007 // Discard uncommitted config changes

1008 if (uncommitted_config_index>=entry_index){
1009 // INSTRUMENT_BLOCK

1010 rv = membershipRollback(r);

1011 }

1043 %

Code 5.2: Annotating Dqlite for membership rollback.

103 annotations for MongoDB, 129 annotations for Redis, 157 annotations for
ScyllaDB, and 138 annotations for TiKV. This process required one of our authors
to dedicate a total of 2 hours, averaging approximately 20 minutes for each subject.

We annotate “interesting” code events primarily based on the Raft and Paxos
TLA+ specifications.* We now demonstrate the annotation process for events in
the motivation example (Code 5.1), and present the annotated code in Code 5.2. In
the Raft TLA+ specification, one event involves the removal of conflict entries. To
annotate this event, we search for the “conflict” keyword in the Dqlite source code,
resulting in 7 matched locations. However, among these matches, only one location
pertains to functions or basic blocks, specifically the “deleteConflictingEntries”
function. Therefore, we add the annotation //INSTRUMENT FUNC before this function.
Instead of annotating a function, we can also decide to annotate (some of) the basic
blocks representing the calling locations of the function. However, this may require
additional work in terms of determining which calling location to instrument. For
example, for the “membershipRollback” function, we can annotate the basic block
in line 1009 that invokes this function with the annotation //INSTRUMENT BLOCK
shown in Code 5.2. But choosing this calling location, takes into consideration
the condition (line 1008) that there must be an uncommitted configuration entry
among the conflicting entries to be removed (explained in Section 5.2.1). Once the
code is annotated, our compile-time instrumentation automatically instruments the

annotated code without any manual effort.

4The specifications are taken from https://github.com/tlaplus/Examples.
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Discussion. It is worth mentioning that we adopt the heuristic based on TLA+
specifications to instrument events in our evaluation. Nevertheless, users of MAL-
LORY have the flexibility to instrument their own custom event types in accordance
with their own heuristics. For instance, this might involve the instrumentation of
error handlers [165] or enum cases [8]. The identification of such events can be
achieved fully automatically, and we have integrated this functionality into the

MALLORY tool.

5.4.1.4 Configuration Parameters

To distinguish between distinct states, we set the similarity threshold ¢ to 0.70.
To detect bugs, we adopt several test oracles: (1) AddressSanitizer (i.e., ASan)
for exposing memory issues, (2) log checker to detect issues in application logs
by scanning for keywords such as “fatal”, “error” and “bug”, and (3) consistency
checker ELLE [87] to check consistency violations. We set up the same number of
nodes as the existing JEPSEN tests: 9 nodes for MongoDB and 5 nodes for the other
subjects under test. To ensure a fair comparison, we enabled the same faults in
MALLORY as those used in the original JEPSEN tests (i.e., our tool does not have
access to more fault types).

All experiments were conducted on Amazon Web Services using the m6a.4xlarge
instance type. This instance type has 64 GB RAM and 16 vCPUs running a 64-bit
Ubuntu TLS 20.04 operating system. Following community suggestions, we ran
each tool for 24 hours and repeated each experiment 10 times. To reduce statistical

errors, we report as results the average values obtained over the 10 runs.

5.4.2 Coverage Achieved by Mallory (RQ.1)

For the first experiment, we monitor the number of distinct states (see Sec-
tion 5.3.3 for the definition of states) exercised by MALLORY and JEPSEN over time,
and compare their state coverage capabilities.

To observe states exercised by JEPSEN, we ran JEPSEN in the same setup as
MALLORY, but without controlling the fault injection. We collected the average
number of distinct states achieved by MALLORY and JEPSEN within 24 hours across
10 runs, and we present the comparison in Figure 5.3. As shown in this figure,

MALLORY outperforms JEPSEN by covering more distinct states in the same time
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Figure 5.3: The trends in the average number of distinct states within 24 hours
across 10 runs.

budget, thus exercising the SUT under more diverse scenarios.

Initially, at the start of each experiment, the number of distinct states achieved
by MALLORY is similar to that achieved by JEPSEN, which is expected. MALLORY
utilises Q-learning to learn an optimal state-action policy during fuzzing, guiding it
to make better decisions about actions to take in observed states. However, during
the initial phase of fuzzing, this policy is not yet well-learned and lacks sufficient
knowledge to avoid exploring redundant states. Consequently, both MALLORY and
JEPSEN struggle to select the optimal actions for the observed states.

However, as fuzzing progresses, MALLORY gradually refines the policy by assign-
ing negative rewards to certain state-action pairs, thereby disincentivising certain
actions selected in particular states. This disincentive effectively curtails the ex-
ploration of repetitive states and steers MALLORY towards exploring more diverse
states. The policy learned using Q-learning proves to be highly effective. As evident
in Figure 5.3, over time, the number of distinct states covered by MALLORY is
significantly more than that covered by JEPSEN. We do not observe the number of

distinct states saturating in either tool, but MALLORY’s exploration rate of distinct
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Table 5.2: Statistics of distinct state numbers achieved by MALLORY compared to
that achieved by JEPSEN.

Subject ‘State—impr Speed-up Aqs U

Braft 59.34% 2.28% 1.00 <0.01
Dqlite 76.14% 2.56x 1.00 <0.01
MongoDB 36.48% 1.57x 1.00 <0.01
Redis 58.92% 2.06x 1.00 <0.01
ScyllaDB 48.82% 1.88x 1.00 <0.01
TiKV 45.93% 3.07x 1.00 <0.01
AVG | 54.27% 2.24x —

states is higher than that of JEPSEN. The gap between MALLORY and JEPSEN
consistently widens, indicating that the learned policy continuously improves and
becomes increasingly effective in guiding exploration.

The state coverage statistics of MALLORY over JEPSEN are listed in Table 5.2.
The “State-impr” column shows the average improvement of MALLORY in the
number of distinct states at the end of 24 hours, over 10 runs. Our results show
that MALLORY covers an average of 54.27% more distinct states than JEPSEN
on our test subjects, with an improvement ranging from 36.48% to 76.14%. The
“Speed-up” column indicates the average speed-up of MALLORY compared to JEPSEN
in achieving the same number of observed states. On average, MALLORY archives a
2.24x speed-up over JEPSEN. To mitigate the effect of randomness, we measured the
Vargha-Delaney (A;,) and Wilcoxon rank-sum test (U) of MALLORY against JEPSEN.
Ay is a non-parametric measure of effect size that provides the probability that
random testing of MALLORY is better than random testing of JEPSEN. U is a non-
parametric statistical hypothesis test that determines whether the number of distinct
states differs across MALLORY and JEPSEN. We reject the null hypothesis if U < 0.05,
indicating that MALLORY outperforms JEPSEN with statistical significance. For all
subjects, Alg =1 and U < 0.01 for MALLORY against JEPSEN. This demonstrates
that MALLORY significantly outperforms JEPSEN.

Furthermore, we measured the memory consumption required to maintain the
data structure of the Lamport-style timeline. The average memory consumption
was 3.21 GB, which we consider acceptable. Memory consumption remains stable

over time, as we only retain the portion of the timeline needed for abstraction and
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remove already-abstracted portions. Additionally, our fuzzer is designed to learn
and react to observations in real time (see Section 5.3.3). We measured the time
taken from the point of fault injection to receiving the behaviour feedback and found
that in 92.20% of cases, this process took less than one window time, i.e., MALLORY

receives feedback and adapts its policy before it has to decide the next action.

In terms of state exploration, MALLORY covers 54.27% more distinct states than

JEPSEN with a 2.24x speed-up.

5.4.3 Efficiency of Bug Finding (RQ.2)

To evaluate the efficiency of MALLORY at finding bugs, we compared MALLORY
and JEPSEN with regards to the time required to reproduce existing bugs. To this
end, we created a dataset of bugs by selecting 10 recent issues from each subject’s
GitHub issue list (from early 2019 to April 2023) that contained instructions for
reproduction. We attempted to reproduce the bugs manually and included any
successfully reproduced bugs in our dataset. We finally collected a total of 16 bugs
across all subjects. The bug IDs and types of bugs are presented in the first two
columns of Table 5.3.

We ran both tools, MALLORY and JEPSEN, on buggy versions of the subjects for
24 hours, repeated 10 times. The last main column shows the time used for each
tool to expose the bug. We marked “T/O” if one tool failed to find the bug within
the given time budget. Overall, in these 16 bugs, MALLORY successfully exposed 14
bugs, while JEPSEN only found 9 bugs. In terms of time usage, MALLORY takes
much less time (i.e., 6.13 hours on average), while JEPSEN needs 11.45 hours. Hence,
compared with JEPSEN, MALLORY achieves a speed-up of 1.87x in bug finding.

For shallow bugs whose states are easy to reach, such as Dqlite-338 and Dqlite-
327, MALLORY and JEPSEN perform well and perform similarly. However, for deep
bugs that are harder to expose, MALLORY performs much better than JEPSEN. For
example, to expose Redis-51, JEPSEN took 6.40 hours, while MALLORY only took
1.66 hours. This is attributed to a faster state-exploration speed of MALLORY. In
addition, since MALLORY explored more distinct states than JEPSEN, MALLORY

was also able to expose more bugs. Specifically, MALLORY successfully exposed
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Table 5.3: Statistics of reproduced known bugs and the performance of both MAL-
LORY and JEPSEN in exposing these bugs.

Bug ID

Type of bug

Time to exposure

Mallory Jepsen Alz
Dqlite-416 | Null pointer deference 0.76h 1.44h  1.00
Dqlite-356 | Snapshot installing failure T/O T/O 050
Dqlite-338 | Election fatal with split votes 0.16h 0.16h  0.50
Dqlite-327 | Member removal failure 0.06h 0.056h  0.49
Dgqlite-324 | Log truncation failure 5.94h T/O  1.00
Dqlite-323 | Membership rollback failure 8.68h T/O0 1.00
Dgqlite-314 | Crashing on disk failure T/O T/O  0.50
Redis-54 Snapshot panic 3.33h 5.00h  0.95
Redis-53 Committed entry conflicting 0.87h 1.17h  0.89
Redis-51 Not handling unknown node 1.66h 6.40h  1.00
Redis-44 Loss of committed write logs 0.34h 0.58h  0.60
Redis-43 Snapshot index mismatch 0.16h 0.16h  0.50
Redis-42 Snapshot rollback failure 0.29h 0.26h  0.50
Redis-28 Split brain after node removal | 9.56h T/O0 1.00
Redis-23 Aborted read with no leader 7.29h T/O0 1.00
Redis-17 Split brain and update loss 11.06h T/O0 1.00
Bugs exposed in total 14 9 —
Average time usage 6.13h  11.45h  —
Speed-up on time usage — 1.87x —

Dqlite-324, Dqlite-323, Redis-28, Redis-23, and Redis-17, while JEPSEN had difficulty

in exposing them. We further investigated the two bugs (i.e., Dqglite-356 and Dqlite-

314) missed by MALLORY, and found exposing these bugs needs to inject specific

environment faults (e.g., disk faults), which were not included in our evaluation.

To mitigate randomness, we adopt the Vargha-Delaney (fllg) to measure the

statistical significance of performance gain. The last subcolumn of Table 5.3 shows

these results. We mark A, values in bold if they are statistically significant (taking

0.6 as a threshold). In most cases, MALLORY significantly outperformed JEPSEN.

In terms of bug finding, MALLORY finds 5 more bugs and finds bugs 1.87x faster

than JEPSEN.
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Table 5.4: Statistics of the zero-day bugs discovered by MALLORY in rigorously
tested systems; a total of 22 previously unknown bugs, 18 bugs confirmed by their
developers, and 10 software vulnerabilities.

ID ‘ Subject Bug description ‘Checker Bug status ‘Jepsen
Read stale data after a newly written ..
1|Braft update is visible to others ELLE Investigating v
9| Braft Leak memory of the server Whgn killed ASan CVE-Granted,
before its status becomes running fixed
3| Dite Two leadeljs are elected at the same term Log checker Confirmed
due to split votes
4| Dqite N.O leader is elected in a healthy cluster Log checker Confirmed, fixed
with an even number of nodes
. A node reads dirty data that is modified
5| Ddlite but not committed by another node BLLe Confirmed
6 | Dqlite Lose write updates due to split brain |ELLE Confirmed
7| Dyjite Alm.lll pointer is dereferenced. due to ASan CVE-Requested
missing the pending configuration
8| Dlite Leak alloca‘Fed memory when failing to ASan CVE-Requested,
extend entries fixed
9| Dlite Buffer overflow happens while restoring ASan CVE-Requested
a snapshot
10| Dglite A node has an extra online spare Log checker Confirmed
11| Dglite Violate 1-nvar1ant as a .segme.nt cannot Log checker CVE-Requested
open while truncating inconsistent logs
12| MongoDB Not, repciatable read due to missing the ELLE Confirmed
local write update
13| MongoDB Not read committed due to missing the ELLE Confirmed

newly written update

14| Redis Read stale data after new data is writ- ELLE Confirmed
ten to the same key

Buffer overflow due to writing data to CVE-Granted,

15| Redis a wrong data structure ASan fixed
16| Redis Runtime panic on 1n'1tlahs%ng a cluster Log checker CVE-Granted
due to database version mismatch
. No leader is elected for a long time in a L
17| TiKV healthy cluster Log checker Investigating
18| TiKV Lose write updates due to split brain |ELLE Investigating

. Runtime fatal error when one server can-
19| TiKV not get context before the deadline Log checker CVE-Granted

20 | TiKV Runtime fatal. errqr 1n. a server when the Log checker CVE-Granted
placement driver is killed

Runtime fatal error when failing to up-

21\ TikV date max timestamp for the region

Log checker CVE-Granted

N X X X X XN X X| X X XX X X N\ %X %X %X %X

22| TiKV Monotonic time jumps back at runtime | Log checker Investigating
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5.4.4 Capability of Exposing New Bugs (RQ.3)

To evaluate MALLORY’s capability of exposing new bugs, we utilised MALLORY
on the latest versions of our subjects. In the course of the experiment, MALLORY
produced promising results, as demonstrated in Table 5.4. Although all of these
subjects have been rigorously tested by JEPSEN and other tests, MALLORY was
still able to find a total of 22 previously unknown bugs, and 18 bugs of them were
confirmed by their developers. Out of these 22 bugs, 10 bugs were associated
with vulnerabilities, and we have requested CVE IDs for them. As of the paper
submission, we have already obtained 6 CVE IDs and the remaining requests are
still being processed.

We conducted a thorough analysis of the nature of these new bugs found by
MALLORY, shown in Table 5.4. The table also includes the bug checkers used to
uncover these bugs. Among these 22 bugs, 7 bugs were determined to be consistency
violations exposed by the ELLE consistency checker. Three bugs (#3, #4, and #17)
violated the Raft protocol due to missing leaders or the existence of two leaders in
the same term, and they were detected by the log checker. AddressSantizer (i.e.,
ASan) exposed 5 memory issues. Furthermore, the log checker detected 7 runtime
failures or invariant violations. These results indicate that MALLORY is beneficial
to expose diverse types of previously unknown bugs.

In addition, we applied JEPSEN to detect these 22 new bugs; however, under
the allotted time limit, JEPSEN was only able to detect four of them (i.e., the bugs
#1, #7, #16, and #22), as shown in the last column of Table 5.4. This result is
expected because these subject systems routinely undergo JEPSEN testing by their
developers, making it challenging for JEPSEN to discover new bugs.

In the following, we provide two case studies to illustrate bugs that were exposed

by MALLORY.

Case Study: Bug #2 in Braft. Braft is a robust Raft implementation designed
for industrial applications, which is widely used within Baidu to construct highly
available distributed systems. However, a critical vulnerability, known as Bug #2,
remained undetected in all Braft release versions from 2019 until its recent patch.
This bug occurs when a server cannot release its allocated memory before failure,

resulting in a memory leak issue.
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To trigger this issue, a minimum of three environmental faults must be introduced
sequentially. Initially, the server dynamically allocates enough memory for its
operation, which is explicitly managed by itself. However, before releasing the
allocated memory, the server is paused, and its memory remains in use. Subsequently,
the server is resumed, only to become coincidentally isolated from the cluster due to
a network partition, resulting in a failed start. Hence, the server crashes without
the chance to release the memory allocated. This bug happens due to a flawed logic
design; specifically, the allocated memory can only be released when the process is
in the running status, and the allocated memory cannot be released before running.
This logic design is reasonable in stable environments without faults, as only the
running server may have allocated memory. However, in this extreme environment,
the shortcoming in the logic is exposed.

Bug #8 of Dqlite is another memory leak issue, similar to Bug #2 in Braft. It
remained hidden in Dqlite for approximately four years and affected all its release
versions before we found it. Bug #2 in Braft and Bug #8 in Dqlite both evaded the
rigorous testing efforts by their developers, demonstrating how our tool MALLORY

can significantly reduce the exposure of systems to vulnerabilities.

Case Study: Bug #11 in Dqlite. Although JEPSEN is already part of Dqlite’s
Continuous Integration process, MALLORY has managed to expose several new bugs
in Dqlite. The developers have expressed a keen interest in MALLORY and are
awaiting its open-source release so that they can incorporate it into their testing.
Bug #11 in Dqlite is caused by the snapshotting of uncommitted logs, and it
is reminiscent of the membership rollback bug shown in Figure 5.1. The schedules
required to trigger these bugs are quite similar, but Bug #11 is not triggered by the
configuration change. Specifically, the event () involves one plain read/write log
entry instead of the configuration change. After this event, the cluster undergoes
the same sequence of environment faults, including a network partition (#{.S51, S},
#{Ss, 54, S5}), leader S crashing, and network healing. As a result of these faults,
server Sy ends up with conflicting entries with the leader S3, which must be removed.
However, the conflicting entries are in a snapshot, which makes the removal fail. This
failure leads to the server becoming unavailable. Although the schedule to trigger

Bug #11 is slightly shorter than that of the membership rollback bug in Figure 5.1,
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JEPSEN, which adopts a random search strategy, failed to expose it during our
experiments within the allotted time. In contrast, MALLORY, guided by the policy
learned with Q-learning, successfully exposed this bug. This is easily explained
considering the number of states explored by JEPSEN and MALLORY shown in Fig-
ure 5.3. Within 24 hours, JEPSEN only covered 600 states, while MALLORY explored
over 1,000 states. With the capability to explore more novel behaviors, MALLORY
significantly increased its chances of exposing bugs. This instance demonstrates the
effectiveness of the policy learned using Q-learning in guiding MALLORY to explore

more behaviors and, consequently, enhance the likelihood of bug exposure.

N
MALLORY found 22 zero-day bugs in rigorously tested implementations, and
18 bugs out of them have been confirmed by their developers. 10 of these 18

bugs correspond to security vulnerabilities, and out of these 6 CVEs have been

assigned.

5.5 Conclusion

In this chapter, we proposed MALLORY—the first adaptive greybox fuzzer for
distributed systems. The key insight behind MALLORY’s design is to summarise the
runtime behaviour of the distributed system under test in the form of Lamport-style
timelines that capture the causality of events, and use the timelines to define a
feedback function for guiding the search for bugs. We evaluated MALLORY on six
widely-used and rigorously-tested industrial distributed system implementations such
as Dqlite and Redis. The experimental results show the effectiveness and efficiency of
Mallory in achieving significantly higher state coverage and faster bug-finding speed
than the state-of-the-art tool JEPSEN. Finally, MALLORY discovered 22 previously

unknown bugs (10 new vulnerabilities among them) which have contributed to new
CVEs.
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Chapter 6

Capturing Different Environmental
States

Computer programs are not executed in isolation, but rather interact with the
execution environment, which drives the program behaviors. Software validation
methods thus need to capture the effect of possibly complex environmental inter-
actions. Program environments may come from files, databases, configurations,
network sockets, human-user interactions, and more. Conventional approaches for
environment capture in symbolic execution and model checking employ environment
modeling, which involves manual effort. In this work, we take a different approach
based on an extension of greybox fuzzing. Given a program, we first record all
observed environmental interactions at the kernel /user-mode boundary in the form
of system calls. Next, we replay the program under the original recorded interactions,
but this time with selective mutations applied, in order to get the effect of different
program environments—all without environment modeling. Via repeated (feedback-
driven) mutations over a fuzzing campaign, we can search for program environments
that induce crashing behaviors. Our £FUzz tool found 33 previously unknown bugs
in well-known real-world protocol implementations and GUI applications. Many of

these are security vulnerabilities, and 16 CVEs were assigned.

6.1 Introduction

Computer programs are not executed in isolation, but rather interact with a
complex execution environment which drives the program behaviors. Inputs received
from the environment, such as configuration files, terminal input, human-user inter-

actions, and network sockets, directly affect the internal program state which, in
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turn, governs how the program executes. Outputs sent to the environment, such as
terminal output and sockets, provide useful clues that reflect these program states
and behaviors. If the program is buggy, some environmental interactions may cause
the program to crash or otherwise misbehave. Fuzz testing (or fuzzing) [20] is a
widely-used automatic method that can find such program (mis)behavior. Ideally,
fuzzing should be executed under different execution environments to comprehen-
sively explore diverse program behaviors. However, capturing the effect of complex
environments has always been a challenge for all program-checking methods—be it
software verification, analysis, or testing.

In this work, we take a fresh look at the problem of program environment
capture, and provide a solution in the context of fuzz testing. Greybox fuzzing uses
a biased random search over the domain of program inputs to find crashes and hangs.
We aim to extend greybox fuzzing over the full environment without resorting to
modeling. Our approach is to first run the program normally, but also to record
all interactions between the program and environment that can be observed at the
user /kernel-mode boundary (e.g., system calls). These interactions serve as the set
of initial seeds. Next, the program is iteratively run again as part of a fuzzing loop,
but this time replaying the original recorded interactions. During the replay, the
fuzzer will opportunistically mutate the interactions recorded for system calls to
observe the effect of environments different from that of the original recording. In
effect, the program environment is fuzzed at the system call layer. Our approach
does not conduct any abstraction of possible environments; it (implicitly) works in
the space of real concrete environments.

We present a generic approach for fuzzing the full program environment. Existing
greybox fuzzers are limited to fuzzing specific input sources, such as an input file
specified by the command line (e.g., AFL [167] and AFL++ [57]), or a network
socket over a specific network port (e.g., AFLNET [126] and NYX-NET [141]). Our
approach extends the scope of fuzzing to include all environmental inputs, meaning
that any input is considered a fuzz target, regardless of source. We also propose a
generic fuzzing algorithm to (implicitly) generate different program environments,
thereby exploring diverse program behaviors. We have implemented our approach of
program environment fuzzing in the form of a new greybox fuzzer called EFruzz. We

evaluate EFUZZ against two categories of user-mode programs under Linux: network
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protocol implementations and GUI applications, both of which are considered
challenging subjects for existing fuzzers [57, 20]. In real-world and well-known
applications, such as Vim and GNOME applications, £EFuzz found 33 previously
unknown bugs (24 bugs confirmed by developers, which include 16 new CVEs). The
bugs found include null-pointer dereferences, buffer overreads, buffer overwrites,
use-after-frees, and bad frees, all triggered by fuzzing diverse environmental inputs
including sockets, configuration files, resources, cached data, etc.

In summary, we make the following main contributions:

o We propose a new greybox fuzzing methodology to capture the effect of complex

program environments—all without environment modeling or manual effort.

o We present a new fuzzing algorithm based on the full environmental record

and replay at the user/kernel-mode boundary.

o We implemented the approach as a generic fuzzer (£FUZzz) capable of testing
various program types, including two categories of recognized challenging
subjects. In our evaluation, we found 33 previously unknown bugs and received

16 CVE IDs.
Our tool is publicly available at

https://github.com/GJDuck/EnvFuzz

6.2 Background and Motivation

6.2.1 Motivating Example

As an initial motivating example, we consider a calculator application imple-
mented using a Graphical User Interface (GUI). A human user makes inputs in
the form of mouse movements, keystrokes, button presses, etc., and the application
reacts by generating outputs that update the graphical display. For example, by
pressing the button sequence (1,+,2 =), the application responds by displaying the

answer (3).
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Like all software, the calculator application may contain bugs, and these bugs
can be discovered using automatic software testing methods such as fuzzing. For
example, a fuzzer could apply the mutations (+)—(/) and (2)—(0) to construct a new
button press sequence (1,/,0,=) that will cause a crash (SIGFPE) if the calculator
application were to not properly handle division by zero. Although most mutations
will be benign (non-crashing), typical fuzzers mitigate this with a combination of
high throughput (e.g., 100s of executions per second), program feedback (e.g., code
coverage), and power scheduling (e.g., controlling mutation counts), increasing the
likelihood of finding crashing inputs within a given time budget.

However, most existing greybox fuzzers, such as AFL [167, 57] and AFLNET [126],
do not consider all input sources when producing mutated inputs. These fuzzers only
target a specific class of inputs by default. For example, AFL only targets standard
input (stdin) or a file specified by the command line. Similarly, AFLNET only
targets network traffic over a specific port for a specific popular protocol (e.g., ftp
and smtp). Essentially, these existing fuzzers use a simplified program environment,
where program behaviors (and potential crashes) are driven by a single input source,
and it is up to the tool user to decide which input source to fuzz. All other input
sources are considered as “static”, i.e., unmutated and unchanged between test cases.
Furthermore, most existing fuzzers are specialized to specific types of inputs, such
as regular files or popular network protocols.

In reality, most programs have a more complicated interaction with the envi-
ronment beyond that of a single input source. For example, if we consider the
gnome-calcuator application as part of the GNOME Desktop Environment for
Linux. This application will open 706 distinct file descriptors under a minimal test

(i.e., open and close the application window), including:

- 674x regular files, including configuration, cache, and GUI resources (icons/-

fonts/themes).

- Tx socket connections to the windowing system, session manager, and other

services.
- Miscellaneous (e.g., special files, devices, and stderr).
The calculator application with a full environment is illustrated in Figure 6.1 (a).
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Figure 6.1: (a) is a calculator application with the full environment, including regular
file I/O, standard streams, and socket/event fds to various system services. (b) is a
simplified environment with a single input/output (windowing system socket), where
all other interactions are not captured.

6.2.2 Limitations of Conventional Fuzzing

Fuzzing requires two key decisions to be made before use:
o Input Selection: Which input should be fuzzed?
o Environment Modelling: How to handle other inputs?

For the button-press example, the fuzz target would be the windowing system socket
over which button-press events are received. Thus, for the purposes of fuzzing, we
use a simplified environment as illustrated in Figure 6.1 (b). In the case of the
calculator application, the simplified environment is somewhat naive, since the target
socket is only one of many possible input sources (706 possibilities). Consequently,
only a small fraction of the actual environment is subjected to fuzzing. Assuming,
for the sake of example, that the windowing system socket is selected. The next
step is to choose a fuzzer. Since the input is a socket rather than a file, a network
protocol fuzzer, such as AFLNET, will be suitable. AFLNET works by fuzzing
inbound network messages and parsing the response codes from outbound messages
as feedback to guide the fuzzing process. However, AFLNET only supports a
limited set of pre-defined network protocols, and this does not include support for
windowing system protocols. Even if the necessary protocol support is available, the

environment beyond the fuzz target must still be handled.
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One approach is to fix all the remaining environments as most existing fuzzers do,
where the program is consistently checked within a single environment across test
cases. Obviously, this approach limits the explored program behaviors. Moreover, in
some cases, such as fuzzing the calculator application and other GUI applications,
this approach is impractical for existing fuzzers. Handling regular file I/O is relatively
straightforward since files can be read from disk for each executed test case, with
outputs easily discarded (e.g., piped to /dev/null). However, a program can interact
with more than one external service, such as session managers, service daemons,
and even human users. In order to execute a single test case as part of the fuzzing
process, the system-environment interactions would need to be “reset” for each
individual test case—something known to be slow. For human-driven inputs, this
also implies that a human-in-the-loop is necessary, since the fuzzer needs human
interaction to proceed from one test execution to another.

Another approach is to build a model of possible environmental interactions.
However, modeling is non-trivial. For example, each external service will typically
use its own specialized protocol, and there can be an arbitrary number of services in
the general case. Furthermore, any model would need to be accurate, as an invalid
interaction may cause the test subject to terminate early due to an error condition,
thus hindering reaching potential bug locations. Environment modeling is a known
problem in the context of model checking and symbolic execution. Many existing
works [10, 27] address it by modeling the environment manually. However, these
approaches tend to be limited to specific problem domains and lack scalability for

the general case.

6.2.3 Core Idea

We now describe our approach. We do not explicitly enumerate all possible
environments in a search space and then navigate this very large search space. Our

approach (below) is more implicit.
o Input Selection: All environmental inputs are fuzzed.

o Environment Modelling: Avoid modelling. The inputs are executed under a given
environment and the effect of different environments is captured by mutating the

environmental interactions represented by system calls.
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For the calculator example, we consider all environmental inputs as fuzz targets
regardless of type. Thus, various files (e.g., configuration, cache, and resource),
sockets (e.g., those utilized by the windowing system), and any other input sources,
are abstracted as generic inputs to subject fuzzing, eliminating the need for special
handling. Since the whole environment is the fuzz target, any remaining residual
environment is essentially eliminated, avoiding the need for additional modeling.

Building upon this concept, our approach first records all environmental interac-
tions between the target program and its environment. Subsequently, the program is
iteratively run again as part of a fuzzing loop, this time by replaying the interactions
from the previous recording to substitute the original environment. Instead of replay-
ing exactly the original recording, some of the interactions are mutated to implicitly
generate the effect of different program environments, potentially uncovering new
program behaviors.

To record the full environmental interactions, our approach works at the system
call layer. This is motivated by the observation that most user-mode applications
in Linux interact with the environment through the kernel/user-mode interface.
For example, button presses and corresponding GUI updates flow through recvmsg
and sendmsg systems calls over a socket. Similarly, pipes, streams and file 1/O
flow through standard read and write system calls. As a result, by recording
system calls, we also record the full environmental interactions of the program,
including system-environment interactions and human interactions, regardless of the

underlying input type or the nature of the program.

6.3 System Overview

Based on our core idea, we design a generic program-environment fuzzer using a
record and replay methodology. This fuzzer, called £Fuzz, is illustrated in Figure 6.2.
At a high level, EFuzz consists of two phases: the record phase (Phase I) records
the full interactions between the program-under-test P and its environment &£, and
the replay-with-greyboz-fuzzing phase (Phase II) replays and fuzzes the recorded
interactions. Phase II captures the effect of different program environments and
uncovers new program behaviors.

Phase I: Recording. In the recording phase, the program P is run normally
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Figure 6.2: Overview of the program environment fuzzer EFUZZ.

within some test environment £. The program interacts with the environment (files,
sockets, human input, etc.) via a sequence of system calls, which are intercepted
by £ruzz and saved into a recording o. Here, o is an in-order sequence of records
(e.g., 0 = [Ey, Esy, E3, E4]), where each record E stores all of the necessary details
for reconstructing each corresponding environmental interaction in Phase II. These
details include the system call number, system call arguments, buffer contents (if
applicable), and the return value. These records are then saved into a respective
seed corpus (Sg = {E}) to serve as the initial seeds for the subsequent replay and
greybox fuzzing.

Phase II: Replay with Greybox Fuzzing. Phase II combines environment replay
with greybox fuzzing. The idea is two-fold:

1. Faithfully replay the recorded environment interactions to reconstruct (deep)

program states observed during Phase I;
2. Fuzz each reconstructed state using greybox fuzzing.

Faithful replay works by re-running the program, but using the recording o as a
substitute for the original test environment £. This again works by intercepting
system calls, but this time the corresponding record (E € o) is replayed as a

substitute for the real interaction.
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To uncover different program behaviors for bug discovery, the core of EFUZZ lies
in greybox fuzzing. However, unlike traditional fuzzers, EFuzz works by fuzzing
the recorded environmental interactions (E € o), rather than targeting specific
files, as with AFL, or sockets, as with AFLNET. This works as follows: for each
state reconstructed, EFuzz faithfully replays the next environmental interaction
E in sequence from o to advance state reconstruction. In addition, EFUZZ selects
seeds from the seed corpus Sg, assigns energy, and introduces mutations to generate
mutant interactions. Each mutant interaction is replayed in a forked branch of
execution, where the program’s behavior is observed (see Figure 6.2 Q).

Following the execution of a mutant interaction, the program behavior may
diverge significantly from the original recording. Such divergence can include the
program invoking different system calls, or invoking existing system calls but in a
different order. For example, as shown in Figure 6.2, the exit (0) system call could
be changed into recv(3). Such behavior divergence presents a technical challenge
for advancing replay, since only the original recording (o) is available. Indeed, the
main goal of fuzzing is to explore novel (divergent) program behaviors in order to
discover bugs. To resolve this challenge, £EFUZZ introduces the notion of relaxed
replay (as opposed to faithful replay) that is designed to progress divergent program
execution after mutation (see Figure 6.2 ).

At the end of each execution, similar to traditional greybox fuzzing, program
feedback is used to determine interesting mutant interactions (see Figure 6.2 (3).
The interesting interactions are saved into the seed corpus for future mutation.
Additionally, mutations triggering program crashes are saved and reported to the
user. The fuzzing campaign repeatedly iterates over reconstructed program states

until a time budget is reached.

6.4 Environment Fuzzing

We describe and explain the £FuUzz algorithm in this section.

6.4.1 Environment Recording and Replay

For recording the environment, EFUZZ implements a system call interceptor

routine that acts as a proxy (i.e., “man-in-the-middle”) between the program P and
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the kernel. Thus, when the program invokes a system call, such as a read or write,
the call will be routed to the interceptor routine. The routine first forwards the
system call to the underlying kernel and waits for the result. Once the underlying
system call completes, the interceptor routine will then save relevant information
about the system call into a record F, including: the system call number (e.g., read
and write), arguments (e.g., file descriptor, buffer pointer, and buffer size), buffer
contents (where applicable), current thread ID, and the return value. The system
call result is then returned back to the program P, which continues executing as
normal.

Each individual record E represents an interaction between the program P and
its environment £. During recording, each record is appended onto an in-order
sequence o, otherwise known as the recording, and is also saved into the respective
seed corpora. The recording o contains the information necessary to reconstruct all
program states previously observed during the recording phase. For faithful replay,
the program is run once more, but this time the interceptor routine instead replays
(rather than forwards) the previously-recorded E. For fuzzing, the original record is
replayed, but with one or more mutations applied first. Such mutations represent
modified environmental interactions, and can change the program behavior.

We now use an example to illustrate this process. Suppose that during recording,
the program P calls read(0, buf, 100), which is forwarded to the kernel, and the
user enters “quit\n” into stdin (fd=0). The interceptor routine will record the
returned buffer contents (“quit\n”) and the returned value (=5 bytes read) into a

record F. Then, during replay with greybox fuzzing:

o For faithful replay, the program P is re-run, and calls the same read system call
as before. Instead of forwarding the system call to the kernel, the interceptor
routine copies the previously recorded contents from FE, copying “quit\n” into
buf and returning 5. This causes the program’s execution to proceed equivalently

to the original recording.

o For fuzzing, the record E is first mutated before it is replayed. For example, the
buffer contents could be mutated into “quip\n”, and this will likely cause the
program’s behavior to diverge as if this were the original user interaction—possibly

exposing new behaviors and bugs.
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int main () {

char buf [SIZE]; int r;

r = read( 0, buf, SIZE); 5 8

r = send( 3, buf, r); g

r = recv( 3, buf, SIZE); g

r = send( 3, buf, r); g

r = recv( 3, buf, SIZE); 8

r = write(1, buf, r); g

exit (0); 1}

/(recv (3)) -------- (send(S)) -------- (read(O)) @ /@rite(2D -------- (exit (1)) ©)
",,,"':Grit e (2D -------- (exit (1 )) ® "',"';Gzrite ( 1D -------- (send (3 )) -------- (recv (3)) @

----- {>(read(0) -------Csend(3))--------(recv(3)}------{send(3))--------(recv(3))‘-------61rite(1D--------(exit (0)) @

)
%,
INIT READY RN DISPLAY CLOSING

“(recv (3)) -------- @rite(l» -------- @rite(lD -------- (exit (O)) ®

Figure 6.3: Illustration of the underlying fuzzing algorithm. Here, the example
program reads from file descriptor 0, then interacts with socket (file descriptor 3).
The fuzzer faithfully replays a previously recorded interaction @, as well as several
mutant interactions /@ /®/@/®/®. Each mutant interaction is generated
by mutating at least one input system call from the faithful replay. This causes
the program’s behavior to diverge, including exit with error @/®), system call
reordering O/®, new I/O system call @, and a crash . The program state
{INIT,READY,DISPLAY, CLOSING} between select system calls is also illustrated.

The mutation is applied to the buffer contents of input system calls (e.g., read) as
this can affect the program behaviors and cause behavior divergence. Other system
calls, that do not affect the program behaviors (e.g., write), will not be mutated.
The combination of faithful replay, and replay with mutation, forms the basis of

EFUZZ’s greybox fuzzing algorithm.

6.4.2 Reflections on Search Challenges

After the recording phase, EFUZz has collected a set of initial seeds representing
real environment interactions. Using these as a basis, £FUZz employs greybox
fuzzing to generate new interesting seeds representing interactions with new program
environments—each with the potential to induce novel program behaviors. In
designing an efficient algorithm for searching the program environment space, there

are two main challenges: (i) statefulness: how to effectively explore deep program
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behaviors? (ii) throughput: how to maintain high fuzzing throughput?

Challenge (i): Statefulness. To better understand Challenge (i), we consider
a calculator program that interacts over multiple input and output sources, as
shown in Figure 6.3. The program begins in an INIT state, where it first parses a
configuration file (file descriptor 0), then creates a user interface (GUI) by sending
a message over the windowing system socket (file descriptor 3). The program then
transitions into a READY state—i.e., waiting to accept mathematical expressions from
the user interface. Subsequently, the program processes one user input expression
(received from 3), and then sends the result back to the interface (send to 3), and
the program transitions into the DISPLAY state. Finally, the user closes the interface
(received from 3), and the program transitions into a CLOSING state. Here, the
program writes a message to the terminal (file descriptor 1) before exiting. Our
example is a simplification for brevity, as a real calculator program will typically
interact with thousands of system calls, and may have many more internal states.

At the layer of system calls, the program is stateful, as it accepts a sequence of
environmental inputs and adjusts its state accordingly. Some program behaviors are
only reachable by specific states, which are in turn reachable only through specific
input sequences. When fuzzing stateful programs, greybox fuzzers aim to exercise
each observed state in order to explore the neighborhood of potential program
behaviors, thereby having a greater chance to expose new bugs. However, state
identification remains a challenging problem for fuzz testing in general. Existing
works [7, 126, 130, 8] propose several heuristics for program state detection. For
example, IJON requires states to be manually annotated, whereas AFLNET utilizes
response codes from outbound messages to detect new states for well-known protocols.
Either way, existing approaches require manual effort or are specialized to specific
input sources.

We propose a generic approach that considers all input sources, such as files,
sockets, and pipes, and consider how they affect program states. We consider each
input system call as a potential state transition. For example, in Figure 6.3, after
executing each input system call in sequence, the program transitions from the INIT
to READY state, then from the READY to DISPLAY state, and finally from the DISPLAY
to CLOSING state. Thus, each input can be fuzzed as a distinct transition between

states, regardless of the input type (file, socket, etc.). However, some of the inputs
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may not trigger new transitions. This is mitigated by the power schedule [22], where
inputs that fail to induce real state transitions are also less likely to expose new
program behaviors observable via program feedback. As such, the corresponding
input will be assigned less energy, and is naturally deprioritized for future mutations.
Challenge (ii): Throughput. To reach each observed state, EFUzz conducts
a faithful replay of the recorded system calls. Upon reaching a state (i.e., before
executing the corresponding input system call), EFuzz applies mutations to explore
the neighboring program behaviors. If the fuzzer must always replay system calls
from the root point, then multiple system calls need to be replayed to reach a
specific state. For example, in the calculator example, a total of four system calls
must be faithfully replayed to reach the DISPLAY state. This can significantly slow
fuzzing throughput, especially for real-world examples where thousands of system
calls may be required to reach a given state. To address this challenge, we propose
a tree-based fuzzing algorithm that avoids (re)executing the same prefix sequence of
system calls repeatedly. The algorithm is illustrated by the tree shown in Figure 6.3.
Specifically, the original recording is faithfully replayed (without mutation), forming
the “spine” of the tree, which is represented by the middle trace ©. Upon reaching
an input system call, EFuzz additionally forks-off some number of mutant traces,
creating the “branches” of the tree (e.g., ©/®). Each branch starts by replaying an
original input with one or more mutation operators applied, and may involve further
mutations of subsequent inputs. After executing each branch, £FUzz continues
the faithful replay to grow the spine until the next input point, after which £ruzz
forks-off more branches (e.g., ®/®). The process repeats once more (e.g., @ /@)

before 0) terminates.

6.4.3 Fuzzing Search Algorithm

Based on the environment recording and replay technique, along with the efficient
search strategy, we introduce a novel environment fuzzing algorithm, illustrated in
Algorithm 5. The recording is shown in line 2 of Algorithm 5. After the recording,
the program is executed normally, but with the interceptor routine FuzzSyscall
replacing the standard system call interface (line 8). There are two main cases to

consider: the replay is in the spine or in a branch (e.g., see Figure 6.3), and the

121



CHAPTER 6. CAPTURING DIFFERENT ENVIRONMENTAL STATES

Algorithm 5: Program Environment Fuzzing Algorithm.
Input :Program P, environment interaction £
Output : Crashing events Cx
Globals : Input-specific corpora Sg

1: func EnvFuzz (P, &):
2: 0 < Record(P, &) > Recording
3: for £ € 0 do Sg + {E£}
4: repeat
o: ‘ FuzzReplay (P, o)
6: until timeout reached or abort
7: func FuzzReplay (P, o): > Replay with Fuzzing
8: L exeC(P[replace syscall with FuzzSyscall,isBranch<false], U)
9: func FuzzSyscall(e): > Tree-based Search
10: if isBranch then
11: ‘ return EmulateSyscall(e, o) > Divergence Handling
12: else /x if isSpine then */
13: E < head(0); 0 < tail(o)
14: if —isInput(e) then return ReplaySyscall(FE)
15: for £’ € Sg,i € 1..energy(E') do
16: E" < mutate(E")
17: pid < fork()
18: if pid = 0 then > In child:
19: isBranch < true
20: return ReplaySyscall (E")
21: else > In parent:
22: waitpid(pid, &status)
23: if isCrash(status) then add E” to Cx
24: if isInteresting(E") then add E” to Sg
25: return ReplaySyscall(E) > Grow Spine

program starts with running in the spine (isBranch<—false). For the spine of the tree
(line 12-line 25), EFUZZ retrieves the next record E to be processed (line 13). For
non-input system calls (e.g., write), the original record E is faithfully replayed “as-is”
(line 14). Conversely, all input system calls (e.g., read) are treated as potential
fuzzing targets, and a greybox fuzzing algorithm is used (line 15-line 24). Specifically,
for each record E corresponding to the input syscall, EFUzz will iterate over each
seed E' from corpus Sg. For each E’, EFUzz applies one or more standard mutation

operators, to further mutate the input buffer contents, and thereby generating a new
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seed E” (line 16). The current implementation uses mutation operators from other
fuzzers, e.g., havoc from AFL [167, 126]. The number of mutations is controlled by
a power schedule (energy) (line 15).

To execute the new seed E”, the algorithm first forks the program into a parent
and child process (line 17). The seed E” is executed in the child, forming a branch
of the tree (e.g., see Figure 6.3), while the parent waits for the child’s termination
(line 22). After applying a mutation in the child, the interceptor routine FuzzSyscall
processes the subsequent system calls using a different method (line 11), which
will be discussed in Section 6.5. Following the termination of the child, the parent
examines the result. Crashing mutations are saved into a special corpus Cx that
forms the output of Algorithm 5 (line 23). Otherwise, the fuzzing feedback (discussed
in Section 6.4.4) is used to determine whether the mutated seeds are interesting
or not, and interesting seeds are saved into Sg for future mutation see line 24 ;
the decision on whether a seed is interesting or not, is conducted based on fuzzing
feedback which is discussed in the next subsection. Subsequently, EFUZZ grows the
spine by continuing faithful replay (line 25). After the fuzzing campaign is complete,
the £Fuzz infrastructure also supports replaying any of the Cx corpus to reproduce
discovered bugs.

An illustration of this fuzzing algorithm on a simple example program appeared

in Figure 6.3.

6.4.4 Fuzzing Feedback

Greybox fuzzing relies on feedback to select “interesting” seeds (line 24 in
Algorithm 5) to guide the search towards novel program behaviors, thereby increasing
the likelihood of discovering bugs [89]. A common form of feedback is branch coverage,
as used by many modern fuzzers [167, 57]. Here, seeds that cover new branches (code
paths) have the potential to explore different behaviors, and thus are considered
interesting and saved into the corpus for future mutation. Most fuzzers collect branch
coverage feedback using compiler instrumentation (e.g., afl-gcc). Instrumentation
can also be inserted directly into binary code using static binary rewriting, such as
with EQAFL [61]. £EFuzz supports branch coverage feedback and operates directly

on binaries to maximize generality.
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For the case of stateful programs, branch coverage alone is generally considered
insufficient [7, 126]. As such, state feedback has been proposed in collaboration with
branch coverage to guide the fuzzing process. Here, seeds that cover new state
transitions are also considered “interesting” and are similarly added to the corpus.
However, as discussed in Section 6.4.3, automatically inferring program states is
challenging, especially for binary code. Our approach is to treat each input message
as a potential state transition. We leverage program oulputs (e.g., write) as a
proxy for detecting states. Our heuristic is that, under certain inputs, a program
will generate output that is contingent on its internal states, and thus outputs can
provide insights into these states. To mitigate the impact of outputs with unknown
structures/formats, we employ locality-sensitive hashing and clustering based on
the Hamming distance [114, 56]. EFUzz can utilize both branch and state feedback

to guide the search.

6.5 Relaxed Replay for Divergence

After a mutated input is replayed in a branch, it is common for the program’s
behavior to diverge from the original recording, as illustrated by the branches
@,...,® in Figure 6.3. Divergence could include: exiting with error @/®), system
call reordering D /®), new system call invoking @, or even the program crashing ®.
For example, suppose the last input from Figure 6.3 receives a command “quit\n”
from the socket, causing the program to enter the CLOSING state and exit. However,
mutant replay could change the command to “quip\n”, foiling the state transition,
and causing the program’s behavior to diverge from the original recording.

This poses a challenge that is described as follows. During the recording phase,
Eruzz will construct an in-order sequence of records o. Assuming that o = [0y, E, 03],
where F is an input, then during the fuzzing phase, £Fuzz faithfully replays the
prefix o; (as part of the spine) before reaching E. Next, EFuzz mutates F to
generate one (or more) mutant F’, after which E’ is replayed as a substitute for
E. After replaying F’, the faithful replay of o5 may no longer be possible due to
program behavior divergence, i.e., the mutant sequence ¢’ = [0, E', 03] may be
infeasible. The problem is that £EFUZzZ only has the original recording ¢ to work

with.
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Qo D@D

Q| O = input
QB EHEOCGHEHEH =] [] = output

Figure 6.4: Tllustration of the global ordering (o) for faithful replay and a local
ordering (@) for relaxed replay. The relaxed replay partitions o into a set of
miniqueues (Q|[fd]) indexed by the file descriptor, each of which defines a local
ordering specific to each fd.

To address this problem, we introduce the notion of relazed replay. The key idea
is to use system call emulation (line 11 in Algorithm 5) to construct continuations
of program execution that diverge from o. Relaxed replay uses a set of emulation
routines, one for each syscall number, where each routine takes the syscall arguments
and returns a result (i.e., return value, buffer contents) on a “best-effort” using
available information. Unlike faithful replay, these routines can be called at any
time and in any order, and do not necessarily need to follow the original recorded
system call ordering. Crucially, the emulation routines should only return plausible
results—i.e., there exists a real (modified) environment &’ from which the result
could occur. Plausibility is necessary to avoid false positives—i.e., crash reports
that are irreproducible under any real environment. For plausibility, we generalize
assumptions used by existing fuzzers, wherein any 1/O modification (e.g., in AFL)
and reordering (e.g., in AFLNET) are considered plausible. We now discuss these

two cases in detail.

6.5.1 Relaxing I/O System Call Ordering

After mutation, programs often invoke 1/O system calls in a different order from
that of the original recording. To handle this case, our approach is to first partition
o into a set of miniqueues Q[fd], with one miniqueue specific to each 1/O source
(i.e., file descriptor, fd). The approach is illustrated by example in Figure 6.4. Here,
under the global ordering (o) for faithful replay, only a read system call from file
descriptor 0 can be serviced. However, after mutation, the program may attempt
I/O on a different file descriptor. To handle such cases, our approach allows 1/0

system calls to be directly serviced from the corresponding miniqueue Q[fd] under a
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local ordering specific to each fd, rather than the original global ordering (o). The
partitioning and local ordering is plausible under the assumption that I/O system
calls can be reordered.

It is also common for programs to use the poll system call! to query which I/O
operations are currently possible. Relaxed replay must also handle the poll system
call using emulation. The algorithm is shown in Algorithm 6, and is a concrete
example of an emulation routine. Here, poll is emulated based on the current state
of @ (line 3-line 12) and returning:

(i) End-of-file (POLLHUP) for an empty miniqueue (line 7);

(ii) input ready (POLLIN) or output ready (POLLOUT) if the queue head matches the
requested event (line 9-line 10);

(iii) 0x0 (a.k.a. no event) otherwise.

If at least one of the returned events is non-zero, then the poll operation successfully
completes (line 12) and execution continues. Otherwise, the poll operation will block.
To avoid blocking, the algorithm heuristically picks a file descriptor and reorders
the corresponding miniqueue (line 13), allowing Algorithm 6 to always terminate

(without blocking) in the next iteration of the outer-loop.

6.5.2 Relaxing I/O System Calls

Input system calls are emulated by an implicit poll operation, followed by
popping the corresponding miniqueue Q[fd]. The popped record is replayed, possibly
subject to further mutation. If the implicit poll operation indicates the miniqueue is
empty (POLLHUP), the input system call returns 0 indicating an end-of-file (EOF).

Emulated output system calls similarly pop the corresponding miniqueue, but
always succeed even if the queue is empty. This handles the common case where a
mutation causes the program to generate additional output, such as a warning or
error message that is not present in the original recording o. Modified or extraneous
outputs can generally be ignored, as outputs do not affect the program behavior.
However, outputs do provide useful hints about the program state, which is used as

fuzzing feedback.

!See the poll manpage for more information.

126



CHAPTER 6. CAPTURING DIFFERENT ENVIRONMENTAL STATES

Algorithm 6: Emulated poll routine.

Input :Array of pollfd structs, ) derived from o
Output : Number of non-zero revents

func EmulatePoll (fds, Q)):
: while true do

1:

2

3 r<0;h+<0

4 for i € 0..|fds|—1 do

5: E <« head(Q|fds[i].fd])

6: if ¥ = EOF then

T | fds[i].revents = POLLHUP; h++
8 else

9 fds[i].revents = fds[i].events &
0 (isInput(E)? POLLIN: POLLOUT)
1 r += (fds[i].revents? 1: 0)

10:
11:

12: ifTr >0V h >0 then return r
13: | fd <« pick(fds, Q); Q[fd] < reorder(Qlfd])

6.5.3 Relaxing Non-I/O System Calls

Other system calls are handled using heuristics, such as:

- Emulate: emulate (plausible) effects of the system call;

- Forward: pass the system call “as-is” to the underlying O/S;

- Fail: fail the system call with an error condition (e.g., ENOSYS).
- FExit: as a last resort, terminate the branch with exit.

In addition to I/O system calls, EFUzz also implements several specialized emulation
routines for other common system calls, including time (e.g., clock_gettime/etc.)
and thread-related (e.g., futex/clone/etc.) system calls. For example, time-related
system calls are handled by emulating a global monotonically increasing clock t.
The clock t is first initialized to the last time observed in the recording before the
branch, and ¢ is then incremented for each subsequent emulated system call after the
branch. This ensures that emulated time-related system calls always return plausible
results—i.e., the system time always flows forwards. The system calls related to
memory management (e.g., brk/mprotect/madvise/etc.) are generally forwarded

to the underlying O/S “as-is” without special handling.
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Sometimes neither system call emulation nor forwarding is applicable. For
example, due to behavior divergence, the program may attempt to access a file that
does not appear in the original recording (o). As such, EFUZz has no information
about the file contents, or whether the file even exists. In such cases, relaxed replay
can fail the system call with an error (e.g., ENOSYS), allowing for execution to
proceed and giving the program a chance to recover. As a last resort, relaxed replay
will exit the program if no other alternative is possible. This occurs when a program

ignores failure, e.g., by re-invoking the same system call again in a loop.

6.6 Implementation

We implemented the approach of £EFUZz as a generic program environment fuzzer
that can handle a diverse range of user-mode Linux applications, including GUI
applications and network servers. £FUZZ is built on top of a full environment record
and replay infrastructure, similar to that of rr-debug [117]. In total, the EFuzz
toolchain is implemented in over ~13k source lines of C++ code.

The recording phase records all information that is necessary to faithfully replay
the program P during fuzzing. In addition to system calls (the main focus of our
discussion), the recording also includes additional information, such as the command-
line arguments, environment variables, signals, thread interleavings, and special
non-deterministic instructions (e.g., rdtsc). System call interception is implemented
using a variety of techniques. The common case is handled using static binary
rewriting to rewrite the syscall instruction in libc, which diverts control-flow to
the framework’s interceptor routine. For this, we use the EQPATCH [50] binary
rewriting system. In addition, the framework also rewrites the wvirtual Dynamic
Shared Object (vDSO) at runtime, and also uses seccomp to generate a signal
(SIGSYS) that is used to intercept system calls outside of 1ibc (less common case).
Our framework does not use ptrace, and thus avoids kernel /user-modes switches
during replay for the common case.

Multi-threaded programs are handled by serializing system calls during the
recording phase, meaning that only one thread will run at a given time. The
recording phase runs the program normally using serialized system threads, whereas

the replay-with-fuzzing phase uses lightweight fibers as a replacement of system
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threads. This design avoids one of the main technical limitations of fork (), namely,
that only the callee system thread will actually be cloned during a fork operation.?
In contrast, fibers are threads of execution that are implemented purely in user-mode,
and where context switching is determined by the recorded schedule (o). Since
there is no user-kernel interaction during replay, fibers can be used as a drop-in
replacement of system threads without special handling. Furthermore, since fibers
are purely implemented in user-mode, they survive the fork operation intact, which
is necessary for the £FuUzz fuzzing algorithm.

EFUZz is also designed to operate directly on binaries without the need for source
code. EFUZZ uses both state and branch coverage as feedback. To collect the branch
feedback, binaries can be instrumented using a modified version of E9QAFL [61].
State coverage feedback does not require instrumentation. Our implementation can

record and fuzz large applications, including the subjects listed in our evaluation.

6.7 Evaluation

To evaluate the effectiveness of EFUzz, we seek to answer the following research

questions:

RQ.1 New bugs. Can £ruzz find previously unknown bugs in real-world and
widely-used programs? Is fuzzing the program environment necessary to reveal

these bugs?

RQ.2 Comparisons. How many additional bugs does £Fuzz discover over the
baseline? How much more code coverage does EFUZZ achieve compared to the
baseline? Are the additional bugs and code coverage improvements related to
program environment fuzzing? How many tests can EFUZZ execute per second

compared to the baseline?

RQ.3 Ablations. What is the impact of each component on the performance of

EFruzz?

2See the fork manpage for more information.
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Table 6.1: Subject programs used in the evaluation.

Subject Version H ‘ Subject Version

DCMTK 8326435 || , | Gnome editor (gedit) v41.0
» | DNSmasq  b676923 || & | Gnome Calculator v42.9
—'8 Exim 5a8fc07 '*E, Gnome System Monitor v42.0
£ | Kamailio  202217b % Glxgears v23.0.4
& | Live555 2¢92a57 :? Midnight Commander (MC)  v4.8.27
~ OpenSSH 7Tcfeab8 || — | nano v6.2
g OpenSSL a7¢9928 || P | Vim v8.2
5| ProFTPD 7892434 || 2 | Wireshark v3.6.2
7| Pure FTPd 3296864 || 2 | Xcalc v1.8.6

TinyDTLS  0e865aa © Xpdf v3.04

6.7.1 Experiment Setup

Subject Programs. £FUZZ is a generic fuzzer capable of testing a broad spectrum
of user-mode programs in Linux. Given the scope of applications that EFuUzz can
fuzz, we shall focus on two core categories of program: network protocols and
(Graphical) User Interface GUI/UT applications that interact with a human user via
the windowing system or terminal. These two categories have been recognized as
challenging for fuzzing [20]. For example, fuzzing GUI applications with AFL++ [57]
is “not possible without modifying the source code”® Since EFUZz works at the
abstraction of the kernel/user-mode boundary, it can fuzz GUI applications and
other difficult subjects without special handling. By targeting challenging fuzzing
targets, we aim to demonstrate the generality of EFUzz.

In total, we collect 20 subjects as detailed in Table 6.1. For network protocols, we
collect subjects from PROFUZzzZBENCH [115], a widely-used benchmarking platform
for evaluating the network-enabled fuzzers. However, for GUI applications under
Linux, there is no existing fuzzing dataset. We therefore select subjects from
frequently-used and well-known applications and frameworks, including text editors
(UI), visual shells (UI), GNOME desktop environment (GUI), Qt (GUI), and the
underlying windowing system (GUI).

Comparisons. To the best of our knowledge, no existing fuzzers target the full
program environment. In the realm of fuzzing network protocols, AFLNET is

the first network fuzzer, and also recommended by AFL++ for fuzzing network

3https://aflplus.plus/docs/best_practices/#fuzzing-a-gui-program (as of writing).
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services. NYX-NET enhances the fuzzing throughput of AFLNET by introducing
innovative hypervisor-based snapshots. Unfortunately, we cannot compare with
AFL++ since it does not work on many of the network protocols. As shown in
the paper of NYX-NET [141], AFL++ only works on 5 of the PROFUzZzZBENCH
subjects. Furthermore, for these 5 subjects, AFL++ performs significantly worse
than both AFLNET and NYX-NET. Therefore, for network protocol subjects, we use
AFLNET and NYX-NET as baselines for comparison. AFL++ and AFL++4-based
fuzzers are also not able to fuzz GUI applications in Linux with user interactions
[57]. Recent work [82] uses test harness generation to enable GUI fuzzing, but only
for Windows applications. As such, there is no available fuzzer to compare against
GUI applications under Linux.

Performance Metrics. We evaluate the performance of £FUzz based on three
primary metrics: bug-finding capability, code coverage, and fuzzing throughput. As
recommended by the fuzzing community [89, 23], the ultimate metric of a fuzzer is
the number of distinct bugs found. Since a fuzzer cannot find bugs in uncovered
code, code coverage is important too, and thus serves as a secondary metric. While
fuzzing throughput is not a mandatory evaluation metric, it may affect the efficacy
of a fuzzer. We also report throughput to demonstrate the robustness of the fuzzer.
Experimental Infrastructure. All experiments were conducted on an Intel®
Xeon® Platinum 8468V CPU with 192 logical cores clocked at 2.70GHz, 512GB of
memory, and running Ubuntu 22.04.3 LTS. Each experiment runs for 24 hours. We

report the average over 10 runs to mitigate the impact of randomness.

6.7.2 Discovering New Bugs (RQ.1)

Method. We ran £FUZz on the subjects listed in Table 6.1 to discover bugs. We
utilized the same bug oracles as traditional fuzzers (e.g., AFLNET and NYX-NET),
including crashes, hangs, assertion failures, and sanitizer violations. For initiating the
fuzz campaign, we used initial seeds provided by the programs if available; otherwise,
we provided standard user inputs as initial seeds. In the case of network protocols, we
utilized their clients to send request messages. For GUI applications, we simulated
typical user interactions; as an example, with a calculator, the application is opened

to perform a simple addition calculation before it is closed. All inputs represent
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Table 6.2: Statistics of bugs discovered by £FuUzz; a total of 33 previously unknown
bugs found, 24 bugs confirmed by developers, 16 bugs assigned CVE IDs, and 16
bugs fixed. (Note that, each color represents a distinct category of applications)

ID ‘ Subject Environment ‘ Bug Type Bug Status

1 Demtk Cached data Buffer overflow CVE-requested, fixed
2 Exim Configuration Buffer overflow Reported

3 Exim Special file Null pointer dereference Reported

4 Kamailio Socket Null pointer dereference Reported

5 Liveb55 Socket Heap use after free CVE-granted, fixed

6 Live555 Media resource | Buffer overflow Reported

7 OpenSSH Configuration Null pointer dereference CVE-requested, fixed
8 OpenSSH Configuration Null pointer dereference Reported

9 Pure-FTPd Time resource Null pointer dereference Reported

10 | gedit Configuration Null pointer dereference CVE-granted

11 | gedit Socket Null pointer dereference CVE-granted

12 | Calculator  Socket Buffer overflow CVE-granted, fixed
13 | Calculator  Socket Null pointer dereference CVE-granted

14 | Calculator  Socket Null pointer dereference CVE-requested, fixed
15 | Monitor Cached data Bad free CVE-granted

16 | Monitor Theme resource | Null pointer dereference CVE-requested, fixed
17 | Glxgears Socket Buffer overflow CVE-granted

18 | Glxgears Socket Buffer overflow CVE-granted

19 | MC Configuration Null pointer dereference CVE-granted

20 | MC Configuration Arithmetic exception CVE-granted

21 | MC Socket Null pointer dereference CVE-granted

22 | nano Configuration Null pointer dereference Reported

23 | nano Cached data Null pointer dereference CVE-granted, fixed
24 | Vim Configuration Null pointer dereference CVE-granted

25 | Vim Cached data Null pointer dereference CVE-granted, fixed
26 | Wireshark  Socket Null pointer dereference CVE-granted, fixed
27 | Xcalc Socket Null pointer dereference CVE-requested, fixed
28 | Xcalc Socket Out-of-bounds write CVE-granted, fixed
29 | Xcalc Cached data Out-of-bounds read CVE-requested, fixed
30 | Xpdf Configuration Null pointer dereference Reported

31 | Xpdf Configuration Null pointer dereference Reported

32 | Xpdf Socket Bad free CVE-requested, fixed
33 | Xpdf Socket Out-of-bounds read CVE-requested, fixed

normal usage scenarios encountered in the real world. We subjected each program
to a 24-hour run (typical recommended length of a fuzz campaign [89]) to identify
bugs. Upon finding bugs, we reported them to the developers for confirmation. In
the case of bugs with potential security implications, we requested CVE IDs from
the CVE Numbering Authority. All activities were conducted in a one-month period,
including bug finding, debugging, reporting to developers, and requesting CVEs.

Results. Table 6.2 shows the distinct and previously unknown bugs found by EFUzz.

In the Bug Description column, we elucidate the root causes responsible for these
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bugs, and illustrate the immediate environmental factors in the Environment column.
It is important to note that triggering a bug often requires hundreds of diverse
environmental inputs. Therefore, we only listed the most relevant environmental
input that exposed the bugs after mutation. Furthermore, we provide details about
the bug types and their current status in the last two columns.

In total, we discovered 33 previously unknown bugs, out of which 24 have received
confirmation from their respective developers. Developers had fixed 16 of these bugs
by the time of paper submission. 16/24 bugs have been assigned CVE IDs. These
bugs span various categories, including buffer overflows, use-after-frees, null pointer
dereferences, and arithmetic exceptions. Furthermore, these bugs are triggered by
fuzzing a diverse range of environmental inputs, including sockets, configuration files,
multiple types of resource files, cached data, etc. Therefore, a fuzzer that exclusively
concentrates on a singular input cannot expose all of these bugs.

These results highlight the significant bug-finding capability of EFuzz. Moreover,
they demonstrate the importance of program environment fuzzing, and EFUZZ
has shown its effectiveness in this regard. Two case studies below illustrate bugs
discovered by EFUZZ.

Case Study: GNOME Desktop Environment. GNOME client applications
(e.g., gnome-calculator, etc.) interact with the windowing system and several
other services (Figure 6.1). EFuzz is able to expose several bugs in multiple different
input sources, including several bugs related to the windowing system and client
libraries, bugs in the DBus socket connection to the session manager, as well as
bugs in non-socket inputs (loaders.cache, gtk.css, etc.). As an example, we can
consider Bug #12, which affects the XESetWireToEvent () function from 1ibX11.
This function fails to check whether the event values are within the bounds of the
arrays that the functions write to. Instead, the function directly uses the value as an
array index, leading to an intra-object overwrite and probable crash. This bug stems
from the implicit trust that 1ibX11 functions place in the values supplied by an X
server, following X11 protocol. However, the environment cannot be fully trusted,
as a malicious server or proxy can impact applications. This bug was assigned CVE
ID by X11 developers and received a CVSS score HIGH 7.5. We note that other
subjects, including many GNOME applications, are also affected by this bug.

Case Study: Bug #23 in GNU nano. GNU nano is a text editor for Unix-
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like operating systems and is part of the GNU Project. This bug appears in
read_the_list() of browser.c. This function initiates an initial iteration over a
directory using readdir() to obtain the current entries, followed by a rewinding
action using rewinddir () to cache these entries. Subsequently, a second iteration
employing readdir () is performed to directly access these cached entries. Unfortu-
nately, before this second iteration, there is no boundary-checking mechanism. As
a result, any environmental changes, such as directory deletions, can easily trigger
a crash during the second iteration. This is precisely how £FUZZ exposes it. This
bug existed from the first version of GNU nano in 2005 and had been hidden for 18

years!

EFruzz discovered 33 previously unknown bugs in widely used network protocols
and GUI applications, with 24 confirmed and 16 fixed by their developers. 16 of
them were assigned CVEs.

6.7.3 Comparisons with Baselines (RQ.2)

Method. For network protocols, we compare EFUZZ against two baselines AFLNET
and NYX-NET under three aspects: the number of bugs found, code coverage, and
fuzzing throughput. We omit GUI programs due to the lack of a suitable baseline. We
configure all fuzzers employing the same initial seeds obtained from PROFUZZBENCH.
Our evaluation of code coverage focuses on measuring branch coverage achieved on
binaries. We utilize the original scripts provided by PROFUZZBENCH, to collect
code coverage data and present their trends over time. We report the total number
of bugs found, the average coverage, and the average fuzzing throughput achieved
by each fuzzer across 10 runs of 24 hours.

Comparing Results on Bug Finding. Table 6.3 shows the total number of
unique bugs found by each fuzzer. In all subjects, EFuUzz discovered a total of 9
unique bugs, as detailed in Table 6.2. However, both AFLNET and NYX-NET
could only find 2 (i.e., Bug #4 and Bug #5 in Table 6.2); in addition, neither
fuzzer found any additional bug. The remaining 7 bugs were exposed by fuzzing
non-socket environment inputs, such as cached data and resources. Since these

environment inputs are not fuzzing targets for AFLNET and NYX-NET, they were
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Table 6.3: Number of unique bugs found by AFLNET, NYX-NET and £FUZZ on
subjects of network protocols.

Fuzzer \ AFLNET NvYX-NET EFUZZ
#Bug | 2 2 9

Table 6.4: Average branch coverage across 10 runs of 24 hours achieved by EFUzz
compared to AFLNET and NYX-NET.

Compare with AFLNet Compare with Nyx-Net

Coverage Improv Aqs Coverage Improv A,

Subject Efuzz

DCMTK 15181.7 7564.9 +100.69%  1.00 9362.0 +62.16% 1.00
DNSmasq 8090.9 4066.7  4+98.95%  1.00 4009.0 +101.82% 1.00

Exim 5642.7 4594.4  +22.82% 1.00 4935.2  4+14.34% 1.00
Kamailio 23425.6 13466.1  +73.96%  1.00 17960.0  +30.43% 1.00
Liveb55 14319.0 10379.5  +37.95%  1.00 11436.0  +25.21% 1.00

OpenSSH 8584.5 7920.0 +8.39%  1.00 7631.5  +12.49% 1.00
OpenSSL 26225.9 19820.4  +32.32% 1.00 25330.1 +3.54%  1.00
ProFTPD 19478.0 17654.0  +10.33%  1.00 16504.0  +18.02% 1.00
Pure-FTPd | 7182.8 5309.0  +35.29% 1.00 6766.5 +6.15%  1.00
TinyDTLS 2747.5 1901.5  +44.49% 1.00 2052.5  +33.86% 1.00

Average — —  +4652% @ — | —  +30.80%  —

unable to expose them. Furthermore, regarding bugs induced by network sockets,
EFUzz successfully exposed the same number as AFLNET and NYX-NET. This
demonstrates that EFUZz maintains the effectiveness in fuzzing a single environment

source, although it fuzzes all environment sources.

In the aspect of bug finding, £FUZz discovered 9 previously unknown bugs, while

AFLNET and NYX-NET only discovered 2 without any additional bug found.

Comparing Results on Code Coverage. Figure 6.5 illustrates trends in average
code coverage over time for AFLNET, NYX-NET and £FuUzz. Across all subjects,
EFUzz significantly outperformed both AFLNET and NYX-NET. Initially, at the
start of each experiment, all three fuzzers covered a similar number of code branches.
However, over time, EFUZZ substantially covered more code than AFLNET and
NvYx-NET. Even after 24 hours, £FUzz still had the potential to discover new code,
whereas, in most cases, the code coverage for AFLNET and NYX-NET tended to

plateau quickly.
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Figure 6.5: Code covered over time by AFLNET, NYX-NET and £FUzz across 10
runs of 24 hours on PROFUZZBENCH subjects.

Table 6.4 shows the final code coverage of EFUzz and two baselines. To quantify
the improvement of £EFUZZ over baselines, we report the number of branches cov-
ered by EFuzz, AFLNET and NYX-NET (Coverage), respectively, the percentage
improvement of EFuzz (Improv), and the probability that a random campaign of
EFUzZ outperforms a random campaign of baselines (A;,). For all subjects, EFUzZz
covers more code than both baselines. Specifically, EFUZz averagely covers 46.52%
more code than AFLNET with a range from 8.39% to 100.69%. When compared to
NYX-NET, £FUzz covers 30.80% more code on average from 3.54% to 101.82%. The
Vargha-Delaney [116] effect size Ay > 0.70 demonstrates a substantial improvement
of £FUZz over both baselines in terms of code coverage.

To investigate the correlation between improved code coverage and program
environment fuzzing, we conducted a comprehensive analysis of the additional code
covered by £Fuzz, focusing on the subject DCMTK. DCMTK is a widely-used
implementation of the DICOM (Digital Imaging and Communication in Medicine)
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Table 6.5: Fuzzing throughput (execs/s) in 10 runs of 24 hours achieved by EFuzz
compared to AFLNET and NYX-NET.

. Compare with AFLNet | Compare with Nyx-Net
Subject Efuzz
AFLNet Speedup | Nyx-Net Speedup
DCMTK 101.7 22.3 4.57x 815.4 0.12x
DNSmasq 393.0 22.6 17.40x 1126.8 0.35x%
Exim 713.4 5.1 139.06 x 514.5 1.39x
Kamailio 121.9 5.2 23.62x 234.9 0.52x
Liveb55 237.4 16.8 14.13 % 133.1 1.78x
OpenSSH 1320.9 38.6 34.19 % 1031.1 1.28%
OpenSSL 124.5 32.7 3.80 % 227.4 0.55%
ProFTPD 293.4 7.2 40.91x 333.5 0.88x
Pure-FTPd 928.9 9.8 54.08 x 596.0 0.89x
TinyDTLS 640.9 3.1 206.74 % 1354.0 0.47x
Average ‘ — ‘ — 53.85% — 0.82x

protocol. While fuzzing DCMTK using £FUZz, we observed multiple environment
sources that undergo mutation. These included the configuration file, the database
responsible for storing patient records, various patient cases, and network sock-
ets utilized for hospital communication. Among the 5819 additionally covered
branches, 69% of them demonstrated direct connections to environmental mutations,
such as parsing and changing the configuration settings and adding entries to the
database. Therefore, full environment fuzzing significantly contributes to increased

code coverage.

EFUZZ covers 46.52% and 30.80% more code than AFLNET and NYX-NET, respec-
tively, with most additional code coverage resulting from program environment

fuzzing.

Comparing Results on Fuzzing Throughput. The experimental results on
fuzzing throughput are shown in Table 6.5. For each fuzzer, the corresponding
fuzzing throughput is shown in the respective columns. In the Speedup columns, we
present how much faster EFUzz executes compared to AFLNET and NYX-NET,
respectively. EFUZZ achieves a fuzzing throughput ranging from 101.7 to 1320.9
executions per second. The fuzzing throughput of AFLNET is from 3.1 to 38.6

executions per second, and EFUZZ executes 53.85 x faster than AFLNET on average.
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When compared to NYX-NET, £FUzz executes faster than NYX-NET on some
subjects (e.g., 1.78x faster on Live555) but slower on others. These results are
expected as AFLNET always replays each input sequence from the root, while
both £FUzz and NYX-NET avoid replaying repetitive input sequences by faithful
replay and state snapshots, respectively. In addition, compared to NYX-NET, EFUZZ
introduces some time overhead on certain subjects (e.g., DCMTK) to explore more
behaviors. However, this overhead is justified by the evident improvement in bug

finding and code coverage. Overall, EFUzz still maintains a robust throughput.

EFUZZ maintains a robust fuzzing throughput while enhancing the capability of

bug finding and code coverage.

6.7.4 Ablation Studies (RQ.3)

Impact of Algorithm Components. £FUZZ employs two strategies to enhance
the search efficiency of the program environment: behavior divergence handling
based on the relaxed replay, and feedback guidance. To evaluate the impact of each
strategy on the improvement of the code coverage, we conducted an ablation study.

For this purpose, we developed two ablation tools:
« EF1: based on £Fuzz, without behavior divergence handling,
o EF2: based on £FUuzz, without fuzzing feedback.

We compare the average code coverage achieved by EFuzz with that of EF1 and EF2
across 10 runs of 24 hours in each subject, and report the percentage improvements.

Table 6.6 shows the results of the percentage improvements in terms of average
code coverage. Overall, across all subjects, both strategies contributed to the increase
in code coverage, with none exhibiting a negative impact. Compared to EF1 without
behavior divergence handling, EFUZZ resulted in an average increase of 30.59% in
code coverage. Notably, in DCMTK, TinyDTLS and MC, £ruzz exhibited code
coverage improvements exceeding 60%. Compared to EF2 without fuzzing feedback,
EF¥Uzz increased the code coverage by 2.39% to 27.79%, with an average increase of
10.38%. Furthermore, comparing EFUzz with both tools across all subjects, 12112:1,
which indicates that EFUzz significantly outperforms EF1 and EF2. These results
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Table 6.6: Improvement of code coverage achieved by £FUZZ in comparison to
ablation tools EF1 and EF2. The results show that the impact of behavior
divergence handling and fuzzing feedback is significant.

Subject | vs. EF1 wvs. EF2 || Subject | vs. EF1 vs. EF2

DCMTK +60.83% +22.52% || gedit +22.14% +8.17%
DNSmasq | +39.28% +27.79% || Calculator | +27.12%  +6.61%
Exim +12.24% +9.66% || Monitor +14.24% +4.44%
Kamailio +28.89%  +10.52% || Glxgears +12.01%  +2.39%
Liveb55 +30.26% +14.61% || MC +68.60% +13.46%
OpenSSH +10.92% +3.99% || nano +20.48%  +8.75%
OpenSSL +12.98%  +8.06% || Vim +12.50% +20.47%
ProFTPD | +26.81%  +9.21% || Wireshark | +17.90%  +8.17%
Pure-FTPd | +46.21%  +6.75% || Xcalc +27.66%  +5.55%
TinyDTLS | 4+98.57% +8.59% || Xpdf +22.19% +7.79%

Average | +30.59% +10.38%

demonstrate the importance of £EFuzz’s divergence handling and the effectiveness of
fuzzing feedback in guiding the search.

We further measured the fuzzing throughput of £ruzz, EF1, and EF2 across
each subject. On average, EFUZZ achieves a fuzzing throughput of 447.6 executions
per second, while EF2 achieves a similar throughput of 454.9 executions per second.
However, EF1 executes faster than £FrUzz with a fuzzing throughput of 698.3
executions per second. This higher throughput is due to £FUzz’s strategy of
handling behavior divergence, which explores longer traces, trading raw throughput

for better coverage.

Divergence handling and feedback guidance enable £EFUZZ to increase code cov-
erage by 30.59% and 10.38%, respectively. The contribution of each strategy to

enhancing code coverage is significant.

Analysis of Relaxed Replay. To further analyze the impact of relaxed replay for

divergence handling, we examined the following additional questions:
« How often do executions resort to relaxed replay (#Freq.)?
o How many system calls in tree branches use relaxed replay (#RelaxSysCs vs

#TotalSysCs)?
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Table 6.7: Statistical analysis of relaxed replay proposed by £FuUzz, including the
frequency of the executions resorting to relaxed replay (#Freq.), the total number
of system calls executed in each tree branch (#TotalSysCs), the number of system
calls resorting to relaxed replay in each tree branch (#RelaxSysCs), and the point
at which a tree branch starts to resort to relaxed replay (#StartPoint).

Subject ‘ #Freq. ‘ #TotalSysCs #RelaxSysCs F#StartPoint

DCMTK 93.67% 130.0 116.7 10.27%
DNSmasq 34.52% 99.1 11.1 88.82%
Exim 98.78% 90.8 23.4 74.18%
Kamailio 73.85% 141.2 90.5 35.93%
Livebb5 45.12% 375.1 130.2 65.30%
OpenSSH 87.66% 105.3 10.7 89.87%
OpenSSL 91.02% 51.3 11.0 78.57%
ProFTPD 95.01% 172.1 24.8 85.61%
Pure-FTPd | 60.08% 114.9 14.5 87.41%
TinyDTLS 78.58% 312.6 295.5 5.46%
gedit 99.89% 397.3 332.1 16.42%
Calculator 99.65% 152.1 80.7 46.98%
Monitor 94.68% 114.5 69.6 39.21%
Glxgears 94.31% 92.6 35.8 61.37%
MC 89.98% 278.1 127.6 54.11%
nano 98.99% 164.6 89.0 45.93%
Vim 93.69% 386.2 307.7 20.32%
Wireshark 81.43% 198.4 157.5 20.60%
Xcalc 89.37% 147.5 51.7 50.78%
Xpdf 89.30% 234.1 182.0 22.26%
Average | 84.48% | 187.9 108.1 49.97%

« How early after a branch does relaxed replay start (#StartPoint)?

For this purpose, we collect the statistical data from 20 subjects over 24-hour runs
and report them in Table 6.7. On average, 84.48% of all executions across the 20
subjects have to resort to relaxed replay. The total number of system calls executed
in each tree branch (calculated from forking points) is 187.9, with 108.1 of those
system calls using relaxed replay. In addition, the starting points of the relaxed
replay vary among different subjects, ranging from 5.46% of the tree branch on
TinyDTLS to 89.87% on OpenSSH. On average, the relaxed replay starts to resort
to relaxed replay around halfway (49.97%). These results demonstrate that the

relaxed replay for divergence handling is necessary and commonly used by EFUZzz.
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6.7.5 Discussion

Manual Effort. The manual effort needed for using £FUZZ is minimal. The only
manual involvement is the user inputs necessary for testing GUI applications in
the recording phase. For example, when testing the calculator, the user needs
to open the application, execute a simple addition operation, and then close it.
After recording, the rest of the fuzzing workflow is fully automatic. To collect code
coverage feedback, EFUZZ can directly instrument the binaries of the program under
test, eliminating the need to recompile from source code. Similarly, the system-call
interception infrastructure (for record and replay) is designed to work with binary
code.

Limitations. In this work, we leverage greybox fuzzing over complex program
environments. We have demonstrated that the approach of £Fuzz is effective in
exposing previously unknown bugs and enhancing code coverage. Like other fuzzers,
the efficacy of EFuzz depends on the quality of the initial seed(s), and EFUZZ is
not guaranteed to cover the entire search space. Limited seed recordings (e.g., open
and immediately close a GUI) generally result in a limited exploration compared to
diverse recordings (e.g., exercising different GUI elements). However, the dependence
on quality seeds is an inherent limitation of fuzzing in general, in contrast to model
checking and other verification techniques that attempt to systematically explore the
entire search space. While £FUZz can fuzz a broad range of programs, its scope is
limited to Linux user-mode environments. This limitation stems from our underlying
environmental record and replay infrastructure. Despite this, and compared to
existing fuzzers, EFUZZ still maintains its generality, and can fuzz even challenging
subjects such as network protocols and GUI applications.

Relaxed replay assumes that 1/O system calls can be mutated and reordered
arbitrarily. This is a straightforward generalization of what existing fuzzers already
assume. For example, AFL implicitly assumes the input file can be mutated
arbitrarily, while AFLNET assumes messages can be reordered. However, these
assumptions may not always hold for some edge cases. Special files (e.g., /proc/*
and /dev/zero) and self-pipes are not mutable. Fortunately, such examples are rare
and can be avoided using a predefined special-case list. As such, no false positives

were detected during our evaluation. By design, £FUzz does not use modeling,
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allowing it to fuzz programs without any manual effort or prior knowledge. In
addition, EFUZZ supports fuzzing “new” syscalls not present in the original recording.
During relaxed replay, EFUzz provides inputs to the syscall based on file descriptors,
regardless of the specific syscall number. However, due to behavior divergence, if
the program invokes a system call to access inputs from a file descriptor that is not
originally recorded, £FUzz will fail the system call to maintain the plausibility of

the replay.

6.8 Conclusion

In this chapter, we present a methodology, tool, and evaluation to handle
complex program environments. Our EFUZZ tool avoids environment modeling
by recording program executions and selectively mutating (in the style of greybox
fuzzing) the recorded executions during replay to capture the effect of different
environments. Evaluation of £FUzz found 33 previously unknown bugs, out of which
24 were confirmed by developers. The applications tested include well-known GUI
applications and protocol implementations. EFUZZ presents a general approach
for handling software environments, which is different from (a) the practitioners’
approach of procuring sample environments for testing code on them one by one,
or (b) the current established research on environment modeling. We do not
model environments, and we do not procure environments. Instead £FUZZ is an
automated framework for implicitly navigating the space of program environments

via mutational fuzzing.
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Chapter 7
Related Work

In this chapter, we discuss how our techniques proposed in this thesis advance

related work, including model checking, runtime verification, and fuzzing.

7.1 Model Checking

7.1.1 Model Checkers

Model checking is a well-known property verification technique dating back to the
1980s [40, 131]; it is used to prove a temporal logic property in a finite-state system,
or to find property violation bugs. The early works check a temporal logic property
against a finite-state transition system. There exist well-known model checkers such
as [72, 35, 83], which can be used to check temporal properties on a constructed
model (via state-space exploration). To construct models, one method is manual
construction through a modeling language. This requires substantial effort and can
be error-prone [111, 65]. LTL-FUZZER directly checks software implementations and
does not separately extract models from the software, thus reducing the modeling
effort.

Early works on model checking have been extended to automatically find bugs
in software systems, which are typically infinite-state systems. Model checking of
software systems usually involves either some extraction of finite-state models or
directly analyzing the infinite-state software system via techniques such as symbolic
analysis. Automatic model extraction approaches [41, 11, 68, 137] include the works
on predicate abstraction and abstraction refinement [11, 12], which build up a
hierarchy of finite-state abstract models for a software system for proving a property.

These approaches extract models that are conservative approximations and capture
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a superset, of the program behavior. There are a number of stateful software model
checkers, such as CMC [111], Java Pathfinder [154], MaceMC [84], CBMC [38],
CPAchecker [18], which find assertion violations in software implementations. Many
of these checkers do not check arbitrary LTL properties for software implementations.
These model checkers either suffer from state space explosion or suffer from other
kinds of explosion, such as the explosion in the size/solving-time for the logical
formula in bounded model checking. In contrast, LTL-FUzZZER does not save any
states for safety property checking and saves only certain property-relevant program
states in liveness property checking. At the same time, LTL-FUZZER does not give
verification guarantees and does not perform a complete exploration of the state

space. We now proceed to discuss incomplete validation approaches.

7.1.2 Incomplete Checkers

Instead of exploring the complete set of behaviors, or a superset of behaviors, one
can also explore a subset of behaviors. Incomplete model learning approaches [148]
can be mentioned in this regard. The active model learning technique, such as Learn-
Lib [77], is widely used to learn models of real-world protocol implementations [58,
43, 60, 59]. It does not need user involvement. However, it is time-consuming and
hard to determine whether the learned model represents the complete behavior
of the software system [148, 163]. Compared with active learning, LTL-FUZZER
can more rapidly check properties, as shown in our experimental comparison with
LearnLib+NuSMV. To alleviate the state-explosion problem, stateless checkers such
as VeriSoft [62] and Chess [112] have been proposed; these checkers do not store
program states. These works typically involve specific search strategies to check
specific classes of properties such as deadlocks, assertions, and so on. In contrast,

LTL-FuzzER represents a general approach to find violations of any LTL property.

7.1.3 Environment Capturing

Capturing different execution environments poses a fundamental challenge for
any testing, analysis, and verification techniques. For example, model checking
and symbolic execution require a comprehensive view of the execution environment

to reason accurately about program behavior. Even traditional testing may miss
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critical behaviors when the search is conducted under a single, fixed environment.
Many existing approaches tackle this by manually abstracting the environment via a
model [10, 27, 63, 142, 111]. However, crafting abstract models is often laborious and
error-prone. To reduce this effort, some alternatives [33, 128] leverage virtualization
to execute programs in realistic environments without requiring manual abstraction.
Nevertheless, the path-explosion problem persists when analyzing an entire software
stack [9, 33]; the presence of many program environments further exacerbates the
path-explosion problem while finding bugs in software. £FUzz introduces a new
direction in environment capturing by using greybox fuzzing to implicitly generate
the effects of diverse environments. Compared to existing approaches, our method

offers greater usability and scalability.

7.1.4 Model Checking of Distributed Systems

Of the existing model-checking frameworks for distributed systems, MoODIST [162]
is the most similar to our approach MALLORY, as it requires no modification in the
SUT code; instead, it manipulates the system’s execution by intercepting calls to
the Windows API. The main conceptual distinction of MODIST from our work is
its interposition layer: unlike our observers, which are passive, MODIST intercepts
network, timing, and disk-related system calls and pauses the SUT. This provides
more control—in our terminology, it allows the mediator to act as a scheduler—but
comes at the expense of requiring a complex interposition framework that replicates
and replaces most of the API of a specific OS. The design innovations of MALLORY
that enable summarising observations about SUT (Section 5.3.2) are orthogonal to
the use of an interposition layer, and, therefore, such an interposition layer could
be integrated within our architecture—rather than choosing only which faults to
introduce, our nemesis would choose every action. In this work, we focused on finding
bugs in non-Byzantine fault-tolerant distributed systems [91] thus, side-stepping
the challenge of modelling the behaviour of possibly malicious nodes. We believe
that MALLORY’s workflow can be combined with existing techniques for Byzantine
system testing that emulate attacks by running several copies of the same node, but,

for now, only allow for execution in a network emulator [14].
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7.2 Runtime Verification

Runtime verification is a lightweight and yet rigorous verification technique [96,
16]. It analyzes a single execution trace of a system against formally specified
properties (e.g., LTL properties). It originates from model checking and applies
model checking directly to the real implementations. Model checking checks a model
of a target system to verify the correctness of the system, while runtime verification
directly checks the implementation, which could avoid different behaviors between
models and implementations. LTL-FUZZER shares the same benefit as runtime
verification. Besides, runtime verification deals with finite executions, as one single
execution has necessarily to be finite. This avoids the state explosion problem that
model checking suffers from. Meanwhile, it leads to that the runtime verification
approaches [29, 80, 136, 44] often only check safety properties. LTL-FUZZER,
however, is able to check liveness properties by leveraging the strategy of saving
program states.

Conceptually, our method is very different from runtime verification. Runtime
verification focuses on checking (a temporal logic property) on a single execution.
Our method is focused on using temporal logic properties to guide the construction of
an execution that violates the property. Thus, our work is more of a test generation
method. Since runtime verification methods need tests whose execution will be
checked, our method can be complementary to runtime verification. In other words,
our method can generate tests likely to violate a given temporal property, and these

tests can be further validated by run-time verification.

7.3 Greybox Fuzzing

7.3.1 Finding Violations of Complex Properties

There are three broad variants of fuzzing: blackbox fuzzing [110], whitebox
fuzzing or symbolic execution [27, 138, 73], and greybox fuzzing [167, 22, 135, 21,
31, 155]. We first discuss greybox fuzzing since they are the most widely used in the
industry today. In contrast to software model checking, blackbox/greybox fuzzing

techniques represent a random/biased-random search over the domain of inputs
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for finding bugs or vulnerabilities in programs. Most greybox fuzzing techniques
are used to detect memory issues (e.g., buffer overflow and use after free) that can
produce observable behaviors (e.g., crashes). However, LTL-FUZZER can not only
witness simple properties like memory corruption but also detect LTL property
violations, for any given LTL property, however complex. Recent advances in greybox
fuzzing use innovative objective functions for achieving different goals, such as [21],
directing the search to specific program locations. The capabilities of LTL-FUzZER
go beyond visiting specific locations, and LTL-FUZZER is used to witness specific
event ordering constraints embodied by the negation of an arbitrary LTL property.
PGFUZZ [86] is a greybox-fuzzing framework to find safety violations for robotic
vehicles, but it is customized to be used on implementations of robotic vehicles.
LTL-FuUzzER can be used to find violations of any LTL property for software from

any application domain.

7.3.2 Grammar-Awared Fuzzing

Generation-based fuzzing generates messages from scratch based on manually
constructed specifications [97, 52, 3, 81, 1, 13]. These specifications typically
include a data model and a state model. The data model describes the message
grammar, while the state model specifies the message order between servers and
clients. However, constructing these specifications can be a laborious task and
requires large human efforts. In contrast, large language models (LLMs) are pre-
trained on billions of documents and possess extensive knowledge about protocol
specifications. In CHATAFL, we leverage LLMs directly to obtain specification
information, eliminating the need for additional manual efforts.

To reduce the reliance on prior knowledge and manual work before fuzzing,
several existing works have been proposed to dynamically infer message structures,
including blackbox fuzzers [71, 123] and whitebox fuzzers [26, 42, 99]. Blackbox
fuzzers such as TREEFUZz [123] employ machine learning techniques over the
seed corpus to construct probabilistic models that are subsequently used for input
generation. Whereas the whitebox fuzzers, such as PoLycLoT [26], extract the
message structure through dynamic analysis techniques over systems under test,

such as symbolic execution and taint tracking. However, these approaches can only
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infer message structures based on the observed messages. As a result, the inferred

structure may deviate significantly from the actual message structures.

7.3.3 Stateful Fuzzing

Recently, greybox fuzzing has been extended to stateful reactive systems, such
as network protocol implementations. Mutation-based fuzzers [167, 21, 127, 98, 57,
140, 5] generate new inputs by randomly mutating existing seeds selected from a
corpus of seed inputs and utilize coverage information to systematically evolve this
corpus. Guided by branch coverage feedback, they have been proven to be effective
in fuzzing stateless programs. However, when fuzzing stateful reactive systems,
branch coverage alone is a useful but insufficient metric for guiding the fuzzing
campaign, as elucidated in existing works [7]. Therefore, state coverage feedback is
employed to work with branch coverage to guide the fuzzing campaign.

However, identifying states presents a significant challenge. A series of works
[8, 126, 114, 130] proposes various state representation schemes. AFLNET [126]
utilizes the response code as states, constructs a state machine during the fuzzing
campaign, and employs it as state-coverage guidance. STATEAFL [114], SGFuzz [8],
and NSFuzz [130] propose distinct state representation schemes based on program
variables. In CHATAFL, we do not attempt to answer what states are. Instead,
we delegate this task to the LLM, allowing it to infer states. This approach has
proven effective. While fuzzing distributed systems, MALLORY does not make any
such assumptions about state variables. It captures the events executed so far in
a reactive system via a timeline abstraction. MALLORY also suggests for the first
time, the fuzzer of stateful reactive systems, itself as a reactive system. Thus, the
fuzzer feedback, instead of being given for an entire schedule or execution, is given
incrementally action by action, with the probabilities for the actions being adjusted

via Q-learning.

7.3.4 Snapshot Fuzzing

When fuzzing stateful reactive systems, achieving a deep exploration of program
states often requires a lengthy sequence of messages. For instance, AFLNET [126]

opts for replaying each message sequence from initial states, somewhat impeding
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its fuzzing speed. To address this limitation, SNAPFUZZ [5] employs an in-memory
filesystem to efficiently reset to specific interesting states, overcoming the impediment
faced by AFLNET. In a similar vein, NYX-NET [141] introduces a hypervisor-based
technique to dump program states at points of interest, including all memory
contents. Our £FUZZ algorithm eliminates the need for snapshots or hypervisors,
and dynamically reconstructs states on demand through replay. Our algorithm has
similarities with fork-based fuzzers such as AFL [167] and AFL++ [57]. Rather
than employing a global fork server at program entry, EFUZZ implements a mini-fork

server at each program input, avoiding replaying system call sequence prefixes.

7.3.5 Concurreny Program Fuzzing

The vast majority of existing greybox fuzzers aim at testing sequential software
systems, with most of the recent research efforts dedicated to generating more diverse
inputs [144, 51], defining better feedback functions [8, 134] and test oracles [105].
With this mindset, fuzzing distributed systems poses unique challenges since (i) the
inputs include not just plain data but also schedules consisting of environmental
faults and (ii) code coverage is not as efficient, since distributed systems typically
do not have complex control flow and their behavioral complexity come from the
asynchrony of operations across multiple nodes. The recent Muzz [30] framework
for fuzzing of (single-node) multi-threaded programs, addresses (i)-(i7) by extending
the edge coverage metric with possible thread interleavings, while also identifying
equivalent schedules. Muzz’ approach does not extend to distributed systems as it
is tailored to tracking the ordering of specific threading functions, while MALLORY
works with arbitrary events and communication patterns. Furthermore, MUzz
relies on instrumenting the system scheduler, which is difficult to implement for a
distributed system without virtualizing the networking layer. In MALLORY, our
timeline-based approach offers a more general way to observe program behaviours
for any non-sequential program, including stand-alone multithreaded as well as

distributed systems.
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7.3.6 Fuzzing Based on Large Language Models

Following the remarkable success of pre-trained large language models (LLMs)
in various natural language processing tasks, researchers have been exploring their
potential in diverse domains, including in fuzzing. For instance, CODAMOSA [95]
was the first to apply LLMs to fuzzing (i.e., the automatic generation of test cases
for Python modules). Later, TITANFUzz [46] and FuzzGPT [47] used an LLM to
automatically generate test cases for Deep Learning software libraries, specifically.
While these works were taking a generational approach to fuzzing, CHATFUZzZ [74]
takes a mutational one by asking the LLM to modify human-written test cases.
Ackerman et al. [2] leverages the ambiguity of format specifications and employs
the LLM to recursively examine a natural language format specification to generate
instances for use as strong seed examples to a mutation fuzzer. In contrast to
these techniques, CHATAFL separates the information extraction from the fuzzing.
CHATAFL first extracts information about the structure and order of inputs from
the LLM in machine-readable format (i.e., via grammars and state machines) before
running a highly efficient fuzzer that is fed with this information. For efficiency,
CHATAFL uses the LLM for a mutational approach (similar to CHATFUZz) only

whenever the coverage saturates during fuzzing.

7.4 Symbolic Execution

Symbolic execution or whitebox fuzzing approaches are typically used to find
violations of simple properties such as assertions [63, 27]. Recent whitebox fuzzing
techniques do find violations of certain classes of properties. Schemmel’s work [138]
checks liveness properties while CHIRON [73] checks safety properties. [168, 164]
proposed regular-property guided dynamic symbolic execution to find the program
paths satisfying a property. However, all of these approaches require a long time
budget for heavy-weight program analysis and back-end constraint solving. As a
result, these techniques face challenges in scalability. In contrast, LTL-FUzZzZER
is built on top of greybox fuzzing; it can validate arbitrarily large and complex

software implementations.
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7.5 Blackbox Fuzzing

The majority of state-of-the-art testing frameworks that explore behaviours
of a distributed system assume full control over the inherent non-determinism of
runtime executions, with JEPSEN being a notable exception [88]. They achieve this
by either (a) replacing the networking layer [162], (b) explicitly modifying SUT to
include a test harness [169, 93, 121], or (c¢) implementing the system in a testing-
friendly language [85, 166, 48]. Controlling the asynchrony makes it possible to
employ techniques from software model checking such as partial order reduction [79]
to avoid redundancy when exhaustively exploring the space of bounded runtime
executions [122; 49, 121, 100]. While these approaches allow for more effective
behaviour exploration than JEPSEN/MALLORY, they are far more difficult to apply,
requiring, (a) specific OS setup, (b) protocol-aware SUT modifications, or (c) using

a domain-specific language.
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Chapter 8

Conclusion

In this chapter, we summarize the proposed approaches, reflect on this thesis,

and discuss our perspectives and potential future research directions.

8.1 Summary

In this thesis, we develop effective, scalable, and usable approaches for finding
bugs in reactive systems. The key problem in the automated validation of reactive
systems lies in their inherent statefulness: sending the same inputs twice might
yield a different response every time, depending on the internal state. To address
this problem, we propose a new technical framework that synergizes the concepts
of model checking with recent advances in greybox fuzzing, without giving formal
verification guarantees. Model checking is traditionally adopted by developers for
systematically validating reactive systems, while greybox fuzzing is the most popular
automated testing technique today. By synergizing both techniques, we retain the
bug-finding capability from model checking, and the scalability and usability from
greybox fuzzing.

We have used this technical solution to address the statefulness problem. First,
we developed LTL-FUZZER, an automated testing method that brings the ability
of model checking to find stateful property violations into the domain of greybox
fuzzing. Unlike traditional approaches that require modeling the system, LTL-
Fuzzer directly uses greybox fuzzing on system implementations to search for
violating traces. This approach has demonstrated effectiveness in practice: among 50
LTL properties derived from protocol RFCs, LTL-FUZZER uncovered 15 previously
unknown violations for both safety and liveness properties. Second, we developed

CHATAFL, which leverages large language models (LLMs) to automatically identify
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states from specifications, and then uses this state feedback to guide greybox fuzzing
to explore previously unseen states. This approach transports the state exploration
capability of model checking into greybox fuzzing. In CHATAFL, we are not aiming
to have a thorough state exploration, but we still have a more principal way to
explore a larger state space. In our evaluation, this lightweight approach can cover
30% more states than the state-of-the-art approaches. Beyond single-node, stateful
reactive systems also operate in distributed settings. We developed MALLORY, a
greybox fuzzing method for testing stateful distributed systems. In MALLORY, we
leverage Lamport timelines to visualize executions of distributed systems and then
abstract them into states, which serve as the feedback function to guide the fuzzing
search. In addition, MALLORY itself behaves as a reactive system, which dynamically
decides what inputs to inject based on observed states to maximize the state space.
In our evaluation, MALLORY can cover over 50% more states than the best practical
tool JEPSEN. Last, system behaviors often heavily depend on complex environmental
states. We developed EFUZZ to capture the effect of different environmental states.
Rather than abstracting the possible environments into models, we use greybox
fuzzing to mutate the environments, implicitly generating the effect of different
environments. This approach is highly effective in practice. So far, EFuzz has found
about 100 previously unknown bugs in widely used programs and libraries such as
Vim and glibc, many of which arise in previously unconsidered environments. All
these approaches address the statefulness challenge in validating reactive systems,

but from different dimensions.

8.2 Reflections

What is the impact of practical techniques for validating reactive systems within
the community? In our work [108], we reflected on this question by examining
the impact of AFLNET in the past five years. AFLNET is the first work that
targets testing stateful network protocols, which integrates automated state model
inference with coverage-guided fuzzing. AFLNET was released as an open-source
tool in March 2020 [126]. Over the past five years, AFLNET has made significant
contributions to research, practice, and education. In terms of research impact, the

short tool demo paper of AFLNET has been cited over 381 times (as of July 2025,
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according to Google Scholar), with many citations appearing in premier conferences
and journals in Security and Software Engineering. Regarding practical impact,
AFLNET has garnered 942 stars on GitHub and currently supports 17 protocols, 12
of which were contributed by other researchers, demonstrating its versatility and
community engagement.

Security researchers have also published experience reports and tutorials on
using AFLNET for challenging targets. For example, the NCC Group explored
the challenges of fuzzing 5G protocols and demonstrated AFLNET’s ability to
uncover bugs in this critical domain. Similarly, researchers from the University
of Melbourne extended AFLNET to support IPv6 for fuzz testing the software
development kit (SDK) of Matter, a novel application-layer protocol designed to
unify fragmented smart home ecosystems. This extension has discovered zero-
day vulnerabilities in the Matter SDK. Moreover, ETAS, a subsidiary of Robert
Bosch GmbH, highlighted AFLNET as a potential open-source protocol fuzzing
solution in the context of the ISO/SAE 21434 standard for road vehicle cybersecurity
engineering. In education, AFLNET has been introduced to hundreds of Master’s
students through modules such as “Security and Software Testing (SWEN90006)” at
the University of Melbourne and “Fantastic Bugs and How to Find Them (17-712)”
at Carnegie Mellon University.

Why has AFLNet generated such practical and academic impact in a short period
of fewer than five years? We can see two reasons: (i) the open science approach and
(ii) providing a practical solution to a long-standing problem of validating reactive
systems. As for the open science approach, we strongly believe that sound progress
in science requires reproducibility and that effective impact in practice requires open
source, which is followed by this thesis. AFLNet is an excellent case demonstrating
the success of the open science approach.

AFLNet is a practical solution to the long-standing problem of validating reactive
systems. Looking back and reflecting on it, we feel this is because of the sheer
dearth of suitable approaches for testing reactive systems, though there exist many
approaches for testing sequential transformational systems. Prior to the greybox
approach of AFLNet, reactive system validation would typically need to be carried out
via algorithmic whitebox verification approaches such as model checking. AFLNET

frees the practitioners from the heavy manual effort. Together, these reflections
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underscore the value of having practical solutions for validating reactive systems

8.3 Path Forward

Beyond the network protocols and distributed systems mainly studied in this
thesis, a growing number of modern software systems, such as autonomous vehicles
and multi-agent systems, are being designed as stateful reactive systems to support
interaction and communication between diverse components. Modern reactive
systems are becoming increasingly complex, integrating Al-driven components,
operating in dynamic environments, and facing ever-evolving security and reliability
challenges.

To address these challenges, we must develop advanced testing techniques to
investigate the statefulness problems more deeply. While significant progress has
been made, many critical state-related problems from modern reactive systems
remain and continue to evolve. For example, most of current testing techniques
focus on exploring input-driven state space, where states are reached through user or
environmental inputs. However, in practice, reactive systems are often implemented
with concurrency (e.g., multithreading) to enhance responsiveness and throughput.
In such cases, the states are shaped not just by input sequences but also by thread
interleavings. Without considering these concurrency-induced execution paths, a
significant portion of the state space will not be able to be exposed.

Moreover, modern software systems are increasingly heterogeneous. In the era of
Artificial Intelligence (AI), many reactive systems are embedded with AI components,
such as autonomous vehicles and even agentic systems. As a result, the program
behaviors or states are not only determined by the source code, but also by embedded
AT components. Reasoning about and validating these Al-induced states poses a
new set of challenges. At the same time, today’s generative Al shows impressive
performance in automated programming, and more and more source code of states is
generated by Al models based on specifications. However, recent studies have shown
that code is more insecure with Al assistants [125, 124]. Ensuring trustworthiness in
such Al-generated components, particularly in stateful and safety-critical systems,
requires robust validation at both the code level and the state level.

These examples represent just a fraction of the broader state problems introduced
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by modern software ecosystems. To address these statefulness problems, we have
developed a technique framework that synergizes model checking with greybox
fuzzing in this thesis. This technique framework can be used to address more
statefulness problems. However, we can of course go far beyond this solution, and we
can propose advanced techniques to better validate reactive systems. For example,
one promising direction is to develop intelligent testing techniques that leverage the
code understanding capability of Al models to steer testing. Traditional testing
methods, such as greybox fuzzing and even symbolic execution, usually depend on
mechanistic information to steer search, while intelligent testing opens the door to

semantic-level reasoning, including understanding system states.
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