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Abstract

How can we check software changes effectively? During software development

and maintenance, the source code of a program is constantly changed. New

features are added and bugs are fixed. However, not always are the seman-

tic, behavioral changes that result from the syntactic, source code changes as

intended. Existing program functionality that used to work may not work any-

more. The result of such unintended semantic changes is software regression.

Given the set of syntactic changes, the aim of automated regression test gener-

ation is to create a test suite that stresses much of the semantic changes so as

to expose any potential software regression.

In this dissertation we put forward the following thesis: A complex source

code change can only be checked effectively by accounting for the interaction

among its constitutent changes. In other words, it is insufficient to exercise each

constitutent change individually. This poses a challenge to automated regression

test generation techniques as well as to traditional predictors of the effectiveness

of regression test suites, such as code coverage. We claim that a regression test

suite with a high coverage of individual code elements may not be very effective,

per se. Instead, it should also have a high coverage of the inter-dependencies

among the changed code elements.

We present two automated test generation techniques that can expose realis-

tic regression errors introduced with complex software changes. Partition-based

Regression Verification directly explores the semantic changes that result from

the syntactic changes. By exploring the semantic changes, it also accounts for

interaction among the syntactic changes. Specifically, the input space of both

program versions can be partitioned into groups of input revealing an output

difference and groups of input computing the same output in both versions.

Then, these partitions can be explored in an automated fashion, generating one

regression test case for each partition. Software regression is observable only

for the difference-revealing but never for the equivalence-revealing partitions.
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Change-Sequence-Graph-guided Regression Test Generation directly explores

the inter-dependencies among the syntactic changes. These inter-dependencies

are approximated by a directed graph that reflects the control-flow among the

syntactic changes and potential interaction locations. Every statement with

data- or control-flow from two or more syntactic changes can serve as poten-

tial interaction location. Regression tests are generated by dynamic symbolic

execution along the paths in this graph.

For the study of realistic regression errors, we constructed CoREBench

consisting of 70 regression errors that were systematically extracted from four

well-tested, and -maintained open-source C projects. We establish that the

artificial regression errors in existing benchmarks, such as the Siemens Suite and

SIR, are significantly less “complex” than those realistic errors in CoREBench.

This poses a serious threat to validity of studies based on these benchmarks.

To quantify the complexity of errors and the complexity of changes, we dis-

cuss several complexity measures. This allows for the formal discussion about

“complex” changes and “simple” errors. The complexity of an error is deter-

mined by the complexity of the changes necessary to repair the error. Intuitively,

simple errors are characterized by a localized fault that may be repaired by a

simple change while more complex errors can be repaired only by more sub-

stantial changes at different points in the program. The complexity metric for

changes is inspired by McCabe’s complexity metric for software and is defined

w.r.t. the graph representing the control-flow among the syntactic changes.

In summary, we answer how to determine the semantic impact of a com-

plex change and just how complex a “complex change” really is. We answer

whether the interaction of the simple changes constituting the complex change

can result in regression errors, what the prevalence and nature of such (change

interaction) errors is, and how to expose them. We answer how complex a “com-

plex error” really is and whether regression errors due to change interaction are

more complex than other regression errors. We make available an open-source

tool, CyCC, to measure the complexity of Git source code commits, a test gener-

ation tool, Otter Graph, for C programs that exposes change interaction errors,

and a regression error subject suite, CoREBench, consisting of a large number of

genuine regression errors in open-source C programs for the controlled study of

regresstion testing, debugging, and repair techniques.

Keywords : Software Evolution, Testing and Verification, Reliability
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Chapter 1

Introduction

,,Πάντα ῥεῖ καὶ οὐδὲν μένει.”
— ῾Ηράκλειτος, c. 535 BC – 475 BC

Software changes constantly. There is always this one feature that could be

added or that bug that could be fixed. Even after release, common practice

involves remotely updating software that is deployed in the field. Patches are

made available online and ready for download. For instance, the Linux operating

system has been evolving over the last twenty years to a massive 300 million

lines of code and, last time we looked,1 each day an enormous 16 thousand lines

of code are changed in the Linux kernel alone!

How can we check these software changes effectively? Even if we are con-

fident that the earlier version works correctly, changes to the software are a

definite source of potential incorrectness. The developer translates the intended

semantic changes of the program’s behavior into syntactic changes of the pro-

gram’s source code and starts implementing the changes. Arguably, as these

syntactic changes become more complex, the developer may have more diffi-

culty understanding the semantic impact of these syntactic changes onto the

program’s behavior and how these changes propagate through the source code.

Eventually, the syntactic changes may yield some unintended semantic changes.

Existing program functionality that used to work may not anymore. The result

of such unintended semantic changes is software regression.

In this dissertation, we develop automated regression test generation and

verification techniques that aim to expose software regression effectively. We

put forward the thesis that a complex source code change can only be checked

effectively by also stressing the interaction among its constituent changes. Thus,

an effective test suite must exercise the inter-dependencies among the simple

changes that constitute a complex change. We also show how we quantify error

and change complexity, and develop a regression error benchmark.

1http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git Accessed: Feb’14

1



1.1 Thesis Statement

The thesis statement shall summarize the core contribution of this dissertation

in a single sentence. The remainder of this dissertation aims to analytically and

empirically test and support this thesis, discuss implications in the context of

software evolution and regression testing, and introduce novel regression test

generation techniques that build upon this thesis.

Thesis Statement

A complex source code change can only be checked cost-effectively

by stressing the interaction among its constituent changes.

In the following, we discuss the different aspects of this statement in more detail.

Firstly, we pursue the problem of cost-effectively checking code changes.

Changes to a program can introduce errors and break existing functionality.

So, we need cost-effective mechanisms to check whether the changes are correct

and as intended. Two examples are regression verification as rather effective

and regression test generation as rather efficient mechanisms to check source

code changes. We discuss techniques that improve the efficiency of regression

verification and more importantly the effectiveness of regression test generation.

Secondly, we want to check complex source code changes. In this work, we

formally introduce a complexity metric for source code changes – the Cyclomatic

Change Complexity (CyCC). But for now we can think of a simple change as

involving only one changed statement while a more complex change is more

substantial and involves several statements at different points in the program.

It is well-known how to check the semantic impact of a simple source code

change onto the program’s behavior (e.g., [1, 2]). However, it is still not clearly

understood how to check more complex changes effectively.

So, thirdly we claim that the interaction among the simple changes constitut-

ing a complex change must be considered for the effective checking of complex

changes. We argue that the combined semantic impact of several code changes

can be different from the isolated semantic impact of each individual change.

This change interaction may be subtle and difficult to understand making com-

plex source code changes particularly prone to incorrectness. Indeed, we find

that regression errors which result from such change interaction are prevalent

in realistic, open-source software projects.
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1.2 Overview and Organization

This dissertation is principally positioned in the domain of software testing,

debugging, and evolution. Hence, we start with a survey of the existing work on

understanding and ensuring the correctness of evolving software. In Chapter 2

we discuss techniques that seek to determine the impact of source code changes

onto other syntactic program artifacts and ultimately on the program’s behavior.

The chapter introduces the required terminology and discusses the background

and preliminaries for this dissertation.

In Chapter 3, we introduce a technique that improves the efficiency of auto-

mated regression verification by allowing gradual and partial verification using

dependency analysis and symbolic execution. Given two program versions, re-

gression verification can effectively show the absence of regression for all program

inputs. To allow gradual regression verification, we devise a strategy to partition

the input space of two program as follows: If an input does not reveal an output

difference, then every input in the same partition does not reveal a difference.

Then, these input partitions are gradually and systematically explored until the

exploration is user-interrupted or the complete input space has been explored.

Of course, input that does not reveal a difference cannot expose software re-

gression. To allow partial regression verification, the partition-based regression

verification can be interrupted anytime with the guarantee of the absence of

regression for the explored input space. Moreover, partition-based regression

verification provides an alternative to regression test generation. Upon allowing

the continued exploration even of difference-revealing partitions, the developer

may look at the output differences and (in)formally verify the correctness of the

observed semantic changes.

In Chapter 4, we introduce a technique that improves the effectiveness of

automated regression test generation by additionally considering the interaction

among several syntactic changes. Given two program versions, regression testing

can efficiently show the absence of regression for some program inputs. We

define a new class of regression errors, Change Interaction Errors (CIEs), that

can only be observed if a critical sequence of changed statements is exercised

but not if any of the changes in the sequences is “skipped”. Employing two

automated test generation techniques, one accounting and one not accounting

for interaction, we generated test cases for several “regressing” version pairs in

the GNU Coreutils. The test generation technique that does not account for

potential interaction and instead targets one change at a time exposed only half

of the CIEs while our test generation technique that does account for interaction

and stresses different sequences of changes did expose all CIEs and moreover

exposed five previously unknown regression errors.
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In Chapter 5, we present complexity metrics for software errors and changes,

and CoREBench as benchmark for realistic, complex regression errors. We de-

fine the complexity of an error w.r.t. the changes required to repair the error

(and only the error). The measure of complexity for these changes is inspired

by McCabe’s measure of program complexity. Specifically, the complexity of a

set of changes directly measures the number of “distinct” sequences of changed

statements from program entry to exit. Intuitively, simple errors are charac-

terized by a localized fault that may be repaired by changing one statement

while more complex errors can be repaired only by more substantial changes

at different points in the program. We construct CoREBench using a sys-

tematic extraction from over four decades of project history and bug reports.

For each error, we determined the commit that introduced the error, the com-

mit that fixed it, and a test case that fails throughout the error’s lifetime, but

passes before and after. Comparing the complexity for the realistic regression

errors in CoREBench against the artificial regression errors in the established

benchmarks, Siemens Suite and SIR, we observe that benchmark construction

using manual fault seeding yields a bias towards less complex errors and pro-

pose CoREBench for the controlled study of regression testing, debugging,

and repair techniques.

We conclude this dissertation with a summary of the contributions and dis-

cuss possible future work in Chapter 6.

1.3 Epigraphs

Each chapter in this dissertation starts with an epigraph as a preface to set the

context of the chapter. In the following we give the English translations.

• Πάντα ῥεῖ καὶ οὐδὲν μένει (Greek). Everything flows; nothing remains still.

• Nanos gigantium humeris insidentes (Latin). Dwarf standing on the shoul-

ders of giants.

• Divide et Impera (Latin). Divide and Rule.

• Das Ganze ist etwas anderes als die Summe seiner Teile (German). The

whole is other than the sum of its parts.

• Simplicity does not precede complexity, but follows it (English).
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Chapter 2

Related Work

,,Nanos gigantium humeris insidentes.”
— Sir Issac Newton, 1643 – 1727

Software changes, such as bug fixes or feature additions, can introduce soft-

ware bugs and reduce code quality. As a result tests which passed earlier may

not pass anymore – thereby exposing a regression in software behavior. This

chapter surveys recent advances in determining the impact of the code changes

onto other syntactic program artifacts and the program’s behavior. As such, it

discusses the background and preliminaries for this thesis.

Static program analysis can help determining change impact in an approxi-

mate manner while dynamic analysis determines change impact more precisely

but requires a regression test suite. Moreover, as the program is changed, the

corresponding test suite may, too. Some tests become obsolete while others are

to be augmented, in particular to stress the changes. This chapter discusses

existing test generation techniques to stress and propagate program changes.

It concludes that a combination of dependency analysis and lightweight sym-

bolic execution show promise in providing powerful techniques for regression

test generation.

2.1 Introduction

Software Maintenance is an integral part of the development cycle of a program.

In fact, the evolution and maintenance of a program is said to account for 90%

of the total cost of a software project – the legacy crisis [3]. The validation of

such ever-growing, complex software programs becomes more and more difficult.

Manually generated test suites increase in complexity as well. In practice, pro-

grammers tend to write test cases only for corner cases or to satisfy specific code

coverage criteria. Weyuker [4] goes so far as to speak of non-testable programs
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if it is theoretically possible but practically too difficult to determine the correct

output for some program input.

Regression testing builds on the assumption that an existing test suite stresses

much of the behavior of the existing program P implying that at least one test

case fails upon execution on the modified program P ′ when P is changed and

its behavior regresses [5]. Informally, if the developer is confident about the

correctness of P , she has to check only whether the changes introduced any

regression errors in order to assess the correctness of P ′. This implies that the

testing of evolving programs can focus primarily on the syntactic (and seman-

tic) entities of the program that are affected by the syntactic changes from one

version to the next.

The importance of automatic regression testing strategies is unequivocally

increasing. Software regresses when existing functionality stops working upon

the change of the program. A recent study [6] suggests that even intended code

quality improvements, such as the fixing of bugs, introduces new bugs in 9%

of the cases. In fact, at least 14.8∼24.4% of the security patches released by

Microsoft over ten years are incorrect [7].

The purpose of this chapter is to provide a survey on the state-of-the-art

research in testing of evolving programs. This chapter is structured as follows.

In Section 2.2, we present a quick overview of dependency analysis and symbolic

execution which can help to determine whether the execution and evaluation of

one statement influences the execution and evaluation of another statement. In

particular, we discuss program slicing as establishing the relationship between a

set of syntactic program elements and units of program behavior. In Section 2.3

we survey the related work of change impact analysis which seeks to reveal the

syntactic program elements that may be affected by the changes. In particular,

we discuss the problem of semantic change interference, for which the change of

one statement may semantically interfere or interact with the change of another

statement on some input but not on others. These changes cannot be tested in

isolation. Section 2.4 highlights the salient concepts of regression testing. We

show that the adequacy of regression test suites can be assessed in terms of code

coverage which may approximate the measure of covered program behavior. For

instance, a test suite that is 95% statement coverage-adequate exercises exactly

95% of the statements in a program. Section 2.5 investigates the removal of test

cases from an existing test suite that are considered irrelevant in some respect.

In many cases, a test case represents an equivalence class of input with similar

properties. If two test cases represent the same equivalence class, one can be

removed without reducing the current measure of adequacy. For instance, a

test case in a test suite that is 95% statement coverage-adequate represents,

for each executed statement, the equivalence class of inputs exercising the same

6



statement. We may be able to remove a few test cases from that test suite

without decreasing the coverage below 95%. Similarly, Section 2.6 investigates

the augmentation of test cases to an existing test suite that are considered

relevant in some respect. If there is an equivalence class that is not represented,

a test case may be added that represents this equivalence class. In the context

of evolving programs it may be of interest to generate test cases that expose

the behavioral difference exposed be the changes. Only difference-revealing test

cases can expose software regression.

2.2 Preliminaries

Dependency analysis and symbolic execution can help to determine whether the

execution and evaluation of a statement s1 influences the execution and eval-

uation of another statement s2. In theory, it is generally undecidable whether

there exists a feasible path (exercised by a concrete program input) that contains

instances of both statements [8]. Static program analysis can approximate the

potential existence of such paths for which both statements are executed and

one statement “impacts” the other. Yet, this includes infeasible ones. Symbolic

execution (SE) facilitates the exploration of all feasible program paths if the

exploration terminates. In practice, SE allows to search for input that exercises

a path that contains both statements.

2.2.1 Running Example

� �
1 input(i,j);

2 a = i; // ch1 (a=i+1)

3 b = 0;

4 o = 0;

5 if(a > 0){

6 b = j; // ch2 (b=j+1)

7 o = 1;

8 }

9 if(b > 0)

10 o = 2; // ch3 (o=o+1)

11 output(o);� �
Original Version P

� �
1 input(i,j);

2 a = i + 1; // ch1 (a=i)

3 b = 0;

4 o = 0;

5 if(a > 0){

6 b = j + 1; // ch2 (b=j)

7 o = 1;

8 }

9 if(b > 0)

10 o = o + 1; // ch3 (o=2)

11 output(o);� �
Modified Version P ′

Figure 2.1: Running Example

The program P on the left-hand side of Figure 2.1 takes values for the

variables i and j as input to compute output o. Program P is changed in

three locations to yield the modified program version P ′ on the righthand side.

Change ch1 in line 2 is exercised by every input while the other two changes are

7



guarded by the conditional statements in lines 5 and 9. Every change assigns

the old value plus one to the respective variable.

In this survey, we investigate which program elements are affected by the

changes, whether they can be tested in isolation, and how to generate test cases

that witness the “semantic impact” of these changes onto the program. In other

words, in order to test whether the changes introduce any regression errors, we

explain how to generate program input that produces different output upon

execution on both versions.

2.2.2 Program Dependence Analysis

Static program analysis [9, 10] can approximate the “impact” of s1 onto s2.

In particular, it can determine that there does not exist an input so that the

execution and value of s2 depends on the execution and value of s1. Otherwise,

static analysis can only suggest that there may or may not be such an input.

Statement s2 statically control-depends on s1 if s1 is a conditional statement

and can influence whether s2 is executed [10]. Statement s2 statically data-

depends on s1 if there is a sequence of variable assignments1 that potentially

propagate data from s1 to s2 [10]. The Control-Flow Graph (CFG) models

the static control-flow between the statements in the program. Statements

are represented as nodes. Arcs pointing away from a node represent possible

transfers of control to subsequent nodes. A program’s entry and exit points

are represented by initial and final vertices. So, a program can potentially be

executed along paths leading from an initial to a final vertex. The Def/Use

Graph extends the CFG and labels every node n by the variables defined and

used in n. Another representation of the dependence relationship among the

statements in a program is the Program Dependence Graph (PDG) [11]. Every

statement s2 is a node that has an outgoing arc to another statement s1 if

s2 directly (not transitively) data- or control-depends on s1. A statement s2

syntactically depends on s1 if in the PDG s1 is reachable from s2.

The program dependence graphs for both program versions in our running

example are depicted in Figure 2.2. The nodes are labeled by the line number.

The graph is directed as represented by the arrows pointing from one node to

the next. It does not distinguish data- or control-dependence. For instance, the

node number 7 transitively data- or control-depends on the node number 1 but

not on nodes number 6 or 3 in both versions. In the changed program there is

a new dependence of the statement in line 10 on those in lines 4 and 7.

1A variable defined earlier is used later in the sequence.
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(a) PDG of original Program P (b) PDG of modified Program P'

Figure 2.2: Program Dependency Graph of Running Example

2.2.3 Program Slicing

A program slice of a program P is a reduced, executable subset of P that

computes the same function as P does in a subset of variables at a certain point

of interest, referred to as slicing criterion [12, 13, 14, 15].

Line Type Slice

2
Forward 2, 5, 6, 7, 9, 10, 11

Backward 1

6
Forward 6, 9, 10, 11

Backward 1, 2, 5, 6

10
Forward 10, 11

Backward 1, 2, 3, 5, 6, 9, 10

Original Version P

Line Type Slice

2
Forward 2, 5, 6, 7, 9, 10, 11

Backward 1

6
Forward 6, 9, 10, 11

Backward 1, 2, 5, 6

10
Forward 10, 11

Backward 1, 2, 3, 5, 6, 7, 9, 10

Modified Version P ′

Figure 2.3: Static Backward and Forward Slices

A static backward slice of a statement s contains all program statements that

potentially contribute in computing s. Technically, it contains all statements

on which s syntactically depends, starting from the program entry to s. The

backward slice can be used in debugging to find all statements that influence the

(unanticipated) value of a variable in a certain program location. For example,

the static backward slice of the statement in line 6 includes the statements in

lines 1, 2, and 5. Similarly, a static forward slice of a statement s contains

all program statements that are potentially “influenced” by s. Technically, it

contains all statements that syntactically depend on s, starting from s to every

program exit. A forward slice reveals which information can flow to the output.

It might be a security concern if confidential information is visible at the output.

As shown in Figure 2.3, for our running example, the static forward slice of the

statement in line 6 includes the statements in lines 9, 10, and 11.
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If two static program slices are isomorphic, they are behaviorally equiva-

lent [16]. In other words, if every element in one slice corresponds to one ele-

ment in the other slice, then the programs constituted on both slices compute

the same output for the same input. Static slices can be efficiently computed

using the PDG (or System Dependence Graph (SDG)) [11, 13]. It possible to

test the isomorphism of two slices in linear time [15].

However, while a static slice considers all potential, terminating executions,

including infeasible ones, a dynamic slice is computed for a given (feasible)

execution [14]. A dynamic backward slice can resolve much more precisely which

statements directly contribute in computing the value of a given slicing criterion.

Dynamic slices are computed based on the execution trace of a program input.

An execution trace contains the sequence of statement instances exercised by

the input. In other words, input exercising the same path produces the same

execution trace. For instance, executing program P in Figure 2.3 with input

(0,0), the output is computed as o = 0 in line 11. The execution trace contains

all statements in lines 1, 2, 3, 4, 5, 9, and 11. However, only the statement in

line 4 was contributing directly to the value o = 0 in line 11.

The relevant slice for a slicing criterion si contains all statement instances

in the execution trace that contribute directly and indirectly in computing the

value of si [17] and is computed as the dynamic backward slice of si augmented

by potential dependencies [18] of si. More specifically, every input exercising the

same relevant slice computes the same symbolic values for the variables used in

the slicing criterion [19]. For instance, again executing program P in Figure 2.3

with input (0,0), we see that the statements in lines 5, 2, and 1 indirectly

contributed to to the value o = 0 in line 11. If the conditional statement in

line 5 was evaluated differently, the value of o may be different, too. Hence, the

output in line 11 potentially depends on (the evaluation of) the branch in line

5, which itself transitively data-depends on the statements in lines 2 and 1.

The applications of the relevant slice are manifold. In the context of debug-

ging the developer might be interested in only those executed statements that

actually led to the (undesired) value of the variable at a given statement for

that particular, failing execution. Furthermore, relevant slices can be utilized

for the computation of program summaries. By computing relevant slices w.r.t.

the program’s output statement, we can derive the symbolic output for a given

input. Using path exploration based on symbolic output, we can gradually re-

veal the transformation function of the analyzed program and group input that

computes the same symbolic output [19].
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2.2.4 Symbolic Execution

While static analysis may suggest the potential existence of a path that exercises

both statements so that one statement influences the other statement, the path

may be infeasible. In contrast, Symbolic Execution (SE) [20, 21, 22] facilitates

the exploration of feasible paths by generating input that each exercises a dif-

ferent path. If the exploration terminates, it can guarantee that there exists (or

does not exist) a feasible path and program input, respectively, that exercises

both statements. The test generation can be directed towards executing s1 and

s2 in a goal-oriented manner [23, 24, 25, 26].

SE generates for each test input a condition as first-order logic formula that is

satisfied by every input exercising the same program path. This path condition

is composed of a branch condition for each exercised conditional statement (e.g.

If or While). A conjunction of branch conditions is satisfied by every input

evaluating the corresponding conditional statements in the same direction. The

negation of these branch conditions one at a time, starting from the last, allows

to generate input that exercises the “neighboring” paths. This procedure is

called path exploration.

Input Output

P
i ≤ 0 o = 0

i > 0 ∧ j ≤ 0 o = 1
i > 0 ∧ j > 0 o = 2

P’
i ≤ −1 o′ = 0

i > −1 ∧ j ≤ −1 o′ = 1
i > −1 ∧ j > −1 o′ = 2

Figure 2.4: Symbolic Program Summaries

The symbolic execution of our running example can reveal the symbolic pro-

gram summaries in Figure 2.4. Both versions have two conditional statements.

So there are potentially 22 = 4 paths. One is infeasible. The others produce the

symbolic output presented in the figure. Input satisfying the condition under

Input computes the output under Output if executed on the respective program

version.

Technically, there are static [20] and dynamic [21, 22] approaches to symbolic

execution. The former carry a symbolic state for each statement executed. The

latter augment the symbolic state with a concrete state for the executed test

input. A symbolic state expresses variable values in terms of the input variables

and subsumes all feasible concrete values for the variable. A concrete state

assigns concrete values to variables. System and library calls can be modelled

as uninterpreted functions for which only dynamic SE can derive concrete output

values for concrete input values by actually, concretely executing them [27].

11



In theory, path exploration can determine all feasible paths if it terminates.

Yet, the number of paths grows exponentially due to the number of conditional

statements in the explored program. To attack this path explosion problem, it

is possible to prune a family of infeasible paths when one is encountered [28],

group a set of feasible paths to a path family so as to explore only one member

of a each family [19, 29, 30], massively parallelize the path exploration [31],

and explore components of the program independently so as to compose the

fragmented exploration results globally [32]. Further, more scalable approaches

are presented in combination with white box fuzz testing [33] and machine

learning techniques [34].

2.3 Change Impact Analysis

Change impact analysis [35, 36, 37, 38] can help to check whether and which pro-

gram entities (including the output) are affected by syntactic program changes.

The developer can focus testing efforts on affected program entities in order to

more efficiently expose potential regression errors introduced by the changes.

Similar to dependence analysis, it is generally undecidable whether there

exists input that exercises even a single changed statement [8] and not to men-

tion that makes any behavioral difference observable. However, static analysis

can approximate the potential existence of program paths that reach changes

and propagate the semantic effects. Differential symbolic execution [39] allows

a more precise analysis of the existence of program paths that can propagate

the semantic effects of changes. Dynamic program analysis requires the exis-

tence of at least one such program path and can precisely determine the affected

program entities and which changes are interacting.

2.3.1 Static Change-Impact Analysis

Statically, we can determine i) which statements are definitely not affected by a

change [12, 13, 38], ii) which statements are probably affected by a change [40],

iii) which set of changes do definitely not semantically interfere and can thus be

tested in isolation [41, 42] and iv) which statements remain, cease to, or begin

to syntactically depend on a statement that is changed [43, 44, 45].

There are mainly two different syntactic approaches to statically compute

the semantic difference introduced by the changes - text-based and dependency-

based differencing. Text-based differencing [46, 47, 48] is a technique that

given two program versions can expose changed code regions. This includes

approaches that compare strings [47], as for instance the Unix utility diff, and

approaches that compare trees [48]. Text-based differencing tools may efficiently
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identify textual differences but they cannot return information on code regions

in the program that are affected by the changes.

Dependency-based differencing [43, 44, 45, 49] methods can compute the

program entities affected by the changes. Using the static forward slice of the

changed statements, we can compute those statements that are potentially af-

fected by the change. Practically, this can be more than 90% of the statements

in a program [37]. Still, every statement that is not in the static forward slice of

any changed statement is definitely not affected by a change of that statement.

Based on empirically justified assumptions, Santelices and Harrold [40] show

how to derive the probability that the change of one statement has an impact

on another given statement. Moreover, it is possible to check whether a set of

changes potentially semantically interferes by computing the intersection of the

static forward slices for each changed statement [41, 50]. If the static program

slices do not intersect, the set of changes can be tested in isolation.

Change Set Interference Locations
{ch1, ch2} 6, 9, 10, 11
{ch1, ch3} 10, 11
{ch2, ch3} 10, 11

{ch1, ch2, ch3} 10, 11

Figure 2.5: Potentially Semantically Interfering Change Sets

For our running example, the static forward slices of the changes ch1 and

ch2 in lines 2 and 6 are not intersecting at line 7 as shown in Figure 2.5. In fact,

only ch1 may have a semantic effect on line 7. In contrast, the forward slices of

both changed statements are intersecting at line 9, amongst others. Later in the

text we show that ch1 and ch2 semantically interfere for input {0, 0} because

removing one change (by replacing the modified code with the original code for

the change) alters the semantic effect of the other change on that execution.

Therefore, both changes cannot be tested in isolation.

Using program slicing and reconstitution2, Horwitz [43] presents a technique

to compute a program PC for two program versions P and P ′ that exhibits all

changed behaviors of P ′ w.r.t. P . The authors note that we cannot always as-

sume to know the correspondence between the elements of the respective PDGs

of both versions (P and P ′) and propose a solution using slice-isomorphism

testing which executes in linear time [15]. The explicit (and automatic) tagging

of every syntactic element is another solution to establish the correspondence of

an element in the PDG in one version to an element in the PDG of another ver-

sion [42]. Semantic differencing tools based on static dependency analysis were

2A program is reconsituted when source code is generated from a dependence graph or
program slice [51, 43].
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implemented by Jackson and Ladd [44] and more recently by Apiwattanapong

et al. [49] and Loh and Kim [45]. However, while syntactic tools are efficient,

they are often rather imprecise as the semantics of the programs are ignored.

For instance, two syntactically very different pieces of code can always compute

the same output for the same input. Yet, dependency-based tools will always

report differences.

2.3.2 Dynamic Change Impact Analysis

Dynamically, given an input t, it is possible to determine i) much more precisely

which statements are affected by the (exercised) changes [35], ii) whether and

how the combined semantic effects of the exercised changes are propagated to

the output [52, 53, 17]), and iii) whether two subsets of the exercised changes

are interacting [54].

Assume that only the statement c has changed from one program version to

the next. To check whether the semantic effect of c is propagated to another

statement s for an input t, it is sufficient to determine whether s is exercised

in one but not in the other version or the values for the variables used in s are

different in both versions (cf. [52, 2]). Two changes, c1 and c2, interact for the

execution of t if removing one change (i.e., replacing the modified code with the

original code for the change) alters the semantic effect of the other change on

that execution. Santelices et al. [54] define and present a technique to compute

change interaction. First, given two (sets of) changes c1 and c2, four program

configurations are constructed - the modified program P ′, the modified program

with c1 being replaced by the original code (P ′\c1), the modified program with

c2 being replaced by the original code (P ′\c2), and the modified program with

both changes being replaced by the original code (P ′\{c1, c2}). Second, the test

case t is executed on all configurations to compute the execution traces π(t, P ′),

π(t, P ′\c1), π(t, P ′\c2), and π(t, P ′\{c1, c2}) augmented by variable values.

effect(t, c1, P
′)←diff(π(t, P ′), π(t, P ′\c1)) (2.1)

The semantic effect of c1 on P ′ is computed as the difference of the augmented

execution traces when executing t on P ′ and on P ′\c1.

interact(t, c1, c2, P
′)↔((effect(t, c1, P

′) 6= effect(t, c2, P
′\c1)) (2.2)

∨(effect(t, c1, P
′\c2) 6= effect(t, c2, P

′))).

Both changes c1 and c2 are interacting iff the semantic effect of c1 on P ′ is

different from the semantic effect of c2 on P ′\c1 or the semantic effect of c2 on

P ′ is different from the semantic effect of c1 on P ′\c2.
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� �
1 input(i=0,j=0);

2 a = i + 1; // ch1

3 b = 0;

4 o = 0;

5 if(a > 0){

6 b = j + 1;// ch2

7 o = 1;

8 }

9 if(b > 0) //(true)

10 o = o + 1;

11 output(o);� �
Modified Version (P ′)

� �
1 input(i=0,j=0);

2 a = i + 1; // ch1

3 b = 0;

4 o = 0;

5 if(a > 0){

6 b = j; //not ch2

7 o = 1;

8 }

9 if(b > 0) //(false)

10 o = o + 1;

11 output(o);� �
P ′ without ch2 (P ′\ch2)

Figure 2.6: Changes ch1 and ch2 interact for input {0,0}

An example of change interaction for a given test case is depicted in Fig-

ure 2.6. It shows two configurations - the modified program P ′ on the lefthand

side and the modified program with ch2 being replaced by the original code,

P ′\ch2, on the righthand side. Input t = {0, 0} exercises the changes ch1 and

ch2 in lines 2 and 6 in both configurations. The semantic impact of ch2 on P ′

is the conditional statement in line 9 being evaluated in different directions in

both configurations. As a result, input t produces output o = 2 in configuration

P ′ and o = 1 in configuration P ′\ch2. The semantic impact of ch1 on P ′\ch2

is the conditional statement in line 5 being evaluated in different directions in

both configurations. As a result, input t produces output o = 1 in configuration

P ′\ch2 and o = 0 in configuration P ′\{ch1, ch2}. Note, there does not exist any

input for which ch3 has a semantic impact on any configuration. Both changes,

ch1 and ch2 are semantically interacting for input {0, 0} because the semantic

impact of ch2 on P ′ is different from the semantic impact of ch1 on P ′\ch2 for

t. Note, there does not exist any input for which ch1 or ch2 are interacting

with ch3. Yet, in general it is undecidable whether there exists such an input t

that exercises a changed statement and propagates the semantic effects to an-

other statement (incl. the output), or upon which two (sets of) changes are

interacting.

2.3.3 Differential Symbolic Execution

Differential Symbolic Execution [39] can approximate those paths that poten-

tially propagate the semantic effects of a change to the output. Exploiting the

fact that the original and changed version of a method are syntactically largely

similar, the behaviour of common code fragments is summarized as uninter-

preted functions. In both versions the behavior of the changed method can be

represented as abstract program summaries. An abstract summary consists of

a set of partition-effect pairs. A partition-effect pair consists of a condition that
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is to be satisfied to observe the effect and an effect that computes the output

in terms of the method input variables. Both, the condition and the output

function can contain uninterpreted functions.

Input Output

P
b(i, j) > 0 o = 2
b(i, j) ≤ 0 o = o(i, j)

P’
b(i, j) > 0 o′ = o(i, j) + 1
b(i, j) ≤ 0 o′ = o(i, j)

Figure 2.7: Abstract Program Summaries for P and P ′\{ch1, ch2}

In our running example in Figure 2.1 many code fragments are changed.

Suppose that only the statement in line 10 is changed in the original program

(P ′\{ch1, ch2}). Note, both versions P and P ′\{ch1, ch2} are semantically

equivalent (i.e., compute the same output for the same input). As depicted in

Figure 2.7, the behavior of the common code region from lines 2-8 is summarized

as uninterpreted functions. In particular, the variable b used in line 9 is defined

by the uninterpreted function b(i, j) while o used in lines 11 and 12 is defined

by the uninterpreted function o(i, j).

To reveal the differential behavior of the changed version w.r.t. the original

version, DSE allows to compute (partition-effects or functional) deltas upon

both abstract summaries. For instance, if the conditions are the same but the

effects are different in both versions and the computed delta does not contain an

uninterpreted function, then every input satisfying the condition must expose

a difference in program behavior. On the other hand, if the delta contains

uninterpreted functions, then the behavior of the common code fragment has

to be explored first. For instance, for the abstract summary in Figure 2.7, DSE

can show that if b(i, j) > 0 is satisfiable, the semantic effects of the changes

may propagate to the output. However, in order to find an input that exposes

a behavioral difference, first we have to check whether and for which values of

i and j the condition b(i, j) > 0 can be satisfied. Second, we have to determine

a value that satisfies o 6= o′ and thus 1 6= o(i, j). There is no such input.

2.3.4 Change Granularity

When a new version of the program’s source code is analyzed or tested, we

may want to decompose this change from one version to the next into smaller

“changes” which can be analyzed and tested in isolation. Syntactic change

can be defined on different levels of granularity. For example, we can speak of

changed components, features, classes, methods, code regions, statements, or of

changed program dependencies.
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In some cases changes cannot be tested in isolation and yield inconsistent

program configurations. Zeller [55] distinguishes integration failure, for which

one change requires another change that is not included in the configuration,

construction failure, for which the change configuration cannot be compiled,

and execution failure, for which the test outcome is unresolved after execution.� �
1 public class Test{

2 public int inc(int b){ // change c1: Add function

3 return b++; // change c2: Add statement

4 }

5 }� �
Figure 2.8: Integration Failure

Ren et al. [38] define change as cluster of changed statements that are re-

quired to avoid integration and construction failures. A program configuration

can only contain every or no changed statement within a cluster of a selected

changes. In Figure 2.8, change c1 is adding method inc to a class. Change c2

is adding a statement to that method. A configuration that contains c2 must

also contain c1. The authors define several types of changes, such as adding,

deleting, and changing methods or classes.

Jin et al. [56, 57] generate random test cases that are executed on both ver-

sions of a changed class. The authors note that the class interface should not

change from one version to the next because the same unit test case cannot

be executed on both versions simultaneously. Then, the test outcome is unre-

solved. Korel et al. [58] explain how to find the common input domain when

the dimensionality of the input space changes.

As in this thesis, Santelices et al. [54] define a code level change as “a change

in the executable code of a program that alters the execution behavior of that

program”. The configuration P ′\c is a syntactically correct version of P ′ where

the original code of a change c replaces the modified code from that change.

2.4 Regression Testing

Regression testing is a technique that checks whether any errors are introduced

when the program is changed. While static change impact analysis reveals unaf-

fected program elements, regression testing should exercise those elements which

are potentially affected by the changes. In particular, software regression can

only be observed for input that exposes a semantic difference in both programs.

Generally, regression testing is based on at least three assumptions: i) the

program behaves in a deterministic manner [21], ii) the software tester is rou-

tinely able to check the correctness of the program output for any input [4], and
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iii) an “adequate” regression test suite stresses much of the program’s behavior,

so that, when the program is changed and its behavior regresses, at least one

test case fails upon execution on the changed program [5, 59].

2.4.1 Deterministic Program Behavior

A test case is meaningful only if executing the same test upon the same pro-

gram always produces the same output - the program behavior is deterministic.

Only then the output is representative for the test case and can be compared

among program versions. Indeterminism can be introduced, for instance, by the

program environment, like a file system, or concurrency.

The program environment can introduce indeterminism. Some authors [21]

explicitly note that a library function, like an operating-system function or

a function defined in the standard C library, is treated as an unknown but

deterministic black-box that cannot be analysed but executed. In practice, this

may not hold. Suppose, the analyzed program loads a file every time it is

executed. At one point the file is changed by a third party. Suddenly, the same

test that used to pass now fails on the same program. An approach to model

the execution environment is discussed by Qi et al. [60].

The behavior of concurrent programs can be considered indeterministic, as

well (cf. race conditions). This can be mitigated by constructing a finite model

that considers all feasible schedules within which two or more threads can be

executed concurrently and enumerate these schedules to determine for instance

the existence of race conditions [61].

2.4.2 Oracle Assumption

In general, a software tester is not routinely able to check the correctness of the

program output for any input. A mechanism that determines upon execution

whether a test case passes or fails is known as oracle. In the context of evolving

programs, an oracle further decides whether or not a behavioral difference ex-

posed by a test case is intentional (see change contracts [62]). If the difference

is not intentional this test case would be a witness of regression.

The oracle problem [4] postulates that an oracle that decides for every input

whether the program computes the correct output is pragmatically unattain-

able and only approximate. Informally, the oracle problem denotes that even

an expert may in some cases not be able to distinguish whether an observed

functionality is a bug or a feature. However, there are types of errors that are

generally acknowledged as such; for instance, exceptions, buffer overflows, array-

out-of-bounds, or system crashes [21, 63, 57, 64, 65]. These are called de-facto

or implicit oracles [4, 57]. Otherwise, it is possible to specify errors explicitly
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as assertion-, property-, or specification violations [66, 67, 68, 69, 70]. In some

cases, the same functionality is implemented more than once to compare the

output [71] or the the program is run on “simplified” input data to accurately

assess the “simple” output [4]

The oracle problem affects specifically automated test generation, debugging,

and bugfixing techniques. For instance, an automated bugfixing technique can

correct the (buggy) program only relative to explicitly specified or known errors.

In a recent work, Staats et al. [72] point out that empirical software testing

research should explicitly consider the definition of oracles when presenting the

empirical data in order to better evaluate the efficacy of a testing approach and

allow for comparison by subsequent studies.

2.4.3 Code Coverage as Approximation Of Adequacy

The measure of code coverage approximates the adequacy of a test suite to

cover much of the program behavior [59]. A test suite is 100% code coverage-

adequate w.r.t. a coverage-criterion if all instances of the criterion are exercised

in a program by at least one test case in the test suite [73]. A statement

coverage-adequate test suite requires that every statement in the program is

exercised by at least one test case in the test suite. Decision coverage requires

that the condition in every control structure is evaluated both, to true and false.

A path coverage-adequate test suite exercises every feasible path from program

entry to exit at least once [73].

The measure of code coverage (excepting path coverage) can often be abso-

lutely computed using syntactic representations of the source code, such as the

nodes and edges in a PDG. For instance, a test suite is 50% statement coverage-

adequate, if all test cases in the test suite exercise exactly half of the statements

in the program. For our running example, the test suite TRE in Equation 2.3

covers every path in both program versions (cf. Fig. 2.4 on page 11).

TRE =


{ −2, −2 },
{ 2, −2 },
{ 2, 2 }

 (2.3)

Generally, it is undecidable whether there exists a 100% coverage-adequate

test suite for a given program and a given coverage criterion because it is unde-

cidable whether there exists an input that exercises a path containing a given

syntactic program artifact [8]. While code-coverage can often be efficiently

computed for a test suite w.r.t. a finite amount of syntactic program artifacts,

there are other measures to assess the test suite adequacy, such as fault-based
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[74, 75, 26], change-based [76], or “behavioral” [59] criteria. The efficacy of the

different measures can vary and has been compared [77, 78, 79, 80].

The approximation of the amount of covered behavior by the amount of

covered code may not properly quantify the capability of a test suite to reveal

regression errors. Specifically, a code coverage-adequate test suite may not in-

spire confidence in the correctness of the program [81] and may not perform

significantly better than random generated test cases in terms of revealing pro-

gram errors [82, 83, 80, 81]. Weyuker et al. [80] observe that while a test case

represents one or more equivalence classes in the input space of a program3,

such an equivalence class may not be homogeneous w.r.t. failure - if one test

case fails, every input in the same class fails. For instance, it is not true that

if a test case exercises some branch (which it may represent) and exposes an

error, then every input exercising the same branch exposes an error.

This leads to our thesis of “semantic” coverage criteria which requires the

partitioning of the input space w.r.t. correctness. As for our running example,

the regression test suite TRE in Equation 2.3 exercises every path in both ver-

sions. However, it does not expose any behavioral difference when comparing

the output upon execution in both versions. As software regression is observable

only for input that exposes a behavioral difference, we can conclude that even

a path coverage-adequate test suite may not expose software regression.

2.5 Reduction of Regression Test Suites

In order to gain confidence that program changes did not introduce any er-

rors, regression test suites are executed recurringly. The number of test cases

can greatly influence the execution time of a test suite. When the program is

changed, we can choose to execute only relevant test cases that actually exe-

cute the changed code regions and are more likely to expose regression errors.

Similarly, we can permanently remove test cases that are irrelevant w.r.t. some

measure of test suite adequacy.

2.5.1 Selecting Relevant Test Cases

Given a test suite, when the program is changed, only those test cases may be

selected that actually stress the changed functionality and can expose software

regression [84, 85, 38, 86]. On the other hand, test cases that do not exercise

the program changes cannot expose software regression that are introduced by

these changes. Ideally, executing only the selected test cases reduces the testing

time while preserving the capability to reveal regression errors.

3E.g., an input space subdomain represents every input exercising a certain branch.
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For example, Ren et al. [38] present a tool that given a test suite can deter-

mine test cases that do with certainty not exercise any changed statement. For

the analyzed subjects, on average 52% of the test cases were potentially affected

by the changes; each test case by about 4% of the changes. Furthermore, given

a test suite, the tool can ascertain which changed statements are with certainty

not executed by any test case. The test suite should be augmented by test cases

that exercise these statements to decide whether these changes introduced any

regression errors.

Graves et al. [84] empirically compare several test selection techniques. The

minimization technique chooses only those test cases that cover the modified or

affected parts of the program. It produces the smallest and least effective test

suite. The safe technique selects all test cases in the original test suite that can

reveal faults in the program. This technique was shown to find all faults while

selecting 60% of the test cases on the median. The ad-hoc or random technique

selects test cases on a (semi-) random basis. The random technique produced

slightly larger test suites than the minimization technique but on average yielded

fault detection results equivalent to those of the minimization technique with

little analysis costs. Furthermore, randomly selected test suites could be slightly

larger than a safely selected test suite but nearly as effective.

2.5.2 Removing Irrelevant Test Cases

Test cases in a large test suite that are redundant in some respect may be

removed completely [87, 88, 89]. Ideally, test suite reduction decreases the ex-

ecution time of recurring regression testing while preserving the capability to

reveal regression errors. Considering test cases as representatives of equivalence

classes, it is possible to remove those test cases that represent the same equiv-

alence class without reducing the current measure of adequacy. For instance,

given a 95% branch coverage-adequate test suite T , test cases are removed from

T until the removal of one more test case also reduces the branch-coverage of T

to less than 95%. Based on their empirical results, Rothermel et al. [90] conclude

that “test suite minimization can provide significant savings in test suite size.

These savings can increase as the size of the original test suites increases, and

these savings are relatively highly correlated (logarithmically) with test suite

size”.

However, the reduction of a test suite w.r.t. a code coverage criterion has a

negative impact on the capability of a test suite to reveal a fault [91, 92]. Hao et

al. [93] observe that the reduction w.r.t. statement coverage incurs a loss in fault-

detection capability from 0.157 to 0.592 (with standard deviations from 0.128

to 0.333) for the analyzed subjects. In other words, about 16-60% of the faults

21



originally detected become unexposed using the reduced test suite. Yu et al. [91]

empirically determine that the reduction of a test suite w.r.t. statement coverage

increases the fault localization expense by about 5% on average for the analyzed

subjects. In other words, given original test suite T and the test suite T ′ that

is reduced w.r.t. statement coverage, if Tarantula4 were to pinpoint a single

statement as probable fault location using T , then Tarantula would require the

tester to examine 5% of the source code as probable fault location using T ′.

In a recent work, Hao et al. [93] propose a test suite reduction technique that

removes test cases from the test suite while maintaining the capability to reveal

faults above a user-defined threshold.

2.6 Augmentation of Regression Test Suites

In order to gain confidence that program changes did not introduce any errors,

existing test suites are augmented by relevant test cases i) to better satisfy a

given test suite adequacy criterion, such as code coverage, and ii) to expose

behavioral differences which are introduced by changes to the program. Only

test cases that reveal a difference upon execution on both program versions can

potentially expose software regression.

There are automatic test generation techniques to better satisfy coverage-

based [95, 96, 97, 33], fault-based [98, 99, 26], and “behavioral” [59] adequacy

criteria. Approaches to generate test cases that expose a behavioral difference in

two program versions can be coarsely distinguished into three classes. Syntactic

approaches [2, 1, 100] aim to generate input that first reaches at least one change,

then infects the program state, and thereupon propagates its semantic effect to

the output. Semantic approaches [39, 19] use a form of program summaries to

find input that exposes a difference. Random approaches [57, 101] randomly

generate test cases that may or may not expose a difference when executed on

both versions.

2.6.1 Reaching the Change

Search-based test generation techniques [23, 102] aim to generate test cases that

reach specified targets in the program. These targets can be coverage goals to

increase code-coverage [95, 96, 33], program changes [1, 2, 25, 26, 99], or speci-

fied program faults like assertions [66, 58], exceptions [65, 63], and (functional)

properties [67, 68]. Korel and Al-Yami [58] present a technique that given two

program version reduces the problem of generating input that exposes a behav-

ioral difference to the problem of reaching an assertion.

4Tarantula is an automatic fault-localization technique [94].
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It is generally undecidable whether there exists an input that reaches a

change [8]. Practically, we can generate test cases to search for such input. If

we can assign a given input some measure of distance to the change, then we

can apply search strategies that reduce this distance. The distance of a test case

t to a changed statement c can be defined, for instance, based on the length of

the control-dependency chain from c to those branches exercised by t that are

not evaluated in favor of the execution of c, that is, have to be negated in order

to reach c.

Local search strategies, such as hill climbing [66, 103], monotonically reduce

this distance. Random restart procedures [26] can prevent the search strategy

to get stuck in a local minimum distance. Ferguson and Korel [103] introduce

the Chaining Approach (CA) that leverages data- and control dependencies to

generate input that reaches a target by identifying and exercising a necessary

sequence of nodes beforehand. Given a target c, CA analyzes the program

dependency graph to find program input that exercises c. The target c can

be reached only if those nodes upon which c control-depends are evaluated in

favor of the execution of c. Given a node p upon which c control-depends is

not evaluated in favor of c for some input t, then CA will generate input for

which p is negated. If p cannot be negated by input exercising the same path

(i.e., the same sequence than t of nodes in the CFG), then p is marked as the

problem node. “The chaining approach finds a set LD(p) of last definitions

of all variables used at problem node p. By requiring that these nodes are

executed prior to the execution of problem node b, the chances of altering the

flow execution at problem node p may be increased” [103]. Effectively, the nodes

in LD(p) become intermediate target nodes. This sequence of (intermediate)

target nodes is called event sequence (or chain).� �
1 input(i=-2,j=-2);

2 a = i + 1;

3 b = 0;

4 o = 0;

5 if(a > 0){ // (4)(false)

6 b = j + 1;// (3) intermed.

7 o = 1;

8 }

9 if(b > 0) // (2)problem node

10 o = o + 1;// (1) target

11 output(o);� �
Search state with input {−2,−2}

� �
1 input(i=2,j=-2);

2 a = i + 1;

3 b = 0;

4 o = 0;

5 if(a > 0){ //(true)

6 b = j + 1;

7 o = 1;

8 }

9 if(b > 0) // (2)(false)

10 o = o + 1;// (1) target

11 output(o);� �
Search state with input {2,−2}

Figure 2.9: Chaining Approach Explained for Modified Program P ′

We explain the chaining approach for our running example in Figure 2.9.

Suppose, we want to generate an input for the modified version P ′ that exer-

cises the changed statement in line 10. The CA may start with random input
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{−2,−2} as shown on the left-hand side. CA determines the branch in line 9

as problem node. The only variable used in the condition is b which is defined

in lines 3 and 6. So, CA designates the statement in line 6 as the intermediate

target which is guarded by the branch in line 5. This branch is evaluated to

false. To negate this branch, CA has to compute an input so that i + 1 > 0

(using function minimization). Thus, the next input may be {2,−2} as shown

on the righthand side. The branch in line 9 guarding the target in line 10 can

be negated by input exercising the same path than {2,−2}. In particular, CA

computes an input so that i+ 1 > 0∧ j + 1 > 0 which is satisfied by test {2, 2}.
Search strategies based on genetic algorithms [104], choose the “fittest” set

of inputs from one generation as “seed” for the next generation to find a global

minimum distance. Search strategies based on counterexample-guided abstrac-

tion refinement [67, 105, 68] try to prove that no such input exists in an abstract

theory. If instead a (possibly spurious) counter-example is found, it continues

to prove the absence of a counter-example in a refined theory. This repeats

until either its absence is proven or a concrete (non-spurious) counter-example

is found. A particular kind of search strategies seeks to cover a set of targets at

once or in a given sequence [96, 24, 26].

To optimize the search it is possible to reduce the search-space in a sound

[102, 30, 28, 100] and approximative manner [106, 29], search distinct program

components independently and compose the results [32, 68], or execute the

search strategy on multiple instances in parallel [31]. Yet, since the problem is

undecidable in general, the search for an input that reaches a change may never

terminate in some cases [67].

Another practical approach to find input that reaches a change is the random

generation of program input [107, 83, 108, 57]. Arcuri et al. [109] analytically

determine that the time to reach all of k targets by random test generation is

O(k ∗ log(k)).

2.6.2 Incremental Test Generation

Given only the changed statements in the changed program P ′, incremental test

generation is concerned with testing the code regions that are affected by the

changes. On the one hand, test cases that do not exercise a changed statement

cannot reveal a behavioral difference [38]. On the other hand, test cases that do

exercise one or more changed statements may or may not yield an observable

behavioral difference [2, 110, 25]. In fact, one study [26] finds that only 30%

to 53% of the test cases that do exercise a changed statement are difference-

revealing for the analyzed whole programs.
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In general, every statement in the static forward slice of a changed state-

ment is potentially affected by the change [13]. Hence, one can direct the path

exploration of P ′ explicitly towards the changed statements in order to exercise

program paths that are affected by the changes and increase the likelihood to

observe a behavioral difference [25]. Vice versa, one can avoid the exploration

of paths in P ′ that will not stress a changed code region and are unlikely to

propagate the semantic effect of a change [100].

P'Test Suite Trace P'
Elements

not covered
in P'

TSA for 
Elements 

not covered

execute 
on

< add generated tests to

Figure 2.10: Re-establishing Code Coverage

Upon program change, the code coverage of an existing test suite may de-

crease. As outlined in Figure 2.10, Xu et al. [95, 97] firstly apply a test selection

technique to find all test cases that are affected by the changes. Secondly, these

test cases are executed on the changed program to determine syntactic program

artifacts that are not covered (anymore). Lastly, the authors seek to re-establish

the code-coverage by generating test cases that exercise those syntactic program

elements that are not covered in P ′ reusing the selected test cases.

The analysis of only a single version, either P or P ′, is insufficient to expose

all behavioral differences. Even input exercising the same affected path in P ′

may exercise multiple, different paths in the original version P [111]. As a result,

the semantic interaction [54] of a set of changes may or may not be observed

at the output, even if every affected path is exercised. As for our running

example, the test suite TRE in Equation 2.3 on page 19 exercises every path in

both program versions. However, this test suite does not expose any behavioral

difference when comparing the output upon execution in both versions.

2.6.3 Propagating a Single Change

One may ask: What is the semantic impact of a change onto the program?

Does it introduce a bug? Since it is undecidable whether there exists input

that exercises the changed statement [8], it is also undecidable whether there

exists an input that reveals a behavioral difference and not to mention software

regression. However, given both program versions P and P ′ we can search for

input that 1) reaches the changed statement, 2) infects the program state, and

3) propagates the semantic effect to the output [1, 52, 98].
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Santelices et al. [112, 2] describe a technique that derives requirements for

new test cases to propagate the semantic effect of the exercised change to a

user-specified minimum distance (in terms of static dependence chains starting

at the changed statement). The tester can use these requirements to write a

test case that is more likely to reveal different behavior in the changed version

than a test case that merely executes the change. Using text-based differencing,

the algorithm finds the changed statement in the original program P and mod-

ified version P ′. Then, by means of (partial, dynamic) symbolic execution the

path condition and symbolic state for those statements following the changed

statement are computed. The path conditions and symbolic states of the corre-

sponding statements are compared for P and P ′ and requirements derived.

Qi et al. [1] generate a test case t, so that t executes a given change c and

the effect of c is observable in the output produced by t. The test case t can

be considered a witness of the behavioral difference introduced by c in the new

program version. The underlying algorithm works as follows.

First, using an efficient hill-climbing search strategy, input that reaches the

changed statement is generated. For optimization, all test cases in an existing

test suite are executed and respective path conditions are derived. A distance

function determines the probability of an input to reach a change and imposes

an order over the test inputs. Always taking the input “closest” to the change,

the respective path condition is manipulated to generate new input tnew that

minimizes the distance to the changed statement for the execution of tnew on

P ′. This repeats until the distance is zero and the change is reached.

c

t

c

t

c

t

(b) Execute the 
change

c

t

(a) Original (c) Infect state (d) Propagate to 
output

21 43

Figure 2.11: Generating input that satisfies the PIE principle

Second, using the Change Effect Propagation Tree (CEPT), the semantic

effect of the changed statement is propagated to the output. The semantic

effect of a change is observable for an input t in a variable v along the path

(and ultimately at the output) if v has a different value for the execution of t
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on P than of t on P ′ (i.e., execute(t, P ′, v) 6= execute(t, P ′\c, v)). The CEPT

identifies terminating locations of effect propagation for each execution. The

CEPT represents why a change cannot be propagated any further. For example,

a variable v that carries the semantic effect of the change is redefined without

using v anywhere else before. The authors determine three different reasons for

propagation termination and handle them accordingly. The path condition is

modified to drive the execution along a path that ensures propagation if possible.

This repeats until the semantic effect of c is observable in the output.

A simplification of the process is shown in Figure 2.11. For each diagram

the left (and black) line depicts the possible augmented execution trace5 for the

original program P . The right (and red) line shows the augmented history for

the modified program P ′. A deviation of both lines indicates that the same

input begins to produce different states in both versions at this point.

Test Input P P’
t1 {0,−1} o = 0 o′ = 1
t2 {0, 0} o = 0 o′ = 2

Figure 2.12: Behavioral Differences between P and P ′\{ch1, ch2}

The generated concrete test case is only one witness of the changed behavior.

The syntactic change could modify the behavior of the program in more than

one way. Qi et al. give an approach that shows some path that exposes changed

behavior due to the change. A regression error may only be exposed on another

path leading to the output. Figure 2.12 shows two test cases witnessing a

behavioral difference between original version P and a configuration for which

only the single change ch1 is applied to P . In theory, even for a single change

there may be infinitely many paths that exercise the changed statement and

produce a different output in both versions (e.g., if a loop condition depends on

the input).

2.6.4 Propagation of Multiple Changes

When multiple statements are changed, they may semantically interfere [42] or

interact [54] subtly and unintendedly when executed on some input but not on

others. Program changes potentially semantically interfere if the static forward

slices of the changed statements intersect in the changed program [41, 42]. Then,

the changes cannot be tested in isolation. For a given input, the semantic effect

of one change onto a statement may be masked or augmented by the semantic

effect of another change onto that statement.

5The augmented execution trace is the sequence of executed program statements plus
respective, relevant program states [54].
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Santelices et al. [2] discuss the feasibility of the approach of propagating

a single change to a minimal distance [112] in the presence of multiple (non-

interfering) changes. For each change there has to exist a path from the pro-

gram entry to the changed statement that does not contain another changed

statement. This ensures that the semantic effect of an “earlier” change is not

accidently propagated to a statement that is supposed to be infected by the

given change.

Harman et al. [26] call potentially semantically interfering sets of code changes

“higher-order mutants” and aim to generate a test case that for a given higher-

order mutant produces different output in both versions. First, using the

control-dependence graph of the changed program, the technique computes a

path that may execute all changes. Then, using this information and a hill

climbing algorithm with random restart, the technique generates a test case that

exercises every changed statement of the given higher-order mutant. Lastly, the

technique searches paths that are more likely to propagate the combined seman-

tic effects to the output.

Given a set of changes C, there are 2|C|−1 subsets of C that potentially

semantically interfere and have to be tested. For example, our running example

has three changes yielding four possibly interfering change sets (cf. Fig. 2.5 on

page 13). Yet, even for a single subset, the search for a difference-revealing test

case may never terminate, which renders this procedure prohibitively expensive.

Even if the search yields an input the produces different output on both program

versions, this input may not be a witness of software regression.

2.6.5 Semantic Approaches to Change Propagation

While syntactic techniques seek to explicitly reach at least one change and prop-

agate its semantic effect to the output, semantic techniques compute differences

based on the transformation functions of original and modified program ver-

sion [39, 113]. Path exploration based on the symbolic output can reveal the

transformation function of a program [19] - the symbolic program summary.

This summary is an (incomplete) list of input partitions. Each input in the

same partition computes the same symbolic output. Given the program sum-

maries of two program versions, a behavioral difference is exposed by input that

computes different output. In other words, if for overlapping input partitions

the output is computed differently, then every input in this intersection exposes

a behavioral difference.

Figure 2.13 lists the symbolic program differences for the two versions in our

running example. The respective symbolic summaries are shown in Figure 2.4

on page 11. The intersection is found by conjoining every input condition and
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{i, j} Input Output Diff
{−1, 0} i ≤ −1 o = o′ = 0
{0,−1} i > −1 ∧ i ≤ 0 ∧ j ≤ −1 o = 0 ∧ o′ = 1 x
{0, 0} i > −1 ∧ i ≤ 0 ∧ j > −1 o = 0 ∧ o′ = 2 x
{1,−1} i > 0 ∧ j ≤ −1 o = o′ = 1
{1, 0} i > 0 ∧ j > −1 ∧ j ≤ 0 o = 1 ∧ o′ = 2 x
{1, 1} i > 0 ∧ j > 0 o = o′ = 2

Figure 2.13: Symbolic Program Difference for P and P ′

testing for satisfiability. Note that input exercising the same path in P , i ≤ 0,

can exercise three paths in P ′.

jj

o = 0

i

o = 2

o = 1

o = o' = 0

i

o = o' = 2

o = o' = 1

o' = 0

i

j

o' = 2

o' = 1

(a) Input Space of P (b) Input Space of P' (c) Common Input Space

Figure 2.14: Visualization of overlapping Input Space Partitions

The visualization of the input space partitioning is shown in Figure 2.14. The

set of all values for input variables i and j forms a 2-dimensional vector space.

Diagram 2.14.a) shows the input space of the original program P partitioned

in terms of the output values. Diagram 2.14.b) depicts the input space of the

modified program P ′ partitioned in terms of the output values. The overlapping

of the partitioning of both input spaces is visualized in Diagram 2.14.c) for the

common input space. The red plane in between the gray, blue and green planes

represents input that executed on both versions compute different output.

Input Output
∆P,P ′\{ch1,ch2} b(i, j) > 0 o = 2

= ∆P

∆P ′\{ch1,ch2},P b(i, j) > 0 o′ = o(i, j) + 1
= ∆P ′\{ch1,ch2}

Figure 2.15: Partition-Effect Deltas for P w.r.t. P ′\{ch1, ch2}, and vice versa.

By summarizing the behavior of code blocks that are common in both ver-

sions as uninterpreted functions, we can derive the abstract program summary

for each program [39]. The abstract summaries can be used to compute the

partition-effect deltas. Such a delta reflects input partitions and their associ-
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ated effects, present in one version that are not present in the other version of

a program. Figure 2.15 shows the functional delta computed for the abstract

summaries in Figure 2.7 on page 16. If there exists input that renders b(i, j) > 0

satisfiable, then there may be a difference in output observable. More specifi-

cally, if there exists an assignment to i and j that renders b(i, j) > 0∧o(i, j) 6= 1

satisfiable, then this input is a witness of semantic difference. Note, for the ver-

sions P and P ′\{ch1, ch2} there does not exist such an input.

Korel and Al-Yami [58] present a technique that given two program versions

reduces the problem of generating input that exposes a behavioral difference

to the problem of reaching an assertion. The technique generates a test driver

that wraps both program versions and adds the assertion that both versions

compute the same output values. Then the technique searches for a witness

that violates that assertion using a hill climbing strategy similar to the one

presented in Reference [66]. This witness is a difference-revealing input for both

program versions.

2.6.6 Random Approaches to Change Propagation

Random test generation techniques can provide test cases that, when executed

on both program versions, reveal a difference [57, 101]. The procedure is de-

picted in Figure 2.16.

P'

(Generated) 
Test

Output P'

Diff?

Output PP YES

NO

Add to 
Test Suite

Figure 2.16: Behavioral Regression Testing

Jin et al. [57] present a technique to generate random input, execute it on

both versions, and report such cases that yield different output. The proposed

technique determines the syntactic difference between two versions through

static analysis. Leveraging Randoop [108] as random test generation engine,

a large body of test inputs are generated for the set of changed classes. The

generated test suite is then run on both versions of those classes, the output

compared, and the differences in output reported as behavioral differences. A

challenge of the technique is the change of method signatures from one version

to the next. The same unit test cases cannot be executed on both versions.

While this is a scalable approach, Santelices and Harrold [110] empirically show
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that regression errors in low-probability domains are likely to stay undetected

when sampling a normal distribution.

Input Diff Solutions Probability
i ≤ −1 (231 − 1)∗(232 − 1) ∼ 0.5
i > −1 ∧ i ≤ 0 ∧ j ≤ −1 x 1∗(231 − 1) 2−33

i > −1 ∧ i ≤ 0 ∧ j > −1 x 1∗231 2−33

i > 0 ∧ j ≤ −1 (231 − 1)∗(231 − 1) ∼ 0.25
i > 0 ∧ j > −1 ∧ j ≤ 0 x (231 − 1)∗1 2−33

i > 0 ∧ j > 0 (231 − 1)∗(231 − 1) ∼ 0.25

Figure 2.17: Random Input reveals a difference with probability 3 ∗ 2−33

For our running example, Figure 2.17 shows the probability to reveal a dif-

ference if we consider i and j to be 32-bit signed integers that are randomly

generated. The probability to randomly generate difference revealing test cases

is 3 ∗ 2−33 (about two magnitudes smaller than winning the UK-lottery). In

practical terms, setting a bound to -2 and 2 (or -10 and 10), the probability

to generate a difference-revealing test case would be 0.28 (or 0.07, respectively)

even though every input exercises at least one change.

2.7 Chapter Summary

Software testing remains the most important form of software validation de-

spite advances in program analysis, model checking, and theorem proving via

Satisfiability Modulo Theory (SMT) solving. Each of these techniques provide a

different perspective of program checking. Program analysis tries to find “bugs”

by inferring program properties. Model checking attempts to find problematic

test inputs by searching a large search space. Finally, theorem proving is in-

herently different - it attempts to prove programs correct via deduction, rather

than generating potentially problematic test cases.

Despite the huge advances in constraint solving, search space representation

and exploration (for model checking) and theorem proving - testing still remains

hugely popular. Why? This is because of the concrete outcome from testing as

an activity - once the test cases are generated - the activity of testing immedi-

ately points us to a potential bug if the test case fails. This aspect of testing

is further magnified, when we want to validate a new program version against

absence of regressions. Notably while testing a single program version - a no-

tion of “expected output” is needed to validate the observed program output.

However, while testing a program version against a previous version to check for

regressions - we can often compare the output of the current program version

with the previous program version. Thus, testing a program version against
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regressions from the previous version can immediately lead us to failing tests

which expose potential regressions.
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Chapter 3

Partition-based Regression

Verification

,,Divide et Impera.”
— Julius Caesar, 100 BC – 44 BC

In this chapter, we introduce a technique that can effectively show the absence

of regression for all input (i.e., Regression Verification; RV) and improves the

efficiency of regression verification by allowing gradual and partial verification

using dependency analysis and symbolic execution. The main observation is

that software regression is observable only for input that exposes a difference

when executed on the original and modified program versions. The complexity

of the underlying syntactic changes is irrelevant for this technique, as it directly

explores the changed behavior resulting from the syntactic changes.

Partition-based Regression Verification (PRV) is an approach to RV based

on the gradual exploration of differential input partitions. A differential input

partition is a subset of the common input space of two program versions that

serves as a unit of verification. Instead of proving the absence of regression for

the complete input space at once, PRV verifies differential partitions in a grad-

ual manner. If the exploration is interrupted, PRV retains partial verification

guarantees at least for the explored differential partitions. This is crucial in

practice as verifying the complete input space can be prohibitively expensive.

Experiments show that PRV provides a useful alternative to state-of-the-

art regression test generation techniques. During the exploration, PRV gen-

erates test cases which can expose different behaviour across two program ver-

sions. However, while test cases are generally single points in the common input

space, PRV can verify entire partitions and moreover give feedback that allows

programmers to relate a behavioral difference to those syntactic changes that

contribute to this difference.
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3.1 Introduction

Software verification seeks to guarantee the absence of errors in a program, but

is rather expensive in practice. There are two main reasons: 1) verification

requires specifications, which may be difficult to write and maintain; and 2) the

verification process can be very time-consuming.

However, there is some hope for an inexpensive form of Regression Verifi-

cation (RV) [114, 115]. The goal of RV is not to verify the correctness of a

program ad absolutum but relative to an earlier version. Thus, RV seeks to

guarantee the absence of regression errors. This more modest goal allows RV

to avoid separate forms of formal specifications. The previous version serves as

sufficient specification for checking whether the changed version is at least as

correct as the previous version.

Yet, in practice, RV for all inputs is very time-consuming. Godlin and Strich-

man [114] proposed a decision procedure that takes two program versions and

either proves behavioral equivalence (thus the absence of regression) or provides

a witness of behavioral difference. The authors report that the verification of

non-equivalent versions can take a long time to terminate or run out of mem-

ory. In fact, generally proving the equivalence between two programs is an

undecidable problem. While the termination of RV provides strong regression

guarantees for all inputs, the interruption of the verification procedure (due to

time or memory constraints) yields no guarantees at all.

Regression Verification Regression Testing
Partition-based 

Regression Verification

Unverified Input Space
Verified Input Space

Figure 3.1: PRV versus Regression Verification and Regression Testing

This chapter presents Partition-based Regression Verification (PRV), a grad-

ual approach to RV based on the exploration of differential partitions. A differ-

ential partition is a subset of the common input space of two program versions

that serves as unit of verification. Instead of verifying the entire input space

at once, PRV allows gradually verifying such partitions one-by-one. As illus-

trated in Figure 3.1, PRV shares the advantages of both, Regression Testing

(RT) and RV. Like RV , if all differential partitions are shown equivalent, then

PRV guarantees the absence of regression errors for all inputs. More impor-

tantly, PRV allows a form of partial verification: if the verification procedure is
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interrupted, PRV guarantees the absence of regression errors for the explored

partitions that are shown equivalent. Thus, like RT, PRV allows the gradual

checking for regression. However, while RT provides verification guarantees only

for the concrete, executed sample inputs, PRV seeks to guarantee the absence

of regression for entire input partitions. In practice, this partial verification

approach is crucial, as verifying the complete input space can be infeasible due

to time or other resource constraints.

Technically, differential partitions are computed using a form of symbolic

execution [116] and require deterministic program execution. In contrast to

other input partitioning techniques [80, 21], differential partitioning accounts

for the inputs of two programs. A differential partition is characterized by

a symbolic condition that defines a range (or subset) of valid input for that

partition. Input is grouped according to whether it reaches the same syntactic

changes and whether it propagates the same differential state to the output. If

an input computes the same output in both versions, the respective partition

is said to be equivalence-revealing. In such case, both versions are soundly

guaranteed to compute the same output for all input satisfying the symbolic

condition. Otherwise, the respective partition is said to be difference-revealing.� �
1 input(i);

2 a = 0; o = 0;

3 i = i; //i=i+1
4 if(i>0)

5 a++;

6 if(a>0)

7 o=i;

8 output(o);� �
(a) Programs P and P’

Input Output

P
i ≤ 0 o = 0
i > 0 o = i

P’
i+ 1 ≤ 0 o′ = 0
i+ 1 > 0 o′ = i+ 1

PRV
i < 0 o = o′

i = 0 o = 0 ∧ o′ = i+ 1
i > 0 o = i ∧ o′ = i+ 1

(b) Differential Partitions

Figure 3.2: Running Example (Incomplete Bugfix)

Figure 3.2 illustrates differential partitions in a concrete example. Pro-

gram P computes output o based on the values of input i and is changed to P ′

by substituting line 3 with the commented code. Figure 3.2.b shows the sym-

bolic output that is computed based on the evaluation of the input variables for

both programs. The bottom three rows depict one equivalence-revealing and

two difference-revealing input partitions. Note that the analysis of only a single

version is insufficient to expose all interesting subsets of input. In particular,

a test suite T ← {i = −1, i = 1} covers all paths in both programs and even

reveals a difference. However, input i = 0 is a missing test case that could repre-

sent a regression error. Intuitively, it is interesting because the branch in line 4
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is evaluated in different directions in both versions. PRV explores a distinct,

difference-revealing partition for this input.

PRV provides an alternative to regression test generation techniques [58, 1,

25, 100]. Upon allowing the continued exploration even of difference-revealing

partitions, the developer may (in)formally verify such partitions. The test cases

generated for each difference-revealing partition can be checked against the de-

veloper’s expectation. The program slice, used to compute the partition, can be

inspected to determine the changed statements contributing to the difference.

The symbolic conditions and summaries (cf. Fig. 2.b) can be further analyzed

by tools.

Our initial experience with PRV is very encouraging. For the studied sub-

jects, PRV efficiently exposes regression errors that are not detected by the

considered test generation methods.

In summary the main contributions of this paper are:

• A gradual approach to regression verification that continuously verifies

the input space of a program against another version of that program to

find regression errors. If the verification procedure is interrupted, PRV

guarantees the absence of regression errors for the explored input space

that has been shown equivalence-revealing.

• A differential partitioning technique, based on symbolic execution, that

soundly partitions the input of two versions. The partitioning technique

symbolically groups input of the two programs, and creates partitions

which either guarantee behavioral equivalence, or expose differences for a

certain subset of inputs.

• An alternative to regression test generation. The approach can be used

to generate test cases for partitions where differences are found. As illus-

trated by our experimental evaluation, finding such test cases is competi-

tive with state-of-the-art regression test generation techniques.

• The implementation and experimental evaluation of PRV.

3.2 Longitudinal Input Space Partitioning w.r.t.

Changed Behavior

This section formalizes the concepts and operations for subdomains of the pro-

gram input space that are disjoint and homogeneous w.r.t. the behavior of

an evolving program. We start by providing a background on partitioning the

input space w.r.t. the behavior of a program into so-called behavior parti-

tions. Then, we introduce the partitioning of the common input space of two

successive program versions w.r.t. behavioral difference (and equivalence) into
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so-called differential partitions. Finally, we extend this approach to the context

of multiple successive program versions.

3.2.1 Background: Behavior Partitions

A behavior partition is an input subdomain that is homogeneous w.r.t. the

computed symbolic output formula. A symbolic output formula is a symbolic

expression in terms of the program inputs that is computed along the paths

exercised by input in the related subdomain. Formally, a behavior partition is

a tuple where the first value is a set of inputs, and the second is the symbolic

output formula that is computed for every input in the set of inputs:

Behavior = Input×Output (3.1)

Given the program, the set of behavior partitions can be computed by sys-

tematic exploration of the program’s input space using the function partition:

partition : Program→ {Behavior} (3.2)

The computation of behavior partitions employs symbolic execution and pro-

gram dependency analysis techniques (i) to group paths that compute the same

symbolic output formula and (ii) to enumerate every such group of paths. The

symbolic condition associated with a group of paths defines the set of inputs,

while the operations computing the output along the exercised paths define

the symbolic output formula. A concrete algorithm implementing partition is

presented in Reference [19].

Example 1

Consider the programs P and P ′ in Figure 3.2. These are the behavior

partitions of the two programs:

partition(P ) = {(i ≤ 0, 0), (i > 0, i)}

partition(P ′) = {(i+ 1 ≤ 0, 0), (i+ 1 > 0, i+ 1)}

Note that the set of behavior partitions resulting from partition(P ) and

partition(P ′) are also shown in a tabular format in Figure 3.2.

Depending on the program (and implementation of partition), the number

of behavior partitions that need to be enumerated can be infinite. In fact, the

exploration algorithm presented in Reference [19] may never terminate. How-

ever, the exploration can be interrupted at any time, providing at least a partial

set of symbolic output formulae for the explored input space.
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3.2.2 Differential Partitions

A differential partition is an input subdomain in the common input space of two

successive program versions, P and P ′, that is homogeneous w.r.t. behavioral

difference and equivalence, respectively. For instance, if an input yields the same

output across both versions, then every input in the same differential partition

yields the same output across both versions. Compared to behavior partitions,

differential partitions are concerned with the symbolic output formula computed

for the subsequent version relative to that computed for the previous version.1

First, we define the type of differential partitions. Formally, a differential

partition is a tuple where the first value is a set of inputs and the second is

the differential symbolic output that is computed for every input in the set of

inputs:

DBehavior = Input×DOutput (3.3)

The differential symbolic output can be either EQ, which marks equivalent

output for the corresponding set of input, or a tuple where the first value is the

symbolic output formula computed by the previous program version and the

second is the symbolic output formula computed by the subsequent program

version:

DOutput = EQ+Output×Output (3.4)

Then, we define the properties of differential partitions. A differential par-

tition can be equivalence- or difference-revealing.

Definition 1 (Differential Partition)

Given two successive program versions P and P ′, inputs in any differential

partition dP,P ′ have the following property: either all inputs in dP,P ′ produce

the same output in P and P ′ (an equivalence-revealing partition), or all

inputs in dP,P ′ produce different outputs in P and P ′ (a difference-revealing

partition).

While a difference-revealing partition is associated with the concrete tuple of

symbolic output formulae computed in both versions, an equivalence-revealing

partition uses the constant EQ to represent that the computed output is equiv-

alent. In fact, in the context of regression verification the concrete output com-

puted by both version is irrelevant for equivalence-revealing partitions simply

because it is guaranteed that the subsequent version is as correct as the previ-

ous version for input that does not reveal a difference of behavior. As such, the

1Henceforth, we refer to P as previous and P ′ as subsequent program version.
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abstraction EQ for equivalence-revealing partitions allows for important opti-

mizations during the implementation of the exploration algorithm (as discussed

in Section 3.2.5).

Now, we define the operations required to compose the defined types. For-

mally, given the symbolic output formulae of two successive program versions,

the corresponding differential output is derived as follows:

!
= : Output×Output→ DOutput

o1
!
= o2 =

EQ only if the values of o1 = o2

(o1, o2) otherwise
(3.5)

Intuitively, differential partitions can be derived by intersecting the behavior

partitions of the previous and subsequent version to derive the differential out-

put as defined above. One way of checking equivalence (i.e., whether o1 = o2)

is by matching the symbolic expressions that represent the behavior partitions.

Formally, the set of differential partitions can be derived from the two sets of

behavior partitions as follows:

⊗ : {Behavior} × {Behavior} → {DBehavior} (3.6)

s1 ⊗ s2 = {((c1 ∩ c2), (o1
!
= o2)) | (c1, o1) ∈ s1 ∧ (c2, o2) ∈ s2 ∧ (c1 ∩ c2) 6= ∅}

As such, the set of differential partitions can be computed as cross-product of

both sets of behavior partitions by intersecting the corresponding input subdo-

mains (c1 ∩ c2). Note, that a challenge of the actual exploration algorithm is

to derive much “larger” differential partitions than by the näıve intersection of

behavior partitions. If the intersection is non-empty, a differential partition is

derived as a tuple with the first value set to the intersection of both input sub-

domains, and the second value set to the differential output as per Equation 3.5.

Example 2

In Example 1 we have seen the behavior partitions for the programs P and

P ′ shown in Figure 3.2. These are the corresponding differential partitions:

partition(P )⊗ partition(P ′) = {(i < 0, EQ),

(i = 0, (0, i+ 1)),

(i > 0, (i, i+ 1)}

Note that the set of differential partitions are also shown in a tabular format

in Figure 3.2.
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3.2.3 Multi-Version Differential Partitions

The concept of differential partitions can be generalized to multiple successive

program versions, P = {P 0, P 1, · · · , Pn}. For instance, if an input yields the

same output across all versions P, then every input in the same multi-version

differential partition yields the same output across all versions P. Intuitively,

one may think of the intersection of all differential partitions between every

successive version pair.

First, we override the earlier definition of the differential symbolic output to

account for n ≥ 2 symbolic outputs (see Eqn. 3.4). The differential symbolic

output can be either EQ, which marks equivalent output for the corresponding

set of input, or an n-tuple where the element at k − th position is the symbolic

output formula computed by program version P k:

DOutputn = EQ+ [Output]n (3.7)

Then, we formally define the properties of multi-version differential parti-

tions which can be equivalence- and difference-revealing.

Definition 2 (Multi-Version Differential Partition)

Given a set of successive program versions, P = {P 0, P 1, · · · , Pn}, inputs

in any multi-version differential partition dP have the following property:

either all inputs in dP produce the same output for all version P k ∈ P, (an

equivalence-revealing partition), or all inputs in dP produce different outputs

for at least two versions {P k, P l} ⊆ P (a difference-revealing partition).

Similarly, we extend the operations required to compose the generalized

types, like
!
= and ⊗. Formally, given the symbolic output formulae of a set of

successive program versions, P, the corresponding differential symbolic output

is derived as follows:

〈.〉 :[Output]n → DOutputn

〈o1, · · · , on〉 =

EQ if oi = oj | 1 ≤ i < j ≤ n

(o1, · · · , on) otherwise
(3.8)

Intuitively, multi-version differential partitions can be derived by intersecting all

behavior partitions between every successive version pair, {P k, P k+1} ⊆ P, to
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derive the differential output as defined above. Formally, the set of multi-version

differential partitions can be derived as follows:

⊗n :[{Behavior}]n → {DBehaviorn}

⊗(s1, · · · , sn) ={(c1 ∩ · · · ∩ cn, 〈o1, · · · , on〉) | (ci, oi) ∈ si ∧ (c1 ∩ . . . ∩ cn) 6= ∅}
(3.9)

This generalized form of differential partitions can also be computed as cross-

product of behavior partitions by intersecting the corresponding subdomains

(c1 ∩ . . . ∩ cn). The challenge of practical exploration algorithms is to derive

much coarser partitions (e.g., using abstractions such as EQ; see Eqn. 3.8).

3.2.4 Deriving the Common Input Space

Differential partitions exist in the common input space of successive program

versions. The input space of a program P is defined by the program’s input

variables and can be taken to be a finite, measurable metric space with d di-

mensions. Note that d corresponds to the number of input variables for the

program.

Example 3

Let P be a program with two integer input variables, a and b. The program

P has a two-dimensional input space spanned by the orthogonal vectors a

and b. Now, every point in that space is a concrete assignment to the input

variables. For instance, the point (1, 3) assigns a = 1 and b = 3.

If the order and number of input variables does not change across two ver-

sions, the common input space is trivially the same in both versions. If the order

of input variables changes across two versions, the common input space can be

computed by applying the corresponding transposition to the input space of the

changed version. If the number of input variables changes across two versions,

the dimensionality of the input space does as well. Let the dimension of a given

program P be d = n. Then the input space of the changed program P ′ is

d′ = n+m− o, where m is the number of vectors for the input variables added

to P and o is the number of vectors for the input variables removed from P .

So, the common input space is taken to be with dimensionality d̂ = n+m+ o,

containing all input variable vectors, where the input spaces of P and P ′ are

transposed accordingly. A practical discussion on the change of input domain

can be found in [58].

The input space transpositions have no practical impact on the presented

algorithms. A differential partition is a subdomain in the common input space

of two program versions. In practice, such a subdomain is defined as a condition
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on the input variable vectors identifying each vector by name. The renaming of

input variable vectors must be handled.

Example 4

Let P ′ be the changed version of P of the previous example. If we neither

reorder nor remove one of the input variables, a and b, then the input space

is trivially the same in P and P ′. If in P ′ the input variables are reordered,

a after b, then the input space of P is that of P ′ transposed. If in P ′ input

variable b is removed, the common input space is that of P , while if in P ′

an input variable c is added, the common input space is that of P ′. Note, if

the new input variable c is actually used to compute the output in P ′, then

at least one statement will be changed that exists in both versions.

3.2.5 Computing Differential Partitions as Composition of

Behavior Partitions

Näıvely, differential partitions can be computed by 1) computing the complete

set of behavior partitions of each program version as in [19] and 2) intersecting

both sets of behavior partitions to compute the differential symbolic output.

However, the näıve approach has two important drawbacks:

• Too fine-grained partitions. When computing equivalence-revealing

partitions, the particular symbolic output formula that is produced by

both versions is not relevant as long as they are the same. For instance,

input that does not execute a changed statement will never compute two

different symbolic output formulae for two versions. To find a differential

partition with differential symbolic output EQ, it is sufficient to deter-

mine groups of input that does not execute a changed statement. This

optimization is not available in the näıve approach.

• Combinatorial Explosion. In the näıve approach, much time is wasted

checking whether the behavior partitions of two versions actually do in-

tersect. Naturally, there are many more behavior partitions that do not

intersect. Moreover, the number of behavior partitions in one version may

be very large, such that one may abort the partition exploration after a

time bound is reached and only intersect the explored partitions. There

is no guarantee that the explored behavior partitions actually do overlap.

A more systematic approach to exploring differential partitions is needed.

In the next section we present an algorithm that does not suffer from these

drawbacks and computes differential partions more efficiently and on-the-fly.
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3.3 Regression Verification as Exploration of

Differential Partitions

Partition-based Regression Verification (PRV) takes two successive program ver-

sions and continuously verifies differential partitions – to check whether the

subsequent version is at least as correct as the previous version. The gradual

regression verification can be interrupted at any time. In this case, the regres-

sion guarantees are retained for the (partially) verified input space. For every

partition, PRV generates a concrete sample input that is added to regression

test suite T . In theory, like other regression verification techniques, PRV can

terminate with a difference-revealing test case. In practice however, PRV can

continue the gradual exploration even of difference-revealing partitions, so as to

allow the programmer to check the corresponding difference-revealing test cases

in T . After all, the output difference may be intended (e.g., new feature) or

unintended (e.g., regression error).

The intuition of partition-based regression verification is presented in Fig-

ure 3.3, while the detailed procedure is outlined in Algorithm 1. Later, in

Theorem 2, we will claim the exhaustiveness of this exploration algorithm.

Unexplored Partition

(a) Execute Test Case (b) Compute Differential Partition

(c) Generate Next Test Case

Witnessing Test Case
Equivalence-Revealing Partition
Difference-Revealing Partition

(d) Continuous Exploration

Figure 3.3: Exploration of Differential Partitions

The exploration starts with a random test case in the queue. Depicted as

black dot in Figure 3.3.a) this random test case t is taken from the queue and

executed upon both versions. Test case t is a point in the common input space2

of both versions, representing concrete knowledge about the differential behav-

ior. In Figure 3.3.b), input is grouped into a differential partition that yields

the same differential behavior as t. This input exercises all those statement in-

2The derivation of the common input space for versions with different input spaces is
discussed in [58], e.g., the new version has one more input variable.
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stances that are “relevant” to the reachability and propagation of the syntactic

program changes exercised by t. Hence, in Algorithm 2 the symbolic condition

is computed as a conjunction of the pertinent branch conditions. Later, in The-

orem 1, we will claim the soundness of this generalization from a test case to a

differential partition.

Algorithm 1 Partition-based Regression Verification

Input: Versions P and P ′, Changed stmts in both versions (C,C ′)
1: let queue← ∅
2: let T ← ∅
3: let V ← ∅
4: add randomInput() to queue
5: while queue 6= ∅ do
6: let t← chooseNextTestcase(queue)
7: let condition← computeDPartition(t, P, P ′, C, C ′)
8: call generateAdjacentTestcases(condition, queue)
9: add t to T

10: add condition to V
11: end while
Output: Verified Input Space V , Regression Test Suite T

As depicted in Figure 3.3.c), the next test case is executed outside of the

explored input space. To generate such “adjacent” test cases, the constituent

branch conditions are negated one-by-one (cf. Alg. 4), similar to other path

exploration techniques. This yields a number of intermediate constraints. If a

constraint solver finds a satisfying witness to one of these constraints, then it is

added to the queue waiting to be executed.

As depicted in Figure 3.3.d), after the execution of the next test case from

the queue, again, the corresponding differential partition is computed. This

procedure repeats until all differential partitions are explored or some (time)

budget is exhausted. A search strategy would assign some distance or fitness

to each constraint and decide the order in which the partitions corresponding

to intermediate constraints are explored. This is implemented in the procedure

chooseNextTestcase (not listed). In particular, PRV takes from the queue in

the order they arrive but prioritizes test cases that promise 1) different output,3

2) the propagation of already exercised changes and 3) the execution of another

set of changes, in that order. Finally, every executed test case is added to the

regression test suite T . Each test case is a witness of one differential partition.

The set of explored differential partitions V represents the verified input space.

3An adjacent test case may witness different output if it is generated by negating (o = o′)
as constituent of a propagation condition; see Sec. 3.3.3.
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3.3.1 Computing Differential Partitions

The computation of the differential partition for a given test case is presented in

Algorithm 2. It implements the functionality of procedure computeDPartition

called in Algorithm 1 and requires determinism - for every execution of the same

input on the same program the same output is computed. Also, the deletion

of variable assignments (e.g., x=x++) in P is represented by dummy-statements

(e.g, x=x) in P ′ (cf. [2]).

Upon execution of the test case t on both programs, P and P ′, the symbolic

condition is computed. Input that does not exercise a syntactic change or that

does not propagate the differential state to the output is equivalence-revealing.

If t does not exercise a changed statement, then PRV employs the reachability

condition (Def. 5) to group input that does not execute a change for the same

“reason”. If t exercises at least one changed statement but yields the same

output in both versions, then PRV employs the propagation condition (Def. 6).

Algorithm 2 - Procedure computeDPartition

Input: Input t, Versions P and P ′, Changed stmts in both versions (C,C ′)
1: let trace π ← execute(t, P )
2: let trace π′ ← execute(t, P ′)
3: let condition← false
4: if not exist an instance of c′ ∈ C ′ in π′ then
5: let condition←

∧
c′∈C′ reach(c′, π′)

6: else
7: let oi be the instance of output o in π
8: let o′i be the instance of output o in π′

9: if value(oi) = value(o′i) then
10: let condition← prop(o, π, π′, C, C ′)
11: else
12: let condition← diff(o, π, π′, C, C ′)
13: end if
14: end if
Output: Condition condition

Input that yields different output is difference-revealing. If t yields different

output in both program versions, then PRV employs the difference condition

(Def. 7) to group input that computes different output for the same “reason”.

These reasons are defined upon the exercised dynamic and static program de-

pendencies, as enunciated in the following.
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3.3.2 Computing Reachability Conditions

Intuitively, an input t does not execute a changed statement c because the

conditions of the branch instances si upon which c statically control-depends

are evaluated in the direction that does not favor the execution of c.� �
1 input(i,j);

2 a = 0; b = 0;

3 if(i>0)

4 a=1;

5 for(c=0; c < j; c++)

6 b += c;

7 if(j>0){

8 if(a>0)

9 // change c� �
Figure 3.4: Intuition of Reachability Condition

An example is shown in Figure 3.4. Input (0, 1) does not execute the changed

statement in line 9. Why? Because the branch in line 8 is not evaluated to true.

This is because the condition in line 7 is evaluated to true and the condition

in line 3 to false. The remainder of this section explains the computation of

the reachability condition based on the relevant slice of the branch in line 8.

Definition 3 (Relevant Slice [18, 17])

Given an execution trace π and a statement instance si in π, the relevant slice

of si in π contains all statement instances ri in π that are in the transitive

closure of dynamic data, control- and potential dependence of si.

A statement instance si potentially depends [18] on conditional statement

instance ri in path π iff. there exists a variable v used in si such that (1) v

is not defined between ri and si in π but there exists another path σ from

ri to si along which v is defined, and (2) evaluating ri differently may cause

this untraversed path σ to be executed. Unlike data- or control-dependence,

the potential dependence accounts for the potential difference in value of si if

the branch (upon which si potentially depends) was evaluated differently (see

Sec. 2.2).

Note that relevant slices have a desirable property: If two inputs t0 and

t1 exercise the same relevant slice computed w.r.t. a statement instance si,

then the variables used in si have the same symbolic values for t0 and t1 [19].

Relevant slices are used to define the reachability, propagation, and difference

conditions. The property of relevant slices is utilized to prove Theorem 1, estab-

lishing that these conditions indeed characterize differential partitions as defined

in Definition 1.
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Definition 4 (Reachability Slice)

The reachability slice of statement c in trace π is the union of the relevant

slices of all instances si in π of every statement s that c transitively, statically

control-depends on.

Dually, the statements in the remainder of π are not relevant w.r.t. reaching c.

That is, whether or not these statement instances are executed is not relevant

to (not) reaching c.

Definition 5 (Reachability Condition)

The reachability condition, reach(c, π), computed over the trace π w.r.t.

statement c is the path condition computed over the statement instances of

π that are included in the reachability slice of c in π.

If an input t0 does not exercise statement c, then every input t1 satisfying

reach(c, π(t0, P )) does not exercise c. A path condition is a quantifier free

first order logic formula on program inputs. Any test input satisfying the path

condition of a path π is guaranteed to also exercise all statement instances in

path π. The negation of a constituent branch condition in the reachability

condition computed w.r.t. statement c may change the reachability of c.

3.3.3 Computing Propagation Conditions

Intuitively, an input t does not propagate the semantic effect of the exercised

changes to the output because certain statement instances Ni upon which the

output dynamically depends carry the same values in both versions. On a high

level, Ni represents the point where the differential program states converge.

Any attempt to negate a branch beyond that point to propagate a difference in

program state is futile.

1
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= -1

= -1

false = = 0

0 = = false
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3

4

6

8

2o

= -1

= 0

false = = 0

0 = = false

(a) Old Version P (b) New Version P'

0 =0 =

Figure 3.5: Intuition of Propagation Condition

Figure 3.5 shows the dynamic dependency graphs augmented by concrete

values and computed for the execution of input (−1) upon the version pairs in
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Figure 3.2. The dashed arrows indicate potential dependence while the concrete

arrows indicate either dynamic data- or control-dependence. Each node is la-

beled with the line number of the statement instance it represents. The values

for the instance of line 3 are different in both versions. That is, the program

state is “infected” after the execution of the change. However, the value of the

output in line 8 is the same for both versions. Why?

The semantic effect of the change in line 3 is not propagated to the output

in line 8 for the execution of (−1) on P and P ′ because the branch in line 4 is

evaluated in the same direction in both versions even though it dynamically de-

pends on the statement in line 3, which carries different values in both versions.

In the remainder of this section, we explain how the instance of line 4 is added

to the convergence set Ni and define the propagation condition based on Ni.

As shown in Algorithm 3, both dynamic dependency graphs (DDGs) are

computed over the traces π and π′ for the execution of input t on both versions

P and P ′. The DDGs are augmented by potential dependencies and the concrete

values for the variables used in every node. Output instances oi in π and o′i in π′

are aligned and passed into procedure PropAlign to compute Ni recursively.

Algorithm 3 Computing Differential State Convergence Ni

Input: Execution Traces π and π′, Output Statement o
1: aDDG← augmentedDDG(π)
2: aDDG′ ← augmentedDDG(π′)
3: (oi, o

′
i)← alignableOutput(aDDG, aDDG′, o)

4: Ni ← ∅
5: if isChanged(o′i) then add (oi, o

′
i) to Ni

6: else call PropAlign(oi, o
′
i)

7: procedure PropAlign(si, s
′
i)

8: Ri ← si.getDependsOn()
9: R′i ← s′i.getDependsOn()

10: for all r′i ∈ R′i do
11: if ¬isChanged(r′i) ∧ ∃ri ∈ Ri. align(ri, r

′
i) ∧ (value(ri) = value(r′i))

then
12: call PropAlign(ri, r

′
i)

13: else
14: add (si, s

′
i) to Ni and return

15: end if
16: end for
17: end procedure
Output: Statement instances Ni

Assuming that instances si and s′i can be aligned, the tuple (si, s
′
i) is added

to the set Ni if 1) not all of the “subsequent” instances r′i can be aligned, 2) the

values of the variables used in ri and r′i are different, or 3) r′i is a changed

statement. This is represented by the intuitively named predicates in line 11.
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Note, we do not assume that both DDGs can be aligned completely, which

would be rather difficult indeed due to the different number of instances every

statement can have in both executions. Instead, the alignment begins from the

output statement instances, which we assume to be alignable, and follow the

dependence edges recursively. The instance at which alignment fails is added

to Ni. In Figure 3.5, the instances in line 4 are added to Ni because they depend

on the changed statement in line 3 (which also has different values).

Definition 6 (Propagation Condition)

Let statements C in program P be changed to C ′ yielding P ′. Given traces

π and π′ for the execution of input t on P and P ′ and Algorithm 3 computes

Ni for π and π′ and program output statement o, the propagation condition

is defined as prop(o, π, π′, C, C ′)
def
= ∀(ni, n′i) ∈ Ni.rsc(ni, π) ∧ rsc(n′i, π′) ∧

value(ni) = value(n′i) ∧
∧

c∈C reach(c, π) ∧
∧

c′∈C′ reach(c′, π′).

Every input satisfying the same propagation condition does not propagate the

effects of the exercised changes for the same reason. To achieve this property,

Definition 6 is a conjunction of five necessary conditions. The necessary con-

ditions 1) and 2) leverage the property of relevant slices. Note, rsc(ni, π) is

the path condition computed over the relevant slice of statement instance ni

in trace π. Every input exercising the same relevant slice w.r.t. ni, compute

the same symbolic value for ni. The negation of a constituent branch condition

may change the computation of ni and thus enable propagation. The necessary

condition 3) captures that the symbolic values for the alignable instances in Ni

are the same. The negation of such an equivalence condition may enable prop-

agation. The necessary condition 4) and 5) captures that those changes (not)

exercised by the test case t are also (not) exercised by other input satisfying the

same propagation condition. The negation of a constituent branch condition

may enable the reachability of other changes.

3.3.4 Computing Difference Conditions

Intuitively, input t computes different output because it exercises a certain set

of statement instances in P that contribute to computing the symbolic output

of P and another set of statement instances in P ′ that contribute to computing

the symbolic output of P ′.

Definition 7 (Difference Condition)

Let statements C be changed to C ′. Given instances oi of output statement o

in execution trace π and o′i of o in trace π′, the difference condition is defined

as diff(o, π, π′, C, C ′)
def
= rsc(oi, π) ∧ rsc(o′i, π′) ∧ value(oi) 6= value(o′i) ∧∧

c∈C reach(c, π) ∧
∧

c′∈C′ reach(c′, π′).
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Every input satisfying the same difference condition propagates the semantic

effect of the exercised changes for the same reason. To achieve this property,

Definition 7 is a conjunction of five necessary conditions. The necessary condi-

tions 1) and 2) leverage the property of relevant slices. Every input exercising

the same relevant slice w.r.t. oi, compute the same symbolic value for oi. The

negation of a constituent branch condition may change the computation of oi

and thus disable propagation. Interestingly, every changed statement in the

relevant slice of o′i contributes in computing o′i and therefore semantically in-

terferes. The necessary condition 3) captures that the symbolic output values

are different in both versions. The negation of this condition may disable prop-

agation. The necessary conditions 4) and 5) capture that those changes (not)

in π or π′ are also (not) exercised by other input satisfying the same differ-

ence condition. The negation of a constituent branch condition may enable the

reachability of other changes.

A set of changed statements Ct semantically interferes for the execution of

input t on both program versions, if t yields different output in P and P ′ and

every c ∈ Ct contributes to computing the output. Thione et al. [42] approx-

imate semantic interference based on static data- and control-dependence. It

can be used to understand the origin of regression.

Interestingly, every changed statement in the relevant slice of o′i contributes in

computing o′i and therefore semantically interferes. This allows the developer

to inspect the set of changes responsible for an observed semantic difference.

3.3.5 Generating Adjacent Test Cases

Algorithm 4 generates “adjacent” test cases from the provided symbolic con-

dition and adds those to the queue. It implements generateAdjacentTestcases

called in Algorithm 1.

The symbolic condition is composed of branch conditions (ψ′0 ∧ . . . ∧ ψ′m)

in P ′, branch conditions (ψ0 ∧ . . . ∧ ψn) in P , and equivalence conditions υ of

the form value(si) = value(s′i) or value(si) 6= value(s′i) (cf. line 1). First,

the constituent equivalence conditions υ0 to υk are negated one-by-one (lines 2-

7). If there exists a solution to the computed constraint, it is added to the

queue. Second, if some branch conditions are removed from a path condition,

the remaining branch conditions have to be reordered before negation (lines 8-9).

Otherwise, the exploration algorithm ceases to be exhaustive (cf. [19]). Hence,

the branch conditions (ψ0 ∧ . . .∧ψm) in P are reordered as follows: If a branch

instance b is in the relevant slice of branch instance bk, then the branch condition

of b is placed before the branch condition of bk. Otherwise, the branch condition
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Algorithm 4 - generateAdjacentTestcases

Input: Condition cond, Queue queue
1: let cond = (ψ′0 ∧ . . . ∧ ψ′m) ∧ (ψ0 ∧ . . . ∧ ψn) ∧ (υ0 ∧ . . . ∧ υk)
2: for all υi in [υ0, .., υk] do
3: constr ← (ψ′0 ∧ . . . ∧ ψ′m) ∧ (ψ0 ∧ . . . ∧ ψn) ∧ ¬υi
4: if exists t+ that satisfies constr then
5: add t+ to queue
6: end if
7: end for
8: let reordered← reorder(ψ0 ∧ . . . ∧ ψn)
9: let reordered = (ϕ0 ∧ . . . ∧ ϕn)

10: for all i from 0 to n do
11: constr ← (ψ′0 ∧ . . . ∧ ψ′m) ∧ (ϕ0 ∧ . . . ∧ ϕi−1 ∧ ¬ϕi)
12: if exists t+ that satisfies constr then
13: add t+ to queue
14: end if
15: end for
16: let reordered′ ← reorder(ψ′0 ∧ . . . ∧ ψ′m)
17: let reordered′ = (ϕ′0 ∧ . . . ∧ ϕ′m)
18: for all i from 0 to m do
19: constr ← ϕ′0 ∧ . . . ∧ ϕ′i−1 ∧ ¬ϕ′i
20: if exists t+ that satisfies constr then
21: add t+ to queue
22: end if
23: end for
Output: Queue queue

of b is placed after the branch condition of bk. The reordered branch conditions

in P are negated one-by-one and conjoined with (ψ′0 ∧ . . . ∧ ψ′m) in P ′ (line

10-15). If there exists a solution to the computed constraint, it is added to the

queue. Lastly, the branch conditions in P ′ are reordered and negated one-by-

one (lines 16-23). Again, if there exists a solution to the computed constraint,

it is added to the queue.

3.3.6 Theorems

In the following, we postulate the soundness of Algorithm 2 that computes the

differential partition for a given test case and the exhaustiveness of Algorithm 1

that explores differential partitions. The proofs are available in Appendix A.

In practice, the absence of regression errors can be guaranteed for all inputs

to the same extent as symbolic execution can guarantee the absence of program

errors (see e.g., [67]). Specifically, we assume deterministic program execution.

Theorem 1 (Sound Generalization)

Given statements C in program P are changed to C ′ yielding P ′, every

input satisfying the condition computed by Algorithm 2 for input t is in the

same differential partition as t.
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Informally, the differential behavior of a point in the common input space

is soundly generalized to the set of points in the same differential partition. In

particular, let Algorithm 2 compute the symbolic condition Φ for a test case t. If

t is equivalence-revealing, then every input satisfying Φ is equivalence-revealing.

Similarly, if t is difference-revealing, then every input satisfying Φ is.

Theorem 2 (Exhaustive Exploration)

If there exists an input t0 that computes different values for the output o

in versions P and P ′ and Algorithm 1 terminates with regression test suite T ,

then there exists a test case t ∈ T so that t0 satisfies diff(o, π(t, P ), π(t, P ′), C, C ′).

Informally, if the verification procedure terminates then all differential partitions

have been explored. The respective proof leverages the exhaustiveness of the

exploration based on relevant slices as shown in [19].

3.4 Empirical Study

Our experiments evaluate the relative efficiency of PRV and discuss practica-

bility based on our experience. The experiments do not prove the scalability

of PRV. In fact, PRV suffers from the same limitations as symbolic execu-

tion. Similarly, it can benefit from relevant optimizations such as domain re-

duction [30, 28], parallelization [31], and better search strategies [117, 104].

3.4.1 Setup and Infrastructure

PRV has been implemented into our dynamic backward slicing tool JSlice [118].

The differential partitions are explored in a breadth-first manner starting from

the same initial input within the time bound of five minutes, unless stated oth-

erwise. Every version of the same subject uses the same test driver to construct

necessary input objects, strings, or arrays from the input integers that come

as solution to a first-order logic formula from the Z3-constraint solver [119].

The subject programs are analyzed on a desktop computer with an Intel 3GHz

quad-core processor and 4GB of memory.

3.4.2 Subject Programs

The subjects summarized in Figure 3.6 are chosen according to two criteria: 1)

they represent a variety of evolving programs and 2) are discussed in related

work (which allows the comparison with our own experimental results). There

are 83 versions of programs ranging from 20 to almost 5000 lines of code (LoC).

Some versions are derived by seeding faults, called mutants, of the original ver-

sions. Some are real versions that were committed to a version control system.

52



Subject Reference Classes Functions LoC Versions
Min [120] 1 1 20 5

Tcas

[114]

1 8 166 21
[2]

[26]

[121]

Replace
[26]

1 21 564 33
[100]

Siena [100] 6 107 1529 7+11
Apache CLI 22 183 4966 6

Total 30 320 7245 83

Figure 3.6: Subject Programs

We compare the empirical results of the references discussing regression ver-

ification [114] and regression test generation [26, 121, 100, 2]. Note, there are no

empirical results available for the regression test generation techniques [57, 25, 1]

and differential symbolic execution [39].

Min [120] is a short function introduced to discuss the problem of equivalent

mutants. An equivalent mutant is a simple syntactic change to a program that

yields no semantic difference. Tcas is the traffic collision avoidance system.

This well-studied program is available in the SIR [122] with several versions

that contain seeded faults. We chose the first 20 changed versions. Replace

performs pattern matching and substitution and is available in the SIR with 32

versions that contain seeded faults. Siena is an event notification architecture.

Note, there are 7 versions available in the SIR and for every version there exist

between one and four faulty versions (in total 11 mutants).

Revision Submission Developer’s Submission Comment
129800 15.08.2002 bug. no 11680 resolved
129803 18.08.2002 bug #11457: implemented fix [..]
129843 14.11.2002 added fix for Rob’s problem [..]
129849 19.11.2002 some bug fixes submitted by Rob [..]
538031 15.05.2007 Applying Brian Egge’s fix from CLI-13
667565 13.06.2008 Restored CLI 1.0 behavior (CLI-137)

Figure 3.7: Apache CLI Revisions (http://commons.apache.org/cli/)

Apache CLI is an open source command line interpreter. We retrieved the

six revisions from the version control system (branches/cli-1.x/src) that are

presented in Figure 3.7 along with the submission date and comments and the

unique identifiers.

All programs are tested as whole programs, except for Apache CLI. In this

case, the the command line component was tested for regression. The first three
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programs all have a main method. For Siena, encode and decode in the class

SENP serve as main methods. For Apache CLI, addOption and getOptionValue

in the class CommandLine serve as testing hooks.

3.4.3 Research Questions

RQ1: How efficiently does PRV find the first input that exposes semantic

difference?

Empirical studies in the discussed related work are concerned with finding the

first difference-revealing input as witness of semantic difference. We compare

the efficiency of PRV to the efficiency reported in related work.

RQ2: How efficiently does PRV find the first input that exposes software

regression?

Not every difference-revealing input exposes software regression. In fact, after

syntactic changes to the program, semantic changes may be anticipated in the

form of progression. For instance, when a buggy program is fixed input failing in

the buggy version is supposed to pass in the fixed version. To classify a semantic

change as regression, we have to define correctness. As often in reality, we as-

sume the absence of formal specifications. In this scenario, the developer checks

the generated difference-revealing test cases informally against her expectation.

If she observes regression, the developer can relate the regression-revealing test

cases to the changes that semantically interfere.

RQ3: How practical is PRV in an example usage scenario?

The subject Apache CLI shall be used to evaluate PRV in a practical usage

scenario. PRV generates difference-revealing test cases within the bound of

20 minutes for every version pair. We classify the generated test cases (e.g.

regression-revealing) and compare the (informal) measure of regression and pro-

gression to the submission comments in Figure 3.7.

3.5 Results and Analysis

RQ1: Efficiency - Semantic Difference

We measure two aspects when searching for the first difference-revealing in-

put as shown in Figure 3.8. The first seven rows show the average time to

find a difference-revealing input per subject. If for a version pair none of the

approaches finds a difference-revealing test case within five minutes, then it

does not contribute to the calculation of the average time. The mutation score

depicts the fraction of versions for which a difference-revealing input can be

found within five minutes. To gather results for the symbolic execution of the
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changed version P ′, we implemented a DART-like [21] and eXpress-like [100]

path-exploration technique (Columns 3-4) into JSlice. The DART-like tech-

nique explores all paths in P ′ while the eXpress-like technique prunes all paths

that do not exercise a changed statement in P ′. The results for the exploration

of the differential behavior of both versions, P and P ′, are gathered using PRV

(Column 2).

P, P ′ only P ′

PRV DART-like eXpress-like

Average Time in sec
Min (4 Mutants) 0.4 0.3 (-25%) 0.3 (-25%)

Tcas (20 Mutants) 5.6 20.9 (+273%) 20.7 (+270%)
Replace (32 Mutants) 22.8 130.5 (+472%) 60.1 (+164%)

Siena (11 Mutants) 30.7 66.2 (+116%) 40.4 (+32%)
Siena (7 Versions) 14.0 18.3 (+31%) 12.7 (-9%)

Apache CLI (6 Versions) 57.8 38.9 (-33%) 45.1 (-22%)

Mutation Score - fraction of versions shown semantically different
Min (4 Mutants) 0.75 0.50 (-33%) 0.50 (-33%)

Tcas (20 Mutants) 1.00 0.56 (-44%) 0.56 (-44%)
Replace (32 Mutants) 0.76 0.56 (-26%) 0.63 (-17%)

Siena (11 Mutants) 0.82 0.73 (-11%) 0.73 (-11%)
Siena (7 Versions) 0.67 0.67 (±0%) 0.67 (±0%)

Apache CLI (6 Versions) 1.00 1.00 (±0%) 1.00 (±0%)

Figure 3.8: First Witness of Semantic Difference

Answer to RQ1. For the analyzed subjects, PRV generates a difference-

revealing test case on average for 21% more version pairs in 41% less time,

than the eXpress-like approach that analyzes only the changed version P ′. For

the subtle, seeded faults PRV can find a difference-revealing test case more

efficiently. In particular, Tcas is fully analyzed within the time bound by all ap-

proaches but only PRV can find a difference-revealing test case for every mutant

supporting the motivation illustrated in Figure 3.2. In general, PRV’s relative ef-

ficiency is better for the first four subjects containing subtle, seeded faults. This

efficiency reduces as the changes become more complex in the latter two sub-

jects. This can be attributed to the increased number of changed statements cor-

relating with an increased probability to reveal a difference (for random input).

However, not every difference-revealing test case is also regression-revealing as

analyzed in RQ2.

Compared to DART, our eXpress-like implementation has a similar rela-

tive efficiency than eXpress in [121] and [100]. The authors compare full path

exploration (Pex) to pruning paths that do not execute a changed statement
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(Pex-eXpress). For Siena, Replace, and the chosen mutants of Tcas, the authors

report an improvement in terms of time of 29%, 57%, and 13%, respectively.

For these subjects, we see a similar improvement of 37%, 54%, and 16% of the

eXpress-like approach over the DART-like approach, respectively.

Mutation Score
Matrix SHOM PRV

[2] [26] [this]

Tcas 62.7% 62% 100%
Replace - 72% 76%

Figure 3.9: PRV mutation scores vs SHOM and Matrix

Santelices et al. [2] and Harman et al. [26] report the mutation score for the

test generation tools Matrix and SHOM, respectively. Note that many of the

subjects used by these authors and us are different. However, Tcas was used to

evaluate Matrix and SHOM, while Replace was also used to evaluate SHOM.

As shown in Figure 3.9, PRV compares favourably for the commonly evaluated

subjects, Tcas and Replace. In contrast to these search-based techniques, PRV

avoids searching for difference-revealing test cases within the already explored

input space. This may help explaining the observed improvements.

Godlin et al. [114] evaluate the implementation of regression verification

using randomly generated programs and Tcas. It takes many hours or the

system runs out of memory when analyzing non-equivalent programs. Offutt

et al. [120] discuss the problem of equivalent mutants using subject Min. PRV

guarantees equivalence for Mutant 3 and provides a witness for the other non-

equivalent mutants in less than a second.

RQ2: Efficiency - Software Regression

In practice, not every difference-revealing test case reveals software regression.

A difference-revealing test case can be checked formally or informally against

the programmer’s expectation. In the latter case the programmer looks at

the output of difference-revealing test cases in both programs and may know

whether the test case reveals regression. Figure 3.11 presents the two aspects

measured to find the first regression-revealing input. The first seven rows show

the average time to find a regression-revealing input per subject. If for a version

pair none of the approaches finds a regression-revealing test case within the time

bound, then it does not contribute to the calculation of the average time. The

mutation score depicts the fraction of versions for which a regression-revealing

input can be found within 20 minutes for Apache CLI and five minutes for the

other subjects.
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Figure 3.10: How to Measure Regression?

How do we measure regression? For Siena, we simulate an incomplete bug

fix [7] from one version to the next. An example is shown in Figure 3.10.a). The

programmer fixes Siena.v0 which is expected to behave like Siena.v1. Instead,

he introduces another bug yielding Siena.v1 Mut1 – a version of Siena.v1 that

also contains seeded faults. For Apache CLI, there are no seeded faults available.

But we can capture the programmer’s idea of the expected behavior to be in

the last revision 667565 which remains unchanged for the last four years. This

allows us to measure the regression of intermediate revisions w.r.t. the last

revision. For Min, Tcas, and Replace every difference-revealing test case also

reveals a regression.

P, P ′ only P ′

PRV DART-like eXpress-like

Average Time in sec
Min (4 Mutants) 0.4 0.3 (-25%) 0.4 (-25%)

Tcas (20 Mutants) 5.6 20.9 (+273%) 20.7 (+270%)
Replace (32 Mutants) 22.8 130.5 (+472%) 60.1 (+164%)

Siena (11 Faulty Versions) 17.6 50.4 (+186%) 44.1 (+151%)
Apache CLI (6 Versions) 141.3 259.6 (+84%) 263.9 (+87%)

Mutation Score - fraction of versions exposed as regression
Min (4 Mutants) 0.75 0.50 (-33%) 0.50 (-33%)

Tcas (20 Mutants) 1.00 0.56 (-44%) 0.56 (-44%)
Replace (32 Mutants) 0.76 0.56 (-26%) 0.63 (-17%)

Siena (11 Faulty Versions) 0.55 0.45 (-17%) 0.45 (-17%)
Apache CLI (6 Versions) 0.40 0.20 (-50%) 0.20 (-50%)

Figure 3.11: First Witness of Software Regression

Answer to RQ2: For the analyzed subjects, PRV generates a regression-

revealing test case on average for 48% more version pairs in 63% less time

than the eXpress-like approach that analyzes only the changed version P ′. The

improvement of efficiency over finding a single difference-revealing input (cf.

Figure 3.8) may be attributed to the subtleness of regression faults. As an

instance of this subtleness, consider the program versions in Figure 3.2. The

programmer expects that the new version computes output o = i+ 1 instead of

o = i for input i > 0. Otherwise, the behavior shall remain unchanged. Thus, a
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regression test generation tool may determine progression for almost 50% of the

input (i > 0) but because a branch is evaluated in different directions for i = 0,

there exists regression only for one input. Unintendedly, this input computes

different output in the changed version, too. Even the generation of an input

for every path in the changed program, like for eXpress, may not produce this

test case. In contrast, differential partitions can capture such subtle differences.

RQ3: Practicability - Usage Scenario: Apache CLI

Apache CLI is used to evaluate PRV in a practical usage scenario. PRV gen-

erates difference-revealing test cases within the bound of 20 minutes for every

version pair. A developer checks these test cases for regression and relates the

regression-revealing test cases to the changes that semantically interfere. The

check is automated in our experiment as illustrated in Figure 3.10.b). The

expected behavior of CLI is captured by the last revision (667565) which has

not changed in the last four years and is released in CLI1.1. This allows us to

measure progression and regression w.r.t. to the expected behavior.

The first column in Figure 3.12 shows the revision pairs, the earlier versus the

later revision. The second column presents the total number of tests generated

by PRV followed by the number of equivalence- and difference-revealing test

cases, respectively. The percentage of difference-revealing test cases (Column 4)

witnessing progression (%Progr), regression (%Regr), and the computation

of output that has changed but still does not behave as expected (%Chan) are

shown in columns 5, 6, and 7, respectively.

Subject and Versions #Test #Equ
Difference Revealing

#Diff %Progr %Regr %Chan

C
L

I
(2

0
m

in
) r129800-r129803 788 748 40 0% 0% 100%

r129803-r129843 835 809 26 65% 0% 35%
r129843-r129849 721 639 82 82% 1% 17%
r129849-r538031 509 485 24 0% 88% 13%
r538031-r667565 536 455 81 100% 0% 0%

Average 49% 18% 33%

Figure 3.12: Exploration of differential behavior in limited time

Answer to RQ3: For the evolution of Apache CLI over six years, tests

generated as witnesses of differential behavior of two successive versions suggest

an average progression of 49%, regression of 18% and intermediate semantic

changes of 33% towards the latest revision. The interested reader may compare

the results in Figure 3.12 to the developer’s notes in Figure 3.7. The behavior

of CLI generally experiences progression from version r129800 to r129849 when

suddenly the behavior regresses with the change to r538031. In fact, while
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trying to fix bug CLI-134, the developer introduces bug CLI-1375. This is a

clear regression bug which is witnessed by 88% of the difference-revealing test

cases generated by PRV. However, it takes two months to report and twelve to

fix bug CLI-137 and commit it as revision r667565. In contrast, PRV generates

the first regression-revealing test case for r538031 in 88 seconds among the first

five generated difference-revealing test cases.

3.6 Threats to Validity

The main threat to internal validity is the correctness of our implementation

of PRV into JSlice. We tried to mitigate this threat by using the same imple-

mentation to gather results for the DART-like and eXpress-like approaches. In

practice, any implementation of PRV can guarantee the absence of regression

errors to the same extent as symbolic execution can guarantee the absence of

program errors (see e.g., [67]). Our particular implementation could be faulty,

so that it may not report a witness of behavioral difference if one exists. On

the other hand, a reported witness of behavioral difference is indeed a witness

of behavioral difference. This is inherent to the approach, as the generated test

cases are concretely (and symbolically) executed on both programs.

The main threat to external validity is the generalization of our results. The

limited choice and number of subjects does not suggest generalizability and serve

mainly as comparison to related work and give an idea about the practicability

of PRV.

3.7 Related Work

Regression Verification (RV) is the problem of deciding whether a changed pro-

gram is at least as correct as a previous version. One line of work takes an

earlier version as a program specification of the new version [114, 115, 123].

The authors argue if both versions are semantically equivalent, then there is no

software regression. Yet, not every difference is a regression. For instance, a

bug-fix yields anticipated behavioral difference. Another line of work requires

an explicit specification, and builds on the full verification of an earlier ver-

sion. Subsequently, only the changed behavior of the following versions need

to be checked incrementally [124, 125]. In general, RV can take a long time

to terminate. When the search is interrupted, no intermediate guarantees can

be reported. In contrast, the interruption of PRV can guarantee the absence

4https://issues.apache.org/jira/browse/CLI-13
5https://issues.apache.org/jira/browse/CLI-137
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of regression at least for the explored equivalence-revealing partitions. More-

over, the difference-revealing test cases can be “informally” checked for further

regression by developers.

Conditional regression verification is “partitioning” the input space into two

subdomains – verified (equivalence-revealing) and unverified – based on proper-

ties that are external to the two program versions, such as a pre-defined bound

on the memory, time, or input. The verified subdomain can be bounded a priori,

e.g., by limiting the number of loop iterations [114], or by pre-defining an input

range [126]. The verified subdomain can also be bounded during verification

upon exhausting available resources, e.g., by setting a time or memory bound

[127]).

In contrast, Partition-based Regression Verification (PRV) is partitioning the

input space into many disjoint subdomains that are homogeneously equivalence-

or difference-revealing and dynamically discovered as inherent property of the

two programs versions. A differential partition is defined by the group of paths

in both versions that together explain the observed output equivalence or dif-

ference. The gradual verification of the complete input space is rather an enu-

meration every differential partition which may serve as units of verification. It

remains orthogonal that the verified subdomains can also be bounded a priori

or upon exhausting available resources.

Differential Symbolic Execution (DSE) [39] is a general approach to compute

program differences while PRV is a specialized approach tailored to RV. Specif-

ically, DSE computes the differences based on two types of program summaries.

The symbolic summaries in Figure 3.2 on the right (P and P ′) precisely charac-

terize the behavior of the program versions on the left. The abstract summaries

in Figure 3.13 over-approximate the behavior for the same versions. Exploiting

the syntactic similarity of both versions, the behavior of common code blocks

can be represented by uninterpreted functions.

Input Output Regression Test Case t
P (= ∆〈P,P ′〉) true o = o(0, i) Value for i satisfying
P ′ (= ∆〈P ′,P 〉) true o′ = o(0, i+ 1) o(0, i) 6= o(0, i+ 1)

Figure 3.13: Program Deltas (∆) and Abstract Summaries (cp. Fig.3.2)

RV based on program summaries is either less scalable or infeasible. While

symbolic summaries may be used for RV, the differences are computed as an

expensive cross-product of (incomplete) summaries. On the other hand, PRV

is based on differential partitions that account for the common input space of

both versions. Furthermore, PRV yields coarser partitions. For instance, if in-

put does not reach a change already implies both programs compute the same
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output. Abstract summaries, on the other hand, remove information required

for RV. The interested reader may verify in Figure 3.13 that, if the delta con-

tains uninterpreted functions, a concrete difference-revealing test case cannot

be generated. In this example, each delta accounts for a single partition (true),

while PRV distinguishes two difference-revealing and one equivalence-revealing

partition. For each partition, PRV generates a witnessing test case.

Regression Test Generation (RTG) is the problem of constructing sample

input that can expose software regression. Classically, test cases are gener-

ated towards the coverage of the program’s behavior [21, 80]. The hope, when

the program is changed and behavior regresses, is that at least one test case

fails in the new version. Further, when the program is changed, test cases are

generated towards the coverage of program elements that are affected by the

syntactic changes [95, 100, 25]. These test cases augment an existing test suite

that was coverage-adequate for the earlier version. However, the analysis of a

single program may be insufficient to generate a regression-revealing test case

(cf. Fig. 3.2). Instead, some research directly aims at generating difference-

revealing test cases. Syntactic approaches seek to reach a change, infect the

program state, and propagate it to the output [2, 1, 26, 58]. However, the

number of possibly semantically interfering sets of changes is exponential to the

number of overall syntactic changes. Harman et al. [26] note the testing of every

subset would be prohibitively expensive. Even for a single subset, the search

for a difference-revealing input may not terminate. In contrast, the number

of changes is unimportant to PRV, a priori. It groups input, depending on

whether it reaches and propagates the same set of changes, on demand during

exploration. More importantly, PRV can guarantee the absence of regression not

only for a singular point in the common input space, but for an entire partition.

3.8 Chapter Summary
In this chapter, we have proposed the systematic exploration of the seman-

tic changes resulting from the many (potentially interacting) syntactic changes

between two program versions. We have formalized the intuition of semantic

changes using the notion of differential partitions: Either every input in the

same partition computes exactly the same output. Or every input in the same

partition computes a certain symbolic output formula in one version but another

symbolic output formula in the subsequent version.

Each generated regression test case becomes significant and representative

of a larger set of inputs. Once a test case is executed on both versions and

exposes a difference, PRV can soundly generalize to those inputs that are also

difference-revealing. The corresponding test cases and symbolic differences can
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be (in-)formally verified by the developer. Conveniently, the absence of regres-

sion is already shown for equivalence-revealing partitions and require no further

verification. PRV inspires confidence in the absence of regression at least for

input in the covered input space and every generated test case directly increases

this confidence.

Differential partitions enable a gradual and partial form of regression ver-

ification. Differential partitions exist as a unit of verification in the common

input space of two program versions and are checked one after another. When

the verification process is interrupted, PRV retains regression guarantees for the

explored input space. This is crucial as verifying the complete input space is

prohibitively expensive.

Experiments have shown that PRV exposes regression errors that are not de-

tected by other regression test generation methods. The proofs of the theorems

corresponding to our claims are available in the Appendix A.
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Chapter 4

Test Generation to Expose

Change Interaction Errors

,,Das Ganze iĆ etwas anderes als die Summe seiner Teile.”
— Wolfgang Metzger, 1899 – 1997

Complex changes often introduce program errors, and hence recent software

testing literature has focused on generating tests which stress changes. In this

chapter, we argue that the simple changes constituting a complex change cannot

be stressed as isolated program artifacts. Instead, it is the complex dependency

across these changes which introduce subtle errors and ensures that such errors

remain undiscovered even in well tested and deployed software. We motivate our

work based on empirical evidence from a well tested and stable project - Linux

GNU Coreutils - where we found that one third of the regressions take more than

two (2) years to be fixed, and that two thirds of such long-standing regressions

are introduced due to change interactions for the utilities we investigated.

To combat change interaction errors (CIE), we first define a notion of change

interaction where several changes are found to affect the result of a statement

via program dependencies. Based on this notion, we propose a change sequence

graph (CSG) that captures the control-flow among the changed statements and

their interaction locations. The CSG is then used as a guide during directed

path exploration via symbolic execution – thereby efficiently producing test

inputs that witness CIEs. Our experimental infrastructure was deployed on

various utilities of GNU Coreutils, which have been distributed with Linux for

almost twenty years. Apart from finding five (5) previously unknown errors

in the utilities, we found that only one in five generated test cases exercises a

sequence that is critical to exposing a CIE, while being an order of magnitude

more likely to expose an error. On the other hand, stressing changes in isolation

only exposed half of the CIEs. These results demonstrate the importance and

difficulty of change dependence aware regression testing.
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4.1 Introduction

Changes even to well-tested software projects can introduce subtle bugs of vary-

ing severity that may be exposed only years later. Such change-based errors in

deployed software come in two forms. First of all, bug fixes may introduce

new bugs. For instance, Gu et al. [6] mentions that feature additions or bug

fixes, introduce new bugs in 9% of cases. Secondly, a subtle or poorly under-

stood “interaction” among various changes may introduce hard-to-find errors

in well-tested code, which then get deployed. In this chapter, we focus on test

generation to expose such subtle change interaction errors (CIEs).

Evidence of subtle change interaction errors can be found in many well-tested

and deployed software projects. In our study on GNU Coreutils, we found that

every fifth bug fix actually patches regressions introduced in an earlier commit.

About one third of these regressions take more than two (2) years to find and

fix, despite the tool set being rather well tested. Note that ∼21% of the total

commits update the comprehensive test suite, while only 30% actually update

the utilities (the remaining 49% are related to maintenance, like documentation,

the build process, or ambiguous error messages). Thus, it is surprising that on

utilities with such well-updated test-suites, errors due to change interaction will

remain for two years. In fact, the GNU Coreutils have been dispatched with

almost every Linux distribution for the last 20 years!! This led us to think that

change interaction errors, which stress subtle dependencies across changes, may

be hard-to-find due to most regression testing methods being focused on some

form of coverage.

At this point, we step back and review the recent regression testing re-

search which focus on program changes. A recent work [54] presents criteria

and experiments for the interaction among program changes but does not sug-

gest any method for integrating them into regression testing. Among the works

achieving change aware test generation, some study only independent program

changes [112, 1]. Several of the testing methods attempt to achieve either a

structural coverage of changed statements or some other structural coverage

(such as branch outcome coverage) in the modified program (e.g., see [95]).

Since coverage based methods may not stress the semantic effect of the changes,

attempts have been made to take a powerful symbolic execution based path

exploration engine, and adapt it to the presence of program changes. Since

symbolic execution captures the semantic effect of program changes, the hope is

that the semantic effect of a change can be propagated through such methods.

On the other hand, since a full-fledged symbolic execution based path explo-

ration can be exceedingly slow, these methods employ various pruning strategies

to cull away program paths which cannot reach or propagate the changes (e.g.,
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see [100]). Other authors suggest to statically compute the program slices for

every change and dynamically employ symbolic execution upon these slices to

exercise all paths that are affected by a changed statement (e.g., see [25]). How-

ever, in all of these works, the set of changes in a program is treated in an

aggregate fashion. The flows/dependencies across changes are not systemati-

cally explored/exploited for generating test cases.

In this chapter, we present a test generation method to systematically ex-

plore and expose subtle errors arising due to the “interaction” among program

changes. Since any such change interaction leading to errors is inherently dy-

namic, we first statically approximate the relationships among the changes.

Our approximation is called change sequence graph (CSG) which captures (i)

the control-flow across the changed statements and (ii) the control-flow to con-

trol locations at which multiple changes may interact, leading to unexpected

semantic effects. These interaction locations are computed based on the pro-

gram dependencies across multiple changed statements. The CSG is then used

as a definitive guide to find out the sequence of control locations that need to be

visited for exposing potential change interaction errors. These control locations

are visited systematically by programming a graph-based search strategy on top

of the directed symbolic execution engine, Otter [128].

Experimental results from our approach on GNU Coreutils show the preva-

lence of change interaction errors among regression bugs. We note that the

GNU Coreutils tool-set is a collection of Linux utilities which have been widely

tested. In particular, every fifth commit to the repository updates a compre-

hensive test suite that exists for more than twenty years, and the tool set was

further tested by the authors of klee [129] and test-zesti [130] (reporting

3 and 2 errors, respectively). Despite such extensive testing, we found and

reported five verified, previously unknown regression errors, apart from many

known errors. Among other notable findings, we noticed that two in three dif-

ferential errors can be classified as change interaction errors. We also found that

only half of the CIEs were exposed by a testing algorithm that target changes in

isolation, but does not account for their interaction. This clearly demonstrates

the importance of change-interaction aware regression testing.

In summary, the contributions of this chapter are:

• Change-Interaction Errors: We identify and formalize change-inter-

action errors: errors that happen in evolving software, which arise due to

the combined semantic impact of multiple changes. We argue for the im-

portance of this class of errors with a study of regression on GNU coreutils

over a period of 5 years.
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• Detection Method for CIEs based on CSGs: We propose a datas-

tructure called a change-sequence graph to capture potential sequences

of changed statements and interaction locations in an execution of a pro-

gram. Using CSGs we show a detection method which stresses sequences

in the graph to expose CIEs.

• Implementation and Empirical Evaluation: Our CIEs detection

method has been implemented and an empirical evaluation using that

implementation was conducted to evaluate its effectiveness.

4.2 Regression in GNU Coreutils

To study software regression, we looked at the repository of GNU Coreutils,

which has been actively developed and maintained for more than twenty years.

Our results show that within the last five years every fifth bug fix actually

patches regressions introduced earlier and that 30% of such regressions take

more than 2 years to be fixed. These results are corroborated by the package

maintainer.

4.2.1 Statistics of Regression

It is possible to access the history of every change commited to the source

code repository of GNU Coreutils since Oct’921. Usually, these commits are

accompanied by a commit message that describes the relevance and intention

of the change. The commits to the repository of GNU Coreutils are catego-

rized as changes to particular tools, or as build, tests, maint[enance], amongst

others. The developers adopted this commit message labeling about five years

ago. This allows us to distinguish code-changing commits2 from maintenance

commits. Parsing the commit messages for keywords, such as “bug”, “fix”, or

“regression”, we were able to find how many of the code-changing commits are

bug fixes and feature additions. If the commit message contained “introduced”

or “regression”, we could derive whether a bug fix was actually patching regres-

sions introduced earlier. Often, a regression-fixing commit would reference the

regression-introducing commit. Thus, we can measure the time in-between. As

the commits have been nicely categorized in the last five years, we looked at

those between Jan’08 and Feb’13. However, regression-fixing commits can ref-

erence regression-introducing commits that were submitted much earlier. Given

the X- and the (logarithmic) Y-axis in Figure 4.1, the graph shows that X per-

cent of the regression-introducing commits 1) require more than Y days to be

1http://git.savannah.gnu.org/cgit/coreutils.git
2Code-changing commits are labeled by the changed tool.
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found and fixed (solid line), and 2) contain more than Y Changed Lines of Code

(CLoC; dashed line).3

Figure 4.1: Regression Statistics - GNU Coreutils

Results. About 30% of the 2.6k commits in the recent 5 years are code

changes - feature additions and bug fixes in roughly equal shares. Interest-

ingly, every fifth bug fix actually patches regressions introduced in an earlier

commit. The following observations are are further corroborated by package

co-maintainer, Pádraig Brady, via email-exchange:

O.i 30% of the regressions introduced in earlier commits take more than 2

years to find and fix despite a comprehensive and well-maintained test

suite (∼21% of the total commits update the test suite)

O.ii 45% of the regressions are introduced when more than 35 LoC are changed

(while only about 25% of the code-changing commits modify 35 LoC or

more).

This led us to suspect that the changed behaviour introduced by the syntactic

changes to the tools is not properly tested. In particular, we consider the subtle

interplay of many code changes as reasons for regressions to be exposed so late.

We call this type of errors — change-interaction errors. Indeed, as discussed

in Section 4.7, we find that 66% of the errors introduced in earlier commits

can only be exposed by input exercising certain critical sequences of changed

statements. It turns out that only one in five tests inputs exercise a critical

sequence, while such test cases are 15 times more likely to expose an error. In

the remainder of this section, we have a closer look at one of the regression

errors.

3Days and CLoC computed using the git stat-tool.
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4.2.2 Buffer Overflow in cut

During our investigations, we found and reported a buffer overflow in the tool

cut of GNU Coreutils which was introduced as a regression error in com-

mit ec48bead and manifests as SEG FAULT for the failing test input.4 Buffer

overflows can be exploited maliciously to gain root access to affected comput-

ers [131]. This issue is particularly critical for systems that are dispatched with

almost every Linux distribution, such as GNU Coreutils, which contains well-

known command-line tools, such as cp, mv, rm, echo, and cut. Fortunately,

in the five years preceeding this dissertation the package maintainer of GNU

Coreutils had to fix only 10 SEG FAULTs.5 However, a surprising 6 out of 10

are regression errors introduced in earlier commits.

The Anatomy of a Regression

In simple terms, the tool cut takes a set of number ranges, a file, and an optional

output-delimiter as input and prints the content of every line in the specified

file within the specified ranges, optionally separated by the specified output-

delimiter. For instance, the command in Figure 4.2, uses “hello world” as input

to the cut utility - which prints the range between the 2nd and 3rd character,

and from the 7th character onwards, both ranges separated by “,” (comma).

$ echo "hello world" | cut -output-del=, -b2-3,7-

el,world

Figure 4.2: Linux Terminal - the output of cut

Problem. If there are no finite ranges (e.g., 7-), then too much memory is

unnecessarily allocated.

Specifically, if max range endpoint is set in line 504 of Figure 4.3 or earlier,

then the array printable field is allocated max range endpoint of memory

(line 509). If output delimiter specified, then printable field is un-

necessarily (but successfully) accessed at eol range start in line 266. Note,

if eol range start>max range endpoint, then max range endpoint is set to

eol range start in line 504.

Intended Change. Allocate memory only if necessary.

Specifically, only if max range endpoint is set, allocate the array printable-

field with max range endpoint of memory. Only if output delimiter spe-

cified and max range endpoint is set, then the array printable field shall

be accessible in line 534.

4Report and fix avail. at http://debbugs.gnu.org/13627.
5We analysed commit messages in the source repository. The actual number may be

greater.
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265 : bool is printable field (size t i)

266 : return printable field[i];

.. :
503---: if (max range endpoint < eol range start)

504---: max range endpoint = eol range start

.. :
508 ++ : if (max range endpoint)

509 : printable field = malloc(max range endpoint+1)

.. :
531 : if (output delimiter specified

532 : && !complement

533 : && eol range start

534 ++ : && max range endpoint

: && !is printable field (eol range start))

535 : mark range start (eol range start)

Figure 4.3: SEG FAULT introduced in cut

Actual Changes. The developer applies three code changes. Every change is

essential to fix the memory leak.

Specifically, the developer C.1) adds that printable field is allocated only if

max range endpoint is set (line 508), C.2) adds that printable field is ac-

cessed only if max range endpoint is set (line 534), and C.3) removes that

max range endpoint is set to eol range start if eol range start > max-

range endpoint (lines 503-504). Note, all changes are essential to fix the

memory leak. For instance, without change C.3, the variable guarding the

memory allocation is always set, rendering the additional checks of changes C.1

and C.2 redundant.

Regression Error. If finite ranges are specified, then unallocated memory can

be accessed, yielding a SEG FAULT. Specifically, if 1) max range endpoint is

set, 2) max range endpoint < eol range start, and 3) output delimiter-

specified is set, then the array printable field is accessed out-of-bounds

at eol range start in line 266.

Combined Semantic Impact of Changes

The observation of the regression error depends on the execution of both changes,

C.1 and C.2. They have a combined “semantic impact” on the same pro-

gram location - the memory access. Specifically, the allocation of memory for

printable field in line 509 depends on the code added with change C.1. The

access of memory in printable field in line 266 depends on the code added

with change C.2. Because the success of accessing an array also depends on the

memory allocation for this array, both changes have a combined impact at the

memory access location. So, the memory access at line 266 is called interaction

location of C.1 and C.2. The sequences in which the changes can be executed
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are depicted in Figure 4.4.6 Note, C.3 is not part of the presented graphs since

a deletion does not manifest in the changed version P ′.

Root

Memory 
Allocation

C.1

Memory 
Access

C.2 Out

Figure 4.4: Input can exercise these change sequences.

It is insufficient to test both changes in isolation. The regression error is

only observable for (some) input that exercises both changes - the sequence

following the solid lines in Figure 4.4. The buffer overflow is not observable for

input exercising only change C.1 but not C.2 and neither for input exercising

only change C.2 but not C.1 - sequences exercising one of the dashed lines in

Figure 4.4. Hence, we call this regression a change interaction error.

4.3 Errors in Software Evolution

This section formally describes classes of errors that can occur during software

evolution. In particular, we are interested in a class of errors, arising from the

interaction of multiple changes, that we call change interaction errors (CIE). To

establish the context of CIEs, we also define a useful generalization of regression

errors, which we call differential errors.

4.3.1 Preliminaries

For the definitions in this section, we will assume two successive versions of

a program, P and P ′, and an oracle S. The oracle S specifies the intended

behavior for P and P ′. As such, it is expected that for all input i executed on

P ′, the output is observationally equivalent7 to executing i on the oracle S. The

explicit oracle can be a specification, the ultimate final version of a program,

a validating test suite, or some other artifact that could be used to validate

expected behaviour.

6For brevity, we removed sequences that contain a change but no memory allocation or
access.

7Two programs P and P ′ are observationally equivalent for an input i, P (i) ≡ P ′(i), if the
relevant program output produced by executing i on P and P ′ is the same.
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Using the earlier version P , the changed version P ′ and intended behavior S

of P and P ′, we can more formally define regression error.

Definition 8 (Regression Error)

An error is a regression error if for some input i holds:

P (i) 6≡ P ′(i) and P (i) ≡ S(i).

In other words, a regression error happens when for some input i the earlier

version, P , works as expected but the new version, P ′, does not work any-

more. Note that this definition does not prevent P ′ from exposing the correct

behaviour for some other input, which fails in P w.r.t. S. Therefore, our def-

inition of regression error captures the common situation in which the initial

version P may have some errors that are intended to be fixed in P ′, but while

P ′ is fixed for some inputs, it starts behaving incorrectly for some other inputs.

An intended software quality improvement turns into a possible deterioration

of the software quality.

4.3.2 Differential Errors

In the context of software evolution we often find the need for a notion more

general than that of a regression error. We call this notion differential error.

Definition 9 (Differential Error)

An error is a differential error if for some input i holds:

P (i) 6≡ P ′(i) and P ′(i) 6≡ S(i).

In other words, a differential error happens when, for some input i, the

changed version P ′ works differently from both, the earlier version P and the

intended behavior S. There are two interesting situations. The situation in

which the earlier version P (i) worked as expected (P (i) ≡ S(i)) is just equivalent

to the definition of regression error. On the other hand, the situation in which

the earlier version P (i) did not work as expected either (P (i) 6≡ S(i)) cannot be

called regression error. So we call it differential error. This captures a situation,

e.g., of an incomplete fix. The developer intends to fix the behaviour of P , so

that test cases i and j fail on P w.r.t. S. But while i may now pass in the

fixed version P ′ and j produces different output, j may still fail on P ′ w.r.t.

S – the fix was incomplete. In practice, it is helpful to characterize situations

in which several intermediate “fixes” are implemented until an ultimate version

meets the expectations.
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P P ′� �
1

2 while(true){
3 if(isDigit(*fs)){
4 v = rdDigit(*fs );
5

6 else if(*fs == ’-’)
7 c = v;
8 init = (c)? v : 1;
9 } else if (*fs == EOL) {

10 assert(init != 0);
11 break;
12 }
13 fs++;
14 }� �

� �
1 bool lhs = false;
2 while(true){
3 if(isDigit(*fs)){
4 v = rdDigit(*fs);
5 lhs = true;
6 } else if (*fs == ’-’){
7 c = lhs;
8 init = (c)? v : 1; //IL
9 } else if (*fs == EOL){

10 assert(init != 0);
11 break;
12 }
13 fs++;
14 }� �

Figure 4.5: Core Utility cut.v1 changed to cut.v2

4.3.3 Change Interaction Errors

A change-interaction error is a special kind of differential error. Informally,

a change-interaction error happens when multiple changes are introduced in

a program, and those multiple changes interact in unexpected ways. More

formally we can define this class of errors as follows.

Definition 10 (Change interaction error (CIE))

A change-interaction error happens when there exists a sequence of changed

statements ~C, such that both of the following conditions hold:

1) there exists an input i that exercises all changed statements in ~C in order

and S(i) 6≡ P ′(i);
2) for every input j that skips the execution of at least one changed statement

in the sequence ~C, we have that S(j) ≡ P ′(j).

We call the sequence ~C the critical sequence of the CIE. That is ~C corresponds

to a sequence of changed statements that is necessary to expose the error. Any

smaller sequence that skips the execution of at least one changed statement in

that sequence cannot expose the error.

4.3.4 Running Example

For illustration purposes, we use the two concrete program versions P and P ′

in Figure 4.5 to explain salient concepts in the remainder of this work. The two

programs are simplified extracts of two versions of the Linux core utility cut -

the behavior of which is explained in Section 4.2.2. The code is related to the

parsing of the user-provided number ranges for the tool. As long as *fs points

to a character of the string, it tests whether the character is a digit (line 1),

a dash (line 6) or the end of line (line 9). If the character is a digit, then the

number is read into v. In the changed version a boolean lhs is set to true (lines
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4-5). If the character is a dash, the variable init is computed using v (lines

7-8). If the end of line is reached, the bug is observable if init is 0 (line 10).

The changed statements are highlighted in grey. There are three changed

statements in the changed version, which can be identified using the correspond-

ing line numbers: {1, 5, 7}. We should point out that our notion of change is

syntactic, purely textual and corresponds to code changes that manifest in the

changed version (P ′), such as added or modified statements. In other words,

changed statements can be determined using textual differencing tools, like

diff. The use of diff has the advantage that it works for any two programs,

although it can be quite imprecise. There are other, more precise ways to deal

with changes, but these typically assume some form of alignment between the

two program versions [112, 1]. Unfortunately, these alignment assumptions do

not always hold for the real programs that we are interested in. For this reason

we chose the less precise, but unrestricted approach using diff. The loss of

precision yields CSGs that may be larger than otherwise.

Change Interaction Error. In the program P ′ in Figure 4.5 a CIE hap-

pens when the input string is “0-”. In this case the following sequence of changed

statements is executed: 〈1, 5, 7〉. Before entering the loop, line 1 is executed.

Since the first character is ‘0’, the first iteration of the loop meets the condition

at line 3 and the changed statement in line 5 is executed. At this point the

variable v is set to 0 and the variable lhs is set to true. In the second iteration

of the loop the condition at line 6 is met and the change in line 7 is executed.

Since lhs is true, init is set to 0 (as v is 0). In contrast, for the same input,

program P sets the variable init to 1. Consequently, in the last iteration of

the loop, the assertion in line 10 is violated for P ′, but not for P .

Note that only input exercising specific (critical) sequences of changed state-

ments triggers this error. The interaction of the changed statements in lines 5

and 7 at the statement in line 8 causes this error. The combined semantic impact

of both changes lead to the differential evaluation of the conditional expression

(c)?v:1 in both versions, P and P ′. Input exercising a sequence that “skips”

any change in 〈1, 5, 7〉, such as 〈1, 7, 7〉 or 〈1, 7, 5〉, will not expose the error.

4.4 Change Sequence Graph

To support detection of change-interaction errors (CIE) we propose a statically

computed structure which we call change-sequence graph (CSG). A change se-

quence graph approximates the computation of potential CIEs by using control-

flow information to derive sequences in which the changed statements can po-

tentially be exercised and dependence information to derive locations at which

the changes can potentially interact.
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Figure 4.6: PDG, CFG, and CSG for P ′ in Figure 4.5.

4.4.1 Potential Interaction

To aid detecting CIEs, we can approximate all potential sequences of changed

statements in a program using control-flow information from a control-flow

graph (CFG). Essentially, a potential sequence of changed statements corre-

sponds to a path in the CFG that contains changed statements. Having infor-

mation about every potential sequences of changed statements is helpful because

all critical sequences will be included in those sequences. In other words, this

information will allow us to build a detection method for CIEs that searches

potential critical sequences and exposes CIEs.

We are particularly interested in change sequences where the changed state-

ments interact. That is, each executed changed statement has some impact on

the output, and not executing one of those statements can lead to a different

output. It is in this class of sequences where we can find change interaction

errors. To detect such sequences, one useful definition is that of a potential

interaction location of a sequence of changed statements.

Definition 11 (Potential Interaction Location)

A statement s is a potential interaction location of a sequence of changed

statements ~C, if s (statically) data- or control-depends on more than 1

changed statements in ~C.

Information about potential interaction points can be computed using the

program dependency graph (PDG). Essentially, we utilize the backward slice

of the statement s to compute the set of changed statements that can have

a semantic impact on s. If the set contains more than one different changed

statement, then s is a potential interaction location of those statements. Note

that an interaction location can coincide with a changed statement.
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In Figure 4.6, the graphs on the left and in the middle depict the PDG and

the CFG for our running example, respectively. The statement at line 8 is a

potential interaction location of the changed statements in lines 5 and 7, since it

transitively depends on both the changed statements. As such, both changes can

have a combined semantic impact on this control-location, effectively causing

the regression error.

The notion of potential interaction location allows us to define an approxi-

mation of change interaction.

Definition 12 (Potential Change Interaction)

A sequence of changed statements ~C is potentially interacting if there exists

at least one potential interaction location for ~C.

Essentially, if there exists no interaction location for a sequence of changed

statements, they are guaranteed not to interact and each of these changes can

be tested in isolation. Otherwise, the changes might interact for some input.

The information about all potential sequences of changed statements and po-

tential interaction points can be synthesized in a change-sequence graph (CSG).

Thus a CSG represents a subset of program paths in a program where change-

interaction errors may exist. Other program paths, which are not represented in

the CSG, cannot have change-interaction errors as they do not contain change

sequences.

4.4.2 Computing the Change Sequence Graph

The CSG can be computed using the CFG and the PDG for the changed pro-

gram P ′. Algorithm 5 shows the detailed construction of the CSG. The inputs of

the algorithm are two programs P and P ′ and the output is the change-sequence

graph CSG. The first step is to compute the changed statements between P

and P ′ (line 1). As discussed in Section 4.3, this can be done using the diff

tool. The next step is to compute the annotated versions of the CFG and PDG

of P ′ (lines 2 − 3). Both, the CFG and PDG are annotated with information

about the changed statements. Initially the CSG contains no edges, only nodes.

These nodes are the changed statements and output nodes that are recovered

from the CFG using the procedure markedNodesOf (lines 4 − 5). The final

step of the algorithm is to iterate through all the changed statements in the

CFG and, for each change, use the auxiliary function traverseChange to add

the relevant edges and interaction locations to the CSG (lines 5− 7).

The recursive function traverseChange takes two arguments curr and

c. The first argument represents the current node in the CFG. The second

argument represents the changed statement that edges may have to connect to.
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Algorithm 5 Change-Sequence Graph Construction

Input: Programs P and P ′

1: let CCode ← diff(P, P ′)
2: let CFG← markedCFG(P ′, CCode)
3: let PDG← markedPDG(P ′, CCode)
4: let CSG← markedNodesOf(CFG)
5: for all Change c ∈ CFG do
6: traverseChange(c, c)
7: end for
8:

9: function traverseChange(curr, c)
10: for each node that directly follows curr in CFG do
11: if node is change or output then
12: add edge from c to node in CSG
13: else
14: let CI ←dependsOnChanges(node, PDG)
15: if |CI | > 1 then
16: add node to CSG
17: for each c ∈ CI do
18: add edge from c to node in CSG
19: end for
20: traverseChange(node, node)
21: else
22: traverseChange(node, c)
23: end if
24: end if
25: end for
26: end function
Output: Change-sequence graph CSG.

For each node in the CFG, which directly follows from the current node, we

have three possibilities for the node:

Change or output node (lines 11 − 12): If we reach some other change

node, this indicates that there may be a control-flow from the change c to

this change. Thus, we add a corresponding edge to the CSG to indicate such

potential flow. Similarly, if we reach an output node, we should add an edge

between change c and that node to indicate the potential control-flow.

Interaction location (lines 14−20): If the node is an interaction location,

it is added to the CSG and connected. Specifically, the function dependsOn-

Changes(node, PDG) computes the changed statements that can have a se-

mantic input on node using the PDG. If there is more than one change having

a semantic impact on node, then node is an interaction location and is added

to the CSG connected to the changes it depends on. Conceptually, every inter-

action location can be regarded as a new change. To trace the semantic impact

of the interaction location, we keep recursively traversing the CFG by invok-
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ing traverseChange with both arguments set to node. Näıvely, the function

dependsOnChanges can return all changed statements in the static backward

slice of node. For optimization purposes, the function may choose a node to be

an interaction location only if node is an “important” interaction location in

some respect. For instance, given an interaction location i for change sequence
~C and a statement s that directly depends on i. While s is also an interaction

location of ~C, it may not be an important one. Alternatively, the interaction

locations could be computed by taking the static forward slice for every changed

statement and marking their intersection as an interaction location.

Neither of above (line 22): Any other CFG node should be ignored in the

CSG. This is achieved by calling traverseChange with node as first argument.

This sets curr, representing the node in the CFG that is currently traversed, to

node and implies that node will not appear in the CSG.

4.5 Search-based Input Generation

Algorithm 6 Search-Based Input Generation

Input: Programs P and P ′; Directed Graph CSG
1: let T ← ∅
2: let symbState.targets← CSG.startNodes
3: let symbState.pc← true
4: let symbState.next← P ′.firstStmt
5: let states← {symbState}
6: while states 6= ∅ ∧ ¬isT imeout() do
7: let bestState← chooseBestState(states)
8: let s← symbExec next(bestState, P ′)
9: if isBranch(s) then

10: let stateT ← bestState.pc ∧ s.branchCond
11: let stateF ← bestState.pc ∧ ¬s.branchCond
12: remove bestState from states
13: add stateT and stateF to states
14: else if s ∈ bestState.targets then
15: if s is an output then
16: let t← smt solve(bestState.pc)
17: if P (t) 6= P ′(t) then
18: add t to T
19: end if
20: remove bestState from states
21: else
22: bestState.targets← next targets of s in CSG
23: end if
24: end if
25: end while
Output: Difference-revealing test cases T .
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To expose change interaction errors, and differential errors in general, test

cases are generated. The exploration technique uses the Change Sequence Graph

as a guide to exercises the structure of inter-dependencies across the changed

statements. We employ symbolic execution along these dependencies.

The search-based input generation is depicted in Algorithm 6. The algorithm

takes two program versions, P and P ′, and the CSG (cf. Alg. 5) as input and

computes a set of difference-revealing test cases T . We adopted the directed

symbolic execution algorithm as discussed by Ma et al. [128]. However, instead

of searching for input that exercises any target in a specified (flat) set of targets,

we extended the algorithm to search a specified directed graph of targets (i.e.,

the CSG). The search algorithm is presented independent of the search strategy.

Algorithm 6 is initialized in the first five lines. It starts with an empty

test suite T and the first set of changed statements in the CSG (those without

incoming edges). These are added as targets for the symbolic state symbState

which is created in lines 2-4. A symbolic state is essentially an intermediate state

of symbolic execution and has three main properties - (i) a statement next which

is to be executed next, (ii) a partial path condition pc, that is satisfied by every

input exercising the same program path until s, and (iii) a set of targets.

The symbolic execution of a symbolic state can be resumed at any time and

pauses when a branch or a target is reached. The first symbolic state symbState

is created with pc = true, statement next is set to the program start, and the

targets are assigned to the first set of changed statements in line 4. In the

following line 5, it is added to the empty list of symbolic states.

distance

public class HelloWorld {
   public static void main(String [] args) {
       String a = "e";
        String b = "l";
        String c = "w";
        String d = "o";
        String e = "H";
        String f = "r";
        String g = "d";
        String final1 = e + a + b + b + d;
        String final2 = c + d + f + b + g;
        String low = final1.tolowerCase();
        System.out.println(low + " " + final2);
      }
 }

CSGP'

bestState
s

Figure 4.7: The bestState is chosen with the shortest distance in the source
code of P ′ from s to the target (left). Once a target is reached, the symbolic
state moves to the target’s children in the CSG (right).

The search commences in line 6. As long as the list of states is non-empty

and no timeout occurs, the search works as follows. From the list of states the

bestState is chosen according to a given search strategy, which is implemented in
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chooseBestState. For instance, as depicted in Figure 4.5, every symbolic state is

assigned a measure of distance to its targets, ranked according to this measure,

and chosen if it has the shortest distance. We further prioritize states with a

greater proportion of targets that are yet unreached by other symbolic states.

In line 8, the bestState resumes the symbolic execution of P ′ until s, the next

statement to be executed, becomes either a branch or one of the targets to be

reached. If s is a branch (lines 9-12), then two states are created - one following

the true-branch and the other following the false branch. The path conditions

and the list of states are updated accordingly. If s is a target (lines 13-23), then

we further distinguish whether or not s is an output statement. If s is an output

statement, then we solve the path condition using a Satisfiability Modulo Theory

solver to derive a concrete program input t (line 15). This input is executed on

both versions to validate whether t exposes a behavioral difference. If so, t is

added to the set of difference-revealing test cases T . Since bestState reached

the output, it requires no further symbolic execution and can be removed from

the list of states (line 19). Otherwise, if s is a target of bestState and not an

output statement (line 21), then we set as new targets of bestState the nodes

following the outgoing edges of the reached node in the CSG. The right-hand

side of Figure 4.5 shows the bestState searching for two CSG nodes (in grey). If

bestState finds the node on the left, the next target of bestState becomes that

bottom left node.

4.6 Empirical Evaluation

4.6.1 Implementation and Setup

We have implemented Algorithm 6 into the directed symbolic execution tool,

Otter [128]. The user provides two versions of a C program compiled into the C

Intermediate Language (CIL) and a text file with a representation of the CSG.

Otter provides a wide choice of search strategies which implement the func-

tion chooseBestState in Algorithm 6. For our experiments we used one of the

most efficient8 strategies. The best symbolic state is chosen based on the short-

est distance to the targets computed in the interprocedural control-flow graph.

Occasionally, the next state is chosen randomly. We extended the search strat-

egy by prioritizing states with a greater proportion of yet unreached targets.

Instead of searching for a global set of targets, our implementation extends a

symbolic state to have its own set of targets. Once a target is reached, the chil-

dren of the reached target become the new targets for this state. The execution

of a symbolic state terminates only if the output has been reached and thus

8RoundRobin(RandomPath,InterSDSE-efficient).
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no more further targets are to be reached. We then compute a concrete input

satisfying the path condition of a state that reached an output node. This input

is executed on both program versions. The information from the standard unix

pipes stdout and stderr describes the program output. If the output differs

in more than the program name, the test case and its differing output is re-

ported. If the user optionally provides a “golden version”, our implementation

can classify the observed differential output further as “differential error” (i.e.,

regression/incomplete fix) or “progression”.

We executed our implementation on a desktop computer with an Intel Core2

Quad CPU at 2.83GHz and 4GB of main memory to generate test cases within

the time frame of 5 minutes. The same sequence of changed statements can be

exercised by multiple generated test cases.

4.6.2 Subjects

We chose the subjects according to the following criteria:

Known Regressions. For every regression, we know i) the earlier version,

ii) the regression-introducing version, iii) the bug report(s), and iv) the

regressing-fixing version(s). The analysis of known regressions increases

the credibility of the subjects and reduces the scope of non-maintenance

commits which we need to inspect.

Multiple Changes. In this study, we are not interested in the semantic im-

pact of single changed statements but the interplay of multiple changed

statements. Therefore, we consider only regressions involving multiple

changed statements.

Deterministic Behavior. The execution of the same input on the same pro-

gram always yields the same output. Determinism is a prerequesite for

many testing techniques including (standard) dynamic symbolic execu-

tion.

Version Pair Fixed in Commit Bug Report @
Revision Date http://lists.gnu.org/

seq.v0→seq.v1 seq.v2 09.07.2007 2007-07/msg00055.html
16.06.05→01.07.06 seq.v3 14.02.2009 2009-02/msg00139.html

seq.v3 14.02.2009 2009-02/msg00139.html
seq.v1 →seq.v2 seq.v4 24.11.2012 2012-11/msg00145.html

01.07.06→09.07.07 seq.v5 10.01.2013 2013-01/msg00054.html

cut.v0→cut.v1 cut.v4 07.02.2011 2011-02/msg00036.html
02.06.04→04.12.04 cut.v6 24.11.2012 2012-11/msg00151.html

cut.v1→cut.v2 cut.v3 22.05.2007 2007-05/msg00195.html
04.12.04→22.05.07 cut.v5 18.11.2012 2012-11/msg00114.html

cut.v6→cut.v7
cut.v8 05.02.2013 2013-02/msg00011.html

24.11.12→06.12.12
expr.v0→expr.v1

expr.v2 26.05.2005 2005-05/msg00189.html
16.11.04→14.01.05

Figure 4.8: Subjects - Version history
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We study six version pairs that together introduced 11 regression bugs, five

of which are found and reported by our method (in bold font). Figure 4.8 shows

the considered Version Pairs that the latter version of which introduces bugs

that are Fixed in the a subsequent revision. The fixes are presented with

Commit Date and Bug Report. The bug being fixed with cut.v4 is further dis-

cussed by Marinescu and Cadar [130] and together with cut.v9 only observable

as buffer overflow. We inserted an assertion that states that an array shall never

be accessed out of bounds. The tools cut, seq, and expr consist of about 900,

500, and 900 Lines of Code (LoC), respectively. However, these tools utilize

monolithic, shared libraries, prompting colleagues to quote between 2k to 3k

effective LoC for the smallest tools [129] up to 20k instructions for the largest

tool [130] in GNU Coreutils.

4.6.3 Research Questions

During the empirical evaluation of the change-interaction guided regression test

generation technique, we want to answer the following research questions.

RQ.1 Severity. How many differential errors can be classified as change inter-

action errors? What is the probability to exercise a sequence critical to

exposing a change interaction error compared to sequences that are not?

RQ.2 Efficacy. How many differential errors are exposed by a test generation

technique that does not stress the inter-dependencies and thus potential

interactions among the many changes as compared to one that does?

4.7 Results and Analysis

RQ1: Change Sequence Graph RQ2: Individual Changes
Version Pair Fixed in CIE #Tests #Diff #Error #Tests #Diff #Error

seq.v0 → seq.v1
seq.v2 x 163 43 6 205 65 0
seq.v3 x 163 43 5 205 65 0

seq.v1 → seq.v2
seq.v3 - 200 26 2 200 21 17
seq.v4 - 200 26 3 200 21 0
seq.v5 x 200 26 1 200 21 0

cut.v0 → cut.v1
cut.v4 - 379 42 30 471 42 30
cut.v6 x 379 42 12 471 42 12

cut.v1 → cut.v2
cut.v3 - 254 228 162 453 201 58
cut.v5 x 254 228 26 453 201 5

cut.v6 → cut.v7 cut.v8 x 324 4 4 342 6 6

expr.v0 → expr.v1 expr.v2 x 42 2 2 82 2 2

Average (per version pair) 7/11 227 57.5 46.3 292.2 55.8 21.7

Figure 4.9: Bugs introduced, fixed in later versions, are witnessed by test cases
generated within 5 minutes.
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4.7.1 Result Presentation

Figure 4.9 shows the bugs introduced when changing the given versions, whether

these are change interaction errors and the test cases generated by our CSG-

guided test generation technique. The first two columns show the errors in-

troduced by the changes of the Version Pairs that are Fixed in the versions

given in the second column. For instance, when program seq.v1 was changed

to seq.v2, errors are introduced that are fixed in versions seq.v3, seq.v4, and

seq.v4. Errors highlighted in bold face were previously unknown and sub-

sequently reported by us. The subsequent four columns show the results for

the generation of test cases exercising the Change Sequence Graph, while the

latter three columns show the results for a test generation technique that con-

siders sufficient to exercise every changed statement, effectively treating them

as Individual Changes. Both groups of columns have a similar format. Col-

umn #Tests depicts the number of test cases generated. Column #Diff depicts

the number of test cases revealing a difference when executed on both versions.

Some of the semantic differences are expected (progression). Column #Error

depicts the number of test cases that are not expected and expose the respective

error. An error, that is exposed only by input exercising a sequence of changed

statements but not by input “skipping” statements in that sequence, is classified

as change interaction error (Col. CIE).

Version Pairs Sequence %Test %Error

seq.v0 → seq.v1
non-critical 19.02% 0.00%
critical 80.98% 1.39%

seq.v1 → seq.v2
non-critical 99.50% 0.30%
critical 0.50% 100.00%

cut.v0 → cut.v1
non-critical 96.83% 4.09%
critical 3.17% 100.00%

cut.v1 → cut.v2
non-critical 87.40% 11.71%
critical 12.60% 33.33%

cut.v6 → cut.v7
non-critical 95.68% 0.00%
critical 4.32% 28.57%

expr.v0 → expr.v1
non-critical 71.43% 0.00%
critical 28.57% 16.67%

Figure 4.10: %Test generated test cases exercise a (non-) critical sequence.
%Error generated test cases exercising a (non-) critical sequence expose an error.

Figure 4.10 shows the percentage of tests exercising critical sequences versus

the percentage of tests exercising non-critical sequences. One test case exercises

exactly one sequence. A critical sequence is a sequence of changed statements

that is relevant to expose a change interaction error. The first column depicts the

Version pairs considered, followed by whether the results refer to critical

or non-critical sequences. The latter two columns are explained by example

of the last row: “On average, one quarter of the generated test cases for the

version pair expr.v0 and expr.v1 exercise a critical sequence. From those, every

sixth exposes an error”.
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To generate the test suites that stress changes individually (see RQ.2), we

generated test cases that cover every changed statement that is also exercised by

the approach presented in this chapter. We set as targets the output and such

statements that have the greatest depth in the chain of control-dependencies.

In other words, instead of a graph of targets, we provided a set of targets.

Otherwise, we employed the same tool, search strategy, and time frame.

RQ.1 Change Interaction Errors

Two thirds of the differential errors can be classified as change interaction errors.

Only one in five test cases exercise a critical sequence, being 15 time more likely

to expose an error.

Using our implementation, we have found and reported four of the seven

listed change-interaction errors and one more differential error, that were pre-

viously unknown. On average, 227 test cases were generated that exercise a

change sequence (see Figure 4.9). Every fourth test case propagates the com-

bined semantic effect of the exercised changed statements to the output and thus

makes a difference observable. While many of these expose expected behavioral

changes, every fifth test case exposes a differential error.

Change interaction errors are subtle. On average, only 21.7% of the gener-

ated test cases exercise a critical sequence (see Figure 4.10). On the other hand,

the malicious effect of a critical change sequence is much greater than that of

a non-critical sequence. Only 3.2% of the test cases exercising a non-critical

sequence expose an error versus 50% exercising a critical sequence. Test cases

exercising a critical sequence are 15.6 times more likely to expose an error than

test cases exercising a non-critical sequence. That suggests that the changes in

these critical sequences are interacting in a negative and unintended form.

RQ.2 Comparison to Stressing Changes Individually

Only 57% of the change interaction errors are exposed by test cases generated

by a technique disregarding potential change interaction.

To compare, we generated a test suite that covers every changed statement

which is also covered by the test suite generated using a change sequence graph.

On average, 292 test cases were generated that exercise a change sequence (cf.

Figure 4.9). Every fifth test case propagates the combined semantic effect of

the exercised changed statements to the output and thus makes a difference

observable. Many of these expose expected behavioral changes, every 15th test

case exposes a differential error – significantly less than our CSG-based test

generation approach. Within five minutes, using our CSG-based approach every

error is witnessed by 25 test cases on average. In contrast, using the other
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approach that considers changes individually only seven of the eleven errors are

witnessed by, on average, 18 test cases each. In particular, only 57% of the

change interaction errors are exposed by test cases generated to stress changes

individually as compared to 100% by our technique.

4.8 Threats to Validity

The main threat to external validity is the generalization of the results. Dur-

ing our study of GNU Coreutils we encountered several regression errors that

can only be observed when certain environmental conditions are satisfied. One

example is an error that was reported to occur specifically on a Solaris 32-bit

maching and could not reproduced on other machines. Depending on the pro-

gram environment, the same test case may or may not expose an error. In fact,

the package co-maintainer of GNU Coreutils, Pádraig Brady, noted in an email

correspondence that it may be unclear even for the experienced developer, ex-

actly how to write the test cases in the presence of such non-determinism. He

suggested to introduce an explicit interface for file operations. This suggests a

lack of modelling the environment [60], or concurrency [132] during the testing

process. As discussed in Section 4.6.2, our experimental subjects and regression

errors are chosen so that the observability of an error does not depend on the

program environment but on source code properties. The conclusions should be

viewed in the same context.

The main threats to internal validity are T.1) the search strategy that was

utilized and T.2) the practical absence of assertions that mark an error within

symbolic execution. T.1) The experimental results depend on the utilized search

strategy. A less efficient search strategy may have exposed less differential errors

within the same amount of time. However, the utilized search strategy does not

prioritize critical over non-critical sequences. Thus, it does not affect the main

conclusion of RQ.1. We utilized the same search strategy for the experiments

that compares to testing changes individually. Thus, it does not affect the

main conclusion of RQ.2. T.2) Symbolic execution requires highlighting of error

states, for instance, by assertions. In Section 4.2 and Figure 4.8, we list the

versions cut.v4 and cut.v8 as bug fixes for regressions introduced in an earlier

version of cut. The regressions are observable as buffer overflows. However,

without the explicit assertion stating that an array should never be accessed

at an index greater than its size, the symbolic index for this array may often

concretize as small number, such as 1 or 0, but never as a number that has more

than the nine digits necessary to witness these particular overflows. While our

implementation is able to find error-exposing test cases in the presence of such

assertions, it is unable in their absence for such buffer-overflows.
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4.9 Related Work

Test Suite Augmentation aims at generating new test cases that stress the

changed behaviour in a program. Typically, this is done by exploiting knowl-

edge about changes and using symbolic execution techniques - which are also key

ideas in our approach. However, the main novelty of our work is the consider-

ation of the inter-dependencies among multiple changes during test generation.

Our technique effectively exercises sequences of changed statements and poten-

tial interaction locations. Existing techniques either discuss the semantic impact

of single changes only [112, 1], or do not systematically consider the interaction

and inter-dependencies among multiple code changes [2, 100].

Test Suite Augmentation (TSA) techniques can be distinguished in semantic

approaches [133, 39], that are based on the program summaries of both versions

to compute the semantic changes, and syntactic approaches, that are directed

by the syntactic changes to exercise paths that may expose semantic changes.

The syntactic techniques can be further distinguished into those seeking to re-

establish code coverage of a test suite after the program is changed [95], those

following the Reach-Infect-Propagate9 approach [112, 2, 1], and those exercising

every program path affected by a change [100, 25].

Techniques, such as eXpress [100] or DiSE [25], that exercise every program

path affected by changed statements, are finer-grained and less scalable than

our approach. The focus on affected code regions makes these techniques more

efficient than full path exploration approaches, like DART [21], since less paths

are to be explored. However, these techniques may still exercise many different

paths within the same sequence of changed statements; paths that may or may

not contain interaction locations; paths that may all expose the same error.

More systematically, our CSG directed TSA approach targets sequences and

interaction locations of changed statements instead of all affected paths. In

practice, this means that once a difference revealing test case is found for a

sequence, unexplored affected paths that can still realize this sequence do not

no have to be explored further.

TSA techniques based on Reach-Infect-Propagate (RIP) [2, 1, 110] follow

a motivation similar to our work: Instead of exploring every path affected by

changes, the RIP approaches deem it sufficient to find one path that executes

a change, infects the program state, and propagates to the output. However,

existing techniques consider the semantic effects of the changes in isolation. For

the subjects in our experiments, a technique based on this consideration could

expose only half of the change interaction errors. In the presence of multiple

9Reach a change, infect the program state, and propagate the infection to the output [52].
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changes, the approach of Santelices et al. [2] requires a change-free path from

the change to the program start - effectively a change in isolation.

Coverage-based TSA techniques seek to re-establish code coverage when the

program is changed [95, 97]. However, to expose change-interaction errors and

understand the combined semantic impact of multiple changes, it is insufficient

to merely exercise every change, as discussed earlier.

Semantic TSA techniques [133, 39] require the computation of a differential

semantic program summary for both versions to determine the semantic changes.

While this approach is sound and very precise, it may be less scalable.

Higher-order Mutation-based Testing [134, 26] suggests that a high-

quality test suite kills a large percentage of higher-order mutants. Each higher-

order mutant is an automatically generated version of the program under test

that contains several small changes to the program statements. The order of

the mutant is determined by the number of changed statements. A mutant is

considered killed by a test case t if t exposes an output difference when executed

on both versions. Conceptually, these mutants represent faulty versions of the

correct program and a good test suite differentiates the correct from many

faulty versions. Our work in this chapter suggests that higher-order mutants

can produce a class of errors – Change Interaction Errors – that is not observable

for standard first-order mutants.

Combinatorial Interaction Testing (CIT) [135, 136] is a black box input

sampling technique by (randomly) composing potentially interacting program

inputs from atomic ones. For instance, a program is tested by sampling the

space of all possible program configurations. Or it can be tested by sampling all

possible button-clicks and text-field inputs for its graphical user interface. The

hypothesis, shared with our work, is that the individual parts (here, atomic pro-

gram inputs) may potentially interact and stress program behavior that cannot

be observed by treating these parts in isolation.

Change Interaction. Santelices et al. [54] propose a formal definition of

change interaction: two changes c1 and c2 interact in an execution if removing

one of the changes alters the semantic effect of the other change on that execu-

tion. This notion of change interaction is too precise. For our practical purposes,

detecting such changes interactions cannot be done in an efficient manner. Es-

sentially, given a test case t and code changes C that are applied to program

P yielding P ′, there are 2|C| program configurations to be analyzed, each with

only a subset of C applied to P . Our definition of potential change interaction

approximates the above definition and can be computed more efficiently. A set

of changed statements C potentially interacts if there exists a statement that

syntactically depends on every c ∈ C.
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Reachability. In order to explore change sequences our approach builds

and extends previous work that deals with reaching statements in a program.

However, these tools seek to reach a single statement [1, 137], a set of state-

ments [128], or a sequence of statements [24] instead of a graph. To overcome

this problem we have modified the Otter tool [128] to take a graph of statements

as input and target multiple statements along this graph structure at once.

4.10 Chapter Summary

In this chapter, we have proposed the systematic exploration of the complex de-

pendency structure among the many (potentially interacting) syntactic changes

between two program versions. We applied this technique to realistic regression

errors to study the prevalence and nature of regression errors that come into

existance only due to the interaction of several syntactic changes – so called

Change Interaction Errors (CIEs).

We have argued for the importance and subtleness of such change-interaction

errors, which are pervasive even in well-tested and widely used software. Since

existing regression test generation techniques do not adequately stress code

where change interaction may occur, we have proposed a new regression test

generation technique that addresses these limitations. Our recipe for exposing

change-interaction errors employs a judicious mix of flows, dependencies and

semantic effects across changes. In other words, to witness a change interaction

error – multiple changes should be executed (flow information), multiple changes

should affect a potential interaction location via data- and control dependen-

cies (dependence information), and the semantic effect of a change should not

get masked. In our approach, the control flow between changes is captured

in the Change Sequence Graph, dependencies across changes are witnessed in

potential interaction locations, and we attempt to exercise these dependencies

and propagate their semantic effects via symbolic execution on the changed

program. Our experiments on GNU Coreutils demonstrate the effectiveness of

this approach in hunting down hard-to-find change-interaction errors even in

well-tested software.
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Chapter 5

On the Complexity of

Regression Errors

“Simplicity does not precede complexity, but follows it.”

— Alan Perlis in Epigrams on Programming [138], 1922 – 1990

Intuitively we know, some software errors are more complex than others. If the

error can be fixed by changing one faulty statement, it is a simple error. The

more substantial the fix must be, the more complex we consider the error.

In this work, we formally define and quantify the complexity of an error w.r.t.

the complexity of the error’s least complex, correct fix. As a concrete measure

of complexity for such fixes, we introduce Cyclomatic Change Complexity which

is inspired by existing program complexity metrics often used in practice.

Moreover, we introduce CoREBench, a collection of 70 regression errors

systematically extracted from several open-source C-projects and compare their

complexity with that of the seeded errors in the two most popular error bench-

marks, SIR and the Siemens Suite. We find that seeded errors are significantly

less complex, i.e., require significantly less substantial fixes, compared to actual

regression errors. For example, among the seeded errors more than 42% are

simple compared to 8% among the actual ones. This is a concern for the exter-

nal validity of studies based on seeded errors and we propose CoREBench for

the controlled study of regression testing, debugging, and repair techniques.
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5.1 Introduction

Software errors can be arduous. Their fixes can account for half of the code

changes even in well-tested software [139]. Before they are fixed, they can

remain in the program for many years, causing problems for the software users.

When they are fixed, these fixes can introduce even further errors.

Related processes can be automated based on our understanding of the in-

herent nature of software errors. Testing techniques seek to expose errors; de-

bugging techniques seek to determine the faulty source code for an error; and

repair techniques seek to fix the faulty source code.

Two pertinent properties of software errors are complexity and detectability.

While the complexity of an error is determined by how substantial the error’s

fix is required to be, the detectability of an error is determined by the amount

of input exposing the error. Intuitively, an error that is hard to detect may still

require only a simple fix. Offutt [140] relates both properties and conjectures:

the detectability of simple faults is similar to the detectability of complex faults

– the coupling effect hypothesis. He defines simple faults as ones that can be

fixed by changing one statement while complex faults cannot.

In this dissertation, we are the first to quantify error complexity and formally

define the term and a metric. The complexity of an error is determined by the

complexity of the correct, least complex fix of the error. The fix must be correct

because no other errors should be introduced and least complex because even

Offutt’s simple faults can be fixed in multiple ways, including a complete revision

of the program.

To measure the complexity of a fix, we formally define software change

complexity and introduce a concrete change complexity metric – Cyclomatic

Change Complexity (CyCC), which is inspired by McCabe’s cyclomatic pro-

gram complexity metric [141]. Program complexity is a measure of the inter-

actions among the various elements of the software. Similarly, we define the

change complexity as a measure of the interaction among the various changed

elements in the changed software. We give an efficient algorithm to compute

CyCC.

Equipped with our novel error complexity metric we set out to learn about

the nature of complex regression errors. The two most popular benchmarks

for experimentation with regression errors are the Siemens Suite [142] and SIR

[122]. In both cases, most errors were introduced through a process called fault

seeding. Developers were asked to change the given programs slightly such that

they contain errors of varying detectability. However, we were not certain about

a varying complexity of the seeded errors and constructed our own benchmark

to compare to actual regression errors.
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In this chapter, we introduce CoREBench as a collection of 70 regression

errors and compare the complexity of these to the complexity of the seeded

ones in the Siemens Suite and SIR. We harvested the regression errors in

CoREBench systematically from four widely deployed, well-tested open-source

software projects. Indeed, we find that the seeded regression errors are signifi-

cantly less complex, i.e., require significantly less substantial fixes, compared to

the actual regression errors in CoREBench. For example, among the seeded

errors more than 42% are simple compared to 8% among the actual ones. This

is a concern for the external validity of studies based on such seeded regression

errors.

We apply our error complexity metric to the regression errors in CoREBench

in order to experimentally investigate the nature of complex regression errors.

Three of our main findings are enumerated in the following:

• Between the complexity of the change introducing an error and of the

change fixing it seems to be no correlation. That is, even simple changes

can introduce complex errors. One could say that the cause of a regression

error is already dormant in the code and the change merely triggers it.

Or, the regression errors may be evolving when the program is and the

complexity of errors may change during evolution.

• Between the complexity and life span1 of an error seems to be no corre-

lation. That is, even complex errors may be fixed on the same day when

they are introduced or a few years later. This may be indirect evidence

that simple and complex errors are of similar detectability, i.e., coupled

[140].

• Change Interaction Errors (CIEs)2 require consistently more substantial

fixes than other types of regression errors (Non-CIEs). This suggests that

CIEs are not only of less detectability (cf. Chapter 4) but also of greater

complexity than Non-CIEs.

We define change complexity as a measure of interaction among the changed

elements and introduce the CyCC as a concrete metric. Yet, there are other

metrics, such as number of Changed Lines of Code (CLoC), paths, or hunks. We

study CLoC versus CyCC and find: While both rarely agree on the specific value

or rank of a change’s complexity, they strongly correlate in general. Basically,

both indicate high complexity for substantial change. We believe, CyCC is a

precise and practical measure of change complexity.

1The life span of an error is the time an error is observable from when it is introduced to
when it is fixed.

2A regression error is a CIE if a sequence of changed statements must be executed in order
to expose the error while “skipping” one of them does not expose the error (see Chapter 4).
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In summary, this chapter makes the following contributions.

1. Error Complexity Metric. We formally define and quantify the com-

plexity of an error w.r.t. the complexity of the error’s least complex and

correct fix. Investigations into error complexity are relevant for software

testing, debugging, and repair: What is the root cause of an error that re-

quires a substantial fix? Is a test suite adequate to expose complex errors?

How do we correctly and efficiently repair complex errors?

2. Change Complexity Metric. We formally define software change com-

plexity, introduce CyCC as a concrete complexity metric, discuss an algo-

rithm to compute the CyCC efficiently based on a graph containing the

control-flow among the changed statements, and make available a tool that

computes the CyCC of any C source code commit in under one second on

average.

3. Regression Error Benchmark. We make available CoREBench, a

collection of 70 realistically complex regression errors. For each error, we

provide the bug report, the error-introducing source code commit, the

error-fixing source code commit, and a validating test case that fails for

all versions between these commits, but passes before and after.

4. Empirical Study. We study the complexity of actual regression errors

and establish that seeded errors in existing benchmarks are significantly

less complex.

CoREBench and the implementation of CyCC are available

at http://www.comp.nus.edu.sg/∼release/corebench.

The artifact evaluation committee of ISSTA 2014 has found

CoREBench and the CyCC tool to exceed expectations.

5.2 An Error Complexity Metric

We define the complexity of an error w.r.t. the complexity of the correct, least

complex fix of the error. To measure the complexity of a fix, we formally

define software change complexity as a measure of the interaction among the

changed elements in a changed program and propose a concrete change com-

plexity metric. Cyclomatic Change Complexity (CyCC) directly measures the

number of linearly independent3 change sequences in a changed program and is

thus inspired by McCabe’s cyclomatic program complexity. Intuitively, CyCC

quantifies the amount of changed decision logic in the program.

3A linearly independent path is a complete path through the program that introduces at
least one new edge that is not included in any other linearly independent paths.
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351 : intmax t value = 0;

352 : int sign = (*valuestring == ’-’ ? -1 : 1);

353 : if (sign < 0)

354 : valuestring++;

355 : do {
356 : if (ISDIGIT(*valuestring))

357 : value = 10*value + sign * (*valuestring-’0’);

358 : } while (*++valuestring)

359---: return value * sign;

359 ++ : return value;

Figure 5.1: Fix of simple error core.6fc0ccf7

Figure 5.1 shows an example of a simple error in coreutils. The simplified

code fragment parses a valuestring into an integer value. However, every

string containing a negative number is parsed as a positive number. This error

is simple because only one statement (in line 359) needs to be changed in order

to repair the error.

447++: else if (ent->fts info == FTS NS) {
448++: if (ent->fts level == 0){
449++: reportSymlinkLoop();

450++: } else {
451++: if (symlink loop(ent->fts accpath)){
452++: reportSymlinkLoop();

453++: }
454++: }
456++: }

Figure 5.2: Fix of complex error find.24bf33c0

Figure 5.2 shows an example of a complex error in findutils. The bug report

states that “find does not report symlink loop when trying to follow symlinks”.

Hence, the developer adds the presented code fragment to describe conditions

under which symlink loops need to be reported. The error is complex because

it requires three additional conditional statements and several statements to fix

it correctly.

5.2.1 Measuring Change Complexity

Traditional program complexity measures the interaction among the elements

in a software system. So, we can define:

Definition 13 (Change Complexity)

Change complexity is a measure of the interaction among the changed ele-

ments in a changed program.
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Note that deleted statements are changed elements nevertheless and can be

represented by dummy statements in the changed program (see e.g., [2]).

As a concrete measure of change complexity, we introduce CyCC which is

computed based on a graph containing the control-flow among the changed basic

blocks – the CSG.

Definition 14 (Change Sequence Graph (CSG))

The change sequence graph of a changed program P ′ is a directed graph

containing as vertices the program entry as source, the program exit as sink,

and the changed basic blocks in P ′, with an edge between any two vertices

if control may pass from the first to the second without passing through a

third.

The source vertex is connected through an edge to every changed basic block

that may be executed first, that is, before some other changed basic block is

executed. To the sink vertex is connected every changed basic block that may

be executed last, that is, after any other changed basic block is executed. This

simplified definition of CSG accounts for all sequences of changed statements

that can be exercised but not for potential interaction locations (see Chapter 4)

and can be computed from the changed program’s Control Flow Graph.

Figure 5.3: Change sequence graphs with linear independent paths (359) (left);
(447), (447-448-449), (447-448-451), (447-448-451-452) (middle); and
(100), (200), (100-200), (200-100), (200-200) (right).
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For example, Figure 5.3 depicts three different CSGs. The paths through

a CSG from source to sink represent different sequences of changed statements

that may be executed. The CSGs on the left and in the middle are computed

for the changed code fragments in Figures 5.1 and 5.2. It is interesting to note

that the size of the CSG depends only on the size of the changed code and not

on the size of the complete program.

Definition 15 (Cyclomatic Change Complexity)

The complexity of a set of program changes C is defined with reference to

the Change Sequence Graph constructed for C as CyCC = E − N + 2P ,

where

E is the number of edges of the CSG,

N is the number of nodes of the CSG, and

P is the number of connected components in the CSG.

Cyclomatic Change Complexity (CyCC) measures the number of linearly in-

dependent sequences of changed statements from entry to exit in a changed

program. We argue that the changed statements in each sequence may “inter-

act” differently. In fact, some sequences are critical in exposing so called Change

Interaction Errors (see Chapter 4) while others are not. In Figure 5.3, based on

the number of linearly independent paths in the CSG, we compute a CyCC=1

(left), CyCC=4 (middle), and CyCC=5 (right), respectively.

5.2.2 Measuring Error Complexity

Before we define and measure the complexity of an error, we quote the IEEE

glossary to define what we mean by error.

Definition 16 (Software Error [143])

A software error is the difference between a computed, observed, or measured

value or condition and the true, specified, or theoretically correct value or

condition.

An error’s detectability is determined by the proportion of program inputs

that expose the error. Such input is said to fail w.r.t. the error. For example,

the code fragment in Figure 5.1 parses negative numbers incorrectly. E.g, input

setting valuestring to “-2” fails w.r.t. the error as it produces the output

value of 2 instead of -2. If valuestring is directly a program input, then the

error has a high detectability.

Definition 17 (Error Complexity)

The complexity of an error E is the complexity of the least complex change

required to pass all input that fails w.r.t. E while the output for all other

input remains unchanged.
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Intuitively, we define the complexity of an error based on how substantial

its fix must be – without introducing new errors. For example, the error in

Figure 5.1 can be correctly repaired with the change of only one statement

(line 359). With CyCC = 1, it is a simple error. The error in Figure 5.2 can

be repaired with a change involving three additional conditional statements.

Assuming short-circuit evaluation for these conditions (see [144]), the CSG in

Fig. 5.3 (middle) might be the least complex. The error is of complexity four.

However, we note that other measures, such as number of changed LoC,

paths, or hunks, may assign different specific values to an error’s complexity.

While different measures may disagree on its specific value or rank, they should

correlate in general (see RQ1 in Sec. 5.5). For instance, if an error requires a

substantial fix involving a high number of changed LoC distributed over the

code, the values for other measures of complexity should be high as well. We

believe that CyCC is a precise and practical measure of change complexity as

given in Def. 13 and thus of error complexity as in Def. 17.

5.3 Computing Inter-procedural

Change Sequence Graphs

We present an algorithm to synthesize the inter-procedural Change Sequence

Graph (CSG) efficiently from the intra-procedural control-flow graphs of the

changed methods and the call graph of the changed program. The intra-

procedural Control-Flow Graphs (CFGs) of the changed methods are traversed

to establish the control-flow among the changed basic blocks in the CSG. The

Call Graph (CG) of the changed program is traversed to establish whether a

basic block transitively calls a changed method.

The inter-procedural CSG is computed more efficiently than previously in

Algorithm 5 on page 76 because it does not require the entire inter-procedural

CFG for the complete program. Moreover, it disregards potential interaction

locations which require additional analysis of program dependence graphs. Us-

ing the CSG for test generation to expose CIEs (see Chapter 4), the potential

interaction locations computed in Algorithm 5 serve as targets during directed

test generation that can provoke change interaction. However, using the CSG

for computing the complexity of a source code change, potential interaction

locations are not really required as part of the CSG (cf. Definition 14).

Algorithm 7 depicts the CSG construction process. Given two versions of

a program, P and P ′, the algorithm computes the inter-procedural CSG. Af-

ter determining which methods and basic blocks have changed, the algorithm

follows along the control-flow and method calls from every changed basic block
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onwards. If another changed basic block is found, an edge is added to the CSG

between the original changed basic block and the found one. Then, we estab-

lish whether the original changed basic block can be executed as first or last

changed basic block and a corresponding edge is added to program entry and

exit, respectively.

Algorithm 7 Inter-procedural Change Sequence Graph

Input: Programs P and P ′

1: determine changed methods and basic blocks using diff

2: let CG← constructCallGraph(P ′)
3: let CSG← {entry, exit}
4: for each changed method m ∈ CG do
5: let CFG← constructCFG(m)
6: add all changed basic blocks from CFG to CSG
7: for each changed basic block c ∈ CFG do
8: traverseChange(c, CFG, c)
9: end for

10: end for
11: connectEntryExit()
12:

13: function traverseChange(curr, CFG, c)
14: if curr marked as traversed then return
15: else mark curr as traversed
16: for each bb that directly follows curr in CFG do
17: if bb is a changed basic block then
18: add an edge from c to bb
19: else
20: traverseChange(bb, CFG, c)
21: end if
22: end for
23: for each changed m′ that curr may call in CG do
24: let CFG′ ← constructCFG(m′)
25: traverseChange(CFG′.first, CFG′, c)
26: end for
27: end function
Output: Inter-procedural CSG

In more detail, Algorithm 7 works as follows. First, a syntactic differencing-

tool, such as the Unix diff-tool, determines the syntactic differences between

both program versions (line 1). These differences are used subsequently to

determine in the changed version those basic blocks and methods that have

changed. Then, the call graph is constructed for the changed program and the

CSG initialized with entry and exit vertices (lines 2-3). After this initialization,

the algorithm computes the intra-procedural CFG for each changed method m,

adds the changed basic blocks from the CFG into the CSG, and starts traversing

the control-flow recursively from each changed basic block c onwards (lines 4-
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10). Since the method traverseChange is a recursive traversal algorithm, we

mark the visited vertices as such (lines 14-15). If any basic block bb transitively

following c is changed, then add an edge from c to bb (lines 16-21). If c or

any transitively following basic block, transitively calls a changed method m′,

continue traversal from the first basic block in the CFG′ of m′ (lines 23-26).

Finally, the method connectEntryExit computes the edges from the entry-

vertex to any changed basic block that can be executed first, that is before

some other basic block is executed, and the edges to the exit-vertex from any

changed basic block that can be executed last, that is after any other changed

basic block is executed (cf. Def. 14). A complete implementation is discussed

in Sec. 5.4.3.

Subject Size Maturity #Commits #Tests
in kLoC 1stcommit total (last year)

Coreutils 83.1 Oct. 1992 27,807 (290) 4772
Findutils 18.0 Feb. 1996 2,031 (43) 1054

Grep 9.4 Nov. 1989 1,307 (31) 1582
Make 35.3 Apr. 1988 2,288 (134) 528

Subject #Bug Reports Extract. Period #RErrors
marked fixed recent 1k commits extracted

Coreutils 832 08.05.11 – 06.10.13 22
Findutils 312 01.08.05 – 26.10.13 15

Grep 66 25.09.01 – 26.10.13 15
Make 305 01.03.96 – 24.11.13 18

Figure 5.4: Subjects of CoREBench

5.4 Empirical Study

5.4.1 Objects of Empirical Analysis

CoREBench: Complex Regression Errors

CoREBench is a collection of 70 regression errors that we systematically ex-

tracted from the code repositories and bug reports of four open-source software

projects: Make, Grep, Findutils, and Coreutils (see Fig. 5.4).

We chose these projects because they are well-specified, well-tested, well-

maintained, and widely-used open source programs with standardized program

interfaces. The version history and all bug reports can be publicly accessed on

the GNU homepage.4 The program interfaces and parameters were specified in

POSIX as IEEE standard in 1988 [145].

4http://savannah.gnu.org and http://debbugs.gnu.org
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We built the corpus by (1) identifying a regression-fixing commit in the 1,000

most recent revisions and a test that passes after but fails before the fix, and (2)

the regression-introducing commit, such that the same test passes before and

fails after the commit. Regression errors which could not be reproduced using a

test case are not reported. This was the case for some system- or concurrency-

related bugs.

To identify a regression-fixing commit (
Fix
à ), we parsed the commit messages

of the 1,000 most recent commits and a file which highlights recent new features

and fixes for keywords, such as “regression”, “introduced”, and “broken”. Ex-

cept for Make, the file and commit messages are sufficiently detailed and may

even reference the error-introducing commit. For Make, we parsed the bug report

referenced in the commit messages. Also for Make, we removed seven commits

in which the regression fix was tangled5 with other fixes. Computing the error

complexity based on tangled fixes will give wrong results. For all regression

errors we ensure that the commit is solely devoted to fixing exactly one error.

The error-witnessing test case was always provided with the bug-fixing commit

or the bug report.

To identify the error-introducing commit (
Reg
à ), we used the error-witnessing

test case and a binary search on the complete version history of the sub-

ject. The binary search is automated using git bisect, which conceptually

searches all revisions before the error-fixing commit to determine the exact

(error-introducing) commit before which the test case passes (P3) and after

which the test case fails (P7). For Coreutils, we add five regression errors that

we already identified in Reference [139]. Finally, we determined two commits

describing the lifetime and a test case exposing the effects of each regression

error:

. . .àP3

Reg
à P7à . . .àP7

Fix
à P3à . . .

Using this approach, we have identified and validated 70 regression errors

(incl. six segmentation faults) that were introduced by 57 different commits.

From the time an error was introduced to the time the error was fixed, it took on

average 1.7 years. Eleven errors were fixed incorrectly. In these cases the error

was indeed removed in the fixed version. Yet, up to three new errors were intro-

duced that required further fixes. About one third of the errors were introduced

by changes not to the program’s behavior but to non-functional properties such

as performance, memory consumption, or APIs. In some cases one error would

supercede another error such that the superceded was not observable for the

duration that the superceding remained unfixed.6

5See Reference [146].
6For instance, find.66c536bb supercedes find.dbcb10e9.
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Base Line: SIR and Siemens Suite

The Subject Infrastructure Repository (SIR) [122] and the Siemens Suite [142]

are arguably the most popular error benchmarks. For every correct program

version P3, there are several faulty versions P7. One may evaluate regression

testing and debugging techniques by considering:

P3

Reg
à P7

Fix
à P3.

The popularity may be due to the provision of test oracles, standardized

program interfaces, a large number of test cases, and a uniform format for the

materials provided. Program input and output are clearly defined. Each subject

consists of a “golden version” as test oracle and several erroneous versions with

one fault each. Measuring popularity by the number of citations: In the five

years preceding this dissertation, the publications associated with the SIR [122]

and Siemens Suite [142] have been cited almost six hundred times.

Figure 5.5 shows the characteristics of the subjects in both benchmarks. The

number of tests was derived from the file universe while the number of regres-

sion errors was derived from Fault Seeds.h that accompanies each subject.

Subject Size #Tests #Regression
in kLoC Errors

S
ie

m
e
n

s
S

u
it

e tcas 0.2 1,608 41
totinfo 0.6 1,052 23

printtokens 0.7 4,130 7
printtokens2 0.6 4,115 10

replace 0.6 5,542 32
schedule 0.4 2,650 9

schedule2 0.4 2,710 10

S
IR

(C
S

u
b

je
ct

s)

space 6.2 13,585 38
bash 59.8 1,200 32
flex 10.5 628 81

grep 10.1 625 57
gzip 5.7 214 59

make 35.5 795 35
sed 14.4 370 32
vim 122.2 974 22

Figure 5.5: Subjects of Siemens Suite and SIR

Unfortunately, in both benchmarks almost all errors were created by man-

ual fault seeding7. We claim that fault seeding introduces a bias towards less

complex errors. Our novel measure of error complexity, for the first time, allows

us to assess the substance and extent of this bias.

7Except for space, all errors are manually generated.
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5.4.2 Variables and Measures

Our experiment manipulated two independent variables (IV):

• IV1 Genuineness: There are two categorical factors of genuineness.

Seeded regression errors result from faults that were manually seeded.

Actual regression errors appear in typical evolving software projects.

• IV2 Regression Cause: We consider two categorical factors of regres-

sion cause. Change Interaction Errors (CIEs) can be observed only if a

certain sequence of changes is exercised (cf. Chapter 4). All other errors

(Non-CIEs) are regression errors that are not CIEs.

In our experiment, we measured 3 dependent variables (DV):

• DV1 Error Complexity: We consider two measures of error complexity

which is defined w.r.t. the error-fixing commit. The Cyclomatic Change

Complexity (CyCC) is described in Section 5.2.2. The Changed Lines of

Code (CLoC) corresponds to the number of executable source code lines

that were changed. Both are measured for the version just before the error

is fixed.

• DV2 Error Life Span: We measure the error life span as the number of

days between the commit introducing and the commit fixing the error.

• DV3 Error-Introducing-Commit Complexity: We measure the error-

introducing-commit complexity as CyCC of the commit introducing the

error.

5.4.3 Experimental Design

Measuring Error Complexity for CoREBench

To investigate the complexity of actual regression errors, we analyse their ac-

tual fixes. But why should the actual fix be that “least complex, correct” fix

describing the error complexity (see Def. 17)? In fact, for each error there can

be innumerable fixes and not every fix is correct such that not only the observed

error is fixed but also no new errors are introduced and least complex such that

no other correct fix is of less complexity.

In practice, we neither have all possible fixes nor do we have all possible test

cases that observe that the error (and only the error) is really fixed. Instead,

for the analysis of CoREBench we put forward the following hypothesis:

Competent Repair Hypothesis.

Software developers write fixes with a complexity as low as possible and

that are close to being correct.
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First, the Competent Repair Hypothesis (CRH) states that developers write

fixes that are as simple as possible. For several errors in CoREBench we

found two fixes – the second fixed the error “more efficiently” or repaired “the

root cause” of the error even though the first fix was already a correct one.8

Complex fixes are often accompanied by very elaborate explanations why such

complex changes were necessary to fix the error.

Then, the CRH states that developers write fixes that are close to being

correct. Indeed, the fixes for eleven of seventy errors in CoREBench were

incorrect such that the repair of one introduced a new error. However, in general

we believe that the programmer is likely to fix the error correctly. If this was

not the case, we would register an exponential increase of bug reports. This

hypothesis is an instance of the Competent Programmer Hypothesis [147] which

states that developers “create programs that are close to being correct”.

Infrastructure and Implementation

We implemented Algorithm 7 based on the C Intermediate Language (CIL) pro-

gram analysis framework [148] and the Unix diff tool to compute the Cyclo-

matic Change Complexity (CyCC) and the executable Changed Lines of Code

(CLoC) of a code commit as the two measures of DV1. Both, tool implementa-

tion and CoREBench can be downloaded at

http://www.comp.nus.edu.sg/∼release/corebench.

OCaml 
+ CIL

CyCC 
Tool CyCC

CLoC

cilly

diff

v1.c

v2.c

syntactic 

v2.i

changes
in v2.c

Figure 5.6: CyCC Tool Implementation

As depicted in Figure 5.6, the implementation works as follows. First, the

changed version (v2.c) is compiled into an intermediate file (v2.i) using cilly.

Then, our script uses the diff tool to determine the lines of code that have

syntactically changed in v2.c. Note that CLoC is the number of executable

changed lines of code while the syntactic changes can also comprise comments.

If the program version history is maintained remotely and the changed version

is available on the local machine, our script uses the previous verison (v1.c)

from the repository. Otherwise, its location must be provided to compute the

difference.

8See commit message of find.b445af98
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Next, CIL can compute the call graph and intra-procedural control-flow

graphs (CFG) for the changed program. Using the output of the diff-tool,

we find the changed methods in the call graph and the changed basic blocks

in the CFGs of the changed methods. Note that diff detects any line of a

multi-line statement that is changed while CIL only maintains the first of the

potentially multiple lines of a statement. We address this issue for the most

common multi-line statement (if-conditions) but not for others. Furthermore,

top-level variable and method declarations (e.g., int x;) are not available in

the CIL CFGs and macros are readily expanded. Thus, modifications of these

program elements, as well as deleted basic blocks, are not reflected in the CIL-

CFGs and the inter-procedural CSG, respectively.

Once the change sequence graph is synthesized for a source code commit,

our implementation computes the CLoC and CyCC according to Definition 15.

Note that during our experiments, we ignore errors and code commits that yield

“empty” CSGs. For CoREBench, we report the results for all 70 regression

errors. However, for SIR and the Siemens Suite, several changes were only to

variable or method declarations (e.g., change of type) or C macros. While these

were ignored, we report the results for the remaining 259 regression errors in

SIR and 108 regression errors in Siemens.

The experiments were run on a Linux machine with Intel Core2 Quad CPU

at 2.83GHz and 4GB of main memory. On average, it took less than 1 second

to compute the complexity of an error.

5.4.4 Threats to Validity

Construct validity refers to the degree to which a test measures what it

claims, or purports, to be measuring. Three threats to construct validity are the

empirical reliability of the competent repair hypothesis, the reliability of CyCC

as good measure of error complexity, and the correctness of the implementation

of the measure into the CyCC tool.

(i) The Competent Repair Hypothesis (CRH) links that theoretical least com-

plex, correct fix specified in Definition 17 to the actual fix of the errors

in CoREBench (see Sec. 5.4.3). Assuming the CRH, we measure the

complexity of actual regression errors based on the actual fixes of these

errors. If the CRH does generally not hold, the actual error complexity

may be different from the measured error complexity.

(ii) The CyCC metric may not be a good measure of the complexity of a

fix and thus of error complexity. However, we note that Definition 15

of CyCC is inspired by an existing measure of software complexity [141]
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which itself inspired Definition 13 of change complexity. We study the

relationship to another measure of change complexity (see Sec. 5.5).

(iii) The CyCC tool may be incorrectly implemented. For instance, some

changed elements, like deleted basic blocks, are not represented in the

computed CSG from which the CyCC is computed. However, all results

are computed using the same tool, subjecting each (compared) measure-

ment to the same potential bias. Furthermore, we make available the

source code of the implementation for inspection.

External validity refers to the extent to which the results of a study can

be generalized to other objects which are not included in the study. One threat

to the external validity is the representativeness of the the chosen objects of

empirical analysis. Indeed, our objects are well-maintained, open-source C soft-

ware projects containing regression errors typical for such projects. However,

for instance regression errors in projects written in other languages, like Java,

or in commercially developed software may be of different kind and complexity.

Hence, the results and conclusion are to be interpreted in this context.

Internal validity refers to the degree to which the independent variable

causes the changes seen in the dependent variable being examined within the

study. While it is clear that (IV1) the actual regression errors are not seeded and

vice versa, it may be that (IV2) regression errors classified as change interaction

errors are not actually change interaction errors. However, for each regression

error, we attempted to determine the specific sequence of changed statements

that need to be exercised to expose the error. In the results we note which

errors could thus not be classified.

5.5 Data and Analysis

We investigate the nature of complex regression errors. In our main research

hypothesis, we claim that the process of creating errors using manual fault

seeding introduces a bias towards less complex errors. Formally, we submit a

null hypothesis which needs to be rejected in order to empirically prove this

claim. We also find out whether actual, more complex regression errors have a

longer life span and whether complex errors are introduced by complex commits.

Furthermore, we investigate another measure of change complexity – the

number of Changed Lines of Code (CLoC). While we cannot directly com-

pare both measures, we find out whether our Cyclomatic Change Complexity

(CyCC) and CLoC agree on the ranking of two-hundred commits in terms of

their complexity. If so, CLoC and CyCC may be used interchangeably to assess

the complexity of a commit.
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Figure 5.7: Cumulative distribution of error complexity for all subjects in each
benchmark
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Lastly, we use the actual regression errors to study the prevalence, complex-

ity, and life span of an interesting class of regression errors – Change Interaction

Errors (CIEs; cf.[139]). We classify a regression error E as CIE if a sequence of

at least two changed statements must be executed in order to expose E while

“skipping” one of the changed statements does not expose E. Conservatively,

we also require that each change in the sequence can potentially be skipped.

5.5.1 Research Questions and Null Hypothesis

In statistical inference, the null hypothesis, H0, states there is no relationship

between two measured phenomena. The null hypothesis can be rejected based

on observed data of a scientific experiment with the conclusion that there is

very likely a relationship. The null hypothesis can never be accepted as more

data may still reveal a relationship.

To test H0, we measure either a difference or the strength of the relationship.

In the first case, we subtract the mean of one from the mean of the other dataset.

In the latter case, we measure Spearman’s rank correlation coefficient [149]

which is more robust for non-normal distributions than the common Pearson’s

product moment correlation. If we fail to reject H0 with a very low correlation

coefficient, we can still conclude that if a relationship exists, it is very weak.

• Ha
0 : There is no difference between the complexity of seeded and real

regression errors.

• Hb
0 : There is no relationship between the complexity and life span of a

regression error.

• Hc
0 : There is no relationship between the complexity of the error and the

commit introducing the error.

Furthermore, we want to answer these research questions:

• RQ1 Can the number of Changed Lines of Code (CLoC) and the Cyclo-

matic Change Complexity (CyCC) be used interchangeably?

• RQ2 What is the complexity, prevalence, and life span of Change Inter-

action Errors?

Ha
0 : Seeded vs. Actual Errors (IV1, DV1)

We compare the error complexity (as CyCC) of the seeded regression errors

in the Siemens Suite and SIR with that of the actual regression errors in

CoREBench to study the effects of IV1 on DV1 and test Ha
0 . For SIR and the
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Siemens Suite, we measure the complexity of the errors by considering the non-

faulty versions as the fix for the error in the faulty versions. For CoREBench,

we measure the complexity of the errors by analyzing the complexity of the

regression-fixing commits and assume the Competent Repair Hypothesis. Also,

for CoREBench we choose the regression errors such that every regression-

fixing commit is designated to fixing exactly one error only.
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Figure 5.8: Cumulative distribution of error complexity for seeded errors (SIR
and Siemens) vs. actual errors (CoREBench)

We reject Ha
0 and conclude: seeded regression errors are significantly less

complex than actual regression errors. The mean error complexity differs by

21.9 for SIR and 21.7 for the Siemens Suite. Fitting the data to a power-

law distribution, we compute the cumulative distribution functions shown in

Figure 5.8. The complexity distributions for each subject and benchmark are

shown in Figure 5.7.

Among the seeded errors, simple errors (complexity one) occur five times

more often than among the actual errors. Specifically, 42% of the seeded errors

are simple while only 8% of the actual errors are. Simple errors are characterized

by a localized fault and can often be fixed by changing just one statement. In

contrast to actual errors, the complexity of the seeded errors barely exceeds 10.

Less than 1% of the seeded errors have a complexity of more than 10 compared

to 30% of the actual errors. This means, that actual errors are generally more

complex than the errors created through manual fault injection. The most

complex error in CoREBench is twenty times more complex than the most

complex error in the SIR and the Siemens Suite.
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Hb
0 : Life Span vs. Complexity (DV1, DV2)

We compare the life span and complexity of actual regression errors to study the

correlation between DV1 and DV2 and test Hb
0 . Every commit has a timestamp,

so we can compute the life span of an error by subtracting the timestamp of

the error-introducing from that of the corresponding error-fixing commit. We

measure the complexity using CyCC and depict the results in Figure 5.9.
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Figure 5.9: Correlation of error life span vs. complexity (left), cumulative
distribution of life span (right)

We cannot reject Hb
0 and conclude that if a relationship between the

life span and complexity of an error exists, then it is very weak. We compute

a Spearman’s rank correlation coefficient of ρ = 0.0675 with a two-sided p-

value=0.5790. In other words, even simple errors that are “easy” to fix can

take a very long time to fix. Vice versa, even complex errors that are difficult

to fix can be fixed on the same day as the error is introduced.

Independent of error complexity, error life span follows a power-law distri-

bution. Once introduced, 12% of the regression errors are fixed within a week

while half of them stay undetected and uncorrected for more than 9 months up

to 8.5 years. While there is a large number of errors with a small life span, there

is a small number of errors with very large life span.

Hc
0 : Introducing vs. Fixing Errors (DV1, DV3)

For each actual regression error, we compare the CyCC of the commit intro-

ducing and the commit fixing the error to study the correlation between DV1

and DV3 and test Hc
0 . The results are presented in Figure 5.10. On the left,

we show for each regression error the complexity of the commit introducing the

error versus the complexity of the commit fixing the error. On the right, we

show the cumulative distribution of error-introducing and error-fixing commits

independently.
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plexity of the two commits introducing and fixing an error.

We cannot reject Hc
0 and conclude that if there exists a relationship be-

tween the complexity of an error and the complexity of the commit which intro-

duces the error, then it is very weak. We compute a Spearman’s rank correlation

coefficient of ρ = 0.1656 with a two-sided p-value=0.1705. In other words, even

complex errors can be introduced by simple changes and vice versa. One inter-

pretation is that sometimes the root cause of some complex regression errors

is already dormant in the program and only “unmasked” in the changed code.

Then, we should consider these changes as the trigger instead of the root cause of

an observed error. Another interpretation is that the error itself evolves during

its life span due to many other changes to the program. Then, the complexity

of errors may change during evolution.

On average, error-introducing commits are more complex when compared to

error-fixing commits (see Fig. 5.10 – right).

RQ.1 Changed Lines of Code as Proxy Measure

For 200 random code commits9, we measure the CyCC and Changed Lines of

Code (CLoC), to study the concordance and correlation of two measures of DV1

(Error Complexity). Concordance describes the degree to which both measures

agree on the complexity of a set of changes and is measured using Cohen’s

kappa [150]. Full agreement (κ = 1) means that CyCC rates a set of changes

C1 more complex than another set of changes C2 if and only if CLoC rates C1

more complex than C2. In contrast, correlation describes the strength of the

relationship and is measured using Spearman’s ρ. Strong correlation (ρ = 1)

means that if CyCC is large than CLoC is also likely to be large and vice versa.

9We chose the 50 most recent code commits in each of the projects Coreutils, Findutils,
Grep, and Make.
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The results are presented in Figure 5.11. The Bland-Altman plot [151] on

the left allows us to compare the differences between the measurements with

both measures of complexity for each commit. The mean (x̄) of these differences

is called bias and the reference interval (x̄± 1.96×standard deviation) is called

limits of agreement. If the measures tend to agree, the differences will be plotted

near zero. As CLoC and CyCC are not directly comparable and the power-

law distribution generates strong outliers, we compare the ranks instead of the

measurement values. The rank of measurement lies between one and the number

of measurements and is greater than the rank of another measurement if and

only if the measurement value is greater than that of the other measurement.

The plot on the right depicts the (value) correlation of both measures on a

logarithmic scale.
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Figure 5.11: Bland-Altman plot of measurement ranks (left) and correlation
(right) of CLoC vs. CyCC.

Moderate Agreement. The Changed Lines of Code and Cyclomatic

Change Complexity cannot be used interchangeably to assess the complexity

of a set of changes. The limits of agreement, shown in the Bland-Altman plot,

are far apart (±59.4 out of 200 ranks). We also compute a Cohen’s kappa of

κ = 0.014 for the measurement ranks (κ = 0.151 for the values) which indicates

only moderate agreement between both measures on the complexity of a code

commit.

Two measures that are designed to measure the same property (here, change

complexity) may not agree but should have a good correlation. Indeed, we

compute Spearman’s correlation ρ = 0.86 with a two-sided p-value < 0.0001.

So, as the CLoC increases, the CyCC increases and vice versa.
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RQ.2 Complexity, Life Span, and Prevalence of Change In-

teraction Errors (IV2, DV1, DV2)

We compare the error complexity (as CyCC) and life span of Change Interaction

Errors (CIEs) with the error complexity and life span of actual regression errors

that are not Change Interaction errors (Non-CIE) to study the effects of IV2 on

DV1 and DV2. We also measure the prevalence of CIEs among actual regression

errors.

The results are presented in Figure 5.12. In the table, we show the classifi-

cation of actual regression errors into CIE, Non-CIE, and Unclassified. For the

latter, the regression cause could not be identified. On the left, we show the cu-

mulative distribution of the complexity of CIEs versus Non-CIEs cropped at an

error complexity of 50. On the right side, we show the cumulative distribution

of the life span of CIE versus Non-CIEs on a logarithmic scale.

CIE Non-CIE Unclassified
Coreutils 7 13 2
Findutils 5 7 3

Grep 5 7 3
Make 5 10 3

Total 22 37 11

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

 0  10  20  30  40  50

C
um

ul
at

iv
e 

P
er

ce
nt

ag
e

Error Complexity

Non-CIE
CIE 10%

20%
30%
40%
50%
60%
70%
80%
90%

100%

 1  10  100  1000  10000

C
um

ul
at

iv
e 

P
er

ce
nt

ag
e

Error Life Span in Days

Non-CIE
CIE

Figure 5.12: Prevalence (top), complexity (left), and life span (right) of Change
Interaction Errors

Error Complexity. CIEs are consistently more complex than Non-CIEs.

The mean complexity of CIEs (20.1) differs from that of Non-CIEs (9.9) by 10.2.

On average 10% more CIEs exceed any given complexity than Non-CIEs. For

example, while about 32% of the CIEs exceed a complexity of 10, only 22% of

the Non-CIEs exceed the same complexity. This means CIEs are “more difficult

to fix” than other types of regression errors.
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Error Life Span. CIEs and Non-CIEs have a similar life span. Indeed, the

mean life span of CIEs (623 days) differs from that of Non-CIEs (463 days) by

160 days. However, on average only 1% more CIEs exceed any given life span

than Non-CIEs. From the chart (Fig. 5.12–right) it seems evident that there is

no significant difference between the life span of CIEs and that of Non-CIEs.

This means CIEs are manually “as difficult to find” as other types of regression

errors.

Prevalence. Change interaction errors are prevalent.

In fact, 22 of 59 classified actual regression errors can be classified as CIEs. This

means that the existence of change interaction errors as a particular type of re-

gression errors must be considered during the testing and debugging of evolving

open source C programs. The prevalence and peculiarity of change interaction

errors suggests that CIEs should not be disregarded during the empirical eval-

uation of techniques and methodologies in the scientific research of regression

testing, debugging, and program repair.

In summary, compared to any other type of regression errors, CIEs are more

difficult to expose automatically [139] while it takes the same time to encounter

them manually (cf. error life span). Once discovered, CIEs are “more difficult

to fix” (cf. error complexity). Since CIEs are prevalent in open-source C pro-

grams, they form an important class of regression errors that can be studied in

CoREBench.

5.6 Related Work

We first discuss investigations into the relationship of error complexity and

detectability, continue with work related to quantifying error complexity, and

conclude with an overview of related work on the construction and public pro-

visioning of a benchmark suite with actual regression errors.

Offutt [140] asserts a relationship between the detectability and complexity

of software errors. He defines a simple fault as one “that can be fixed by making

a single change to a source statement” while a complex fault is one that can

thus not be fixed. In his coupling effect hypothesis he conjectures that a “test

dataset that detects all simple faults in a program will detect a high percentage

of the complex faults” which holds if and only if the detectability10 of simple

errors is somewhat similar to the detectability of complex errors. In the present

work, we have extended Offutt’s definition of error complexity to be ordinal

rather than nominal.

10The detectability of an error is determined by the proportion of input exposing the error
(see Sec. 5.2.2).
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Andrews et al. [152, 153] confirm that the detectability of simple

errors resulting from auto-generated faults (i.e., mutants) is similar to the de-

tectability of actual (complex) errors and conclude that the mutation-adequacy

of a test suite is a good indicator of its fault-detection capability. Namin et al.

[154] caution that this insight is highly sensitive to external threats mentioning

several influential factors that must be accounted for. In the present chapter we

have investigated not the detectability but the complexity of regression errors

and found that the complexity of regression errors resulting from seeded faults

is different from that of actual regression errors. This raises concerns for the

validity of studies based on seeded errors.

While it is intuitively clear that some errors are simple and others certainly

more complex, we are not aware of any previous attempt to quantify error com-

plexity. However, there has been a great effort to understand how to quantify

software complexity [155]. Some established measures of software complex-

ity are McCabe’s cyclomatic complexity [141], Henry and Kafura’s information

flow complexity [156], and Chidamber and Kemerer’s object-oriented complex-

ity [157]. To quantify error complexity, we introduce and compare two measures

– the cyclomatic change complexity (CyCC) and the number of changed lines

of code (CLoC).

A popular technique to extract actual regression errors from software repos-

itories is the SZZ-algorithm [158, 159]. First, SZZ identifies the error-fixing

commit by parsing the commit messages for relevant keywords. Then, SZZ

identifies the error-introducing commit by blaming the changed lines in the

error-fixing commit. Blaming or annotating is a function of the repository to

determine the commits that modified or added any given line of code. Funda-

mentally, the SZZ-algorithm assumes that the lines changed in the fix contain

the fault location and determines which commit changed these lines previously

to introduce the error. However, we find that the changed lines in the error-

fixing and error-introducing commits in CoREBench do not even overlap for

one in every three regression errors.

Three benchmarks that contain actual program errors are iBugs [160], Bug-

Bench [161], and Marmoset [162]. iBugs consists of a large number of real

bug fixes in the version history of two Java projects, AspectJ and Rhino. For

some bug fixes, the benchmark also maintains those test cases that were sub-

mitted with the fix. BugBench consists of mostly memory-related errors while

Marmoset contains errors extracted from student projects and may not con-

tain a representative sample of actual program errors. In contrast to these,

our CoREBench allows us to study regression testing and regression debug-

ging techniques as well as the evolution of software errors over several program

versions for up to eight years from error-introduction to fix.
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5.7 Chapter Summary

The research on and development of automated techniques to expose, locate

root-causes of, and repair regression errors requires an understanding of the

inherent nature of such errors. In order to develop automated regression testing,

debugging, and repair techniques, we need to be aware of the underlying, general

properties of regression errors.

In this chapter, we advertise the study of regression errors with a varying

degree of complexity and propose the subjects in CoREBench, as a collection

of actual regression errors, for such controlled studies. We have analyzed the two

most popular benchmarks, the Siemens Suite and SIR, which contain regression

errors with a varying degree of detectability and found that these errors are often

simple and generally significantly less complex than actual regression errors. In

other words, their fixes were required to be less substantial.

Our novel measure of error complexity enables research and development of

regression testing, debugging, and repair techniques that account for a varying

degree of complexity. We may ask more refined research questions, such as:

• What is the root-cause of a complex error? If an error requires

a substantial fix, can we assume that there is just one faulty statement

causing the error? Are faults of complex errors localizable [163]? The an-

swers may have implications for the performance of (statistical) debugging

techniques.

• Test suite adequacy to expose complex errors? Some widely used

metrics of test suite adequacy, such as statement or branch coverage, are

based on the implicit assumption that errors are often simple, i.e., that the

fault is localizable within some branch or statement which is covered. Now

we may be able to investigate the effectiveness of coverage-adequate test

suites w.r.t. a varying degree of error complexity and may develop more

sophisticated adequacy-criteria that account for complex errors. More-

over, for the study of the relationship between simple and complex errors

(e.g., see coupling effect [140]), we can take error complexity as an ordinal

rather than a dichotomous measure.

• How do we repair complex errors? By definition, the fix of complex

errors is more substantial than for simple errors. The research commu-

nity has made significant progress understanding the automated repair of

(simple) localizable errors [164, 165]. Now we may be able to evaluate

the efficiency of such repair techniques w.r.t. a varying complexity of the

repaired errors.
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The artifact evaluation committee of ISSTA 2014 has found CoREBench and

the CyCC tool to exceed expectations. We hope that our novel error complexity

metric and the many actual regression errors in CoREBench spur a multitude

of studies of regression testing, debugging, and repair techniques and of those

assumptions underlying these techniques so as to better understand the nature

of complex regression errors.
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Chapter 6

Conclusion

6.1 Summary and Contributions

We answer the scientific questions that are most relevant with respect to our the-

sis: “A complex source code change can only be checked effectively by stressing

the interaction among its constituent changes”, as given in the following.

1. How can we determine the semantic impact of a complex change?

We have presented a concrete strategy to partition the input space into

disjoint, homogeneous subdomains, such that either every input in the

same partition produces different output, or every input in the same par-

tition produces the same output when executed on both program versions.

We note that only input producing different output can expose software

regression. Encoding these differential partitions as symbolic formula over

the program inputs, we have presented an algorithm that systematically

explores these partitions by negating the constituent branch conditions.

We have shown the soundness of deriving differential partitions and the

exhaustiveness of the algorithm to explore all such differential partitions.

2. Just how complex is a complex change? In order to study complex

source code changes, we wanted to quantify the complexity of a source

code change formally and uniformly. We have defined the Cyclomatic

Change Complexity (CyCC) that directly measures the number of “dis-

tinct” sequences of changed statements from program entry to exit. In

general, complexity is a property of a system with many parts where those

parts interact with each other in multiple ways. In the context of soft-

ware evolution, a complex source code change consists of many constituent

changes that may interact with each other.
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3. Can interaction in a complex change result in regression errors?

Yes, if many constituent changes can interact with each other, there must

be a class of regression errors that is only observable when a sequence

of changed statements is executed but not if any of the changes in this

sequence is skipped. We have defined this class of errors as Change Inter-

action Errors (CIEs) and found that about every one in three regression

errors in our benchmark, CoREBench, consisting of seventy genuine re-

gression errors, are due to change interaction.

4. What is the nature of change interaction errors? To learn about

the nature of CIEs, we have generated test cases exercising all the differ-

ent change sequences for version pairs in several open source C programs

(GNU Coreutils) and found that CIEs are “subtle” as only one in five

generated test inputs exercises a sequence critical to exposing a CIE. Yet,

such input was also an order of magnitude more likely to expose an error.

In contrast, tests generated to stress one change at a time exposed only

half of the CIEs.

5. Just how complex is a complex error? In order to study the com-

plexity of regression errors in general and of CIEs in particular, we have

defined an error complexity metric. We wanted to find out what distin-

guishes a “simple error” from a more “complex error” and assign a value

to this complexity. So, we have defined the complexity of an error w.r.t.

the changes that are required to repair the error (and only the error). The

complexity of these error-repairing changes is measured using the CyCC.

Intuitively, simple errors are characterized by a localized fault that may

be repaired by changing one statement while more complex errors can

be repaired only by more substantial changes at different points in the

program.

For the seventy regression errors in CoREBench, we have found that

CIEs are generally more complex than other regression errors that cannot

be classified as CIEs. In other words, the repair of a CIE is “more difficult”

because it involves more substantial changes.

6. How can we expose change interaction errors? We have discussed

and implemented a change-sequence-guided test generation technique that

systematically explores the complex dependency structure among the com-

posite changes to generate test cases that exercise many different sequences

of changed statements. The tool also effectively exposed five previously

unknown errors in the GNU Coreutils and found interest from the devel-

opers who have maintained the Coreutils for more than a decade.
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The following are the main technical contributions of this dissertation.

• Efficient Regression Verification. We have presented a technique that

can effectively show the absence of regression for all input (i.e., regres-

sion verification) and improves the efficiency of regression verification by

allowing gradual and partial verification using dependency analysis and

symbolic execution. To allow gradual regression verification, differential

partitions are explored gradually and systematically until the exploration

is user-interrupted or the complete input space has been explored. Input

that does not reveal a difference cannot expose software regression. To al-

low partial regression verification, the partition-based verification can be

interrupted at anytime with the guarantee of the absence of regression for

the explored input space. Upon allowing the continued exploration even

of difference-revealing partitions, the developer may look at the output

differences and verify the correctness of the observed semantic changes.

• Effective Regression Test Generation. We have discussed a technique

that can efficiently show the absence of regression for some input (i.e.,

regression test generation) and improves the effectiveness of regression

test generation by additionally considering the interaction among several

syntactic changes. Using directed symbolic execution, test input is gen-

erated that exercises the complex dependency structure among the com-

posite changes. This change dependency is modelled by the Change Se-

quence Graph (CSG) which captures the control-flow among the composite

changes and potential interaction locations of these changes. The tool is

available at: http://www.comp.nus.edu.sg/∼mboehme/otter graph.zip.

• Change Complexity Measure and Error Complexity Metric. We

have defined a measure of change complexity that can be compared to

other measures of program complexity and a metric of error complexity

w.r.t. the changes necessary to repair the error (and only the error).

We have implemented the CyCC tool which measures the complexity of

a GIT commit in under a second, on average, and made it available at:

http://www.comp.nus.edu.sg/∼mboehme/corebench/cycc.tar.gz

• Regression Error Benchmark. As there are no established benchmarks

containing genuine regression errors, we have constructed a benchmark of

70 genuine regression errors, called CoREBench, using a systematic ex-

traction from over four decades of project history and bug reports. For

each error, we determined the commit that introduced the error, the com-

mit that fixed it, and a test case that fails throughout the error’s lifetime,

but passes before and after. Comparing CoREBench to the the two
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established benchmarks containing artificial regression errors, SIR and

Siemens Suite, we found that these are biased containtaining less complex

errors and propose CoREBench for the controlled study of regression

testing, debugging, and repair techniques. CoREBench is available at

http://www.comp.nus.edu.sg/∼mboehme/corebench/corebench.tar.gz

6.2 Future Work

Reducing Differential to Conventional Program Analysis. Given a com-

plex change, we want to introduce a technique that generates a meta-program

which represents the set of program configuration where no, some, or all of

the constituent changes are applied. The set of represented configuration in-

cludes the program versions before and after the complex change is applied.

The meta-program contains common statements that are common to all pro-

gram configurations and represent the common behavior, and a set of change

hooks. Each change hook is a function pair where one function contains the

statements unique to the old version and the corresponding function contains

the statements unique to the new version. During (conventional) program anal-

ysis, each change hook may be bound to the one member of the corresponding

function pair or it may be used as an uninterpreted function.

PhD Thesis Proposal

Presented by Marcel Böhme !78

4. Differential Via Conventional Analysis

Overview

cases to an existing test suite that are considered relevant in some respect. If

there is an equivalence class that is not represented, a test case may be added

that represents this equivalence class. In the context of evolving programs it

may be of interest to generate test cases that expose the behavioral di↵erence

exposed be the changes. Only di↵erence-revealing test cases can expose software

regression.

2.2 Preliminaries

Dependency analysis and symbolic execution can help to determine whether the

execution and evaluation of a statement s1 influences the execution and eval-

uation of another statement s2. In theory, it is generally undecidable whether

there exists a feasible path (exercised by a concrete program input) that contains

instances of both statements [15]. Static program analysis can approximate the

potential existence of such paths for which both statements are executed and

one statement “impacts” the other. Yet, this includes infeasible ones. Symbolic

execution (SE) facilitates the exploration of all feasible program paths if the

exploration terminates. In practice, SE allows to search for input that exercises

a path that contains both statements.

2.2.1 Running Example

⌥ ⌅
1 input(i,j);

2 a = i; // ch1 (a=i+1)

3 b = 0;

4 o = 0;

5 if(a > 0){

6 b = j; // ch2 (b=j+1)

7 o = 1;

8 }

9 if(b > 0)

10 o = 2; // ch3 (o=o+1)

11 output(o);⌃ ⇧
Original Version P

⌥ ⌅
1 input(i,j);

2 a = i + 1; // ch1 (a=i)

3 b = 0;

4 o = 0;

5 if(a > 0){

6 b = j + 1; // ch2 (b=j)

7 o = 1;

8 }

9 if(b > 0)

10 o = o + 1; // ch3 (o=2)

11 output(o);⌃ ⇧
Modified Version P 0

Figure 2.1: Running Example

The program P on the left-hand side of Figure 2.1 takes values for the

variables i and j as input to compute output o. Program P is changed in

three locations to yield the modified program version P 0 on the righthand side.

Change ch1 in line 2 is exercised by every input while the other two changes are

guarded by the conditional statements in lines 5 and 9. Every change assigns

the old value plus one to the respective variable.

In this survey, we investigate which program elements are a↵ected by the
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2 Running Example 2

⌥ ⌅
1 procedure int program(i,j){

2 a = i; // ch1

3 b = 0;

4 o = 0;

5 for(c = 0; c<=a; c++){

6 b = j + b;// ch2

7 o = 1;

8 }

9 if(b > 0)

10 o = 2; // ch3

11 return o;

12 }⌃ ⇧
Original Version P

⌥ ⌅
1 procedure int program(i,j){

2 a = i + 1; // ch1

3 b = 0;

4 o = 0;

5 for(c = 0; c<=a; c++){

6 b = j + b + 1;// ch2

7 o = 1;

8 }

9 if(b > 0)

10 o = o + 1; // ch3

11 return o;

12 }⌃ ⇧
Modified Version P 0

Figure 8: Running Example⌥ ⌅
1 procedure a(i){

2 return i; // ch1

3 }

4 procedure b(j,b){

5 return j + b; // ch2

6 }

7 procedure o(o){

8 return 2; // ch3

9 }⌃ ⇧
Original Version P

⌥ ⌅
1 procedure a(i){

2 return i + 1; // ch1

3 }

4 procedure b(j,b){

5 return j + b + 1; // ch2

6 }

7 procedure o(o){

8 return o + 1; // ch3

9 }⌃ ⇧
Modified Version P 0⌥ ⌅

1 procedure program(i,j){

2 a = a(i);

3 b = 0;

4 o = 0;

5 for(c = 0; c<=a; c++){

6 b = b(j,b);

7 o = 1;

8 }

9 if(b > 0)

10 o = o(o);

11 return o;

12 }⌃ ⇧
Figure 9: Meta-Program representing all change-configurations; incl. P and P 0
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P P’Meta-Program

Figure 6.1: Meta-program representing all configurations between two versions

Figure 6.1 shows an example of two program versions and the corresponding

meta-program. The shaded code regions represent the change hooks. Depending

on the relevant program configuration, a convential program analysis technique

may interpret a hook as per the old or as per the new version.
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Input Condition Symbolic Output
(0 > a(i)) ∧ (0 ≤ 0) program(i, j) = 0
(0 > a(i)) ∧ (0 > 0) program(i, j) = o(0)

(0 ≤ a(i) < 1) ∧ (b(j, 0) ≤ 0) program(i, j) = 1
(0 ≤ a(i) < 1) ∧ (b(j, 0) > 0) program(i, j) = o(1)
(1 ≤ a(i) < 2) ∧ (b(j, 0) ≤ 0) program(i, j) = 1
(1 ≤ a(i) < 2) ∧ (b(j, 0) > 0) program(i, j) = o(1)

...
...

Figure 6.2: Symbolic output of a meta-program

Compared to other differential program analysis techniques, our technique

allows to abstract the changed program behavior during analysis. For instance,

one could derive the symbolic output of the meta-program. The symbolic out-

put is not only given in terms of the program input but also in terms of the

uninterpreted functions representing the change hooks. These uninterpreted

functions can be interpreted according to one of the corresponding function

pairs. Figure 6.2 gives the symbolic output of the meta-program in Fig. 6.1.

There are three change hooks, a(i), b(j, b), and o(o). The input conditions and

the symbolic output are given in terms of these change hooks.

Compared to syntactic differencing, we solve two challenges i) of align-

ing two corresponging statements and syntactic changes in two versions, and

ii) of generating compilable, executable, intermediate program configurations

(see Sec. 2.3.4).

The state space of the meta-program can be explored by extended symbolic

execution. Intuitively, the state space is extended by one dimension spanning the

change configurations. The path exploration proceeds similarly when reaching

a conditional statement with two branches. When exercising an uninterpreted

function, the symbolic state can be forked, executing the original behavior in

one, and the changed behavior in the other symbolic state. Symbolic program

summaries, such as in Figure 2.4 on page 11, can contain uninterpreted functions

to indicate change impact on the output. Note, while the Differential Symbolic

Execution approach [39] summarizes “similar behavior” as uninterpreted func-

tions, we suggest to summarize the changed behavior across two versions.

Exposing Vulnerability Regressions. If we can empirically determine

the severity and prevalence of vulnerability regression errors, we want to present

an efficient and effective technique to generate input that exposes the vulner-

abilty in the changed version. In particular, the problem can be stated as

follows: Given an access-regulating code region and a sensitive code region,

generate input that can bypass the access-regulating code region to access the

sensitive code region when the program is changed. The user login or autho-
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rization checks are examples of access-regulating code regions. Unauthorized

access to sensible databases, private files, or OS-specific data are examples of

vulnerabilities which we seek to witness via test generation.
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Appendix A

Theorems – Partition-based

Regression Verification
In the following, we postulate the soundness of Algorithm 2 that computes the

differential partition for a given test case (cf. Theorem 1) and the exhaustiveness

of Algorithm 1 that explores differential partitions (cf. Theorem 2 on page 125).

In practice, the absence of regression errors can be guaranteed for all inputs to

the same extent as symbolic execution can guarantee the absence of program

errors (cf. [67, 68]). Specifically, we assume deterministic program execution.

The predicate si  ri denotes that ri is in the relevant slice of si. In other

words, si  ri holds if si transitively, dynamically data-, control- or potentially

depends on ri or si = ri.

A.1 Soundness

Theorem 1 (Sound Generalization)

Given statements C in program P are changed to C ′ yielding P ′, every

input satisfying the condition computed by Algorithm 2 for input t is in the

same differential partition as t.

Informally, the differential behavior of a point in the common input space is

soundly generalized to the set of points in the same differential partition. In

particular, let Algorithm 2 compute the symbolic condition Φ for a test case t. If

t is equivalence-revealing, then every input satisfying Φ is equivalence-revealing.

Similarly, if t is difference-revealing, then every input satisfying Φ is difference-

revealing. The respective proof is based on the property of relevant slices.

Lemma 1 (Property of Relevant Slices [19])

If two inputs t0 and t1 exercise the same relevant slice computed w.r.t. a

statement instance si, then the variables used in si have the same symbolic

values for t0 and t1.

121



The property of relevant slices is at the center of the proofs.

Lemma 2 (Homogenity - Reachability Condition)

Let c be a statement in program P . Let π0 and π1 be the traces for the

execution of inputs t0 and t1 on P . If t1 satisfies reach(c, π0), then i) all

instances ci of c executed in π0 are also executed in π1 and vice versa, and

ii) reach(c, π0)↔ reach(c, π1).

Collorary: Given statements C in program P are changed to C ′ yielding P ′, if in-

put t does not execute any c′ ∈ C ′, then every input satisfying
∧

c′∈C′ reach(c′, π(t, P ′))

does neither execute any c ∈ C in P nor any c′ ∈ C ′ in P ′.

Proof : Assume, t1 satisfies reach(c, π0). By Definition 5 and this assumption,

t1 exercises the same statement instances that are included in the reachability

slice of c in π0. We prove

• i) every instance ci of c executed by t0 is also executed by t1, and vice versa:

• i.a) If c does not statically control-depend on any statement s, then every

instance of c, including ci, is in all paths, including π0 and π1.

• i.b) If c does statically control-depend on a conditional statement s and π0

contains an instance si of s, then every instance ci of c in π0 dynamically

control-depends on si. By Definition 4 and assumption, t0 and t1 exercise the

relevant slice of si. By Lemma 1, the variables used in si have the same sym-

bolic values in π0 and π1. Thus, if ci is executed in π0, it is also in π1, and

vice versa.

• i.c) The case that for every statement s that c statically control-depends on,

there exists no instance si of s in π0, is unsatisfiable by the theorems of tran-

sitive, static control-dependence. This can easily be shown. Assuming above,

then the (non-)execution of s transitively depends on the evaluation of another

instance ri of some statement r in π0 that is exactly evaluated in the direction

that does not favor the execution of s. This is a contradiction because there

exists an instance ri of statement r in π that c transitively control-depends on.

Concluding cases i.a), i.b), and i.c), all instances ci of c executed in π0 are also

executed in π1, and vice versa.

• ii) The application of Definition 5, Lemma 1, and i) onto reach(c, π0) de-

rives reach(c, π1), and vice versa. Thus, reach(c, π0) is exactly the same as

reach(c, π1).

Lemma 3 (Alignment 1)

Let Ni be computed by Algorithm 3 for the traces π(t, P ), π(t, P ′) and

output statement o. Given alignable output instances (oi, o
′
i) that have

the same values in P and P ′, for every (ni, n
′
i) ∈ Ni and for every (si, s

′
i)

that satisfies oi  si  ni in π(t, P ) and o′i  s′i  n′i in π(t, P ′) holds

value(si) = value(s′i) and align(si, s
′
i).
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Informally, all elements in the relevant slice of o′i until n′i in π(t, P ′) can be

aligned and have the same values in both programs.

Proof : We show by induction over every input (si, s
′
i) of procedure PropAlign

that (si, s
′
i) satisfies value(si) = value(s′i) and align(si, s

′
i). Base Case: Ini-

tially, (oi, o
′
i) is assigned (si, s

′
i). Clearly, the hypothesis holds. Inductive

Step: The current assignment to (si, s
′
i) is (qi, q

′
i). Assume, (qi, q

′
i) satis-

fies value(qi) = value(q′i) and align(qi, q
′
i). The procedure PropAlign is

called only for the tuple (ri, r
′
i) if q′i directly depends on r′i and there ex-

ists ri upon which qi directly depends and satisfies value(ri) = value(r′i) and

align(ri, r
′
i) (line 10). Hence, the next assignment to (si, s

′
i) does also satisfy

value(si) = value(s′i) and align(si, s
′
i).

Lemma 4 (Alignment 2)

Let statements C in program P be changed to C ′ yielding P ′. Let Ni

be computed by Algorithm 3 for the traces π(t, P ), π(t, P ′) and output

statement o. If ci is an instance of c ∈ C and oi  ci in π(t, P ), then there

exists ni|(ni, n′i) ∈ Ni so that oi  ni  ci in π(t, P ). Similarly, if c′i is an

instance of c′ ∈ C ′ and o′i  c′i in π(t, P ′), then there exists n′i|(ni, n′i) ∈ Ni

so that o′i  n′i  c′i in π(t, P ′).

Informally, for every transitive dynamic dependence of the output onto a change

there exists an element in Ni so that the output depends on that element and

the element depends on that change.

Proof : Assume, oi  ci and o′i  c′i. As every (ni, n
′
i) ∈ Ni is previously assigned

to some (si, s
′
i) it is sufficient to show by induction over every input (si, s

′
i) of

procedure PropAlign that oi  si  ci and o′i  s′i  c′i. Base Case:

Initially, (oi, o
′
i) is assigned (si, s

′
i). Clearly, the hypothesis holds. Inductive

Step: The current assignment to (si, s
′
i) is (qi, q

′
i). Assume, oi  qi  ci and

o′i  q′i  c′i. The method PropAlign is called only if there exists ri upon

which qi depends in π(t, P ) for every r′i, upon which q′i depends in π(t, P ′),

so that align(ri, r
′
i), value(ri) = value(r′i), and r′i is not c′i. Thus, for (ri, r

′
i)

holds oi  ri  ci and o′i  r′i  c′i and is the next assignment to (si, s
′
i).

Lemma 5 (Homogenity - Propagation Condition)

Given statements C in program P are changed to C ′ yielding P ′, if input

t0 computes the same values for output o in P and P ′, then every input t1

satisfying prop(o, π(t0, P ), π(t0, P
′)) i) exercises exactly the same instances

of c ∈ C in P and of c′ ∈ C ′ in P ′, ii) computes the same values for output

o in P and P ′.

Proof : Assume, t0 is equivalence-revealing, t1 satisfies prop(o, π(t0, P ), π(t0, P
′)),

and Algorithm 3 computes Ni for program output statement o and the exe-
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cution of t0 upon P and P ′. We prove i) t0 and t1 exercise exactly the same

instances of c ∈ C in P and of c′ ∈ C′ in P ′ and ii) t1 is also equivalence-

revealing.

• i) By Definition 6 and assumption t0 and t1 satisfy
∧

c∈C reach(c, π) and∧
c′∈C′ reach(c′, π′). By Lemma 2, all instances ci of every c ∈ C that are

executed in π(t0, P ) are also executed in π(t1, P ) and vice versa. Similarly, all

instances c′i of every c′ ∈ C′ that are executed in π(t0, P
′) are also executed in

π(t1, P
′) and vice versa.

• ii) By Definition 6 and assumption t0 and t1 satisfy ∀(ni, n
′
i) ∈ Ni. rsc(ni, π(t0, P ))∧

rsc(n′i, π(t0, P ))∧ value(ni) = value(n′i). By Lemma 1, t0 and t1 compute the

same symbolic values for the variables used in ni. Similarly, t0 and t1 com-

pute the same symbolic values for the variables used in n′i. As value(ni) =

value(n′i), t0 and t1 also compute the same symbolic values for the variables

used in ni and n′i accross both versions. Thus, by Lemma 3, by Lemma 4, and

by i) t1 computes the same values for output o in P and P ′.

Lemma 6 (Homogenity - Difference Condition)

Given statements C in program P are changed to C ′ yielding P ′, if in-

put t0 is difference-revealing for P and P ′, then every input t1 satisfying

diff(o, π(t0, P ), π(t0, P
′)) i) is difference-revealing, ii) computes the same

symbolic values for oi in P and the same symbolic values for o′i in P ′, and

iii) exercises exactly the same instances of c ∈ C in P and of c′ ∈ C ′ in P ′.

Proof : Assume, t0 is difference-revealing and t1 satisfies diff(o, π(t0, P ), π(t0, P
′)).

We prove i) t1 is also difference-revealing and ii) t0 and t1 exercise exactly the

same instances of c ∈ C in P and of c′ ∈ C′ in P ′.

• i+ii) By Definition 7 and assumption, t1 and t0 satisfy rsc(oi, π), rsc(o′i, π
′),

and value(oi) 6= value(o′i). By Lemma 1, the variables used in oi have the

same symbolic values in π(t0, P ) and π(t1, P ). By the same lemma, the vari-

ables used in o′i have the same symbolic values in π(t0, P
′) and π(t1, P

′). As

value(oi) 6= value(o′i), for t0 and t1 the symbolic output is different across P

and P ′. Hence, t1 is also difference-revealing.

• iii) By Definition 7, assumption, and Lemma 2, exactly those instances of

every c ∈ C in π(t0, P ) and every c′ ∈ C′ in π(t0, P
′) are also executed in

π(t1, P ) and π(t1, P
′), respectively. Hence, t0 and t1 exercise exactly the same

instances of c ∈ C in P and of c′ ∈ C′ in P ′.

Theorem 1 (Sound Generalization)

Proof : Assume, Algorithm 2 computes condition Φ0 for the execution of t0 on

both program versions, P and P ′, and input t1 satisfies Φ0. We prove that t0

and t1 are in the same differential partition by showing i) if t0 is equivalence-

revealing, then t1 is equivalence-revealing and ii) if t0 is difference-revealing,

then t1 is difference-revealing.
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• i) Assume, t0 is equivalence-revealing. According to Algorithm 2 we distin-

guish two cases a) there does not exists an instance of c′ ∈ C′ in π(t0, P
′)

and b) otherwise. If a), then Φ0 is
∧

c′∈C′ reach(c′, π(t0, P
′)). As t1 satisfies

Φ0, by the collorary of Lemma 2, t1 does neither execute any c ∈ C in P

nor any c′ ∈ C′ in P ′. Thus, t1 is equivalence-revealing. If b), then Φ0 is

prop(o, π(t0, P ), π(t0, P
′)) because t0 is equivalence-revealing and value(oi) =

value(o′i). As t1 satisfies Φ0, by Lemma 5, t1 is equivalence-revealing.

• ii) Assume, t0 is difference-revealing. Thus, at least one changed state-

ment is executed and value(oi) 6= value(o′i). According to Algorithm 2, Φ0

is diff(o, π(t0, P ), π(t0, P
′)). As t1 satisfies Φ0, by Lemma 6, t1 is difference-

revealing.

A.2 Exhaustiveness

In the following, we postulate and proof the exhaustiveness of Algorithm 1 that

explores differential partitions (cf. Theorem 2).

Theorem 2 (Exhaustive Exploration)

If there exists an input t that computes different values for the output o

in versions P and P ′ and Algorithm 1 terminates with regression test suite T ,

then there exists a test case t+ ∈ T so that t satisfies diff(o, π(t+, P ), π(t+, P ′)).

Informally, if the verification procedure terminates then all differential partitions

have been explored.

The respective proof leverages the exhaustiveness of the exploration based

on relevant slices. The applicable lemmas and the definition of distance are

repeated in the following.

Lemma 7 (Branch Negation in reordered RSC [19])

Let si be a statement instance in the traces π(t0, P ) and π(t1, P ) for the

execution of inputs t0 and t1 on program P . Let f and g be the reordered

rsc(si, π(t0, P )) and the reordered rsc(si, π(t1, P )), respectively. Suppose,

f is ϕ1 ∧ . . . ∧ ϕj−1 ∧ ϕj and g is ψ1 ∧ . . . ∧ ψi−1 ∧ ψi. If the first different

branch condition between f and g is at location k, then ϕk = ¬ψk.

Notation: The first different branch condition is at location k for conditions

ϕ1 ∧ . . . ∧ ϕj−1 ∧ ϕj and ψ1 ∧ . . . ∧ ψi−1 ∧ ψi if and only if for all m < k,

ϕm = ψm and ϕk 6= ψk.

Lemma 8 (Same Prefix in reordered RSC [19])

Let si be a statement instance in the traces π(t0, P ) and π(t1, P ) for the

execution of inputs t0 and t1 on program P . Suppose, ψ1 ∧ . . .∧ψi−1 ∧ψi is

a prefix of the reordered rsc(si, π(t0, P )). If t1 satisfies ψ1∧ . . .∧ψi−1∧¬ψi,
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then the reordered rsc(si, π(t1, P )) must contain ψ1 ∧ . . . ∧ ψi−1 ∧ ¬ψi as a

prefix.

Notation: The function rs dist(f, g) denotes the distance of the reordered rel-

evant slice condition f to the reordered relevant slice condition g. Suppose,

f = ϕ1 ∧ . . .∧ϕj−1 ∧ϕj and g = ψ1 ∧ . . .∧ψi−1 ∧ψi. Let k be the first different

branch condition if there exists one and min(i+ 1, j + 1) otherwise. We define

rs dist(f, g)
def
= 1− k

i+1 . When f and g are the same, the distance of f to g is

zero.

Lemma 9 (Exhaustive Relevant Slice Exploration - P ′)

Suppose, in line 6 of Algorithm 1 the input t0 is chosen from the queue

and the condition computed in line 7 implies rsc(s′i, π(t0, P
′)) for statement

instance s′i in execution trace π(t0, P
′). If there exists an input t that (i)

exercises the same relevant slices of all branch instances upon which s′i dy-

namically control-depends than t0 but computes a different value for s′i, (ii)

the condition computed by Algorithm 2 for t implies rsc(s′i, π(t, P ′)), and

(iii) Algorithm 1 terminates with regression test suite T , then there exists a

test case t+ ∈ T that satisfies rsc(s′i, π(t, P ′)).

Note, by Lemma 1 necessary condition 9.i) requires that t evaluates all branch

instances upon which s′i dynamically control-depends in the same direction than

t0 but computes a different value for s′i.

Proof : Assume, condition in line 7 of Algorithm 1 implies rsc(s′i, π(t0, P
′)) for

statement instance s′i in trace π(t0, P
′). Further assume, A.i) input t exercises

the same relevant slices of all branch instances upon which s′i dynamically

control-depends than t0, A.ii) the condition computed by Algorithm 2 for

t implies rsc(s′i, π(t, P ′)), and A.iii) Algorithm 1 terminates with regression

test suite T . We prove that there exists a test case t+ ∈ T that satisfies

rsc(s′i, π(t, P ′)).

In line 16 of Algorithm 4 the branch conditions in P ′ within condition are

reordered. Because every order-preserving subset of a sorted set is also sorted,

rsc(s′i, π(t0, P
′)) is also reordered within reordered′. Let f = σ1∧. . .∧σj−1∧σj

be the reordered rsc(s′i, π(t0, P
′)). Let g = φ1∧ . . .∧φi−1∧φi be the reordered

rsc(s′i, π(t, P ′). Suppose, the first different branch condition between f and g

is at location k. In lines 19-22 of Algorithm 4 constr = σ1 ∧ . . . ∧ σk−1 ∧ ¬σk

is constructed and solved. According to Lemma 7, ¬σk = φk and thus σ1 ∧
. . . ∧ σk−1 ∧ ¬σk is the same as φ1 ∧ . . . ∧ φk−1 ∧ φk. Note that g and thus

φ1 ∧ . . . ∧ φk−1 ∧ φk are satisfiable, as g is the relevant slice condition for the

feasible path π(t, P ′). Therefore, σ1 ∧ . . .∧σk−1 ∧¬σk is satisfiable. In line 21,

the input t1, as solution to this formula, is added to the queue.

We show that the condition computed for t1 in line 7 of Algorithm 1 implies

σ1 ∧ . . .∧ σk−1 ∧¬σk and the relevant slice distance to g is strictly decreasing.
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By A.i) and the definition of the reorder-function, the branch conditions of all

branch instances upon which s′i dynamically control-depends are placed before

the first different branch condition. In other words, A.i) for t0 is preserved in

σ1 ∧ . . . ∧ σk so that input t1 does also exercise s′i. By A.ii) and Algorithm 2,

the condition computed by Algorithm 2 for t1 implies rsc(s′i, π(t1, P
′)). Let h

be the reordered rsc(s′i, π(t1, P
′)). By Lemma 8, h has σ1 ∧ . . . ∧ σk−1 ∧ ¬σk

as prefix. The index of the first different branch for h and g is greater than

the index k of the first different branch for f and g. Thus, rs dist(h, g) <

rs dist(f, g). The distance is strictly decreasing.

Lemma 10 (Exhaustive Relevant Slice Exploration - P )

Suppose, in line 6 of Algorithm 1 the input t0 is chosen from the queue

and the condition computed in line 7 implies rsc(s′i, π(t0, P
′)) for statement

instance s′i in execution trace π(t0, P
′) and rsc(si, π(t0, P )) for statement

instance si in execution trace π(t0, P ). If there exists an input t that (i) ex-

ercises the same relevant slice of si than t0 in P ′, (ii) exercises the same

relevant slices of all branch instances upon which si dynamically control-

depends than t0 but computes a different value for si in P , (iii) the condition

computed by Algorithm 2 for t implies rsc(si, π(t, P )), and (iv) Algorithm 1

terminates with regression test suite T , then there exists a test case t+ ∈ T
that satisfies rsc(s′i, π(t0, P

′)) ∧ rsc(si, π(t, P )).

Proof : The proof is analogous to the proof of Lemma 9. However, the constraint

that t+ has to satisfy in lines 8-15 of Algorithm 4 dictates that all the branch

conditions (ψ′0∧ . . .∧ψ′m) for P ′ in condition remain satisfied for constr. Thus,

rsc(s′i, π(t0, P
′)) remains satisfied for every generated test case t+.

Lemma 11 (Enabling Reachability 1)

Let C ′ be changed statements in program P ′ and input t0 ∈ queue does not

exercise any c′ ∈ C ′. If there exists an input t that exercises an instance of

c′ ∈ C ′ and Algorithm 1 terminates with regression test suite T , then there

exists a test case t+ ∈ T that satisfies reach(c′, π(t, P ′)).

Notation: Let the distance function dist(si, c, π) be zero if si is an instance

of statement c in trace π, infinite if there is no transitive control-dependence

of c onto statement s of which si is an instance in π, and the number of static

control-dependence edges of the shortest path from statement c′ to s, otherwise.

Proof : Assume, t exercises an instance of changed statement c′ ∈ C′ and Algo-

rithm 1 terminates with regression test suite T . We prove that there exists

t+ ∈ T that satisfies reach(c′, π(t, P ′)).

After t0 is chosen in line 6, its condition is computed in line 7 by Al-

gorithm 2. Because t0 does not exercise c′ ∈ C′, the condition becomes
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reach(c′, π(t0, P
′)). The condition is passed into Algorithm 4 and reordered

to (ϕ′0 ∧ . . .∧ϕ′m) (line 16). The constituent branch conditions ϕ′ are negated

one-by-one and checked for satisfiability (lines 18-23). Let t1 be a satisfying

solution that is added to the queue.

Let b′i be the first different instance of a branch upon which c′ control-depends

in traces π(t0, P
′) and π(t, P ′). Clearly, there exists an input t1 that eval-

uates b′i in the other direction than t0 (and the same direction than t). By

Definition 5, condition implies the relevant slice condition of b′i. Since b′i is

the first different instance of a branch upon which c′ control-depends, in-

puts t and t1 exercise the same relevant slices of all branch instances upon

which b′i dynamically control-depends than t0. By Lemma 9 and because Al-

gorithm 1 terminates with regression test suite T , there exists a test case

t+1 ∈ T that satisfies rsc(b′i, π(t1, P
′)). By Lemma 1, t1, t+1 , and t eval-

uate b′i in the same direction. Let d′i be the first different instance of a

branch upon which c′ control-depends in traces π(t+1 , P
′) and π(t, P ′). Clearly,

dist(d′i, c
′, π(t+1 , P

′)) < dist(b′i, c
′, π(t0, P

′)). The distance is strictly decreasing

until there is a test case t+ generated that evaluates all branch instances upon

which c′ control-depends in the same direction than t. Thus by Definition 5

and Lemma2, t+ satisfies reach(c′, π(t, P ′)). As Algorithm 1 terminates, t+ is

generated eventually.

Lemma 12 (Enabling Reachability 2)

Let statements C in program P be changed to C ′ yielding P ′. Let in-

put t0 ∈ queue exercise in P ′ at least one instance of a changed statement.

If there exists an input t that exercises Ci of C in P and C ′i of C ′ in P ′ and

Algorithm 1 terminates with regression test suite T , then there exists a test

case t+ ∈ T that satisfies
∧

c′∈C′ reach(c′, π(t, P ′))∧
∧

c∈C reach(c, π(t, P )).

Proof : Assume, t exercises instance ci of original statement c ∈ C in P and c′i of

changed statement c′ ∈ C′ in P ′. Further assume Algorithm 1 terminates with

regression test suite T . By Definition 5 and Lemma 2, we prove that there

exists t+ ∈ T that exercises change instances c′i in P ′ and ci in P .

After t0 is chosen in line 6, its condition is computed in line 7. Be-

cause t0 exercises in P ′ some instances of changed statements, the condition

becomes either prop(o, π(t0, P ), π(t0, P
′)) or diff(o, π(t0, P ), π(t0, P

′)). This

condition is passed into Algorithm 4 and in both cases by definitions 6 and

7, condition → reach(c, π(t0, P )) and condition → reach(c′, π(t0, P
′)). We

distinguish three cases: i) t0 does not exercise c′i in π(t0, P
′)), ii) t0 exercises

c′i in π(t0, P
′)) but not ci in π(t0, P )), and iii) t0 exercises c′i in π(t0, P

′)) and

ci in π(t0, P )).

• i) Assume, t0 ∈ queue does not exercise c′i in π(t0, P
′)).

Let b′i be the first different instance of a branch upon which c′ control-depends

in traces π(t0, P
′) and π(t, P ′). Clearly, there exists an input t1 that eval-
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uates b′i in the other direction than t0 (and the same direction than t). By

Definition 5, condition implies the relevant slice condition of b′i. Since b′i is

the first different instance of a branch upon which c′ control-depends, in-

puts t and t1 exercise the same relevant slices of all branch instances upon

which b′i dynamically control-depends than t0. By Lemma 9 and because Al-

gorithm 1 terminates with regression test suite T , there exists a test case

t+1 ∈ T that satisfies rsc(b′i, π(t1, P
′)). By Lemma 1, t1, t+1 , and t eval-

uate b′i in the same direction. Let d′i be the first different instance of a

branch upon which c′ control-depends in traces π(t+1 , P
′) and π(t, P ′). Clearly,

dist(d′i, c
′, π(t+1 , P

′)) < dist(b′i, c
′, π(t0, P

′)). The distance is strictly decreas-

ing until there is a test case generated that evaluates all branch instances upon

which c′i control-depends in the same direction than t and thus exercises c′i

in P ′. As Algorithm 1 terminates, this test case is generated eventually and

added to the queue to be evaluated in the next case.

• ii) Assume, t0 ∈ queue exercises c′i in π(t0, P
′)) but not ci in π(t0, P )). Let

bi be the first different instance of a branch upon which c control-depends in

traces π(t0, P ) and π(t, P ). Clearly, there exists an input t1 that exercises the

same relevant slices of c′i in P ′ but evaluates bi in the other direction than t0

in P (and the same direction than t). By Definition 5, condition implies the

relevant slice condition of bi. Since bi is the first different instance of a branch

upon which c control-depends, inputs t and t1 exercise the same relevant slices

of all branch instances upon which bi dynamically control-depends than t0. By

Lemma 10 and because Algorithm 1 terminates with regression test suite T ,

there exists a test case t+1 ∈ T that satisfies rsc(s′i, π(t0, P
′))∧rsc(bi, π(t1, P )).

By Lemma 1, t1, t+1 , and t evaluate bi in the same direction in P . Let di be

the first different instance of a branch upon which c control-depends in traces

π(t+1 , P ) and π(t, P ). Clearly, dist(di, c, π(t+1 , P )) < dist(bi, c, π(t0, P )). The

distance is strictly decreasing until there is a test case generated that evaluates

all branch instances upon which ci control-depends in the same direction than

t and thus exercises ci in P and c′i in P ′. As Algorithm 1 terminates, this test

case is generated eventually and added to the queue to be evaluated in the

next case.

• iii) If t0 ∈ queue exercises c′i in π(t0, P
′)) and ci in in π(t0, P )), then t0

exercises c′i in P ′ and ci in P .

Lemma 13 (Enabling Propagation to the Output 1)

Let statements C in program P be changed to C ′ yielding P ′. Let input t0 ∈
queue exercise instances Ci of C in P and C ′i of C ′ in P ′ and compute the

same values for instance oi of output o in trace π(t0, P ) and o′i in trace

π(t0, P
′). If there exists an input t that exercises Ci and C ′i, t computes

the same values for oi and o′i, Algorithm 3 computes Ni for π(t, P ) and

π(t, P ′), and Algorithm 1 terminates with regression test suite T , then there
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exists a test case t+ ∈ T that exercises Ci and C ′i, t
+ computes the same

values for oi and o′i, Algorithm 3 computes Mi for π(t+, P ) and π(t+, P ′),

and ∀(ni, n′i) ∈ Ni.∃(mi,m
′
i) ∈ Mi.(mi  ni) in π(t+, P ) and (m′i  n′i) in

π(t+, P ′).

Notation: Let the distance function ddist(si, ri, π) be zero if statement instances

si = ri in trace π, the number of dynamic control-, data-, and potential depen-

dence edges of the shortest path from ri to si if si  ri in π, and infinite,

otherwise.

Proof : Assume, t exercises instance ci of original statement c ∈ C in P and c′i

of changed statement c′ ∈ C′ in P ′, t computes the same values for oi and

o′i, and Algorithm 1 terminates with regression test suite T . Further assume,

Algorithm 3 computes (ni, n
′
i) for π(t, P ) and π(t, P ′). Let n and n′ be the

statements corresponding to the instances ni and n′i, respectively. We proof

that there exists t+ ∈ T that exercises ci and c′i, t
+ computes the same values

for oi and o′i, Algorithm 3 computes M+
i for π(t+, P ) and π(t+, P ′) and there

exists (m+
i ,m

′+
i ) ∈ M+

i so that (m+
i  ni) in π(t+, P ) and (m′+i  n′i) in

π(t+, P ′).

After t0 is chosen in line 6, its condition is computed in line 7. Because t0

exercises some instances of changed statements and computes the same values

for oi and o′i, the condition becomes prop(o, π(t0, P ), π(t0, P
′)). By Defini-

tion 6, Algorithm 3 computes Mi for π(t0, P ) and π(t0, P
′) and by all-quantor

instantiation ofMi to (mi,m
′
i), the condition implies rsc(mi, π(t0, P ))∧rsc(m′i, π(t0, P

′))∧
value(mi) = value(m′i).

We distinguish three cases: i) (m′i 6 n′i) ∧ (n′i 6 m′i), ii) ((m′i  n′i) ∨ (n′i  

m′i)) and (mi 6 ni) ∧ (ni 6 mi), and iii) ((m′i  n′i) ∨ (n′i  m′i)) and

((mi  ni) ∨ (ni  mi)).

• i) Assume, m′i 6 n′i in π(t0, P
′) and n′i 6 m′i in π(t, P ′). Let b′i be the

first different branch instance that satisfies m′i  b′i in π(t0, P
′) and n′i  b′i

in π(t, P ′). Clearly, there exists an input t1 that exercises ci in P and c′i in

P ′ and evaluates b′i in the other direction than t0 in P ′ (and the same di-

rection than t). As the condition implies rsc(m′i, π(t0, P
′) and m′i  b′i, the

condition also implies the relevant slice condition of b′i in π(t0, P
′). Since b′i

is the first different instance that satisfies m′i  b′i in π(t0, P
′) and n′i  b′i

in π(t, P ′), inputs t and t1 exercise the same relevant slices of all branch in-

stances upon which b′i dynamically control-depends than t0. By Lemma 9 and

because Algorithm 1 terminates with regression test suite T , there exists a

test case t+1 ∈ T that satisfies rsc(b′i, π(t1, P
′)). By Lemma 1, t1, t+1 , and t

evaluate b′i in the same direction in P ′. Let d′i be the first different branch

instance that satisfies m′i  d′i in π(t+1 , P
′) and n′i  d′i in π(t, P ′). Clearly,

dist(d′i, n
′, π(t+1 , P

′)) < dist(b′i, n
′, π(t0, P

′)). The distance is strictly decreas-

ing until there is a test case t+2 generated that evaluates all branch instances

a′i in the same direction than t that satisfy m′i  a′i in π(t+2 , P
′) and n′i  a′i
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in π(t, P ′). Thus, for the execution of t+2 on P ′ either n′i  m′i or m′i  n′i in

π(t+2 , P
′). By Lemma 4, t+2 also exercises c′i in P ′ and c in P . As Algorithm 1

terminates, t+2 is generated eventually and added to the queue to be evaluated

in the next case.

• ii) Assume, either m′i  n′i in π(t0, P
′) or n′i  m′i in π(t, P ′). Assume

further, mi 6 ni in π(t0, P ) and ni 6 mi in π(t, P ). Let bi be the first

different branch instance that satisfies mi  bi in π(t0, P ) and ni  bi in

π(t, P ). Clearly, there exists an input t1 that exercises ci in P and c′i in P ′

and evaluates bi in the other direction than t0 in P (and the same direction

than t). As the condition implies rsc(mi, π(t0, P ) and mi  bi, the condition

also implies the relevant slice condition of bi in π(t0, P ). Since bi is the first

different instance that satisfies mi  bi in π(t0, P ) and ni  bi in π(t, P ),

inputs t and t1 exercise the same relevant slices of all branch instances upon

which bi dynamically control-depends than t0. By Lemma 10 and because

Algorithm 1 terminates with regression test suite T , there exists a test case

t+1 ∈ T that satisfies rsc(m′i, π(t0, P
′))∧ rsc(bi, π(t1, P )). By Lemma 1, t1, t+1 ,

and t evaluate bi in the same direction in P . Let di be the first different branch

instance that satisfies mi  di in π(t+1 , P ) and ni  di in π(t, P ). Clearly,

dist(di, n, π(t+1 , P )) < dist(bi, n, π(t0, P )). The distance is strictly decreasing

until there is a test case t+2 generated that evaluates all branch instances ai

in the same direction than t that satisfy mi  ai in π(t+2 , P ) and ni  ai in

π(t, P ). Thus, for the execution of t+2 on P either ni  mi or mi  ni in

π(t0, P ). By Lemma 4, t+2 also exercises c′i in P ′ and c in P . Because t+2 (still)

satisfies rsc(m′i, π(t0, P
′)), for the execution of t+2 on P ′ either n′i  m′i or

m′i  n′i in π(t+2 , P
′). As Algorithm 1 terminates, t+2 is generated eventually

and added to the queue to be evaluated in the next case.

• iii) Assume, either m′i  n′i in π(t0, P
′) or n′i  m′i in π(t, P ′). Assume fur-

ther, either mi  ni in π(t0, P ) or ni  mi in π(t, P ). Because align(mi,m
′
i)

and align(ni, n
′
i), the assumption reduces to two cases: iii.a) m′i  n′i in

π(t0, P
′) and mi  ni in π(t0, P ), and iii.b) n′i  m′i in π(t0, P

′) and ni  mi

in π(t0, P ).

The case iii.a) proves that there exists t+ ∈ T that exercises ci and c′i, t
+ com-

putes the same values for oi and o′i, Algorithm 3 computes M+
i for π(t+, P )

and π(t+, P ′) and there exists (m+
i ,m

′+
i ) ∈M+

i so that (m+
i  ni) in π(t+, P )

and (m′+i  n′i) in π(t+, P ′). The remainder elaborates on case iii.b) if not

stated otherwise. The case iii.b) can only occur if value(mi) = value(m′i) for

t0 because by assumption align(mi,m
′
i) and ¬isChanged(m′i) holds. By the

properties of transitive dynamic data- and potential dependence, the value of

m′i and mi control the value of n′i and ni, respectively.

Clearly, there exists an input t1 that computes for mi and m′i the same

symbolic values than t and satisfy value(mi) 6= value(m′i). By assumption,

the condition implies rsc(m′i, π(t0, P
′)), rsc(mi, π(t0, P )), and (value(mi) =

value(m′i). We distinguish two cases, iii.b.1) t0 computes for mi and m′i dif-
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ferent symbolic values than t and iii.b.2) t0 computes for mi and m′i the same

symbolic values than t but value(mi) 6= value(m′i).

iii.b.1) Assume t0 computes different values for mi and m′i than t. Since by

case iii.b, ni  mi in π(t, P ), the inputs t and t1 exercise the same rele-

vant slices of all branch instances upon which mi dynamically control-depends

than t0. By Lemma 10 and because Algorithm 1 terminates with regression

test suite T , there exists a test case t+1 ∈ T that satisfies rsc(m′i, π(t0, P
′)) ∧

rsc(mi, π(t1, P )). By Lemma 1, t1, t+1 , and t compute the same symbolic

value for mi in P . Input t+1 does clearly propagate beyond (mi,m
′
i). In

other words, given we compute (li, l
′
i) for t+1 like we compute (mi,m

′
i) for t0,

then ddist(l′i, n
′
i, π(t+1 , P

′)) + ddist(li, ni, π(t+1 , P )) < ddist(m′i, n
′
i, π(t0, P

′)) +

ddist(mi, ni, π(t0, P )).

iii.b.2) Assume t0 already computes for mi and m′i the same symbolic values

than t but value(mi) 6= value(m′i). In lines 2-7 of Algorithm 4, the equiv-

alence condition value(mi) = value(m′i) is negated and conjoined with the

branch conditions in condition yielding the constraint constr. A solution t+1 to

constr does clearly propagate beyond (mi,m
′
i). In other words, given we com-

pute (li, l
′
i) for t+1 like we compute (mi,m

′
i) for t0, then ddist(l′i, n

′
i, π(t+1 , P

′))+

ddist(li, ni, π(t+1 , P )) < ddist(m′i, n
′
i, π(t0, P

′)) + ddist(mi, ni, π(t0, P )).

Using cases i), ii) and iii), for the generated test cases, the distance is strictly

reduced until a test case is generated that yields m′i  n′i. By Lemma 4, every

generated test case remains exercising c′i in P ′ and c in P .

Lemma 14 (Enabling Propagation to the Output 2)

Let statements C in program P be changed to C ′ yielding P ′. Let in-

put t0 ∈ queue exercise instances Ci of C in P and C ′i of C ′ in P ′ and

compute the same values for instance oi of output o in trace π(t0, P ) and

o′i in trace π(t0, P
′). If there exists an input t that exercises Ci and C ′i and

computes different values for oi and o′i and Algorithm 1 terminates with

regression test suite T , then there exists a test case t+ ∈ T that satisfies

diff(o, π(t, P ), π(t, P ′)).

Proof : Assume, t exercises instance ci of original statement c ∈ C in P and c′i

of changed statement c′ ∈ C′ in P ′, t computes different values for oi and o′i

and Algorithm 1 terminates with regression test suite T . By Definition 7, we

prove that there exists t+ ∈ T that satisfies rsc(o′i, π(t, P ′)), rsc(oi, π(t, P )),

and value(oi) 6= value(o′i).

After t0 is chosen in line 6, its condition is computed in line 7. Because t0

exercises some instances of changed statements and computes the same values

for oi and o′i, the condition becomes prop(o, π(t0, P ), π(t0, P
′)).

Clearly, there exists a test case t1 that satisfies the following. Input t1 exer-

cises instance ci in π(t1, P ) and c′i in π(t1, P
′) and computes the same values for

oi and o′i. Algorithm 3 computes Ni for π(t1, P ) and π(t1, P
′) and (ni, n

′
i) ∈ Ni.
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Importantly, t1 satisfies rsc(o′i, π(t, P ′)), and for every (ni, n
′
i) ∈ Ni the dis-

tance ddist(oi, ni, π(t1, P )) is minimal, and oi transitively, dynamically data-

depends on ni in π(t1, P ). By Lemma 13 and because Algorithm 1 terminates

with regression test suite T , a test case t+1 ∈ T is generated eventually that

satisfies prop(o, π(t1, P ), π(t1, P
′)).

After t+1 is chosen in line 6, its condition is computed in line 7. Because

t+1 exercises some instances of changed statements and computes the same

values for oi and o′i, the condition becomes prop(o, π(t+1 , P ), π(t+1 , P
′)). By

Definition 6, Algorithm 3 computes Ni for π(t+1 , P ) and π(t+1 , P
′) and by all-

quantor instantiation of Ni to (ni, n
′
i), the condition implies rsc(ni, π(t0, P ))∧

rsc(n′i, π(t0, P
′)) ∧ value(ni) = value(n′i). As specified earlier, t+1 satisfies

rsc(o′i, π(t, P ′)), and oi transitively, dynamically data-depends on ni in π(t+1 , P ).

Thus, the value of ni directly influences the value of oi.

Clearly, there exists an input t2 that also satisfies rsc(o′i, π(t, P )) and com-

putes for the variables used in ni the same symbolic values as t and satisfies

value(oi) 6= value(o′i). By assumption, the condition implies rsc(o′i, π(t+1 , P
′)),

rsc(ni, π(t+1 , P )), and (value(oi) = value(o′i). We distinguish two cases, i) ni 6=
oi in π(t+1 ) and ii) ni = oi but value(oi) = value(o′i) in π(t+1 ).

• i) Assume, ni 6= oi in π(t+1 ). Then, t+1 computes different symbolic val-

ues for ni than t. Since oi  ni in π(t, P ), the inputs t and t2 exercise

the same relevant slices of all branch instances upon which ni dynamically

control-depends than t+1 . By Lemma 10 and because Algorithm 1 terminates

with regression test suite T , there exists a test case t+2 ∈ T that satisfies

rsc(o′i, π(t+1 , P
′)) ∧ rsc(oi, π(t2, P )). By Lemma 1, t2, t+2 , and t compute the

same symbolic value for oi in P and o′i in P ′. Case value(oi) = value(o′i) is

evaluated next.

• ii) Assume, ni = oi but value(oi) = value(o′i) in π(t+1 ). In lines 2-7

of Algorithm 4, the equivalence condition (value(oi) = value(o′i) is negated

and conjoined with the branch conditions in condition yielding the constraint

constr. A solution t+2 clearly satisfies rsc(o′i, π(t, P ′)), rsc(oi, π(t, P )), and

value(oi) 6= value(o′i).

By cases i), ii) there exists t+ ∈ T that satisfies rsc(o′i, π(t, P ′)), rsc(oi, π(t, P )),

and value(oi) 6= value(o′i). By Lemma 4, every generated test case remains

exercising c′i in P ′ and c in P .

Theorem 2 (Exhaustive Exploration)

Proof : Assume, t exercises instance ci of original statement c ∈ C in P and c′i

of changed statement c′ ∈ C′ in P ′, t computes different values for oi and o′i

and Algorithm 1 terminates with regression test suite T . We prove that there

exists t+ ∈ T so that t satisfies diff(o, π(t+, P ), π(t+, P ′)).

If t0 ∈ queue does not exercise c′i in P ′, by Lemma 11, there exists a test case

in T that exercises c′i in P ′. Let t0 be that test case. If t0 ∈ queue exercises c′i

in P ′ but not c in P , by Lemma 12, there exists a test case in T that exercises
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c′i in P ′ and ci in P . Let t0 be that test case. If t0 ∈ queue exercises c′i in P ′

and ci in P and computes the same values for oi and o′i, by Lemma 14, there

exists a test case in t+ ∈ T that exercises c′i in P ′ and ci in P and t satisfies

diff(o, π(t+, P ), π(t+, P ′)).
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[31] Matt Staats and Corina Pǎsǎreanu. Parallel symbolic execution for struc-

tural test generation. In Proceedings of the 19th international symposium

on Software testing and analysis, ISSTA ’10, pages 183–194, New York,

NY, USA, 2010. ACM.

[32] Saswat Anand, Patrice Godefroid, and Nikolai Tillmann. Demand-driven

compositional symbolic execution. In Proceedings of the Theory and prac-

tice of software, 14th international conference on Tools and algorithms for

the construction and analysis of systems, TACAS’08/ETAPS’08, pages

367–381, Berlin, Heidelberg, 2008. Springer-Verlag.

[33] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. Automated

whitebox fuzz testing. In Proceedings of the Network and Distributed

System Security Symposium, NDSS ’08. The Internet Society, 2008.

[34] Misty Davies, Corina Pasareanu, and Vishwanath Raman. Symbolic ex-

ecution enhanced system testing. In Rajeev Joshi, Peter Müller, and

Andreas Podelski, editors, Verified Software: Theories, Tools, Experi-

ments, volume 7152 of Lecture Notes in Computer Science, pages 294–309.

Springer Berlin / Heidelberg, 2012.

[35] Steffen Lehnert. A taxonomy for software change impact analysis. In

Proceedings of the 12th International Workshop on Principles of Software

Evolution and the 7th annual ERCIM Workshop on Software Evolution,

IWPSE-EVOL ’11, pages 41–50, New York, NY, USA, 2011. ACM.

[36] Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold. Ef-

ficient and precise dynamic impact analysis using execute-after sequences.

138



In Proceedings of the 27th international conference on Software engineer-

ing, ICSE ’05, pages 432–441, New York, NY, USA, 2005. ACM.

[37] Alessandro Orso, Taweesup Apiwattanapong, and Mary Jean Harrold.

Leveraging field data for impact analysis and regression testing. SIGSOFT

Softw. Eng. Notes, 28(5):128–137, September 2003.

[38] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, and Ophelia

Chesley. Chianti: A tool for change impact analysis of java programs. In

Conference on Object-Oriented Programming, Systems, Languages, and

Applications, pages 432–448. ACM Press, 2004.

[39] Suzette Person, Matthew B. Dwyer, Sebastian Elbaum, and Corina S.
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[158] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. When do

changes induce fixes? In Proceedings of the 2005 International Workshop

on Mining Software Repositories, MSR ’05, pages 1–5, 2005.

[159] Sunghun Kim, Thomas Zimmermann, Kai Pan, and E. James Jr. White-

head. Automatic identification of bug-introducing changes. In Proceedings

of the 21st IEEE/ACM International Conference on Automated Software

Engineering, ASE ’06, pages 81–90, 2006.

[160] Valentin Dallmeier and Thomas Zimmermann. Extraction of bug local-

ization benchmarks from history. In Proceedings of the Twenty-second

IEEE/ACM International Conference on Automated Software Engineer-

ing, ASE ’07, pages 433–436, 2007.

150



[161] Shan Lu, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou, and Yuanyuan Zhou.

Bugbench: Benchmarks for evaluating bug detection tools. In In Work-

shop on the Evaluation of Software Defect Detection Tools, 2005.

[162] Jaime Spacco, Jaymie Strecker, David Hovemeyer, and William Pugh.

Software repository mining with marmoset: An automated programming

project snapshot and testing system. In Proceedings of the 2005 Interna-

tional Workshop on Mining Software Repositories, MSR ’05, pages 1–5,

2005.

[163] Lucia, F. Thung, D. Lo, and Lingxiao Jiang. Are faults localizable?

In 2012 9th IEEE Working Conference on Mining Software Repositories

(MSR), pages 74–77, 2012.

[164] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish

Chandra. Semfix: Program repair via semantic analysis. In Proceedings

of the 2013 International Conference on Software Engineering, ICSE ’13,

pages 772–781, 2013.

[165] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley

Weimer. A systematic study of automated program repair: Fixing 55

out of 105 bugs for $8 each. In Proceedings of the 34th International

Conference on Software Engineering, ICSE ’12, pages 3–13, 2012.

151


	List of Figures
	Introduction
	Thesis Statement
	Overview and Organization
	Epigraphs

	Related Work
	Introduction
	Preliminaries
	Running Example
	Program Dependence Analysis
	Program Slicing
	Symbolic Execution

	Change Impact Analysis
	Static Change-Impact Analysis
	Dynamic Change Impact Analysis
	Differential Symbolic Execution
	Change Granularity

	Regression Testing
	Deterministic Program Behavior
	Oracle Assumption
	Code Coverage as Approximation Of Adequacy
	Reduction of Regression Test Suites
	Selecting Relevant Test Cases
	Removing Irrelevant Test Cases
	Augmentation of Regression Test Suites
	Reaching the Change
	Incremental Test Generation
	Propagating a Single Change
	Propagation of Multiple Changes
	Semantic Approaches to Change Propagation
	Random Approaches to Change Propagation

	Chapter Summary
	Partition-based Regression Verification
	Introduction
	Longitudinal Input Space Partitioning w.r.t. Changed Behavior
	Background: Behavior Partitions
	Differential Partitions
	Multi-Version Differential Partitions
	Deriving the Common Input Space
	Computing Differential Partitions Naïvely
	Regression Verification as Exploration of Differential Partitions
	Computing Differential Partitions Efficiently
	Computing Reachability Conditions
	Computing Propagation Conditions
	Computing Difference Conditions
	Generating Adjacent Test Cases
	Theorems
	Empirical Study
	Setup and Infrastructure
	Subject Programs
	Research Questions

	Results and Analysis
	Threats to Validity

	Related Work
	Chapter Summary

	Test Generation to Expose Change Interaction Errors
	Introduction
	Regression in GNU Coreutils
	Statistics of Regression
	Buffer Overflow in cut

	Errors in Software Evolution
	Preliminaries
	Differential Errors
	Change Interaction Errors
	Running Example


	Change Sequence Graph
	Potential Interaction
	Computing the Change Sequence Graph

	Search-based Input Generation
	Empirical Evaluation
	Implementation and Setup
	Subjects
	Research Questions

	Results and Analysis
	Threats to Validity
	Related Work
	Chapter Summary
	On the Complexity of Regression Errors
	Introduction
	An Error Complexity Metric
	Measuring Change Complexity
	Measuring Error Complexity

	Computing Inter-procedural Change Sequence Graphs

	Empirical Study
	Objects of Empirical Analysis
	Variables and Measures
	Experimental Design
	Threats to Validity

	Data and Analysis
	H0a : Seeded vs. Actual Errors
	H0b : Life Span vs. Complexity
	H0c : Introducing vs. Fixing Errors
	RQ.1 : Changed Lines of Code as Proxy Measure
	RQ.2 : Complexity, Life Span, and Prevalence of CIEs

	Related Work
	Chapter Summary
	Conclusion
	Summary and Contributions
	Future Work

	Theorems – Partition-based Regression Verification
	Soundness
	Exhaustiveness


	Bibliography




















