
Model-driven Timing Analysis of Embedded Software

LEI JU

(B.Eng (HONS), National University of Singapore, Singapore)

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2010

Acknowledgements

This thesis would not have been possible without the help, support and patience of my

supervisors, Prof. Abhik Roychoudhury and Prof. Samarjit Chakraborty. Prof. Abhik

Roychoudhury has been my supervisor for over six years, since I was doing my Final

Year Project as an undergraduate student in School of Computing, National University

of Singapore. During the five years of my graduate study, I have received immense

support both in academics and life from Prof. Abhik Roychoudhury and Prof. Samarjit

Chakraborty. Their profound knowledge and professional guidance have been of great

value to me in my past research work presented in this thesis, and future career in life.

I wish to express my warm and sincere thanks to Prof. Wong Weng Fai and Prof. Chin

Wei Ngan as my thesis committee members. They have given me many insightful com-

ments and advices. I have been benefitted a lot from Prof. Tulika Mitra through research

collaborations, as well as her distinguished courses on embedded systems. I would also

like to thank Prof. Björn Lisper for taking time out of his schedule and agreeing to be

my thesis external examiner.

It is an honor for me to join IBM Research - Tokyo as a student intern during

my graduate study. I have gained valuable experiences by being exposed to industry-

i

ii

oriented research work, under the supervision of Dr. Arquimedes Canedo, Dr. Takeo

Yoshizawa, and Dr. Hideaki Komatsu.

I dedicate this thesis to my parents that have brought me so much love and encour-

agement throughout my life. They have been always supportive of me in pursuing my

dreams and help me become the person I am today.

I would also like to express my special thanks to Huynh Bach Khoa and Liang Yun,

who are great friends in daily life and excellent partners in research collaborations. Be-

sides, I really appreciate the support and friendship from my fiends inside and outside

the university, including my lab mates Wang Tao, Guo Liang, Ankit Goel, Vivy Suhen-

dra, Qi Dawei, and Wang Chundong. I thank my basketball team members Prof. Ooi

Beng Chin, Yang Fei, Bao Zhifeng, Wu Sai, Zhang Zhenjie, Cao Yu, Zhang Dongxiang,

just to name a few. Doing sports with them is of huge fun and has made me refreshed

after the tiredness and stress of work.

The work presented in this thesis was partially supported by National University

of Singapore research projects R252-000-286-112 and R252-000-321-112. They are

gratefully acknowledged.

Contents

Acknowledgements i

Contents iii

Abstract vii

Related Publications ix

List of Tables xi

List of Figures xii

1 Introduction 1

2 Background 9

2.1 Design Models . 9

2.1.1 The Synchronous Language Esterel 10

2.1.2 Message Sequence Charts . 14

2.2 Timing Analysis . 18

iii

iv

2.2.1 WCET Analysis . 18

2.2.2 Schedulability Analysis . 22

3 Related Work 27

3.1 WCET Analysis for Synchronous models 27

3.1.1 High-level WCET analysis . 28

3.1.2 Code-level WCET analysis . 29

3.1.3 Timing analysis for special-purpose architecture 31

3.2 Schedulability Analysis for Distributed System 32

4 Performance Debugging of Esterel 35

4.1 Overview . 36

4.2 Infeasible Path Patterns . 38

4.3 SCFG-level Infeasible Path Detection 41

4.3.1 Detection of Infeasible Paths Type 1-3 44

4.3.2 Detection of Infeasible Paths Type 4 46

4.4 Infeasible Path Elimination . 49

4.5 Performance Debugging and WCET Refinement 51

4.6 Experimental Results . 56

4.6.1 Experiment Setup . 56

4.6.2 WCET Analysis Results . 58

4.6.3 Case Study in Performance Debugging 59

4.7 Summary . 61

v

5 Context-sensitive Timing Analysis of Esterel 62

5.1 Overview . 63

5.2 Tick Transition Automata . 64

5.2.1 Formal Definition . 66

5.2.2 Construction of TTA . 68

5.3 Inter-tick Control Flow Context . 70

5.4 Inter-tick Micro-architectural Contexts 72

5.5 WCRT Estimation . 76

5.6 Case Study . 79

5.7 Summary . 82

6 Multiprocessor Execution of Esterel 83

6.1 Overview . 84

6.2 Code Generation . 86

6.2.1 Replicating Control-flow . 89

6.2.2 Handling Signal Communication 92

6.2.3 Sequentializing Concurrent Threads 93

6.3 Timing Analysis . 95

6.3.1 Computing Start Times . 96

6.3.2 Inter-processor Infeasible Paths 98

6.3.3 WCET Calculation of a Basic Block 100

6.3.4 WCRT Analysis . 103

6.4 Experimental Results . 105

vi

6.5 Summary . 108

7 Schedulability Analysis for MSC Model 109

7.1 Overview . 111

7.1.1 Running Example . 113

7.1.2 Issues in Analyzing the Model 116

7.2 Schedulability Analysis Framework 119

7.3 Response Time Calculation . 123

7.3.1 Preemption within an MSC . 125

7.3.2 Preemption by a Single MSC 127

7.3.3 Preemption by MSGs . 134

7.4 Case Study . 138

7.4.1 Experimental Setup . 138

7.4.2 Experimental Results . 140

7.4.3 Discussion . 142

7.5 Summary . 143

8 Conclusion and Future Work 144

8.1 Thesis Contributions . 144

8.2 Future Work . 146

Bibliography 149

Abstract

In recent years, model-based design has become an industrial standard to address prob-

lems associated with designing complex embedded software. For hard real-time system

domains including avionics and automobiles, static timing analysis is of paramount im-

portance. To reinforce the advantages of model-based design approach, timing analysis

must be seamlessly coupled to provide designers with temporal behavior of the system

at early design stages. In this thesis, we study various models (applicable at different

design levels) and corresponding timing analysis techniques. We show that to achieve

correct and accurate timing estimates in model-driven embedded software design, both

model-level and micro-architectural information need to be considered in the timing

analysis.

Code-level WCET analysis determines worst-case timing behavior of a program

on a micro-architecture for all possible inputs. In a model-based design framework,

executable code is automatically generated from a high-level model. We show that ac-

curate code-level timing estimates can be achieved by taking into account the high-level

information in the timing analysis. We discuss our model-driven WCET analysis in the

context of Esterel, a representative synchronous programming model. Our proposed

vii

viii

timing analysis utilizes model-level information to help determining program path and

context in the WCET analysis of generated C code from Esterel specification. In ad-

dition to strengthening existing WCET analysis approaches for sequential programs

with our model-driven techniques, we also propose a framework for timing analysis of

multiprocessor execution of Esterel specifications. Experimental results show that our

analysis substantially reduces WCET over-estimation.

In system-level schedulability analysis, WCET of each individual task is provided as

input parameters, which captures the worst-case intra-task timing behavior for the task.

Traditional task graph-based system models and their schedulability analysis essentially

concern with independent tasks and single-processor execution. We propose schedu-

lability analysis for standard Message Sequence Chart (MSC) based system models,

which are widely used for describing interaction scenarios between the components of

a distributed system. We also capture the timing effects of the shared bus for inter-

task communication in our proposed analysis. We illustrate the details of our analysis

using a setup from the automotive electronics domain, which consist of two real-life

application programs (that are naturally modeled using MSCs) running on a platform

consisting of multiple electronic control units (ECUs) connected via a FlexRay bus.

Related Publications

1. L. Ju. Model-driven Timing Analysis of Embedded Software. 13th ACM SIGDA

PhD Forum at the Design Automation Conference (DAC), 2010.

2. L. Ju, B. K. Huynh, A. Roychoudhury, and S. Chakraborty. Timing Analysis of

Esterel Programs on General-purpose Multiprocessors. ACM Design Automation Con-

ference (DAC), 2010.

3. L. Ju, B. K. Huynh, S. Chakraborty, and A. Roychoudhury. Context-Sensitive Tim-

ing Analysis of Esterel Programs. ACM Design Automation Conference (DAC), 2009.

4. L. Ju, B. K. Huynh, A. Roychoudhury and S. Chakraborty. A Systematic Clas-

sification and Detection of Infeasible Paths for Accurate WCET Analysis of Esterel

Programs. Singaporean-French IPAL Symposium (SinFra), 2009

5. L. Ju, B. K. Huynh, A. Roychoudhury and S. Chakraborty. Performance Debugging

of Esterel Specifications. ACM Intl. Conference on Hardware/Software Codesign and

System Synthesis (CODES+ISSS), 2008.

6. L. Ju, A. Roychoudhury and S. Chakraborty. Schedulability Analysis of MSC-based

System Models. IEEE Real-Time and Embedded Technology and Applications Sympo-

sium (RTAS), 2008.

ix

x

7. L. Ju, S. Chakraborty and A. Roychoudhury. Accounting for Cache-related Preemp-

tion Delay in Dynamic Priority Schedulability Analysis. Design Automation and Test

in Europe (DATE), 2007.

List of Tables

4.1 Feasible States of the example SCFG shown in Figure 4.3. 48

4.2 WCET analysis results. 57

6.1 Esterel benchmarks and generated C programs. 106

7.1 End-to-end delay (from sensor/radar to actuator) for the ACC and ACP appli-

cations shown in Figure 7.3. 140

xi

List of Figures

1.1 Overview of our model-driven timing analysis framework 4

2.1 An example Esterel program . 11

2.2 CEC compiler and the intermediate representations 12

2.3 An example MSG . 16

2.4 Example C programs and control flow graphs. 19

2.5 Relationship between the various task graph based models ([7]). 23

2.6 Examples of Schedulability analysis approaches. 25

4.1 WCET analysis of a single Esterel tick. 36

4.2 Example infeasible path patterns in generated C code. 39

4.3 Conflicting pairs in SCFG of an Esterel Program 43

4.4 Performance debugging framework for Esterel specifications. 52

4.5 Construction of the assembly-Esterel mapping in Figure 4.4. 54

4.6 The reflex game Esterel specification and highlighted critical path. 59

4.7 C-level critical path of the reflex game. 60

5.1 Context-sensitive timing analysis framework 64

xii

xiii

5.2 An Esterel program, compiled C tick function, and tick transitions 65

5.3 SCFG and TTA construction for the program in Figure 5.2 68

5.4 Example of inter-tick cache reuse analysis 75

5.5 An Esterel program containing loops and its TTA 77

5.6 ROM read operation in TURBOchannel interface program 79

5.7 Tick WCET results from different calculation approaches 81

6.1 Multiprocessor execution of Esterel Specification. 85

6.2 Example Esterel specification and it concurrent control flow graph (CCFG). . . 86

6.3 Incorrect multiprocessor code generation. 87

6.4 Correct multiprocessor code generation. 90

6.5 Overview of timing analysis framework for multiprocessor execution of Esterel. 95

6.6 Blocking delay due to signal communication. 97

6.7 Shared TDMA bus modeling. 102

6.8 WCRT analysis results. 107

7.1 Overview of our model-driven timing analysis framework (from Figure 1.1) . . 110

7.2 A basic MSC and timing annotations . 111

7.3 A FlexRay-based ECU network. 113

7.4 MSG model of the ACC and ACP applications. 114

7.5 Overview of our schedulability analysis framework. 119

7.6 Projection of Events on same PE. 128

7.7 Preemption from other applications. 136

xiv

7.8 Constructing a super preemption graph. 136

7.9 Delay bound for ACP obtained using our proposed analysis and the technique

presented in [96]. 141

7.10 Preemption graph for e14 by events from the ACC application. 142

Chapter 1

Introduction

In recent years, model-based design has become an industrial standard to address prob-

lems associated with designing complex embedded software. It provides an efficient

and cost-effective way to support various stages in the development cycle, including

requirement engineering, design reuse, model-based testing, simulation and verifica-

tion. Mature commercial tools have been built and are successfully adopted in dif-

ferent application domains, including UML (the Unified Modeling Language) [49],

MATLAB Simulink [101] and SCADE Suite [97]. In the model-based design flows,

the entire system description is usually developed as high-level models and final hard-

ware/software deployment can be automatically generated from these models (also re-

ferred to as model-driven engineering [45]).

Lots of methodologies and tool support have been built for model-driven testing and

verification (e.g., [108, 30, 103, 32, 73]). However, a significant portion of the works

focus on functionality analysis (such as verification of safety and liveness properties).

1

CHAPTER 1. INTRODUCTION 2

On the other hand, very limited effort has been invested to support quantitative/timing

analysis in model-based design. Existing model-level software performance predictive

analyses ([6]) are based on high-level performance models (e.g., the UML Profile for

Scheduling, Performance, and Time [48], and timed automata [2]), where timing infor-

mation are given and annotated with the model elements. However, such analyses are

usually ignorant to the underlying architecture platforms where generated software im-

plementations are executed (which may leads to loose or even unsafe analysis results).

Furthermore, a systematic design process for automatic calculation of platform-specific

timing information of model elements is missing.

Timing analysis plays an very important role in real-time and embedded system de-

sign. Simulation based timing analysis techniques (e.g., [79]) are expensive, and the

observed execution time may be an under-estimation of the real worst case scenario.

In hard real-time domains (e.g., avionics, automobiles and medical embedded devices),

guaranteed upper bound of worst-case timing behavior must be provided via static tim-

ing analysis to ensure the correctness and safety of a system. Two well-studied static

software timing analysis approaches in embedded system design are:

• Code-level worst-case execution time (WCET) analysis. WCET analysis com-

putes the maximum execution time of a program on a micro-architecture for all

possible inputs. Accuracy of the estimated WCET depends on both program path

information and timing effect of the micro-architecture. Thus, a typical WCET

analysis involves code level flow analysis ([66, 53]) and micro-architectural mod-

eling (e.g., pipelines [36, 70], caches [43, 26], and branch predictors [29]).

CHAPTER 1. INTRODUCTION 3

• System-level schedulability analysis. A schedulability analysis (or feasibility

analysis) decides that given a set of tasks and a certain scheduling policy, whether

all constraints(usually the deadlines) associated with each task could be satis-

fied. Various schedulability analysis techniques have been proposed for different

task models on single-processor ([74, 9, 82, 8, 7]) or multiprocessor/distributed

([107, 110, 87, 18]) execution.

Motivation of this dissertation: The motivation of this dissertation is to provide

seamless timing analysis support for modern model-based design framework of real-

time embedded systems. Traditional schedulability analysis techniques are applicable

to system models that are essentially based on the concept of task graphs (e.g., [74, 7]).

However, such task graph-based models only provide local or processor-centric views

of a system, and are not very suitable for specifying the interactions between the mul-

tiple entities of system. Comparing to high-level behavioral modeling languages used

in model-based design frameworks(e.g. message sequence charts MSC [58]), such task

graph-based specifications are too abstract and lack of expressive power to model all

possible behaviors (e.g., data communication, conditional execution) for complex sys-

tem functionalities.

On the other hand, one significant challenge for static WCET analysis is to reduce

the overestimation between estimated WCET and real WCET, due to dynamic program

behavior and complexity of underlying architecture. State-of-the-art WCET analysis

techniques ([109]) try to achieve accurate timing estimates, by tightly coupling program

CHAPTER 1. INTRODUCTION 4

Model-based design

Globally asynchronous
model

(e.g., MSCs)

Locally synchronous
model

(e.g., Esterel)

Timing analyses

System-level
schedulability analysis

(Chapter 7)

Code-level
WCET analysis

(Chapter 4, 5, and 6)

Micro-architecture
modeling

Model-to-code
compilation

Performance
feedback

Figure 1.1: Overview of our model-driven timing analysis framework

path analysis (at source/binary code level) and micro-architectural modeling. However,

for model-based design framework where source programs are automatically generated

from high level models, blindly analyzing the generated code without taking model-

level information into consideration may lead to additional overestimation.

Contributions of this dissertation: To achieve our goal, we propose methodologies

of both system-level schedulability analysis and low-level WCET analysis for model-

based design frameworks. Figure 1.1 presents an overview of our proposed timing anal-

ysis for model-driven embedded system design. In this work, we consider a fairly gen-

eral model hierarchy called the Globally-Asynchronous Locally-Synchronous (GALS)

model [25, 83]. Each local task is designed in a synchronous model (e.g., the syn-

chronous language Esterel [21]), where all computation and communication for a set

of given inputs and outputs are assumed to react instantaneously. Software implemen-

tation (e.g., C programs) can be automatically generated from the synchronous model.

The global system is represented with an asynchronous model (e.g., MSCs), which de-

scribes relations between individual local tasks of various applications in the system,

CHAPTER 1. INTRODUCTION 5

including the control/data dependencies and communications. The global system is

asynchronous such that (i) reaction time of each local task, as viewed by other tasks

is finite and non-zero; and (ii) communication time between local tasks are finite and

non-zero.

For timing analysis of the above-mentioned setting, code-level WCET analysis can

be performed on code generated from the locally synchronous model of each task. The

system-level schedulability analysis determines the satisfaction of timing constraints

(e.g., deadlines) annotated on the globally asynchronous model, given the estimated

WCET values of individual tasks, as well as other properties including task periods,

tasks to processing elements (PEs) mapping, and the architecture configuration. The

main contributions of this dissertation are summarized below.

• We propose an accurate WCET analysis framework for C programs generated

from Esterel specifications, which have been widely adopted for designing re-

active kernels in safety-critical domains such as avionics ([11]). Automatically

generated code from high-level control-intensive models like Esterel usually con-

tains massive number of infeasible paths, compared to human-written programs.

In our WCET analysis, we can efficiently and effectively identify and remove in-

feasible paths in the generated code by exploiting the semantics and compilation

information of the source Esterel specification. Thus, tighter WCET estimate of

a single Esterel tick execution can be obtained ([62]).

• We show that bi-direction traceability can be automatically built between high-

level model and low-level timing analysis [62]. By applying the maintained

CHAPTER 1. INTRODUCTION 6

model-to-code mapping on the calculated WCET path, we are able to identify

parts of the model specification which might pose as timing/performance bottle-

necks with respect to the underlying platform. This not only allows a designer

to optimize or simplify Esterel specifications, but also choose/configure suitable

implementation platforms.

• In [61], we further extend our timing analysis for Esterel specification to capture

context information between tick executions. We show that program control flow

as well as architecture contexts can be used to rule out certain execution paths and

architecture states in the code to be executed within a tick. Our experimental re-

sults with realistic case studies show 40% tighter timing estimates when program

control flow and inter-tick cache context information is taken into account.

• Following this line of work, we propose a scheme for generating efficient code

from Esterel specifications for a multiprocessor execution. Furthermore, we achieve

tight timing estimation on the generated multiprocessor C code, by considering

inter-processor infeasible program flow and modeling the timing effect of the

shared bus ([63]).

• We propose a general schedulability analysis for distributed system modeled in a

globally asynchronous message sequence chart (MSC) based specification ([64]).

MSC graphs (MSGs) can be very convenient for describing interactions among

a number of agents, therefore a natural choice for modeling and specifying dis-

tributed real-time and embedded systems. Given a system description in MSGs,

CHAPTER 1. INTRODUCTION 7

along with the scheduling/arbitration policies at the different resources (e.g., PEs

and shared buses), our analysis can be used to compute upper bounds on the end-

to-end delays associated with different event (and/or message) sequences. We

illustrate the details of our analysis using a setup from the automotive electronics

domain, where two real-life applications running on multiple electronic control

units (ECUs) connected via a FlexRay bus. We show that compared to existing

timing analysis techniques for distributed real-time systems, our proposed analy-

sis gives tighter results, which immediately translate to better system design and

improved resource dimensioning.

Organization of the Chapters: The rest of the thesis is organized as follows. The

next two chapters discuss background and related work on system design models and

timing analysis. In order to systematically obtain WCET estimation for individual tasks

in a system specification, we propose a model-driven WCET analysis for tasks designed

with Esterel specification in Chapter 4, 5, and 6. In particular, Chapter 4 considers the

WCET estimation for a single Esterel clock tick execution, with automatical and light-

weight infeasible path detection and elimination. We also discuss how to maintain and

utilize a bi-directional traceability between Esterel model specification and the gener-

ated C programs for performance feedback and further WCET refinement. Chapter 5

shows how to incorporate program control flow and architecture contexts into timing

analysis of task computation that spans multiple consecutive clock ticks. Chapter 5

extends the our timing analysis techniques to multiprocessor platforms. In Chapter 7,

CHAPTER 1. INTRODUCTION 8

we present our proposed system-level schedulability analysis for MSC-based globally

asynchronous models. Finally, Chapter 8 presents the concluding remarks along with

extensions and directions for future research.

Chapter 2

Background

2.1 Design Models

Synchronous models ([10]) provide a clear formalism for programming reactive sys-

tems, which exhibit high degree of concurrency but call for deterministic and pre-

dictable execution. Commonly used synchronous models in embedded system de-

sign include UML StateCharts [57], MATLAB Simmulink/Stateflow [101], and syn-

chronous languages (Esterel [21], Lustre [54] and Signal [12]). Use of synchronous

models simplifies the task of programming and makes such specifications amenable to

formal verification/certification. Generating implementations directly from synchronous

language specifications is widely practiced in safety-critical domains such as avionics

where certification of the generated implementation is essential.

On the other hand, large-scale distributed computer systems are usually imple-

mented by asynchronously composing several synchronous components, where each

9

CHAPTER 2. BACKGROUND 10

component has its own clock. In such asynchronous model, reaction time of each lo-

cal task and communication time between tasks are viewed by other tasks as finite and

non-zero. It relaxes the behavior of the system, and allows the designer to refine one

local task at a time.

In this work, we consider a fairly general system description with the Globally

Asynchronous Locally Synchronous (GALS) model [25]. In particular, we adopt the

synchronous language Esterel and asynchronous message sequence chart (MSC) to il-

lustrate our model-driven timing analysis techniques.

2.1.1 The Synchronous Language Esterel

Synchronous languages like Esterel have been widely adopted for designing reactive

systems in safety-critical domains such as avionics and automobiles (e.g., [28]). Esterel

is an imperative concurrent language. Specifications written in Esterel are based on the

underlying “synchrony hypothesis”, where all computation and communication, unless

explicitly paused (using a pause statement), happen instantaneously. A run of a pro-

gram typically consists of steps or reactions in response to ticks of a global clock. With

each clock tick, a reaction computes the values of output signals and a new state from

the input signals and the current state of the program. Such a reaction completes (in

zero time) if it does not contain any pause, or else it delays the instructions following

the pause until the next clock tick.

For example, the program “emit A; emit B; pause; emit C; pause;

emit D” emits the signals A and B at the first tick, C at the second tick, and D at the

CHAPTER 2. BACKGROUND 11

1

[
emit A; pause; emit B;
||
pause; emit C; pause; emit D;
];
emit E;

A
B
C

D
E

Logical ticks

Programmer’s view of time = 0

Figure 2.1: An example Esterel program

third tick. If p and q are Esterel statements, then p ‖ q is the parallel composition

where p and q are executed concurrently with signals between p and q being trans-

mitted instantaneously. Thus, the Esterel program shown in Figure 2.1 will emit signal

A at the first tick, B and C at the second tick, followed by D and E in the third tick.

Further details of the syntax and semantics of Esterel may be found in [21] (or from the

references in [11]).

Compiling Esterel. Esterel programs can be compiled into C programs to be simu-

lated/executed on general processor architectures. In principle, the generated C code

should preserve the semantics of original Esterel program by

• implementing a tick function, such that one complete execution of the function

(between its entry and exit) represents Esterel computation and communication

required to be instantaneously executed within one clock tick. The tick function

is loop-free, since Esterel allows no loops within a clock tick.

• encoding the automata of tick transitions within the tick function, which preserves

the context information of clock tick, and determines the path to be executed in

the tick function.

CHAPTER 2. BACKGROUND 12

Esterel
specification AST

GRC

PDG

CCFG

SCFG C
(tick function)

CEC compiler

Figure 2.2: CEC compiler and the intermediate representations

• sequentializing the concurrent execution within a tick, based on the control de-

pendencies (e.g., clock tick boundary, preemption) and communication depen-

dencies (between set and test of signals) defined in the Esterel program.

Various techniques exist for compiling Esterel into sequential or distributed C pro-

grams ([90, 47]). Based on the intermediate representation used, they can be categorized

into automata-based, netlist-based, and control flow graph-based approaches.

Automata based compiler (e.g., Berrys V3 [15]) exhaustively searches entire state

space of the program and builds a product automata that captures all computation and

communication in each clock tick. A separate branch is generated for each state in

the automata (representing a possible clock tick). The generated code is very fast to

run, with very small overhead to determine the state to be executed. However, size

of tje generated code grows exponentially with number of concurrent threads in the

specification.

Netlist based approaches (e.g., Berry’s V4 and V5 [90]) translate each Esterel state-

ment into a netlist of boolean logic gates. No statement duplication is required in the

CHAPTER 2. BACKGROUND 13

generated code, which leads to much more compact code compared to the automata

based compilation. However, the main drawback is the significant increase in execution

time. This is due to all code in the source specification will get executed in each clock

tick, even though some of them are not required to run [90].

In this work, we will focus our discussion on the control flow graph-based Esterel

compilation, which normally produce fast and small C code. In particular, we have

integrated our work into the control flow graph-based code generation of the Columbia

Esterel Compiler (CEC) [34]. Figure 2.2 presents an overview of the CEC compiler

and the intermediate representations used during Esterel-to-C compilation. CEC first

parses an Esterel specification to build an abstract syntax tree (AST), which is then

used to generate a variant of the so-called Graph Code (GRC) [90] through a syntax

directed translation. GRC represents a concurrent structure of the desired cycle function

and uses selection tree to encode the transition between cycles. It is an elegant way

to represent the Esterel program, which allows optimizations to be performed prior

to C code generation. The GRC is then transformed into a sequential control flow

graph (SCFG), via a set of intermediate representations like program dependence graph

(PDG), and concurrent control flow graph (CCFG). In CEC, these intermediate steps

ensure that the concurrent control flow in GRC is sequentialized with the minimum

number of context switches, while obeying the control/communication dependencies in

original the Esterel program. Finally, sequential C code can be directly generated from

the SCFG.

CHAPTER 2. BACKGROUND 14

2.1.2 Message Sequence Charts

Message Sequence Charts (MSCs) or Sequence Diagrams are widely used by require-

ments engineers in the early stages of reactive system design [60, 93, 4]. MSCs can

be very convenient for describing asynchronous interactions between a number of lo-

cally synchronous agents, e.g., a bus protocol between a bus controller and a number of

processing elements trying to negotiate access to the bus. MSCs are therefore a natural

choice for modeling and specifying distributed real-time and embedded systems.

Definition 1 (Message Sequence Chart) An MSC is a labeled poset of the form Ch =

(L, {El}l∈L,�, λ), where

• L is the set of processes (also called lifelines) appearing in the chart as vertical

lines.

• El is the set of events that the lifeline l takes part in during the execution of Ch.

• � is the partial ordering relation over the occurrences of the events in {El}l∈L.

The relation� or�Ch (we put Ch as the superscript when necessary to highlight

that the partial order belongs to chart Ch) is defined as follows.

– �Ch
l is the linear ordering of events inEl, which are ordered top-down along

the lifeline l. �Ch
l is restricted to events on the same lifeline l, where �Ch

L is

the collection of �Ch
l for all lifeline l ∈ L.

– �Ch
sm is an ordering on message send/receive events in {El}l∈L. If es is a

send of message m by process p to process q, and the corresponding re-

CHAPTER 2. BACKGROUND 15

ceive event is er (the receipt of the same message by process q), we have

es �Ch
sm er. In rest of this thesis, we also refer the ordering on message

send/receive events as communication dependency between the sender and

receiver events.

– �Ch is the transitive closure of �Ch
L =

⋃
l∈L �l and �sm, i.e.

�Ch= (�Ch
L ∪ �Ch

sm)?

• λ is the labeling function, with a suitable range of labels, which describes (a)

the messages exchanged by the lifelines and (b) the internal computational steps

during the execution of the chart Ch.

For example in the MSC msc1 in Figure 2.3, we have E1,1 �msc1
P1 Em1

s �msc1
P1 E1,3

on the lifeline P1. For sending and receiving message m1 between P1 and P2, we

have the ordering Em1
s �msc1

sm Em1
r . The transitive closure (�msc1

P1 ∪ �msc1
P2 ∪ �msc1

sm)?

defines the following ordering

E1,1 �msc1
P1 Em1

s �msc1
sm Em1

r �msc1
P2 E1,2

However, no ordering is imposed betweenE1,2 andE1,3 inmsc1. Thus, an MSC defines

a partial ordering relation over the events in the chart.

The preceding definition of MSC is an abstract one, and does not clarify the events

appearing in an MSC. The complete MSC language ([60]) includes several types of

events: message sends and receives, local actions, lost and found messages, instance

creation and termination etc. However, for simplicity of exposition, we assume that

CHAPTER 2. BACKGROUND 16

P1

E1,1

P2

E1,2

P3

msc1

P1 P2 P3

msc2

P1 P2 P3

msc3

msc1

msc2 msc3

E1,3

m1
E2,1

E2,2

E3,1

E3,2

1m
sE 1m

rE
2m

sE 2m
rE 3m

sE
3m

rE
m2 m3

Figure 2.3: An example MSG

the events inside an MSC is of one of the following forms — sends, receives and local

events. A local event can denote any terminating computation within a process, i.e., a

terminating sequential program.

Each MSC in a system specification only denotes a scenario and captures the par-

tial ordering between various computation and communication tasks/events constituting

this scenario. Multiple such MSCs can be combined hierarchically to form high-level

MSCs (HMSCs) [60] , which involves choice, concatenation and iteration operations

over a finite set of basic MSCs. HMSCs based specification is capable of capturing

all possible system behaviors. In this work, we consider flattened HMSCs, which are

known as message sequence graphs (MSGs) [3, 58], which describes the control flow

(conditional execution) between MSCs.

CHAPTER 2. BACKGROUND 17

Definition 2 (Message Sequence Graph) An MSG can be defined as a directed graph

MSG = (N,E, ◦), where

• N = {MSC} ∪ {∇} ∪ {4} is the set of nodes in the MSG, where each node

is either a basic MSC, or a special node ∇ (4) which denotes the unique initial

(final) node respectively.

• E is the set of edges in the MSG, which represent the natural operation of chart

concatenation between two nodes N1 → N2. Two outgoing edges from a single

node represent non-deterministic choice, so that exactly one of the two successor

charts will be executed in an execution.

• ◦ denotes the concatenation method between two nodes. We consider the so-

called synchronous concatenation (not to be confused with synchronous models),

where for a concatenation of two charts Ch ◦ Ch′ — all events in Ch′ start only

after chart Ch is finished.

Example of a simple MSG is shown in Figure 2.3. In the following we consider

acyclic MSGs where there are no loops between initial state (∇) to the final state (4).

An execution trace is defined to be a path from the initial state (∇) to the final state

(4) in the MSG and concatenates the sequence of MSCs encountered on the way. Of

course, there is always an outer loop from final state (4) to initial state (∇) denoting

periodic behavior repeated forever. Our analysis can be extended to allow arbitrary

loops in between the initial state (∇) to the final state (4), provided these (inner) loops

are bounded.

CHAPTER 2. BACKGROUND 18

2.2 Timing Analysis

Reliable timing analysis is of significant importance for safety-critical real-time sys-

tem design, where the correctness of system depends on satisfaction of both functional

and timing properties. To formally verify timing constraints, extensive studies have

been proposed on static timing analysis methodologies. In this section, we provide an

overview of two well-known categorizations of timing analysis approaches.

2.2.1 WCET Analysis

Static worst-case execution time (WCET) analysis computes the maximum execution

time of a program on a micro-architecture for all possible inputs. WCET analysis of

a program involves finding the “longest” execution trace in the program’s control flow

graph (CFG). Recall that the nodes of a CFG are the basic blocks (maximal code frag-

ments which are executed without control transfer), and the edges denote control trans-

fer between basic blocks. Thus, a path in a control flow graph is simply a sequence of

basic blocks, and an execution trace is a path executed for some program input. WCET

analysis tries to find the maximum time the program takes to execute for any input.

Finding the weighted longest execution trace in a program can be done by running

all possible inputs. However, this is not practical since (a) the number of inputs may be

large, and (b) the program execution time for the same input may be different on differ-

ent processors. WCET analysis methods typically solve this problem by developing a

static analysis framework which takes as inputs (i) the program P being analyzed and

(ii) a processor platform description Proc, and produces as output an overestimate of

CHAPTER 2. BACKGROUND 19

(assignment,branch)
conflicts
(0, 3->4)
(1, 3->5)
(5, 6->8)

(branch,branch)
conflicts
(0->1, 6->8)
(0->2, 6->7)

(b) an acyclic CFG and conflicting pairs

sum=0;
for (i=0; i<10; i++){

if(i % 2 == 0) sum += i;
}
return sum; sum=0;

i=0;

i<10

i%2==0

sum+=i

i++

return
sum

yes

no

yes
no

x = 0;
if (y)

x = 1 z=1

if(x)

z=2 y=1

yes no

yes no

if(y)

z=3 z=4
yes no

B0

B1 B2

B3

B4 B5

B6

B7 B8

return
x+y+z

B9

B1

B2

B3

B4

B5

B6

(a) A C program and its CFG

Figure 2.4: Example C programs and control flow graphs.

the WCET of program P on processor Proc.

Static analysis based WCET estimation proceeds by finding the longest path in the

program’s control flow graph, satisfying certain loop bounds (e.g., in the example of

Figure 2.4(a) the loop bound for the only loop is 10). The execution time estimate of

each basic block is found by micro-architectural modeling where timing models of the

processor micro-architecture (e.g., pipeline, cache, branch prediction) are developed to

find the WCET of a sequence of instructions. Note that the WCET estimate of the in-

struction sequence corresponding to a basic blockB is an upper bound on the execution

time of B under all possible execution contexts.

With the knowledge of WCET of the basic blocks, finding the WCET of the whole

program is reduced to an optimization problem. Here, we maximize the program exe-

cution time without enumerating the execution traces. This is done by expressing linear

CHAPTER 2. BACKGROUND 20

constraints on the execution counts of any node/edge of the control flow graph. We

then maximize an objective function representing the program execution time subject

to these linear constraints. Since the execution counts of control flow graph nodes/edges

are integers, we can employ Integer Linear Programming (ILP) technology. Formally,

let B be the set of basic blocks of a program. The program’s WCET is given as:

maximize
∑
B∈B

NB ∗ cB

where NB is an ILP variable denoting the execution count of basic block B and cB is a

constant denoting the WCET estimate of basic block B. The linear constraints on NB

are developed from the flow equations based on the control flow graph. Thus for basic

block B, ∑
B′→B

EB′→B = NB =
∑

B→B′′

EB→B′′

where EB′→B (EB→B′′) is an ILP variable denoting the number of times control flows

through the control flow graph edge B′ → B (B → B′′). Additional linear constraints

capture the loop-bounds (e.g., in Figure 2.4(a) we need to add the constraint E5→2 ≤

10).

Infeasible path detection. The core WCET estimation method outlined in the pre-

ceding is neither accurate nor automated. The cause of imprecision comes from the

fact that many paths in the control flow graph might be infeasible, that is not appearing

in the execution trace for any input. For example in the acyclic CFG shown in Figure

2.4(b), the execution path (B0 → B2 → B3 → B4) cannot be taken for any program

input, due to conflict between the assignment x = 0 (in B0) and the conditional branch

CHAPTER 2. BACKGROUND 21

B3→ B4 (which can be taken only if x! = 0). It is clearly that undue WCET overesti-

mation is introduced if an infeasible path is considered to be the longest path in WCET

analysis.

Many techniques have been proposed to detect and eliminate infeasible paths at

source/assembly code level for WCET analysis ([78, 37, 104, 53]). In this work, we

adopt a light-weight infeasible path detection technique based on the notion of conflict-

ing pairs [104] — pairs of (assignment, branch) or (branch, branch) statements which

may not appear together in an execution trace. Simply put, an assignment a on a vari-

able x conflicts with a branch edge e (a branch edge refers to a branch condition being

evaluated to either true or false) testing the same variable x if and only if (i) the test on

x in e never succeeds with the value assigned in a, and (ii) there exists at least one path

in the control flow graph between a and e which does not modify variable x. Similarly,

a branch edge e1 testing a variable x conflicts with another branch edge e2 testing the

same variable x if and only if (i) the conditions on x in e1 and e2 can never succeed

together, and (ii) there exists at least one path in the control flow graph between e1 and

e2 which does not modify variable x. Note that infeasible paths spanning across loop

iterations are not captured by the definition of conflicting pair. Thus, [104] considers

the control flow graph (CFG) to be a directed acyclic graph (DAG), representing the

body of a loop. However, as we have discussed in Section 2.1.1, code generated from

Esterel specification (the tick function) contains no loop within execution of a single

clock tick. Thus, we do not detect infeasible paths spanning across loop iterations.

The notion of conflicting pair is extensively used in our model-driven timing anal-

CHAPTER 2. BACKGROUND 22

ysis for synchronous model specification. To help readers have a better understanding

the concept, we borrow the formal definition of conflicting pairs from [104].

Definition 3 (Effect constraint) The effect constraint of an assignment var := expression

is var == expression. The effect constraint of a branch-edge e in the CFG for a

branch condition c is c (¬c) if e denotes that the branch is taken (not taken).

Definition 4 (Conflicting pair) A branch-edge (or assignment) x has (branch, branch)

(or (assignment, branch)) conflict with a subsequent1 branch-edge e if and only if

• Conjunction of the effect constraints of x and e is unsatisfiable, and

• There exists at least one path from x to e in the CFG that does not modify the

variables appearing in their effect constraints.

In Figure 2.4(b), we list the (assignment, branch) and (branch, branch) conflicting

pairs in the example acyclic CFG. Conflicting pairs capture only pairwise conflicts,

which cannot detect (and exploit) arbitrary infeasible path information. However, we

will show in this work that conflicting pair based infeasible path detection technique is

efficient and effective for analyzing compiler generated code from high-level control-

intensive models like Esterel.

2.2.2 Schedulability Analysis

Schedulability analysis decides for a given set of tasks under certain scheduling policy,

whether all deadline requirement associated with each task can be satisfied. In order to
1Subsequent in the sense of the topological order of the control flow DAG.

CHAPTER 2. BACKGROUND 23

Recurring real-time tasks

Generalized multiframe

Sporadic Multiframe

Periodic task model
A B implies B is a
generalization of A

Figure 2.5: Relationship between the various task graph based models ([7]).

perform schedulability test for a set of tasks, one has to first characterize their (timing)

behaviors into certain task models. The well-known periodic task model by Liu and

Layland [74] makes following assumptions on each task in the task set.

1. Every task τi is periodic, i.e. activated within a constant interval Ti

2. Deadline of each instance of task τi is the same and equal to its period Ti

3. Each instance of task τi has the same worst-case execution time Ci

4. All tasks are independent, i.e. requests for a certain task do not depend on the

initiation or the completion of requests for other tasks.

Based on periodic task model, many new task graph based models and correspond-

ing schedulability analysis techniques have been proposed in recent works. In these

models, one or more assumptions made in the periodic task model are relaxed, so that

more complex system behaviors can be modeled. For example, the sporadic task model

CHAPTER 2. BACKGROUND 24

[9] allows minimum separation time to be specified between two consecutive task re-

leases, instead of the restricted constant period required in periodic task model. In

multi-frame and generalized multi-frame task model ([82, 8]), execution time and dead-

line can be varied between different task instances (a.k.a. frames). Finally, recurring

real-time task model [7] allows conditional execution between task instances. Figure

2.5 adopted from [7] summarizes relationship between the various task models.

When a set of tasks are running on shared resources, we need a scheduling pol-

icy to decide which task should be allowed to proceed when several of them are ready.

Scheduling involves the allocation of resources to task in such a way that certain perfor-

mance constraints are met. Different kinds of scheduling policies have been proposed

([91]), including the well-known Rate Monotonic scheduling (RMS) and Earliest Dead-

line First (EDF) scheduling.

There are two standard categorizations of approaches for schedulability analysis of

of real-time systems — worst-case response time analysis-based techniques (WCRT)

[22, 55, 68], and the processor demand criteria-based analysis [8, 23].

WCRT analysis is used to test feasibility for a task set under static priority policy.

The response time of a task is defined as the time interval between it releases and fin-

ishes execution. Response time of task τi can be calculated by the following recursive

equation

wn+1
i = Ci +Bi +

∑
j∈hp(i)

dw
n
i

Tj

e × Cj

where Bi is the blocking time of τi by lower priority tasks(due to resource contention),

and hp(i) contains the set of tasks whose priorities are higher than τi. The recursive

CHAPTER 2. BACKGROUND 25

C1 C1

R2

τ1

τ2

T1

C2

D1+T1 D1+2*T1

C1

2*C1

dbf(τ1,t)

3*C1

D1

(a) WCRT analysis (b) Demand bound function

t

Figure 2.6: Examples of Schedulability analysis approaches.

equation converges when wn+1
i = wn

i and this final value of wn
i is the response time

(Ri) of τi. Then the feasibility test for a task set S is just to check that

∀τi ∈ S,Ri ≤ Di

where Di is the explicit deadline of task τi. Figure 2.6(a) shows an example of WCRT

calculation. The worst case response time of τ2 (labeled as R2 in the Figure) is equal

to the summation of its worst case execution time C2 and 2 × C1, the time spent for

execution of a higher priority task τ1 within R2.

Another more general technique is called the processor demand criterion[23]. Pro-

cessor demand criterion quantifies the maximum amount of processor time that all the

jobs generated by the tasks can require in an interval of specified size, and attempts

to determine whether there is an interval-size for which the processor demand criteria

summed over all tasks in the system exceeds the processor capacity. Schedulability

analysis using processor demand criterion will check that

∀t ≥ 0, t ≥
n∑

i=1

(bt−Di

Ti

c+ 1)Ci

CHAPTER 2. BACKGROUND 26

In other words, within any point of time t, the processor demand generated by all tasks

in a task set must be smaller than or equal to the total available processing time (i.e., t).

[23] shows that this checking only needs to be tested for a bounded value of t(the least

common multiple LCM of all the task’s period in the system). Figure 2.6(b) shows

the processor demand of a task τ1 over time t, given as the demand bound function

dbf(τ1, t). For example, no computation workload is required by τ1 before its first

deadline at time D1. While the processor must allocate C1 time unit to τ1, for the time

period between [D1, D1+T1), i.e., before the deadline due for the second arrival of τ1.

If a task set satisfies the processor demand criterion, there is an optimal uniprocessor

scheduling algorithm(such as EDF) that manages to schedule it without missing any

deadlines.

Chapter 3

Related Work

In this chapter, we present an overview of related work on timing analysis approaches

for model based design framework.

3.1 WCET Analysis for Synchronous models

A real-life implementation generated from high-level synchronous models can be said

to follow the synchrony hypothesis if all events that are logically assumed to be pro-

cessed instantaneously are processed before the next set of events arrive. Verifying

the synchrony hypothesis when a synchronous model is compiled into hardware is rel-

atively straightforward. As a result, compiling synchronous language specifications

directly into hardware is currently the most popular design flow ([14]).

On the other hand, when synchronous languages are compiled into software – e.g.,

into a sequential C code – validation of the synchrony hypothesis is more complicated

27

CHAPTER 3. RELATED WORK 28

and depends on both the generated code, as well as the micro-architecture of the plat-

form executing this code. For the synchrony hypothesis to hold, the estimated Worst-

case Execution Time (WCET) associated with the processing of events should be less

than the minimum separation time between the arrival of sets of events (that are assumed

to be processed instantaneously).

3.1.1 High-level WCET analysis

Architecture independent high-level timing analysis of Esterel (or Esterel-like) pro-

grams have been studied in [16, 100, 75]. Given a synchronous language specification,

the task of a high-level WCET analysis is to compute the worst case computation time

for a particular input event (or all allowed inputs), in terms of number of clock ticks

required. This is usually done by translating the synchronous specification into a finite-

state machine whose transitions correspond to clock ticks in the model ([98]). In other

words, the high-level WCET analysis problem is concerned with the number of Esterel

clock ticks, rather than the execution time of code within a clock tick. The timing analy-

sis problem where the states of the automata have been annotated with WCET estimates

has been discussed in [77]. Again, the focus here was not to obtain tight WCET esti-

mates, but to analyze high-level timing properties of an Esterel specification, assuming

that platform-level WCET estimates are already available.

[51] proposes an early stage WCET analysis to derive “approximate” WCET esti-

mates at early stages of the software development process. Instead of performing exe-

cutable code level WCET analysis on a target architecture, the early stage WCET anal-

CHAPTER 3. RELATED WORK 29

ysis tries to construct a high-level timing model that contains approximate execution

time information (i.e., a not guaranteed bound) on basic code constructs. Flow analysis

is then performed on the timing model to find the worst case execution trace. Since

the timing model can be built at any of the implementation levels between high-level

model specification and executable code, early stage WCET analysis can be achieved.

However, the analysis does not guarantee a safe upper bound on execution time, and its

accuracy (how close to the real WCET) depends on many issues including (i) nature of

the model specification (e.g., sequential or concurrent, imperative or declarative); (ii)

model-to-executable compilation technique; (iii) and complexity of the target platform.

3.1.2 Code-level WCET analysis

Code-level WCET analysis for synchronous models aims to find architecture dependent

execution time for computation within a single clock tick in the generated low-level

executable code (e.g., C or assembly). [76] performs the low level WCET analysis

for synchronous language Quartz (an Esterel-variation, see [98]) by building a formal

transition model on the statements in the generated executable code. Transitions are

labeled with the physical execution time of corresponding statements, and symbolic

model checking is applied to search the “longest” WCET path. However, the presented

technique is only applicable to automata-based code generation, which does not scale

well for large Esterel programs.

The problem addressed in [94] is the closest to what we study in this work. Here,

the problem of infeasible paths in the generated code is mentioned and timing anal-

CHAPTER 3. RELATED WORK 30

ysis of the whole Esterel program is studied. Though the work can also be used for

estimating the maximum computation in a clock tick, the methodology is restricted,

since it requires two separate codes to be generated from the synchronous program —

one on which the WCET analysis is performed, and one which guides the analysis.

The approach in [94] is only feasible for the generation of circuit code, which tends

to be slow for large-scale application specifications. Furthermore, the problem of bidi-

rectional traceability or performance debugging of Esterel specifications – even though

mentioned – was not studied on non-trivial Esterel benchmarks by including traceability

links in an Esterel compiler.

Code-level WCET analysis techniques for other synchronous models, e.g., State-

Charts [57] and MATLAB Simulink [101], have been also studied ([38, 65]). Recent

advances in WCET analysis techniques and the availability of industry-strength tools

([42, 109]) has renewed the interest in synchronous language-based design flows tar-

geting general-purpose platforms. A WCET analysis framework that integrates the

synchronous language SCADE [97] from Esterel Technologies with the aiT WCET

analyzer from AbsInt GmbH [1], targeting general-purpose processors, was presented

in [59]. In [59], the WCET analysis is ignorant to the fact that the executable code

is compiled from a high-level modeling language. On the other hand, our proposed

model-driven timing analysis framework (discussed in Chapter 4, 5, and 6) automat-

ically utilizes model-level information in low-level WCET analysis, which leads to

more efficient and tighter WCET estimation. Very recently, [105] proposes a tech-

nique to improve timing analysis for MATLAB Simulink/Stateflow model, by incor-

CHAPTER 3. RELATED WORK 31

porating model-level flow information into WCET analysis. However, the model-level

flow constraints are manually identified and translated into code-level flow constraints

for WCET calculation.

3.1.3 Timing analysis for special-purpose architecture

Special-purpose reactive processors have been developed to support concurrent exe-

cution of Esterel specification, where instead of compiling into C code, the Esterel

specification is mapped to a concurrent reactive processing ISA. Example architectures

include EMPEROR [111], STARPro [112] and Kiel Esterel processor (KEP) [69, 71].

Timing analysis for execution of Esterel specifications on the special-purpose reac-

tive processors have been studied in [69, 111, 19, 81]. Recently, similar approaches have

also been followed for timing analysis of a synchronous version of C, called PRET-C,

to be implemented on special precision timed or PRET architectures [95]. Compared to

timing analysis of general-purpose processors, micro-architectural modeling for such

special-purpose processors is simplified to a large extent. Furthermore, special-purpose

reactive processors implement hardware supports for handling concurrency and other

Esterel semantics (e.g, preemption and event broadcasting). As a result, timing analy-

sis designed for these architectures can not be applied to the general-purpose processor

setting. In this work, we focus on timing analysis of Esterel specifications on general-

purpose processor architectures.

CHAPTER 3. RELATED WORK 32

3.2 Schedulability Analysis for Distributed System

Tindell et al. [107] propose a holistic schedulability analysis for distributed real-time

systems, which bounds the worst case delays of both local computations and inter-

processor communications. However, their analysis assumes only a simple static TDMA

protocol for the bus communication, and the communication dependencies are not taken

into consideration (thereby leading to coarse analysis and pessimistic results). In [89],

timing analysis for distributed system connected via a shared FlexRay bus ([44]) is pre-

sented. The analysis focuses on bounding the messages transmission time in both the

static and the dynamic segments of a FlexRay communication cycle. The discussed

schedulability analysis is applicable to task models with only communication depen-

dencies, where conditional execution of task is not supported. Recently, schedulability

test has been proposed for independent sporadic tasks executed on uniform multipro-

cessors with global EDF scheduler.

Although the task graph based models introduced in Section 2.2.2 naturally rep-

resent periodically or sporadically executing applications [35, 86], they only provide

local or processor-centric views of a distributed system. More specifically, the structur-

ing mechanism used revolves around specifying all the tasks that execute on any given

processing (or communication) element. As a result, they are not very suitable for spec-

ifying the interactions between the multiple entities of a distributed system – which is

often a more natural way of specifying such systems.

There are two standard approaches for schedulability analysis of task graph-based

specifications of real-time systems — worst-case response time analysis-based tech-

CHAPTER 3. RELATED WORK 33

niques [22, 55, 68], and the processor demand bound criteria-based analysis [8, 23]

(refer to Section 2.2.2 for a brief discussion). Recently, the response time analysis has

been extended for schedulability analysis of periodic/sporadic task sets (of independent

tasks) on multiprocessor platform [17, 50]. However, it turns out that neither of these

approaches can be applied to our setting in a straightforward manner. This is primarily

because in traditional task graph-based specifications, all the vertices are mapped onto

a single resource, whereas in our case each globally asynchronous MSG (in fact even

a vertex of an MSG denoting an MSC) involves multiple computation and communi-

cation resources. Hence, the semantics of MSGs are fundamentally different from the

task graph based models that have been studied in the real-time systems literature.

Our proposed schedulability analysis for MSC-based system model is motivated

by the response time calculation algorithm presented in [110], which can handle sys-

tem specifications with multiple computation and communication elements. We have

adapted this algorithm to the specific context of MSCs, and in particular proposed two

new extensions.

• The algorithm in [110] is based on a response time analysis framework, which

iteratively computes tighter estimates on the response times of various compu-

tation and communication tasks. However, it cannot handle conditional or non-

deterministic branches which exist in MSGs. We get around this problem by

combining the response time analysis-based technique in [110] with a demand

bound criteria-based technique that was proposed in [7] to handle conditional

branches in a different task model.

CHAPTER 3. RELATED WORK 34

• Compared to [110], we also obtain tighter bounds on the response times of tasks

by accounting for the dependencies in the preempting tasks/applications, by cal-

culating request bound from higher priority tasks during the response time of the

preempted task (event).

The main novelty of our work stems from the combination of response time analysis and

demand bound criteria-based techniques, which is not commonly seen in the real-time

systems literature.

Finally, we would like to point out that there have been a few previous attempts

towards developing schedulability analysis techniques for MSC-based system models

[96, 102]. However, they either do not fully exploit the communication dependencies

within an MSC, or are restricted to the analysis of a single MSC (as opposed to a

complete system model).

Chapter 4

Performance Debugging of Esterel

In this chapter, we propose a timing analysis technique for WCET estimation of a single

Esterel tick. Such estimates can validate Esterel-level assumptions on the instantaneous

processing of signals or events that occur together (Section 2.1.1). More importantly,

with our automatically built traceability between Esterel specification and generated

C code, they can be used to identify parts of the specification which might pose as

timing/performance bottlenecks with respect to the underlying platform. We show the

results of our WCET analysis on a set of standard Esterel benchmarks and illustrate the

utility of our model-to-code traceability technique using an Esterel specification of a

reflex game application.

35

CHAPTER 4. PERFORMANCE DEBUGGING OF ESTEREL 36

C
(tick function)

Esterel

Esterel-C compiler
(CEC)

SCFG

Esterel-C
mapping

C compiler
(SimpleScalar gcc)

C-assembly
mapping

SCFG-level
inf. path analysis

SCFG-level
infeasible path

constraints

assembly-level
infeasible path

constraints

WCET analyzer
(Chronos)

Figure 4.1: WCET analysis of a single Esterel tick.

4.1 Overview

Figure 4.1 gives an overview of our WCET analysis framework. We use the Columbia

Esterel Compiler [34]) to compile a given Esterel program into C, and calculate the

WCET of the C code via a ILP-based platform-aware WCET analyzer. The generated

C program is in the form of tick function (refer to Section 2.1.1), where one complete

execution of the tick function (between its entry and exit) represents all computation

and communication required to be processed instantaneously within one clock tick. As

a result, we can validate that the synchrony hypothesis assumed at model level indeed

holds in the real implementation, if the WCET of generated tick function is guaranteed

to be less than the minimum separation time between the arrival of sets of input events.

For C code generated from Esterel specifications, the user can largely avoid the

problems related to automation of the WCET analysis (refer to Section 2.2.1). In par-

ticular, since the tick function is loop-free (Esterel allows no loops within a clock tick),

CHAPTER 4. PERFORMANCE DEBUGGING OF ESTEREL 37

this leads to an acyclic control flow graph and hence there is no need to provide loop

bounds to the WCET analyzer. Since each basic block is executed at most once in

one execution of the tick function, and ILP-based WCET analysis produces a 0-1 as-

signment for the execution count of each basic block. However, compiler generated

programs, especially from high-level control-intensive specifications, usually contain

huge number of infeasible execution paths compared to hand-written code. As a result,

WCET overestimation due to infeasible execution paths is largely amplified in timing

analysis of compiler generated programs.

We propose a comprehensive and light-weight infeasible path detection and elimi-

nation technique for WCET estimation of programs generated from Esterel specifica-

tion. Our proposed infeasible path detection is performed at sequential control-flow

graph (SCFG) level, which is a standard intermediate representation used in control-

flow graph-based Esterel compilation. The computed SCFG-level infeasible path con-

straints are translated into assembly-level infeasible path constraints, via our Esterel-C

mapping (obtained by instrumenting the CEC compiler) and the C-assembly mapping

(obtained by disassembling the compiled C code). Finally, we integrate the assembly-

level infeasible path constraints into the ILP formulation generated by Chronos ([41]),

an ILP-based WCET analyzer. WCET value and corresponding critical path for a sin-

gle tick execution of the Esterel specification on a specific platform can be obtained by

solving the resulted ILP formulation. In summary, we use the pattern of the generated

code to identify infeasible path patterns, which are then taken into account during the

timing analysis.

CHAPTER 4. PERFORMANCE DEBUGGING OF ESTEREL 38

4.2 Infeasible Path Patterns

We observe that the automatically generated C code (from Esterel) often contains cer-

tain infeasible path patterns which may be less frequent in hand-written C code. Thus,

low-overhead automatic methods for detecting/exploiting infeasible path information

can substantially reduce the WCET of such automatically generated C code. Based on

our study of C programs generated via Esterel compilation to sequential control flow

graphs, we found the following four common sources of infeasible paths. For each

of these four sources, in Figure 4.2 we show example Esterel program fragments and

the corresponding C code (labeled with line numbers) generated by the default code

generation mechanism in the Columbia Esterel Compiler [34]. We adopt the notion of

conflicting pairs which has been presented in Section 2.2.1 in our discussion of infeasi-

ble path patterns. The four infeasible path pattern categorizations are as follows.

1. Emit and test signals. The corresponding infeasible paths are also presented at

the C level, e.g., the conflicts due to assignment and test on signal A (L1 and

L2 → L4) in the first program fragment shown in Figure 4.2. Besides, in an

Esterel clock tick, the same signal may be tested in different concurrent threads.

As a result, in the generated C program, multiple identical tests on the same

signal variable will result in paths with (branch, branch) conflicts (refer to Section

2.2.1). For example, the two conditional tests on signalA at L2 and L5 in the first

program fragment in Figure 4.2 introduce two conflicting pairs, (L2→ L3, L5→

L7) and (L2→ L4, L5→ L6).

CHAPTER 4. PERFORMANCE DEBUGGING OF ESTEREL 39

Type 1 Generated C code Type 2 Generated C code
emit A;
present A
then emit B
else emit C;
end present
||
present A
then emit D;
else emit E;
end present

L1: A = 1;
L2: if (A)
L3: B = 1;
 else
L4: C = 1;
L5: if (A)
L6: D = 1;
 else
L7: E = 1;

emit A;
present B
then …
end present
||
present A
then

emit B;
else emit D;
end present

L1: A = 1;
L2: _DPSCUT_VAR2 = 0;
L3: if (A) B = 1;
L4: else D = 1;
L5: if (_DPSCUT_VAR2) {
L6: …
 } else {
L7: if (B) {…}
 }

Type 3 Generated C code Type 4 Generated C code
trap T in
[
 exit T;
 pause;
 …
||
emit B;
pause;
…
]
emit C

/*exit T */
L1: _term_17 &= -(1 << 2);
L2: B = 1;
 /*pause */
L3: _term_17 &= -(1 << 1);
 …
L4: switch (~_term_17) {
L5: case 0: … break;
L6: case 1: … break;
//pause
L7: case 3: …
L8: C = 1; break; //exit
T

loop
 emit A0;
 pause;

emit A1;
pause;

||
emit B0;
pause;
emit B1;
pause;

end

L1: if (_state_3) {
L2: A0 = 1; _state_3 = 0;
 } else {
L3: A1 = 1; _state_3 = 1;
 }
L4: if (_state_6) {
L5: B0 = 1; _state_6 = 0;
 } else {
L6: B1 = 1; _state_6 = 1;
 }

Example1 (Type 1 & 2) Example2 (Type 3) Example3 (Type 4)
Esterel Generated C code Esterel Generated C code Esterel Generated C code

L1: emit A;
L2: present B then
L3: emit C;
L4: end present
 …
L5: ||
 …
L6: present A then
L7: emit B;
L8: else
L9: emit D;
L10: end present

B1: A = 1;
B1: _DPSCUT_VAR2 = 0;
…
B2: if (A)
B3: B = 1;
 else
B4: D = 1;
 …
B5: if (_DPSCUT_VAR2)
 { … }
 else {
B6: if (B) C = 1;
 }

…
L1: trap T in
 [
L2: emit A;
L3: exit T;
 …
L4: ||
L5: emit B;
L6: pause;
 …
]
L7: emit C

…
B1: A = 1;
B1: _term_17 &= -(1 << 2); //exit T
B1: B = 1;
B1: _term_17 &= -(1 << 1); //pause
 …
B2: switch (~_term_17) {
B3: case 0: … break;
B4: case 1: … //pause
B4: break;
B5: case 3: … C = 1; //exit T
B5: break;
 …

L1: loop
L2: emit A0;
L3: pause;
L4: emit A1;
L5: pause;
L6: end
L7: ||
L8: loop
L9: emit B0;
L10: pause;
L11: emit B1;
L12: pause;
L13: end

B1: if (_state_3) {
B2: A0 = 1; _state_3 = 0;
 }
 else {
B3: A1 = 1; _state_3 =
1;
 }
B4: if (_state_6) {
B5: B0 = 1; _state_6 = 0;
 }
 else {
B6: B1 = 1; _state_6 = 1;
 }

Figure 4.2: Example infeasible path patterns in generated C code.

2. Sequentialization of concurrency in a tick. To generate sequential C code from a

concurrent Esterel program, communication dependencies (between emit and test

of a signal) and context switches between concurrent threads must be captured.

In CEC, this is handled by inserting new control variables and corresponding test

nodes in the generated C code, when the concurrent control flow graph CCFG is

translated into sequential control flow graph SCFG (refer to Figure 2.2). In the

second program fragment (Figure 4.2), the variable DPSCUT V AR2 captures

the state of the first thread before a context switch (by setting its value to 0 at L2),

and is used as a conditional guard when the thread resumes execution at L5. Such

assignments and tests (may be at multiple places in the same clock tick) on the

guard will introduce possible infeasible paths. In our example code fragment, the

CHAPTER 4. PERFORMANCE DEBUGGING OF ESTEREL 40

(assignment, branch) conflicts (refer to Section 2.2.1) between L2 and L5→ L7

introduces infeasible paths in the generated C code.

3. Termination and preemption. The multi-threaded Esterel program follows the

“wait for all threads to terminate” and “winner takes all” behaviors for thread

completion and thrown exceptions ([34]). In the C code generated from CEC,

this is handled by setting and testing the values of newly introduced guard vari-

ables (e.g. variable term 17 as in the third example in Figure 4.2). These

guard variables are assigned to non-negative integer values during the execution

of each thread (0 for thread terminating, 1 for pausing, 2 and higher for throwing

and exception). Such assignments and the tests on these guard variables (e.g.,

(L1, L4→ L6) on value of term 17) introduce possible infeasible paths.

4. Encoding tick transitions. In Esterel, a global automata is defined on the sequence

of ticks to be executed in each thread, via the use of “pause” and “await” state-

ments. In the generated C code, this automata is encoded through a set of state

variables. Setting and testing these state variables introduce infeasible paths since

certain combinations of states are not allowed in the automata. For example, in

the last program fragment, given the initial value [0,0], the combinations of val-

ues of ([state 3, state 6]) can only be [0,0] or [1,1] — which prevents the paths

corresponding to evaluation of [state 3, state 6] to be [0,1] or [1,0]. In partic-

ular, the path contains branches L1 → L2 and L4 → L6 cannot appear in any

feasible execution trace of the program.

CHAPTER 4. PERFORMANCE DEBUGGING OF ESTEREL 41

4.3 SCFG-level Infeasible Path Detection

In traditional WCET analysis, infeasible path detection is usually done via flow analysis

at assembly code level [104, 52]. In our previous work [62], we perform infeasible

path elimination on C code generated from Esterel by capturing conflicting pairs at

assembly code level. However, our previous experimental results in [62] show that

due to large number of infeasible paths in the generated C code (several thousands of

detected conflicting pairs), the analysis is complex and takes up to 15 minutes for the

mca200 benchmark from Estbench Esterel Benchmark Suite ([33]).

In this section, we propose a light-weight infeasible path detection at higher level

during Esterel compilation. By maintaining a traceability link between model-level

statements and compiled executables (the details will be discussed in Section 4.5), we

automatically translate the high-level infeasible path information captured via conflict-

ing pairs into assembly code level ILP constraints, which can be used in code-level

WCET analysis to obtain tighter estimation results.

There are many levels of intermediate representations (IRs) while compiling an Es-

terel specification into assembly code for WCET estimate. For example, the control-

flow graph based CEC compilation produces IRs including AST, GRC, PDG, CCFG

and SCFG (refer to Figure 2.2). In our work, we perform our infeasible path detection

at SCFG level because of the following reasons.

• Any intermediate representations at higher level than SCFG (refer to Figure 2.2)

does not contain all the infeasible path patterns. For example, the second type of

CHAPTER 4. PERFORMANCE DEBUGGING OF ESTEREL 42

infeasible path pattern due to sequentialization is only introduced when CCFG is

translated into SCFG.

• C (assembly) code level analysis is incomplete without additional instrumented

code. For example, the third type of infeasible path patterns will often produce

many switch-cases constructs in the generated C code. the switch is translated

into a register indirect jump (jr) in some ISAs [24], i.e. the branch target can not

be determined statically.

• It improves the efficiency of conflicting pair detection. There are much less num-

ber of nodes in SCFG comparing to the number of assembly instructions. More-

over, no register/memory tracing or pointer analysis is required. Thus, the infea-

sible path analysis takes much less time at SCFG-level.

• As we will discuss in detail later, the state automata construction for detecting

the fourth type of infeasible path is obviously easier to perform at SCFG level

other than at any other lower levels (C or assembly). Furthermore, a preliminary

SCFG level conflicting pair detection allows us to build an automata to capture

program execution context for tighter timing estimation for execution of multiple

consecutive ticks (see Chapter 5).

Figure 4.3 shows an example Esterel program, its SCFG generated by CEC (partial),

and some conflicting pairs in the SCFG with our infeasible path pattern categorization

in Section 4.2.

CHAPTER 4. PERFORMANCE DEBUGGING OF ESTEREL 43

Infeasible paths
Type 1: Emit and Test signals
emit B (n3) <> not present B (n6‐>n7)
Type 2: Sequentialization of concurrency
VAR2= 0 (n2) <> VAR2 ==1 (n7‐>n8)
Type 3: Termination and preemption
Termination code = 2 (n9)
<> Termination code == 1 (n10‐>n11)
Type 4: Encoding tick transition
value combination of control state variables
[s1, s9,s6] can not be [1, 0, 1]

s1

s1=0
s9

s9=1
D=1

VAR2=0

s9=0
B=1

VAR2=1

s6

s6=0

B

C=1

IN

VAR2

C

term(2)

s1=0
term

0

0

0

1

0

1

1

2

1

0

1

1

s1=1

A=1

0 1 0

1

n3

n6

n7

n8
n9

n10
n11

n2

n4

n5

trap FIN in
[loop

present IN then emit A; end present;
pause;
present B then emit C; end present;
pause;

end loop
||
loop
emit D;
pause;
emit B;
present C then exit FIN; end present;
pause;

end loop]

D=1
s1=1
s6 =1
s9=1

2

IN

A=1

10

term(1)

s6=1

term(1)

n1

n0

Figure 4.3: Conflicting pairs in SCFG of an Esterel Program

CHAPTER 4. PERFORMANCE DEBUGGING OF ESTEREL 44

4.3.1 Detection of Infeasible Paths Type 1-3

The first three categorizations of infeasible paths listed in Section 4.2 are between pair-

wise assignments and branches. To capture them in the SCFG, we adopt the notion of

conflicting pairs [104] — pairs of (assignment, branch) or (branch, branch) statements

which may not appear together in an execution trace. Simply put, an assignment a on

a variable x conflicts with a branch edge e (a branch edge refers to a branch condition

being evaluated to either true or false) testing the same variable x if and only if (i) the

test on x in e never succeeds with the value assigned in a, and (ii) there exists at least

one path in the control flow graph between a and e which does not modify variable

x. Similarly, a branch edge e1 testing a variable x conflicts with another branch edge

e2 testing the same variable x if and only if (i) the conditions on x in e1 and e2 can

never succeed together, and (ii) there exists at least one path in the control flow graph

between e1 and e2 which does not modify variable x. For example in Figure 4.3, node

n3 (which assigns B = 1) and branch n6 → n7 (to be taken when B == 0) is a

(assignment, branch) conflict.

Conflicting pairs are easy-to-compute at SCFG-level. In Esterel semantics, a signal

is either emitted or absent throughout any tick execution, corresponding to value 1 or 0

in the generated C code. Furthermore, domains of all compiler-introduced variables are

statically known. We use the following notations in our discussion:

• DMx is the domain of all possible values a variable x can be assigned to.

• ASx,v is the set of all nodes n in SCFG that contain assignment of x to value v.

CHAPTER 4. PERFORMANCE DEBUGGING OF ESTEREL 45

• BRx,v be the set of all branch edges e : ni → nj in SCFG that are taken when

x == v.

The (assignment, branch) and (branch, branch) conflicts on value v of variable x are

represented as 4-tuple (n, e, x, v) and (e1, e2, x, v). We compute the set of all conflict-

ing pairs as follows.

AB = ∪∀v,v′∈DMx{(n, n1→ n2, x, v)|n ∈ ASx,v ∧ (n1→ n2) ∈ BRx,v′

∧ reach(n, n1) ∧ v 6= v′}

BB = ∪∀v,v′∈DMx{(n1→ n2, n3→ n4, x, v)|(n1→ n2) ∈ BRx,v

∧ n3→ n4 ∈ BRx,v′ ∧ reach(n2, n3) ∧ v 6= v′}

(4.1)

where reach(n1, n2) is true if and only if there is a path from node n1 to n2 in the

SCFG. For each (assignment, branch) conflict (n, n1 → n2, x, v) in AB and (branch,

branch) conflict (n1 → n2, n3 → n4, x, v) in BB, we also compute set of nodes in

SCFG that may invalidate the conflicting pair through assigning a different value to x.

In other words, if x is assigned to a different value in between, the conflict between the

assignment (test) on x in n (n1 → n2) and the test on x in n1 → n2 (n3 → n4) is

no longer valid. We compute the set of nodes that invalidate each conflicting pairs as

follows.

invalid(n, n1→ n2, x, v) = {n′|reach(n, n′) ∧ reach(n′, n1)

∧ n′ ∈ ASx,v′ ∧ v 6= v′}

invalid(n1→ n2, n3→ n4, x, v) = {n′|reach(n2, n′) ∧ reach(n′, n3)

∧ n′ ∈ ASx,v′ ∧ v 6= v′}

(4.2)

CHAPTER 4. PERFORMANCE DEBUGGING OF ESTEREL 46

Computation of the above-mentioned sets AS, AB and BB can be done in a single

DFS traversal of the SCFG inO(|N |+|E|) time. For each conflicting pair inAB orBB

on variable x, finding the set of nodes that may invalidate it requires time O(|N | × |E|)

to perform a reachability test for each node that updates value of x (captured in set AS)

The set of conflicting pairs and corresponding “invalid” nodes will be used to generate

ILP constraints for infeasible path elimination (refer to Section 4.4).

4.3.2 Detection of Infeasible Paths Type 4

When Esterel specification is compiled into C code, a set of state variables are intro-

duced to encode the program execution context. Let’s define a global state as a value

combination of all the state variables. Number of state variables introduced in a control-

flow graph based Esterel compilation (such as in CEC) usually depends on the number

of concurrent threads in the Esterel specification, where each state variable captures the

current tick of its corresponding thread (by having different values for each tick). For

example, three state variables [s1, s6, s9] are used in the SCFG shown in Figure 4.3.

Given the initial state and allowed finite state transitions defined by Esterel, cer-

tain value combinations of the state variables are not reachable. Our type 4 infeasi-

ble path pattern due to such unreachable combinations cannot be simply captured by

above-mentioned conflicting pairs, since (i) a infeasible path of this kind consists of

many branches on state variable tests; and (ii) this type of the infeasible path patterns is

“context-sensitive”, i.e., a state variable’s value in current tick depends on execution in

previous tick.

CHAPTER 4. PERFORMANCE DEBUGGING OF ESTEREL 47

Algorithm 1 computeFeasibleState(scfg, st0) — Compute set of all feasible states

FS, where st0 is the known initial state for SCFG scfg.
1: FS.add(st0); Queue.insert(st0);

2: while !Queue.empty() do

3: st = Queue.remove();

4: for each feasible path p ∈ scfg do

5: st′ = st;

6: curFLAG = true;

7: for each branch e on p do

8: if e ∈ BRsi,v ∧ st[i] 6= v then

9: curF lag = false; /*path p is not in current state st*/

10: break;

11: end if

12: end for

13: if !curF lag then

14: break; /*search next path*/

15: end if

16: for each assignment node n on p do

17: if n ∈ ASsi,v ∧ st[i] 6= v then

18: st′[i] = v;

19: end if

20: end for

21: if st′ /∈ FS then

22: FS.add(st′);

23: Queue.insert(st′);

24: end if

25: end for

26: end while

CHAPTER 4. PERFORMANCE DEBUGGING OF ESTEREL 48

State State variable values Next State(s)

st0 [s1 == 2, s6 == ⊥, s9 == ⊥] st1

st1 [s1 == 1, s6 == 1, s9 == 1] st2, st3

st2 [s1 == 1, s6 == 0, s9 == 0] st1

st3 [s1 == 0, s6 == 1, s9 == 1]

Table 4.1: Feasible States of the example SCFG shown in Figure 4.3.

Given a SCFG scfg and its initial state st0, Algorithm 1 shows how to find an over-

estimated set of all feasible states FS. For a feasible state st, we compute feasible

states st′ that execute in the next tick after st. We consider all feasible paths in the

SCFG by excluding the infeasible paths captured by conflicting pairs as calculated in

Section 4.3.1 (line 4). For a feasible path p, we first test whether p corresponds to

execution of current analyzing state st (line 6-15). If any branch on a state variable si

that can be taken when si == v for a different value v from the value of si in st (line

8), the path p will not be considered when searching st’s next states (line 13 -14).

Otherwise, for each assignment that updates state variable si to a new value v (in

the set ASsi,v) on p, we set the value in st′ correspondingly (line 16-20). Finally, if the

newly computed feasible state st′ has not been visited before, we add it into the set of

feasible state FS, as well as the workspace Queue so that states reachable from it will

be computed in the future (line 21-24). Table 4.1 shows the list of all feasible state that

are reachable from the initial state [s1 == 2, s6 == ⊥, s9 == ⊥] (where s6 and s9

are undefined) of the example SCFG shown in Figure 4.3.

CHAPTER 4. PERFORMANCE DEBUGGING OF ESTEREL 49

Let S be the set of all possible value combinations on all the state variables <

s1, . . . , sn >,

S =
∏

i∈{1,...,n}

DMsi

Set of all infeasible state IS can be obtained by IS = S − FS, where FS contains set

of all value combinations for reachable states as calculated above. Note that we perform

a conservative static simulation for reachable state calculation, which reports a superset

of the “real” reachable states. We utilize the computed reachable states to obtain a safe

subset of unreachable state variables’ value combinations, and generate ILP constraints

to eliminate corresponding infeasible paths (see Section 4.4).

4.4 Infeasible Path Elimination

We now discuss methods to eliminate infeasible paths given the conflicting pairs and

feasible state variables’s value combinations. We generate an ILP constraint for each

conflicting pair and infeasible value combination detected at SCFG level. As shown

in Figure 4.1, we maintain an Esterel-C mapping which provides traceability between

corresponding Esterel statements, SCFG nodes, and generated C statements. Together

with the C-assembly mapping between C statements and basic blocks/edges in the CFG

of generated C code, we can automatically translate the SCFG-level ILP constraints

into assembly code level ILP constraints. These assembly code level ILP constraints

are utilized in an ILP-based WCET analyzer to prevent infeasible paths from being

considered as the WCET critical path (thereby leading to a tighter WCET estimate).

CHAPTER 4. PERFORMANCE DEBUGGING OF ESTEREL 50

Even after the conflicting pairs are detected, we cannot directly use them in our ILP-

based WCET analysis. Suppose we find that an assignment to a variable x in SCFG

node ni conflicts with a branch edge e : nj → nk (edge e between node nj and nk) on

the same variable x with effect constraint x == v. A straightforward encoding of this

conflicting pair as a linear constraint would be Ni + Ej→k ≤ 1 where Ni (Ej→k) is the

0-1 execution count of node ni (edge nj → nk). The above constraint means that node

ni and edge nj → nk cannot be executed together. However, a conflicting pair captures

a pair of statements which cannot be executed together provided the variable resulting

in the conflict is not modified in between the execution of these two statements. For

example, in Figure 2.4, the branch edge B0→ B2 (corresponding to y == 0) conflicts

with B6 → B7 (corresponding to y! = 0). However, this (branch, branch) pair cannot

appear together in an execution trace only if y is not modified in between execution

of the two edges. In other words, for this conflicting pair to be valid, node B5 (which

modifies the value of y) must not be executed in between. This leads to the constraint

E0→2 + E6→7 −N5 ≤ 1

Let (ni, nj → nk) ∈ AB (or (ni → nj, nk → nl, x, v) ∈ BB) on variable x

and its value v be a conflicting pair (Equation 4.1), and invalid(ni, nj → nk, x, v) (or

invalid(ni → nj, nk → nl, x, v)) be the set of nodes that invalidate it (Equation 4.2).

Formally, we can encode this conflicting pair as a linear constraint

Ni + Ej→k −
∑
∀np∈invalid(ni,nj→nk,x,v)Np ≤ 1

Ei→j + Ek→l −
∑
∀np∈invalid(ni→nj ,nk→nl,x,v)Np ≤ 1

(4.3)

where Ni (Ej→k) is the 0-1 execution count of SCFG node ni (edge nj → nk).

CHAPTER 4. PERFORMANCE DEBUGGING OF ESTEREL 51

For the fourth type of infeasible path pattern, we generate following ILP constraints

for each infeasible state st : [s1 == v1, . . . , sn == vn] in IS (refer to Section 4.3.2).

E1 + . . .+ En < n,∀ei ∈ BRsi,vi

where Ei is the 0-1 execution count of edge ei, for all ei ∈ BRsi,vi
that can be taken if

state variable si == vi in the infeasible state st. In other words, we prevent the longest

path to contain state variable evaluation corresponding to a infeasible state st. Hence,

not all branches that can be taken in the infeasible state st are allowed to execute in a

single tick.

Given the example in Figure 4.3, the ILP constraint

E0→1 + E1→2 + E4→5 < 3

will be generated to eliminate the infeasible path containing edges n0→ n1, n1→ n2,

and n4 → n5, which corresponds to a infeasible control state [s1 == 1, s9 ==

0, s6 == 1]. Given the one-to-one mapping between nodes/edges in SCFG and ba-

sic blocks/edges in assembly code level CFG, Above constraints can be automatically

translated into assembly code level ILP constraints for infeasible path elimination in

WCET analysis.

4.5 Performance Debugging and WCET Refinement

In this section, we discuss how to achieve the bi-directional traceability and use it for

performance debugging and WCET refinement of Esterel specifications, as shown in

CHAPTER 4. PERFORMANCE DEBUGGING OF ESTEREL 52

C

Esterel

C-Esterel mapping

WCET analysis

Model-level info.
(inf. Path & context)

user constraints
(Esterel level)

info. of Esterel
worst-case tick

critical path
& WCET

performance
debugging

WCET refinement

Esterel-C
compiler

Figure 4.4: Performance debugging framework for Esterel specifications.

Figure 4.4. If the WCET estimate produced for the C-level tick function is greater than

a pre-defined clock tick length, we have a violation of the synchrony hypothesis. It

is then useful to show the programmer the Esterel statements executed corresponding

to the WCET estimate. To provide such backwards traceability, a C-Esterel mapping is

built during code compilation (Figure 4.4). This mapping is used to generate the Esterel-

level critical path (statements executed when the WCET is realized) from the C-level

critical path produced by the WCET analyzer. By visualizing these Esterel statements,

the programmer can perform optimization/modification of the Esterel specification.

Assembly to C mapping State-of-the-art WCET analysis tools typically perform the

analysis on assembly code (which obtained by disassembling the program binary) rather

than source code. This is to take into account the effect of compiler optimizations for

accurate timing estimation. For an ILP-based WCET analyzer, the WCET estimate

CHAPTER 4. PERFORMANCE DEBUGGING OF ESTEREL 53

is given via basic block counts, where each basic block is a sequence of assembly

instructions. Our first step towards maintaining backwards traceability is to provide

a mapping from assembly to C code. This can be easily achieved by disassembling the

C object file using the objdump command, which produces the link between assembly

instructions and the corresponding C code.

C to Esterel mapping To enable a mapping from the C-level WCET path back to

the Esterel level, we maintain traceability links while compiling Esterel to C. In order

to impose minimum overheads on the Esterel to C compilation, we only need to main-

tain C to Esterel mapping for a subset of Esterel statements. We only trace the Esterel

statements that are eventually translated into C statements (such as data and signal pro-

cessing, conditional statement, preemption statements, etc.) and affect the execution

time of the generated C program. For Esterel statements that only affect the control

flow of the C code and produce no explicit execution costs, we do not need to monitor

them during the compilation process. In particular, we classify the Esterel statements

into following four categories.

• Data and signal processing statements (e.g. expressions, assign, procedural call,

emit). These statements need to be traced, because they are directly translated

into C statements, and will explicitly affect the execution time of both the Esterel

and C programs.

• Conditional and preemption statements (e.g. if-then-else, present-then-else, abort-

when, trap-exit). We trace the predicate signal/expressions for these statements,

CHAPTER 4. PERFORMANCE DEBUGGING OF ESTEREL 54

Esterel
compiler

Intermediate
representations

Esterel‐IR node
mapping

IR node‐C line#
mapping

C compiler

Assembly‐C line#
mapping

assembly ‐Esterel
mapping

Esterel
specification

C code

Figure 4.5: Construction of the assembly-Esterel mapping in Figure 4.4.

which are translated into conditional tests in the C code. This is to reflect the

time taken to evaluate and test these predicates. Furthermore, tracing these pred-

icates helps to automatically generates constraints in WCET analysis, based on

programmer’s annotation given at Esterel level. We will discuss the details in

Section 4.6.3.

• Other control flow statements (e.g. ‖, ;, loop, pause). These statements are trans-

lated into control flow in the generated C program. There is no explicit C state-

ments corresponds to them. As a result, we do not trace these statements.

• Variable/signal declaration statements (e.g. signal, var, input, output). These

statements are not traced since they are compiled into variable declarations in the

C program.

When an Esterel program is compiled to C, it is first translated to an intermediate

representation (IR), e.g., the abstract syntax tree (AST). List of IRs used in CEC com-

CHAPTER 4. PERFORMANCE DEBUGGING OF ESTEREL 55

pilation is shown in Figure 2.2. During the AST construction, we maintain a mapping

from Esterel line numbers to the IR node ids. Subsequently the AST is transformed

into sequential control flow graph (SCFG) which sequentialize Esterel’s concurrency.

However, the computation/predicate nodes of the AST that we trace are retained in the

SCFG. Hence, we can map the AST nodes to SCFG nodes. A mapping between IR

node ids and C line number is created when SCFG is translated into C program. As

shown in Figure 4.5, by combing all above-mentioned mapping, we can construct a

mapping between the assembly code and Esterel specification.

Mapping back the longest path Recall that the ILP-based WCET analysis (as dis-

cussed in the preceding section) only reports the WCET estimate; it does not produce

the corresponding longest path (also called the critical path). However, the control flow

graph of the Esterel tick function is a directed acyclic graph or DAG and each basic

block is executed at most once. C statements executed in the critical path of the tick

function can be reconstructed easily from the 0-1 assignments of the basic block counts

via the assembly to C mapping (any C statement appearing in a basic block with exe-

cution count 1 must lie on the critical path). Finally, via our C to Esterel mapping, the

Esterel statements corresponding to the WCET can be obtained. However, since infea-

sible path detection methods are incomplete, the reported critical path may, in principle,

still be an infeasible path. Hence, we allow the programmer to provide infeasible path

annotations at the Esterel level. These are automatically translated into ILP constraints

on the execution counts of the C program’s basic blocks via our traceability links be-

tween Esterel, C and the assembly code.

CHAPTER 4. PERFORMANCE DEBUGGING OF ESTEREL 56

What kind of infeasible path annotations can be provided at the Esterel level? Es-

terel allows the programmer to explicitly define # (exclusion) and => (implication) re-

lations on signals. These are constraints on the environment of the Esterel specification

(e.g., signals x and y never happen in the same tick) which are automatically translated

to ILP constraints for tighter WCET analysis. We have also extended the #, => rela-

tions to Esterel statements and predicates. In particular, we have defined two relational

operators, ## (conflict) and <=> (coexist), between Esterel statements/predicates

(represented using their line numbers) that we trace when building the C-Esterel map-

ping. These annotations can be automatically translated into ILP constraints as follows.

A conflict annotation A##B is translated into the linear constraint NA + NB ≤ 1 and

a coexist annotation A <=> B is translated into the linear constraint NA = NB, where

NA(NB) is the execution count of the basic block that contains A(B) if A(B) is a state-

ment, or the execution count of the corresponding branch edge (evaluating to true) if

A(B) is a predicate.

4.6 Experimental Results

4.6.1 Experiment Setup

We now present some implementation details and experimental results to evaluate our

proposed WCET analysis for a single Esterel tick execution. We compiled Esterel pro-

grams into C using the default (control-flow graph based) code generation mechanism

in the Columbia Esterel Compiler (CEC) [34]. We instrumented CEC so that during

CHAPTER 4. PERFORMANCE DEBUGGING OF ESTEREL 57

Benchmark # of lines conflicting WCET (cycles) sim. overest

Esterel C pairs w/o inf. w/ inf. reduction (cycles)

runner 55 253 42 3905 3781 3.2% 3589 5.4%

reflex 96 378 105 5197 4971 4.4% 4649 6.9%

abcd 101 827 1796 10335 8463 18.1% 8099 4.5%

mejia 555 2598 5328 25983 23343 10.2% 18834 23.9%

tcint 687 3031 2848 13497 9529 29.4% 8869 7.4%

wristwatch 1088 1755 3307 40862 27773 32% 22300 24.5%

mca200 7269 10894 3402 129038 99396 23% 89541 11%

elevator 324 1242 813 17195 15454 10.1% 13652 13.2%

Table 4.2: WCET analysis results.

the compilation a C-Esterel mapping is created. We used Chronos [41], an ILP-based

WCET analyzer, to calculate the WCET of the tick function in the generated C code.

For the WCET analysis, the default architectural configuration of the tool was used,

which assumes a direct mapped L1 instruction cache with 8-byte block size, dynamic

2-level branch predictor, 5-staged pipeline, and an instruction dispatch queue size of 4.

We assume no data cache and the instruction cache miss penalty is 30 cycles.

We used benchmarks from Estbench Esterel Benchmark Suite [33], including a run-

ner’s behavioral description (runner), a simple combination lock (abcd), a shock ab-

sorber (mca200), and a wristwatch example. We also use the elevator example from

Esterel Studio [39].

CHAPTER 4. PERFORMANCE DEBUGGING OF ESTEREL 58

4.6.2 WCET Analysis Results

Table 4.2 summarizes our WCET analysis results. For each program, we show the code

size of the Esterel specification and the generated C program. The number of con-

flicting pairs automatically detected by our infeasible path detection algorithm are also

listed. Comparing to normal hand-written programs, huge number of conflicts (infea-

sible paths) exist in automatically generated code. The analysis time spent on finding

these conflicting pairs takes less than 1 second for each the benchmarks. The calculated

WCET values with and without the infeasible path detection for each benchmark are

presented in column “w/o inf.” and “w/ inf.”. We can see 3.2% to 32% tighter WCET

estimates can be obtained with our automatical infeasible path elimination technique..

A tighter WCET value improves the accuracy of the synchrony hypothesis validation,

and provides system engineers with more flexibility in term of design choices. Finally,

we compare our WCET estimation (in “w/ inf”) with the SimpleScalar ([5]) simulation

results shown in column “sim.” using the same architecture configuration. The poten-

tial WCET overestimation is presented in “overest”. However, the simulation results

are usually an under-estimation of the real WCET values. C programs generated from

Esterel specifications are control-intensive programs that handle many concurrent input

events in a single tick execution and have complex internal control states. Hence, worst-

case inputs and program control flow contexts are difficult to identify in the simulation.

As a result, the presented ratio only serves as an upper bound of the overestimation

between our estimated WCET and the real WCET.

CHAPTER 4. PERFORMANCE DEBUGGING OF ESTEREL 59

1 module reflex_game
 …
7 relation ..., READY # STOP
 …
14 every COIN do
 …
22 [
23 copymodule AVERAGE
24 ||
 …
38 trap END_MEASURE in
39 [
40 every READY do
41 emit RING_BELL
42 end
43 ||
 …
52 do
53 do
54 every MS do

55 TIME:=TIME+1
56 end
57 upto STOP;
58 emit DISPLAY;
59 emit INC_AVE(TIME)
60 watching LIMIT_TIME MS
61 time out exit ERROR end;
62 emit GO_OFF;
63 exit END_MEASURE
64] %trap END_MEASURE
 ...

87 module AVERAGE
 …
91 every immediate INC_AVE do
92 TOTAL := TOTAL + ?INC_AVE
93 NUM := NUM +1;
94 emit AVE_VALUE (TOTAL/NUM)
95 end
 …

Figure 4.6: The reflex game Esterel specification and highlighted critical path.

4.6.3 Case Study in Performance Debugging

We illustrate our timing analysis framework using the well-known reflex game example

[13]. A user can start a game session by inserting one COIN to a machine. To test his

reflex time, once the user is ready (by pressing the READY button), he needs to press

STOP as quickly as possible after the machine generates a GO ON signal to turn on a

light. This is repeated three times and finally the average reflex time will be calculated

and displayed before game is over. Figure 4.6 shows an Esterel fragment of the game

controller. The complete Esterel specification of the game can be found in [13] (game

version 1).

We used CEC to compile the reflex game program. We instrumented CEC to pro-

duce a C-Esterel mapping as discussed earlier. Automated infeasible path detection and

ILP-based WCET analysis were performed on the generated C code. Once the critical

path was computed at the C level, we identified the critical path at the Esterel level via

CHAPTER 4. PERFORMANCE DEBUGGING OF ESTEREL 60

b35

b36

b37

b58

b59 b60

b35: if (READY) {
b36: RING_BELL = 1;
b36: }
b37: …
…
b58: if (STOP) {
b59: DISPLAY = 1;
b59: GO_OFF = 1;
b59: _term &= -(1 << 2);
b59: (INC_AVE_v = TIME),

(INC_AVE = 1);
b59: }
b60: else {…

Figure 4.7: C-level critical path of the reflex game.

backwards traceability. Figure 4.7 shows a CFG fragment of the reflex game example,

where assembly code level basic blocks in the critical path (blocks which have an ex-

ecution count of 1) computed by our WCET analyzer are highlighted. Figure 4.7 also

shows the corresponding C code fragment, through the assembly to C mapping. Finally,

via the C to Esterel mapping, the corresponding Esterel statements executed in the worst

case path are obtained. Thus, the C code fragment shown in Figure 4.7 corresponds to

Esterel lines 40-42, 58-63 in Figure 4.6.

The entire Esterel level critical path is highlighted using shaded lines in Figure 4.6.

It corresponds to the user pressing READY and STOP buttons simultaneously after

the machine generates a GO ON signal. In such a case, the machine rings a bell (emit

RING BELL) to indicate that the READY button is pressed wrongly (it should only

be pressed before each time the user wants to start a reflex time measurement). At the

same time, to handle the STOP button, the machine calculates and displays the average

CHAPTER 4. PERFORMANCE DEBUGGING OF ESTEREL 61

reflex time, generates a GO OFF signal to turn off the light, exits from the current

measurement and enters the next measurement (or finishes after three runs). Now, in

the Esterel specification, we find the user annotation that the input signalsREADY and

STOP cannot happen within the same tick (line 7). Hence our reported critical path is

not a feasible one. Using the mechanism discussed in this section, such user annotations

are automatically converted to (branch, branch) conflicting pair information, i.e., tests

on READY and STOP cannot both be true. Naturally, this yields a tighter WCET

estimate.

4.7 Summary

We have presented our model-driven timing analysis framework to compute single tick

WCET of an Esterel specification in this chapter. It is an important design process for

model based design using synchronous models. Our analysis obtains tight WCET es-

timates by exploiting model-level information in the code-level WCET analysis. Our

framework also provides timing feedbacks to system designer for performance debug-

ging and WCET refinement via a bi-directional traceability link between high-level

model and generated executable code. By analyzing the results from WCET analysis,

potential performance bottleneck is identified and better resource dimensioning can be

achieved. We showed the results of our WCET analysis on a set of standard Esterel

benchmarks and illustrated the utility of our model-code traceability technique using an

Esterel specification of a reflex game application.

Chapter 5

Context-sensitive Timing Analysis of

Esterel

The WCET analysis technique presented in Chapter 4 finds a safe upper bound on

the worst-case computation time within any single Esterel tick. In the real execution,

different ticks may have different execution time. Furthermore, previously executed

ticks may influence the execution time of current tick (e.g., by changing the micro-

architecture states). In this chapter, we extend our proposed model-driven timing anal-

ysis framework to consider the program flow and micro-architecture contexts across

ticks. We show our context-sensitive timing analysis yields tighter estimation when the

response time of particular input event(s), whose computation spans across multiple

ticks, is of concern.

62

CHAPTER 5. CONTEXT-SENSITIVE TIMING ANALYSIS OF ESTEREL 63

5.1 Overview

In a real application modeled in synchronous language, it is common for the response

of an event to span across multiple clock ticks. Consider an event takes n ticks between

its arrival and completion, and etick is our estimated WCET for any single tick (as in

Chapter 4). A safe worst-case estimation of its processing time is n×etick. Clearly, this

leads to an overestimation because the execution path corresponding to etick is typically

not exercised during all the n consecutive ticks. In this chapter, we address this issue

by ruling out – using program flow context information – certain program paths that

are not executed during specific ticks. As a result, we obtain WCETs, e1, . . . , en, for

each of the individual n clock ticks and estimate the processing time of the event to be

e1 + . . . + en (instead of n × etick). Further, we capture the micro-architecture context

(e.g., possible instruction cache states) at the start of each clock tick and use this while

estimating the WCET associated with this tick. Clearly, this requires us to model how

the cache states evolve from one tick to the next, the details of which are presented later

in this chapter.

Figure 5.1 shows our context-sensitive timing analysis framework for worst-case

response time (WCRT) calculation of events whose processing spans multiple clock

ticks. Central to our approach is the use of a finite state automata (described in Section

5.2) to capture the execution context of each clock tick. To accurately estimate the

worst-case response time between the arrival of an input event IN and its corresponding

output OUT, our first step is to estimate the WCET of each tick between IN and OUT.

Our tick transition automata captures program as well as micro-architecture contexts

CHAPTER 5. CONTEXT-SENSITIVE TIMING ANALYSIS OF ESTEREL 64

Tick
transition
automata

Esterel
spec.

Program
level context

Esterel-C
compiler
(CEC)

WCET analysis
for a single tick

(Figure 4.1)

WCET with
program &

cache contexts

cache
context

WCET with
Program context

Figure 5.1: Context-sensitive timing analysis framework

for each tick execution, which can be utilized in the timing analysis to provide tight

estimate for each specific tick execution.

5.2 Tick Transition Automata

Esterel language is finite state in nature, that is, a finite-state automata can capture the

behavior of an Esterel program. The full automata corresponding to an Esterel pro-

gram has many uses, such as in compilation and/or program property verification [20].

However, the combinatorial explosion in the number of states of the full automata is

well-known. Instead, for our response-time calculation, we construct a smaller au-

tomata called the tick transition automata (TTA for convenience, but not to be confused

with Time triggered architectures). The states of this automata capture only the global

control flow of an Esterel program — data variable values do not appear in the states.

CHAPTER 5. CONTEXT-SENSITIVE TIMING ANALYSIS OF ESTEREL 65

Loop
emit A; data_handling(); //(s1==3)
pause;
await IN; emit B; //(s1==2)
pause;
emit C; emit C1; //(s1==1)
pause;
emit D; pause; //(s1==0)
end loop

||
loop

await C; emit E; emit E1; //(s2==1)
pause;
emit OUT; pause; //(s2==0)

end loop

void Init() {s1 = 3; s2 = 1; }
void tick_func() {

switch(s1) {
case 0: D = 1; s1 = 3; break;
case 1: C=1; C1= 1; s1 = 0; break;
case 2: if (IN) {B = 1; s1 = 1;}

break;
case 3: A= 1; data_handling();

s1 = 2; break;
}
switch(s2) {

case 0: OUT = 1; s2 = 1; break;
case 1: if (C) { E = 1; E1 = 1; s2 = 0; }

break;
}

}(a) Esterel program (b) Generated C tick function

ST0
s1 == 3;
s2 == 1;

ST1
s1 == 2;
s2 == 1;

ST2
s1 == 1;
s2 == 1;

ST3
s1 ==0;
s2 == 0;

(c) Tick transitions
between IN and OUT

s1 = 1

s1 = 0
s2 = 0

s1 = 3
s2 = 1

Figure 5.2: An Esterel program, compiled C tick function, and tick transitions

To give a detailed explanation of the Tick Transition Automata, we dwell a bit on the

Esterel-to-C compilation process that has been briefly discussed in Section 2.1.1. Typ-

ically such a compilation generates a tick function which captures all possible Esterel

executions in a single tick. In other words, the Esterel program execution corresponds

to repeated execution of the tick function. Naturally, the tick function needs auxiliary

variables to capture the progress in control flow in each process (or thread) of the Es-

terel program. For each thread Ti, a state variable si is introduced. Different values of

a state variable si correspond to the different ticks that thread Ti could execute. Figure

5.2(a) shows a toy Esterel program which will be used as an illustrative example in this

chapter. It consists of two concurrently running threads. The input event IN is con-

sumed by the first tread in the second logical tick, and the corresponding output event

OUT is emitted by the second tread in the fourth tick. Thus, it takes three logical ticks

to produce the output. The compiled C code is shown in Figure 5.2(b).

CHAPTER 5. CONTEXT-SENSITIVE TIMING ANALYSIS OF ESTEREL 66

5.2.1 Formal Definition

The states of the tick transition automata correspond to valuations of the si variables.

A transition in the tick transition automata corresponds to assignment of one or more

si variables. In the example shown in Figure 5.2, two state variables s1 and s2 are in-

troduced to encode the tick transition information of the Esterel program. The states of

the tick transition automata correspond to the valuations of [s1, s2]. We call a valuation

of the si variables as a global control state since it captures the progress in control flow

of all the threads of an Esterel program. The individual si variables will be called as

control state variables.

Formally, a tick transition automata identifies all the paths in the Esterel program

that can be executed between an input event IN and its output OUT. It can be defined as

a 5-tuple 〈Q,Σ, δ, Q0, F 〉, where

• Q is the set of all TTA states. A TTA state is a global control state capturing the

progress in control flow in all the program threads.

• Σ is a finite set of symbols, where each symbol represents a value assignment on

one or more state variables.

• δ is the transition function, such that δ : Q × Σ → Q. Each transition in the

automata represents an execution of a tick in the Esterel program.

• Q0, F are the set of initial/final states of the TTA. An initial state is a global

control state of the Esterel program where the input signal IN is ready to be con-

sumed. A final state is one where the output signal OUT is produced.

CHAPTER 5. CONTEXT-SENSITIVE TIMING ANALYSIS OF ESTEREL 67

Figure 5.2(c) shows the tick transitions between the input event IN and its output OUT

for the example Esterel program. In between the initial state ST1 and final state ST0,

there is only one possible execution path which consists of three ticks.

TTA is succinct. Note that a Tick Transition Automata captures only the paths in an

Esterel program between a given input event IN, and output event OUT. Moreover, for

each such path only the global control flow in maintained — values of data/signals in

the Esterel program do not appear. Hence the Tick Transition Automata is typically

several orders of magnitude smaller than the full automata for a given Esterel program.

In general, the tick transition automata is much smaller than a full Esterel automata

used in automata-based code generation or program verification, because

• The number of state variables used to defined the TTA (one per a thread) is nor-

mally much less than the number of signals and program variables used.

• One control state in TTA may represent a set of data states. For example, one Es-

terel program variable may have many different values at a single control location

(finish of a tick).

• The TTA is built only for part of the entirely program, between a particular input

event IN and its output OUT. Furthermore, in a big Esterel program consisting

of many concurrent processes, only a subset of the processes are involved in pro-

cessing IN . The TTA’s state space Q and transition relations are built on only the

state variables for this subset of processes.

CHAPTER 5. CONTEXT-SENSITIVE TIMING ANALYSIS OF ESTEREL 68

ST0
s1 == 3
s2 == 1

ST1
s1 == 2
s2 == 1

ST2
s1 == 1
s2 == 1

ST3
s1 ==0
s2 == 0

s1 = 2

s1 = 1

s1 = 0
s2 = 0

s1 = 3
s2 = 1

s1

s1=3 C=1
s1=0

IN

s1=1

s1=2

s2

C

s2=0

OUT=1
s2=1

(a) SCFG (b) TTA construction

0
1

3
2

0 1

1 0

01
ST4

s1 == 0;
s2 == 1;

Infeasible
state

n0

n1 n2

n3

n4

n5
...

n6

Figure 5.3: SCFG and TTA construction for the program in Figure 5.2

5.2.2 Construction of TTA

The tick transition automata is built by analyzing the state variables’ evaluation across

different iterations of tick function execution. The analysis can be done at various

levels of program representations during the Esterel-C-assembly compilation. In our

implementation, we constructed the tick transition automata by analyzing the sequential

control flow graph (SCFG) produced by the Columbia Esterel Compiler (CEC). As an

example, the SCFG of the Esterel program in Figure 5.2(a) is shown in Figure 5.3(b).

Prior to building TTA from the SCFG, an infeasible path analysis (refer to Section

4.3) is performed on the SCFG to eliminate infeasible paths resulting from both the

Esterel program itself and Esterel-to-C compilation (Section 4.3). Infeasible paths are

taken into account while constructing the TTA — we do not construct edges in the TTA

which correspond to infeasible control flows in the SCFG generated from Esterel.

CHAPTER 5. CONTEXT-SENSITIVE TIMING ANALYSIS OF ESTEREL 69

If the investigated input event is tested in a feasible path of the tick function, the

current state is set to be a possible initial state of the TTA. Similarly, if the output event

is present in a feasible path of the tick function which corresponds to a tick transition

from state STi to STj , STj is marked as a final state of the TTA.

Construction of TTA at SCFG-level is similar to finding all feasible control states

in the SCFG as discussed in Algorithm 1 in Chapter 4. In our example Esterel program

SCFG shown in Figure 5.3, the initial state is ST0 where s1 and s2 equal to 3 and 1,

respectively. From a feasible state, the TTA construction traverses all feasible paths to

find next possible combinations of state variables’ values. Assume the current analyzing

state is ST2 ([s1 == 1, s2 == 1]), since the path (n0, n2, n3, n4, n6) is infeasible (due

to conflict between assignment C = 1 in n2 and branches n4→ n6), we can not reach

a state where [s1 == 0, s2 == 1] (labeled as ST4 in Figure 5.3(b).

By taking the conflicting pair information into consideration, infeasible states such

as ST4 will not be visited. The ticks executed between input IN and its outputOUT in

the example Esterel program are highlighted with bold arrows in Figure 5.3(b). The grey

edge ST0 → ST4 corresponds to an infeasible control flow in the C code generated

from Esterel. We detect and leave out such edges while constructing the TTA. Clearly,

any infeasible path detection method is sound but incomplete, so we may in principle

fail to detect certain infeasible paths/states.

CHAPTER 5. CONTEXT-SENSITIVE TIMING ANALYSIS OF ESTEREL 70

5.3 Inter-tick Control Flow Context

Given our automatically constructed TTA, we want to estimate the WCET of a tick

STi → STj (where STi and STj are states of the TTA) by considering the program

states in which the tick is executed. The program-level context with which STi → STj

is executed is captured by STi. We describe how such context information can be

integrated into our WCET estimation for a single tick.

As mentioned in Section 5.1, we can assume that each tick between input IN and

output OUT takes time etick, the maximum WCET obtained for any single tick execution

(Chapter 4). However, this clearly leads to a gross over-estimation. To accurately esti-

mate the worst-case response time between IN and OUT, our first step is to accurately

estimate the WCET of each individual tick between IN and OUT. Thus, we accurately

estimate the WCET of each transition in the TTA. This is achieved by automatically

generating additional constraints for each specific transition, and integrating them with

the tick function’s WCET constraints to build a new ILP formulation for a particular

tick. Solving the tick-specific ILP will produce the accurate WCET estimate of the tick

in question.

We now explain how the additional ILP constraints for a specific tick transition

STi → STj are generated. The key difficulty here is that the ILP constraints refer to

occurrences of code fragments in the generated C code – they do not refer to occurrences

of specific ticks at the Esterel program level. Hence, constraints resulting from the

occurrence of a specific tick STi → STj need to be expressed in terms of occurrences of

nodes in the Sequential Control flow graph (SCFG) of the code generated from Esterel.

CHAPTER 5. CONTEXT-SENSITIVE TIMING ANALYSIS OF ESTEREL 71

Recall that STi and STj correspond to valuations of control state variables s1, . . . , sn

where n is the number of threads in the Esterel program. Let BRx,v be the set of all

branch edges e : n1 → n2 in SCFG that are taken when x == v. Now, assume the

value of a state variable sk in state STi be v. The following set of ILP constraints are

introduced

{Ei→j = 0|(ni → nj) ∈ BRsk,vx ∧ vx! = v}

where Ei→j is the number of times control flows through the SCFG edge ni → nj .

These path constraints ensure that the tick execution that corresponds to STi → STj

takes only the SCFG path where ”sk == v” whenever state variable sk is tested, for

each state variable sk in the TTA state STi.

Moreover, there can be multiple outgoing tick transitions from a TTA state STi.

Suppose the control state variable sk is assigned to a new value v′ (”v! = v′”) in the tick

transition STi → STj . To calculate the WCET for a particular tick from STi → STj ,

we also introduce ILP constraints to ensure that state variable sk is assigned to v′ during

the tick execution. Let ASx,v be the set of all nodes n in SCFG that contain assignment

of x to value v, we have ∑
ni∈ASsk,v′

Ni > 0

where Ni is the execution count of a node ni. In other words, at least one of the assign-

ment sk = v′ must be executed (for sk’s value to be v′ in state STj).

Referring back to our example in Figure 5.2 and 5.3, to compute the WCET for

tick transition ST1 → ST2, execution counts of the outgoing edges {0, 1, 3} from the

SCFG node that tests s1 and outgoing edge {0} from the node that tests s2 are set to

CHAPTER 5. CONTEXT-SENSITIVE TIMING ANALYSIS OF ESTEREL 72

0; execution count of the node that contains assignment ”s1 = 1” is set to 1. Similar

to our SCFG-level infeasible path constraints in Section 4.4, these SCFG-level program

context constraints can be translated to corresponding basic block-level ILP constraints

by maintaining an Esterel-C code association during Esterel compilation.

5.4 Inter-tick Micro-architectural Contexts

We now show how the micro-architectural state at which a given tick is executed can

also be taken into account into the WCET estimation. Note that state-of-art WCET

analyzers take into consideration of the underlying processor micro-architecture for an

accurate WCET calculation. Thus, even the vanilla WCET analysis in Chapter 4 will

consider the intra-tick micro-architectural states (such as cache states) while estimating

the WCET of a single tick. However, for tight WCET estimation of a given tick, we also

need to consider the inter-tick micro-architectural states — the micro-architectural state

at the beginning of a tick’s execution. In the following, we study how such inter-tick

micro-architectural states can be captured in the WCET estimation of a given tick. We

consider one particular micro-architectural feature namely the instruction cache. We

note that a very similar modeling can be used to capture the inter-tick timing effects of

data cache.

The tick transition automata (TTA) defines the sequencing of tick transitions from

the consumption of input signal IN to production of output signal OUT. In the frame-

work shown in Figure 4.1, the WCET of each tick t is estimated independently, as-

CHAPTER 5. CONTEXT-SENSITIVE TIMING ANALYSIS OF ESTEREL 73

suming that the tick t starts execution in a micro-architectural state with the worst case

timing behavior — empty cache. However, execution of previous ticks may load cer-

tain instructions of t into the instruction cache, and the execution of t may re-use these

”pre-loaded” instructions in the cache, leading to cache hits. Thus, by considering the

cache state resulted from previously executed tick transitions, a tighter WCET of t can

be obtained.

In our example shown in Figure 5.2, even though there is no instruction reuse across

different ticks at the Esterel program level, same instructions of the generated C level

tick function may be reused in different ticks. Since the execution of different Esterel

ticks is accomplished by several executions of the C-level tick function, this results

in non-trivial instruction reuse across ticks. For example, in the two consecutive tick

transitions ST1 → ST2 and ST2 → ST3, although different paths of the C level tick

function are executed, they use the same instructions for testing s1 (”switch(s1)”), s2

(”switch(s1)”), and signal C (”if (C)”). In a processor containing instruction cache,

execution of these common instructions in the subsequent tick transition (i.e., ST2 →

ST3) will result in cache hits, and hence a smaller WCET.

Timing effects of cache sharing by different program fragments have been well-

studied in the literature on cache-related preemption delay [40]. Given a preempted task

T and a preempting task T ′, the cache-related preemption delay is an upper bound on

the delay due to additional cache misses caused by preemption of T by T ′. Our problem

is somewhat different. Instead of computing cache states at each possible preemption

point, we only need to compute the cache states at the beginning and end of the tick

CHAPTER 5. CONTEXT-SENSITIVE TIMING ANALYSIS OF ESTEREL 74

function. Moreover, we want to estimate the cache reuse (i.e. gain in execution time)

due to prior execution of other program fragments. In comparison, the works on CRPD

analysis estimate the cache pollution (i.e. loss in execution time) due to prior execution

of other program fragments.

Let a (instruction) cache state be the mapping between instructions and cache blocks

at a certain program point. Using the terminology of [84], we can say that we compute

two sets of cache states for each tick transition STi → STj .

1. RCS(STi → STj). The Reaching Cache States is the set of possible cache states

when the tick function finishes executing the tick STi → STj .

2. LCS(STi → STj). The Live Cache States is the set of the possible first memory

references to cache blocks during the execution of the tick STi → STj .

The RCS and LCS of a particular tick transition STi → STj are computed via

program path analysis of the code corresponding to STi → STj . If the code contains

loops, such a computation is iterative and is guaranteed to terminate by converging to a

least fixed point. Furthermore, the RCS of a state STi in a tick transition automata T is

defined as:

RCS(STi) = ∪{RCS(STk → STi)|(STk → STi) ∈ T}

The guaranteed cache reuse (cache hits) due to inter-tick cache behavior in the exe-

cution of a tick transition STi → STj is now summarized as follows. We define:

reuse(STi → STj) = min{match(R,L)|

R ∈ RCS(STi), L ∈ LCS(STi → STj)}

CHAPTER 5. CONTEXT-SENSITIVE TIMING ANALYSIS OF ESTEREL 75

ST1 -> ST2

Tick function

m5 m1

m5 m1

true false

false true

RCS(ST1 -> ST2)

m5 m2

LCS(ST2 -> ST4)

m2m3

Guaranteed cache hit: 1

ST3 -> ST2 ST2 -> ST4

RCS(ST3 -> ST2)

m3 m2

U

RCS(ST2)

reuse(ST2 -> ST4)

Figure 5.4: Example of inter-tick cache reuse analysis

where match(R,L) returns the number of cache blocks with same contents in cache

states R and L.

Finally, the WCET of tick transition STi → STj that takes into account the inter-

tick cache behavior is defined as:

wcet′i,j = wceti,j − reuse(STi → STj)× penalty (5.1)

where wceti,j is the WCET value for the tick execution corresponding to tick transi-

tion STi → STj without inter-tick cache modeling (calculated as in Section 5.3), and

penalty is the time penalty for a cache miss.

Figure 5.4 shows an example of inter-tick cache reuse analysis for WCET calcu-

lation of tick transition ST2 → ST4. Assume ST2 is reachable only from two other

CHAPTER 5. CONTEXT-SENSITIVE TIMING ANALYSIS OF ESTEREL 76

states ST1 and ST3. Possible cache states before execution of ST2 → ST4 is cap-

tured in RCS(ST2). By checking all possible combinations between RCS(ST2) and

LCS(ST2 → ST4), we can guaranteed at least 1 additional cache reuse, compared to

the context-insensitive WCET analysis where execution of ST2 → ST4 are assumed to

start with an empty cache state.

5.5 WCRT Estimation

A TTA T captures all execution paths between the consumption of a given input IN

and the production of an output OUT. Given a TTA and tight WCET values for tick

transitions in it, we now need to compute the worst case response time (WCRT) between

an input signal IN and output signal OUT.

Since the execution count of each tick transition is an integer, we employ an Integer

Linear Programming (ILP) approach to compute the WCRT. We solve the following

ILP optimization problem. This problem uses the WCET values of the individual ticks

as constants.

maximize
∑

STi→STj∈T

Cnti,j × wcet′i,j

where Cnti,j and wcet′i,j are the execution count and WCET (see Equation 5.1) of tick

transition STi → STj in TTA T .

The linear constraints on Cnti,j are developed from the TTA’s control flow. Since

we are calculating the WCRT between an input signal and its output, only one of the

CHAPTER 5. CONTEXT-SENSITIVE TIMING ANALYSIS OF ESTEREL 77

2,2

[
emit IN; pause;
abort
loop
emit A; pause;

end loop;
when N1 tick;
||
abort
loop
emit B; pause;

end loop;
when N2 tick;
emit OUT; pause;
]

(s1,s2)
//s1==2

//s1==1

//s1==0

//s2==2

//s2==1
//s2==0

L1 && L2

L1

L2

L1

L2

Enter L1

Enter L2

Exit L1 && L2 Exit L1

Exit L2

Exit L1

Enter L1, Exit L2

Exit L2

Exit L1

1,2

0,1 0,2

1,1

1,0

0,0

Figure 5.5: An Esterel program containing loops and its TTA

initial transitions is allowed to take place. This is captured by the constraints

∑
STi→STj∈T ∧STi∈Q0

Cnti,j = 1

where Q0 is the set of initial states of TTA T . Furthermore, for each state STi in the

TTA, the aggregate execution counts of all incoming tick transitions should be equal to

that of the outgoing transitions. Thus,

∑
STj→STi∈T

Cntj,i −
∑

STi→STk∈T

Cnti,k = 0

Over and above the constraints given in the preceding, we need to bound the number

of iterations of every cycle in the TTA. This is a difficult task. The Esterel program may

contain loops in one or more processes in the computation between the input signal IN

and output OUT. Even if we know the loop bounds of these Esterel level loops, we

cannot directly use them to bound the cycles of the TTA. While constructing the TTA

CHAPTER 5. CONTEXT-SENSITIVE TIMING ANALYSIS OF ESTEREL 78

from the Esterel program, an Esterel level loop is often partially unrolled, or fused with

other loops. The execution counts for ticks inside a loop depend on the loop bound. The

loop bound can be automatically detected for some simple cases, otherwise it needs

to be provided by the programmer. When constructing the global states in the tick

transition automata, the repeated states in one process (as defined by the loop) is often

partially unrolled or combined with the control states of other concurrent processes.

Figure 5.5 shows an example Esterel program that has two processes each contain-

ing a single-tick loop, bounded by N1 and N2 respectively. In the constructed TTA,

different paths exist between the initial state (2,2) and the final states (0,1) and (1,1) (in

gray boxes), and there is no one-to-one correspondence between the Esterel level loops

and TTA cycles. For example in state (1,2), it goes back to itself in a cycle if both loops

keep iterating; or it may go to state (0,2) if loop L1 in the first process exits before L2

in the other process. In general, the execution count of a cycle in TTA may be different

from the bound of corresponding loop(s) in Esterel program, which makes it complex

to design a path enumeration based algorithm to compute the end-to-end delay. How-

ever, we show that it is much easier to generate ILP constraints on aggregate execution

counts of certain tick transitions to satisfy the given Esterel-level loop bound.

We bound the number of executions of each TTA cycle as follows. Recall that each

state in the TTA is a valuation of control state variables s1, . . . , sn – each variable si

corresponds to a thread or process in the Esterel program. Now, for each loop L in

the Esterel program, we first find the control state variable sk that captures the control

flow of the process p containing L. Since the loop defines repeated execution of certain

CHAPTER 5. CONTEXT-SENSITIVE TIMING ANALYSIS OF ESTEREL 79

TURBO
channel

TcInt ROM
ReadROM

RomAD

RomOE

tick 1

tick 2‐6

TCRegOutOE RomOE

RDY

tick 7

RomOE tick 8

tick 0

Figure 5.6: ROM read operation in TURBOchannel interface program

local control states of the process p, and the variable sk simply encodes the progress

in control flow of p – we can always find a value v of sk that appears exactly once in

each iteration of the loop L. Such a value v corresponds to a control state of p lying

inside the loop L. We now generate the following ILP constraints to incorporate the

loop bound BL for each loop L in the Esterel program

∑
STi→STj∈T ∧(sk==v)∈STi

Cnti,j <= BL

where sk is the control state variable for the process containing loop L, v is a value of

sk that holds once in each iteration of L.

5.6 Case Study

We illustrate our response time estimation using the TURBOchannel Interface (TcInt)

benchmark from the Estbench Esterel Benchmark Suite [33], which contains 687 lines

in Esterel source file and 3031 lines of compiled C code. We adopt the same architecture

CHAPTER 5. CONTEXT-SENSITIVE TIMING ANALYSIS OF ESTEREL 80

configuration as presented in Section 4.6. which assumes a direct mapped L1 instruction

cache with 8-byte block size, dynamic 2-level branch predictor, 5-staged pipeline, and

an instruction dispatch queue size of 4. We assume no data cache and the instruction

cache miss penalty is 30 cycles.

TURBOchannel is an I/O interconnect that allows several I/O options to connect to

one system [85]. The TURBO channel Interface helps guarantee correct TURBOchan-

nel implementation and provides additional features such as DMA operations. In the

following, we show the response time calculation of a ReadROM operation. Figure 5.6

shows the event communications between TcInt program and the environment during

each tick in the ReadROM operation. There are in total 9 ticks between the input event

“ReadRom” and the final output “RDY”, which informs the TURBOchannel that the

operation is completed. A single-tick loop iterates five times between tick 2 to 6, which

corresponds to the ROM read delay period. We do not show all internal signals used for

communicating between processes within the TcInt program (e.g., RROM, DRIVER,

and DELAY processes) in the figure.

The tick transition automata (TTA) corresponding to the ROM read operation con-

tains 45 states and 91 transitions. On the other hand, a full automata consists of around

3000 states and 20000 transitions – clearly showing the succinctness of the TTA.

The WCET of the generated tick function is 10949 cycles without considering any

tick path information from TTA. Since the operation takes maximum 9 ticks to finish, a

pessimistic estimation of the response time is 9×10949 = 98541 clock cycles. One the

other hand, by utilizing program path contexts, the calculated response time is 68103

CHAPTER 5. CONTEXT-SENSITIVE TIMING ANALYSIS OF ESTEREL 81

0

2000

4000

6000

8000

10000

12000

0 1 2 3 4 5 6 7 8

cycles

ticks

WCET(tick function) WCET(control flow context) WCET(control flow & cache context)

tick WCETtf WCETtick WCETcache
0 10949 10020 10020
1 10949 7375 6025
2 10949 7078 6478
3 10949 6988 6418
4 10949 7018 5758
5 10949 6988 6448
6 10949 7018 6328
7 10949 7777 6517
8 10949 7841 6761

total 98541 68103 60753

0

2000

4000

6000

8000

10000

12000

0 1 2 3 4 5 6 7 8

cycles

ticks

WCET(tick function) WCET(control flow context) WCET(control flow & cache context)

Figure 5.7: Tick WCET results from different calculation approaches

clock cycles, which gives a 30.9% reduction over the previous result. Furthermore, after

modeling the inter-tick cache behavior to capture the additional guaranteed cache hits

across tick function iterations, we obtain an even tighter response time of 60753 clock

cycles. This amounts to a reduction of (98541 − 60753)/98541, that is, almost 40%

reduction by taking into account program control flow as well as micro-architectural

contexts. Finally, Figure 5.7 compares the WCET values calculated for the individual

ticks which appear in the longest path of the Tick Transition Automata (TTA) — ticks

responsible for the worst-case response time of a ReadROM operation. For each tick,

(i) the leftmost bar shows the WCET value without any context information, (ii) the

middle bar shows the WCET value considering only program level contexts and (iii)

the rightmost bar shows the WCET value considering program level as well as micro-

architectural contexts.

CHAPTER 5. CONTEXT-SENSITIVE TIMING ANALYSIS OF ESTEREL 82

5.7 Summary

In this chapter, we have shown a context-sensitive timing analysis for Esterel programs.

This is useful for tightly estimating the response time of input events. We consider the

program flow and micro-architecture contexts at the beginning of each Esterel clock tick

to deliver tight response time estimates. Such tighter estimates immediately translate

into more cost-effective implementations. Our experimental results with realistic case

studies show up to 40% reduction in timing estimates when context information is taken

into account.

Chapter 6

Multiprocessor Execution of Esterel

In this chapter, we further extend our model-driven timing analysis of Esterel specifica-

tion for multiprocessor execution. Towards this goal, we propose a scheme for generat-

ing efficient code from Esterel specifications for a multiprocessor platform, followed by

timing analysis of the generated code. Due to dependencies across program fragments

mapped onto different processors, traditional WCET analysis techniques for sequential

programs cannot be applied to this setting. Our Worst-Case Response Time (WCRT)

analysis technique is tailored to capture such inter-processor dependencies. Our main

novelty stems from how we detect and remove infeasible paths arising from a multi-

processor implementation, along with a shared bus modeling in order to obtain tight

estimates on the WCRT. Furthermore, we integrate a shared bus modeling for simple

round-robbin TDMA bus schedule into our timing analysis framework to capture the

inter-processor architectural behavior. We illustrate our techniques using a number of

standard Esterel benchmarks, which show that ignoring inter-processor bus and infea-

83

CHAPTER 6. MULTIPROCESSOR EXECUTION OF ESTEREL 84

sible path modeling in a multiprocessor setup may lead to up to 133% over-estimation

of the WCRT thereby leading to resource over-dimensioning and poor design.

6.1 Overview

Worst case response time (WCRT) analysis for concurrent Esterel execution is pro-

posed in [19]. The targeted platform is a special-purpose single processor (the Kiel

Esterel Processor) with hardware support to schedule concurrent Esterel threads. Tech-

niques that compile synchronous languages for distributed execution are summarized

in [47]. In [111], the distributed executable code generated from Esterel specification

targets special-purpose reactive processors, where a hardware scheduler is designed for

concurrent Esterel threads running on the same processor. Moreover, the issue of timing

analysis is not discussed for the generated distributed program.

In this chapter we propose a scheme for generating C code from Esterel specifica-

tions for general-purpose multiprocessor platforms. Our platform architecture is fairly

general and consists of multiple processors each with a private L1 cache; they commu-

nicate via shared memory and are connected to a shared communication bus supporting

time division multiple access (TDMA) (see Figure 6.1). Given a multi-threaded Esterel

program, we assume that the thread to processor mapping is given. Communication

between threads mapped onto different processing elements (PEs) is implemented via

shared memory objects. The shared bus is used only for loading instruction/data from

shared main memory to individual PEs (not for explicit message exchanges between

CHAPTER 6. MULTIPROCESSOR EXECUTION OF ESTEREL 85

Main Memory

PE1
L1 cache

PE2
L1 cache

PE3
L1 cache

Sequential
C program

Sequential
C program

Sequential
C program

Concurrent Estrel
Specification

Multiprocessor Esterel Compiler

Shared Bus (TDMA)

Thread-to-PE
mapping

Figure 6.1: Multiprocessor execution of Esterel Specification.

PEs). For multiple threads mapped onto the same processor, a valid sequentialization

– as followed by Esterel compilers for uni-processors – is assumed (refer to Section

2.1.1). The resulting sequential code for each processor needs to be augmented with

partial code replication, as well as additional communication dependencies from other

processors to resolve control flow decisions. We discuss our code generation tech-

nique in Section 6.2, and propose a timing analysis framework that captures the inter-

processor program flow and architectural behaviors in Section 6.3.

CHAPTER 6. MULTIPROCESSOR EXECUTION OF ESTEREL 86

loop
X=1;
await IN;
[
present B then emit A;
end present
||
present A then emit C;
end present
||
emit B;
present C then emit O;
end present
]
pause;

end loop

s1

IN

s1=0

1 0

01

B

X=1

s1=0

A=1

1 0 A

C=1

1
0 B=1

C

O=1

0
1

s1=0

//T1

//T2

//T3

//T4

(a) Example Esterel program (b) Global CCFG

s1

IN

s1=0

1 0

01

B

X=1

s1=0

A=1

1 0

s1=0

s1

INs1=0

1 0

01

s1=0

A

C=1

1 0
B=1

C

O=1
01

s1=0

(c) CCFG1 on PE1 (d) CCFG2 on PE2

Figure 6.2: Example Esterel specification and it concurrent control flow graph (CCFG).

6.2 Code Generation

Our multiprocessor Esterel code generation is built on top of the Columbia Esterel

Compiler (CEC), which produce single-thread C program for uniprocessor execution

(Section 2.1.1). We present our code generation technique using the example Esterel

specification shown in Figure 6.2(a). We assume that threads T1 (the root thread) and

T2 are mapped onto PE1, and threads T3 and T4 are mapped onto PE2. The corre-

sponding concurrent control flow graph (CCFG) generated by CEC is (partially) given

in Figure 6.2(b). To preserve Esterel semantics on instantaneous signal broadcasting, a

signal test is executed only after the signal emit in the same clock tick in the generated

C code.

In multiprocessor execution environment, compiling partitioned Esterel threads in-

dividually for each PE does not produce a correct implementation, due to the inter-

processor control and communication dependencies. In our example, simply parti-

CHAPTER 6. MULTIPROCESSOR EXECUTION OF ESTEREL 87

s1

IN

s1=0

1 0

1

B

X=1

A=1

1 0

s1=1

(a) CCFG1 on PE1 (b) CCFG2 on PE2

L1: If (s1) {
L2: X = 1;
L3: s1 = 0;
L4: }
L5: else {
L6: if (IN) {
L7: if (B) A = 1;
L8: s1 = 1;
L9: }
L10: else {
L11: s1 = 0;
L12: }
L13: }

L1: if (A) C = 1;
L2: B = 1;
L3: if (C) O = 1;
L4: s1 = 1;

Wrong code generation

(c) C code on PE1

A

C=1

1 0
B=1

C

O=1
01

(d) C code on PE2

0

s1=0

Figure 6.3: Incorrect multiprocessor code generation.

CHAPTER 6. MULTIPROCESSOR EXECUTION OF ESTEREL 88

tioning the global CCFG into two CCFGs (each containing the corresponding threads’

statements mapped onto a PE), results in the wrong implementation of CCFGs and C

programs shown in Figure 6.3. In particular, the following issues must be corrected in

the multiprocessor code generation.

• Control dependencies. For example, in the generated multiprocessor C tick func-

tions in Figure 6.3(c) (for PE1) and Figure 6.3(d) (for PE2), it is possible for the

code fragments X = 1 (line L2) and if(A) . . . (line L1) to be executed in a same

global clock tick. However, it is not allowed in the original Esterel specification.

In order for the generated C programs to execute on multiprocessors in globally

synchronized locksteps, control dependencies between threads mapped onto dif-

ferent PEs (captured by the use of state variables) must be retained locally in the

C program on each PE.

• Communication dependencies. The generated C programs do not ensure that test

of signal A on PE2 (line L1) must be executed after emit of A on PE1 (line

L7). Since signal A is represented as a shared memory object in our setting, it is

possible that test of A returns false while A is emitted (set to 1) later in the same

clock tick.

• Even if the communication dependencies are ensured between emit and test of a

signal across different processors (i.e., test of a signal can be executed only after

possible emit of the signal in a same clock tick), the generated two programs may

still result in deadlock during runtime. In particular, test of signal A on PE2 (line

CHAPTER 6. MULTIPROCESSOR EXECUTION OF ESTEREL 89

L1) is waiting for emit of A on PE1 (line L7), while test of B on PE1 (line L7) is

waiting for emit of B on PE2 (line L2). Neither program is allowed to proceed.

In our code generation, we extend the methodologies in [111] for handling such de-

pendencies (refer to Section 6.2.1 and Section 6.2.2). In [111], one sequential program

is generated for each concurrent thread in the Esterel specification. For threads mapped

onto each PE, the corresponding programs are executed in a round-robin fashion by a

scheduler. On the other hand, we produce one program for all threads mapped onto

each PE by statically sequentializing their execution (Section 6.2.3). Thus, we do not

require any hardware supported scheduler to ensure the correctness of our multiproces-

sor Esterel execution. Furthermore, as we will discuss in this section (and also show in

the experimental results refer Section 6.4), our code generation produces efficient code

with less overhead for handling control and communication dependencies across differ-

ent threads. Finally, to resolve the possible inter-processor deadlock during execution,

we propose a technique that takes into account the global communication dependen-

cies when performing sequentialization for threads mapped onto the same PE (Section

6.2.3). The correct partitioned CCFGs and generated C programs of our example Es-

terel program is shown in Figure 6.4.

6.2.1 Replicating Control-flow

In order to execute a thread on a different PE from its parent threads, the control-flow

context of its parents (up to the root thread) needs to be replicated. In particular, the

creation and execution of a child thread may be affected by the control states of its

CHAPTER 6. MULTIPROCESSOR EXECUTION OF ESTEREL 90

s1

IN

s1=0

1 0

01

B

X=1

s1=0

A=1

1 0

s1=1

s1

INs1=0

1 0

01

s1=0

A

C=1

1 0
B=1

C

O=1
01

s1=1

(a) CCFG1 on PE1 (b) CCFG2 on PE2

L1: If (s1) {
L2: X = 1;
L3: s1 = 0;
L4: }
L5: else {
L6: if (IN) {
L7: /*guard B*/
L8: while(!(RNB[2]);
L9: if (B) A = 1;
L10: /*resolve A*/
L11: RNA[1] = 1;
L12: s1 = 1;
L13: }
L14: else {
L15: /*resolve A*/
L16: RNA[1] = 1;
L17: s1 = 0;
L18: }
L19: }
L20: barrierSyn();

L1: If (s1) {
L2: s1 = 0;
L3: }
L4: else {
L5: if (IN) {
L6: B = 1;
L7: /*resolve B*/
L8: RNB[2] = 1;
L9: /*guard A*/
L10: while(!(RNA[1]);
L11: if (A) C = 1;
L12: if (C) O = 1;
L13: s1 = 1;
L14: }
L15: else {
L16: /*resolve B*/
L17: RNB[2] = 1;
L18: s1 = 0;
L10: }
L20: }
L21: barrierSyn();

(c) C code on PE1 (d) C code on PE2

Figure 6.4: Correct multiprocessor code generation.

CHAPTER 6. MULTIPROCESSOR EXECUTION OF ESTEREL 91

parent threads. In [111], following two types of nodes (in the compiler intermediate

representations) are distinguished when Esterel is compiled into C code,

Control nodes: Nodes affect the control flow, including conditional test nodes (for

signals and normal data variables), and Esterel specific control nodes. (for manip-

ulation of compiler-introduced state control variables, signal guard, fork/join, termi-

nate/preemption, etc).

Assignment nodes: Nodes that contain signal emission and normal data handling (they

correspond to the assignments that are visible to other PEs via updating on shared mem-

ory objects in the generated C code).

In order to produce a correct multiprocessor execution of Esterel, for each thread’s

implementation, all its parent threads’ control nodes must be replicated. In Figure 6.4(d),

the control nodes of T1 are replicated in CCFG for PE2, including test and assignment

on control variable s1 and test of signal IN . Note that “X=1” is an assignment node

in T1, thus no replication is needed. As a result, the generated programs on all PEs

execute in globally synchronized locksteps.

In [111], each thread is compiled into a separate program. Thus, parent threads’

control nodes have to be always replicated in all child threads’ code regardless of the

thread-to-PE mapping. As a result, [111] replicates T1’s control nodes three times for

each of its child threads in our example. On the other hand, our code generation requires

to replicate a thread’s control nodes at most once on each processor. In particular, a

thread T ’s control nodes are replicated on processor PEi only if T is not mapped to

PEi and at least one child thread of T is mapped to PEi.

CHAPTER 6. MULTIPROCESSOR EXECUTION OF ESTEREL 92

6.2.2 Handling Signal Communication

Esterel requires that in a single clock tick, test of a signal must be executed after the

signal emission (if any). In our multiprocessor code generation, we further classify the

following two scenarios of signal communication between concurrent threads.

Local within a PE: If all threads that emit and test a signal are mapped onto a same

PE, the compiler statically schedules the execution order between them (refer to Section

6.2.3). No inter-processor signal communication is required.

Across different PEs: Otherwise, we adopt the method of inserting signal resolu-

tion/guard nodes proposed by [111] to guarantee the correct sequentialization of signal

communication across PEs.

We insert resolution/guard nodes at the sequential control flow graph (SCFG) level

during code generation of each PE. Let RN i
A be set of resolution nodes for signal A

inserted in SCFG for PEi. Execution of RN i
A is used to notify other PEs that PEi has

determined the value of signal A (either presence or absence) in its current clock tick.

In general, a resolution node for presence of signal A is inserted immediately after emit

of A in the SCFG (e.g., L11 in Figure 6.4(c)); or in case signal A’s emission is absent in

a path, the resolution node for A is inserted at the earliest possible control location from

which no emission of A is reachable (e.g., L16 in Figure 6.4(c)). Correspondingly, a

signal guard node for A is inserted before each test of A (e.g., L10 in Figure 6.4(d)).

The guard node allows test of A to take place only if for each PEi that may potential

affect the value of A, a resolution node in RN i
A has been executed. In our current im-

plementation, this is done via a busy-waiting while loop testing all the shared memory

CHAPTER 6. MULTIPROCESSOR EXECUTION OF ESTEREL 93

objects of signal resolutions. In the correct multiprocessor C programs shown in Figure

6.4(c) and Figure 6.4(d), resolution/guard nodes for signal A and B are inserted.

Note that we classify signal communication at PE level, such that resolution/guard

nodes are not inserted for local communication within a PE (e.g., in Figure 6.4(d),

no resolution/guard nodes required for signal C on PE2). Our multiprocessor Esterel

execution encounters less communication overhead compared to [111], where resolu-

tion/guard nodes are required for any inter-thread signal communication.

Global Synchronization In our model of multiprocessor execution, an Esterel clock

tick completes when all concurrent programs finish execution of current tick. Barrier

synchronization is performed at the end of each generated C tick function, such that the

current execution of a tick function completes only if all programs reach the barrier.

In Figure 6.4(c) and Figure 6.4(d), barrier synchronization barrierSyn() is invoked at

L20 an L21, respectively. The barrier synchronization can be implemented similarly to

shared signal handling as described above, by introducing a shared “sync” signal in all

generated programs. Only when all programs emit the “sync” signal, each program can

proceed to execute next clock tick.

6.2.3 Sequentializing Concurrent Threads

In order to generate one single sequential C program for all threads mapped on a PE,

concurrent execution of these threads needs to be sequentialized based on signal com-

munication dependencies. To ensure that Esterel semantics is followed in the generated

CHAPTER 6. MULTIPROCESSOR EXECUTION OF ESTEREL 94

code, a test on signal A can be checked only after the decision on emit of A has been

made (possibly in other threads). Figure 6.2(b) shows (part of) the concurrent control-

flow graph (CCFG) produced by [34] for the example program, where the communica-

tion dependencies are denoted with dashed directed edges.

In our code generation, we build one local CCFG for all threads executed on each

PE (e.g., Figure 6.4(a) and Figure 6.4(b)). However, we cannot simply compute the

communication dependency on each local CCFG individually. In our example, “present

A” in thread T3 depends on “emit A” in thread T2, and “present B” in thread T2 depends

on “emit B” in thread T4. We assume threads T1 (the root thread) and T2 are mapped

onto PE1, while threads T3 and T4 are mapped onto PE2. When generating a sequential

C program for threads T3 and T4 to be executed on PE2, if only the local dependencies

between T3 and T4 is considered (between emission and test of signal C as shown in the

incorrect implementation in Figure 6.3(b)), the compiler may decide to schedule the test

of A in T3 prior to the emit of B in T4. The resulted incorrect sequentialization (shown

in Figure 6.3(d)) leads to a deadlock situation (circular wait) between the emit/test of A

and B signals across the two processors PE1, PE2 as we have previously discussed.

We solve this inter-processor dependency problem by adding an indirect depen-

dency between emit of B and test of A in the CCFG for PE2 (as shown in Figure

6.4(b)). The compiler ensures that “emit B” will be executed before “present A” in

the generated sequential C code. Indirect dependency can be deduced from the global

CCFG that contains all signal dependencies between threads in the Esterel program (as

shown in Figure 6.2(b)).

CHAPTER 6. MULTIPROCESSOR EXECUTION OF ESTEREL 95

Multiprocessor
Esterel Compiler

Inter-processor signal
communication

Infeasible path info.
(Sec. 6.3.2)

Esterel
specification

Multiprocessor C
programs

Basic
block info.

TDMA bus
modeling

Basic block WCET
(Sec. 6.3.3)

Blocking delay
(Sec. 6.3.1)

WCRT analysis
(Sec. 6.3.4)

Figure 6.5: Overview of timing analysis framework for multiprocessor execution of Esterel.

6.3 Timing Analysis

Figure 6.5 presents an overview of our proposed timing analysis framework. During the

multiprocessor Esterel compilation, we generate information on inter-processor signal

communication as well as infeasible paths. In this work, we assume signal communi-

cations are implemented via shared memory objects among generated multiprocessor

programs (no explicit message passing across processors). As a result, a signal guard

node blocks test on a signal to be executed until corresponding signal resolution nodes

finish execution. Such blocking time must be considered during the timing analysis

(Section 6.3.1). Furthermore, by utilizing infeasible path information, our timing anal-

ysis ignores a subset of infeasible paths and control states in the generated programs,

resulting in tighter timing estimates (Section 6.3.2).

CHAPTER 6. MULTIPROCESSOR EXECUTION OF ESTEREL 96

We compute WCET of each basic block in the assembly code level control flow

graphs (CFGs) of the generated C programs. Tighter WCET estimates can be obtained

by micro-architectural modeling of the execution platform. In this work, we propose a

shared bus modeling with time-division multiple access (TDMA) based bus schedule

(Section 6.3.3).

The compiler generated information on infeasible paths and signal communication

can be propagated into assembly code level CFGs by maintaining a mapping between

the CFG basic blocks and various intermediate representations (IRs) produced during

Esterel compilation (as discussed in Chapter 4). Finally, our timing analysis works on

assembly code level CFGs of the generated multiprocessor programs (Section 6.3.4).

By utilizing infeasible path information, communication blocking time, and WCET of

basic blocks, it determines WCRT of the generated programs in any single Esterel clock

tick.

6.3.1 Computing Start Times

Recall that in our multiprocessor execution model of Esterel specification, one sin-

gle sequential C program is generated and executed on each PE. However, we cannot

directly apply traditional WCET analysis for sequential programs to estimate the ex-

ecution time of each individual program due to the dependencies across programs on

different PE. In particular, the signal guard nodes introduced to guarantee the correct-

ness of communication dependency act as blocking delay during programs’ execution.

To compute WCRT of the generated parallel program in any Esterel clock tick, we need

CHAPTER 6. MULTIPROCESSOR EXECUTION OF ESTEREL 97

while(!(RNA[2]
&& RNA[3]));

B1,1 S1 ==1

A ==1

yes

B1,3

yes no

no

S1 ==1

yes no

B2,1

...
B1,2

RNA_2() ...

A =1

RNA_2()

void RNA_2(){RNA[2] = 1;}

B2,2

B2,3

B2,4

S2==1

yes no

B3,1

RNA_3()

RNA_3()

A =1
B3,2

B3,3

B3,4

void RNA_3(){RNA[3] = 1;}

CFG1 on PE1 CFG2 on PE2 CFG3 on PE3

Figure 6.6: Blocking delay due to signal communication.

to incorporate the blocking delay time within the program’s execution time.

Consider a system consisting of three processors, each having a generated sequential

program to be executed on. Figure 6.6 shows part of the three program’s assembly code

level CFGs, related to communication of a shared signal A. In CFG1, basic block B1,2

is the signal guard for test ofAwhich appears inB1,3). The emit statements for signalA

appear in the other two PEs, namely PE2 and PE3; the corresponding signal resolution

statements in PE2 and PE3 are B2,2, B2,4, B3,3 and B3,4. For example in CFG2, if state

variable S1 == 1, it can be determined that signal A cannot be emitted by the second

program in current clock tick. Thus, a resolution node B2,2 is inserted immediately

after. Otherwise, a resolution node (B2,4) is inserted after signal A is emitted (B2,3) on

the other path. It is clear that in the worst case, the time at which B1,3 begins to execute

depends on which of the four corresponding resolution nodes completes last.

In our timing analysis, the blocking delay is handled by setting the start time of a

CHAPTER 6. MULTIPROCESSOR EXECUTION OF ESTEREL 98

signal guard basic block to be the latest finish time among all its control-dependent pre-

decessors (in the same program’s CFG) and data-dependent predecessors (correspond-

ing signal resolution basic blocks in other programs’ CFGs). Let RNA be the set of

resolution basic blocks of signal A in all CFGs running on all PEs, and startbi
/finishbi

be the start/finish time of basic block bi in the worst case. We have

startbi
=


max{max{finishbj

|∀bj ∈ Pred(bi)}, blockA}

if bi is guard of signal A,

max{finishbj
|∀bj ∈ Pred(bi)} Otherwise.

(6.1)

where blockA = max{finishbk
|∀bk ∈ RNA} is the blocking delay due to shared signal

A, and Pred(bi) is set of bi’s control-dependent predecessor basic blocks in the same

CFG.

6.3.2 Inter-processor Infeasible Paths

Infeasible paths introduce substantial over-estimation in the static timing analysis, es-

pecially for generated programs from high-level modeling languages. Intra-processor

infeasible path elimination for a single sequential program generated from Esterel spec-

ification has been studied in Chapter 4. In this section, we show how to exploit inter-

processor infeasible paths to obtain tighter WCRT estimate.

As discussed in section 6.2.1, if child threads of thread T are mapped onto different

PEs, control nodes of T are replicated on those PEs. In any clock tick execution, these

replicated control variables must take the same value. In the CFGs shown in Figure 6.6,

control variable s1 is replicated in both CFG1 and CFG2. Thus, B1,2 in CFG1 for

CHAPTER 6. MULTIPROCESSOR EXECUTION OF ESTEREL 99

PE1 (executed when “s1==1”) and B2,4 in CFG2 for PE2 (executed when “s1==1” is

false) are on two conflicting inter-processor paths. To calculate the blocking time for

B1,2, we only need to check the finish time of the other three resolution blocks, which

gives a tighter result on start time of blockA and overall WCRT. Note that such kind

of inter-processor infeasibility does not exist in uniprocessor code generation, because

B1,2 andB2,4 appear on two mutually exclusive paths. However, in multiprocessor code

generation, the timing analysis might report a global WCRT path containing both B1,2

and B2,4, if no global infeasible path detection is applied.

Our timing analysis eliminates such inter-processor infeasible paths by construct-

ing all feasible value combinations of the programs control variables [s1, . . . , sn] during

compilation. We adopt the methodology of computing feasible control states for unipro-

cessor Esterel code generation discussed in Algorithm 1, Section 4.3.2. It is clear to see

that in our multiprocessor code generation, we do not introduce any new infeasible

global control states (value combinations of state variables) via the thread partition and

control node replication. For each feasible control state [v1, . . . , vn], we perform WCRT

analysis. In the WCRT analysis, we ignore paths containing any conditional branch of

the form si 6= vi. The final WCRT of the overall multiprocessor program will be the

largest WCRT obtained for all the feasible control states. For example in Figure 6.6, if

the only feasible global control states are [s1 == 1, s2 == 1] and [s1 == 0, s2 == 0],

our WCRT analysis needs to consider only two path combinations (instead of all the

eight possible path combinations across the three CFGs).

CHAPTER 6. MULTIPROCESSOR EXECUTION OF ESTEREL 100

6.3.3 WCET Calculation of a Basic Block

Tightness of the proposed high-level timing analysis depends also on the accuracy of

calculating WCET for each basic block, which requires low-level modeling of micro-

architectural features. Micro-architecture modeling for timing analysis has been stud-

ied for single task uniprocessor execution (works on WCET analysis). In this work,

we assume there is only private L1 instruction cache in each PE. For each L1 cache

miss, main memory is accessed via the shared bus. We adopt existing instruction cache

modeling for uniprocessor architecture to determine the L1 cache hit/miss for each in-

struction access [106]. In the case of a shared bus is used for main memory access, a

bus modeling is required for accurate timing analysis. Otherwise, penalty for every L1

cache miss has to incorporate the worst case bus delay for a safe analysis. In this work,

to compute WCET of each basic block, we propose a shared bus modeling for simple

round-robin TDMA bus schedule.

Let L be the slot length assigned to each processor, and B = L × n be the TDMA

schedule period for a system of n PEs. Algorithm 2 describes how to compute the

WCET of a basic block bi, by keeping track of its start time startbi
and latest bus slot

slotbi
available to it. The computed value wcetbi

is the estimated WCET of the basic

block bi. For each instruction in bi, if the instruction is a L1 cache hit, L1 hit latency

(HITL1) and the instruction’s execution cost (costinst) is added to current wcetbi
. Oth-

erwise, we compute the distance (∆) between previous instruction’s finish time and the

end of current bus slot. If ∆ is no less than the main memory access latency (LAT), the

instruction can be loaded within current bus slot. wcetbi
after execution of this instruc-

CHAPTER 6. MULTIPROCESSOR EXECUTION OF ESTEREL 101

Algorithm 2 computeWCET[bi,startbi
,slotbi

]
1: wcetbi

:= 0;

2: inst := first instruction in bi;

3: while inst! = NULL do

4: if inst hits in L1 cache then

5: wcetbi
= wcetbi

+ HITL1 + costinst;

6: else

7: ∆ = (slotbi
+ L)− (startbi

+ wcetbi
);

8: if (∆ >= LAT) then

9: /*inst can be loaded within current bus slot*/

10: wcetbi
= wcetbi

+ LAT + costinst;

11: else

12: wcetbi
= wcetbi

+ ∆ + (n− 1)× L + LAT + costinst;

13: end if

14: end if

15: inst := next instruction in bi

16: end while

17: return wcetbi
;

CHAPTER 6. MULTIPROCESSOR EXECUTION OF ESTEREL 102

m1

m2 m3
m4

m5

CFG1 on PE1

PE2
bus slot
PE1

bus slot

PE1
bus slot

PE2
bus slot

50

100

150

200

250

m1(finish)

0
PE1

bus slot

m2(finish) m3(finish)

m4(finish)

m5(finish)

m1(ready)

Figure 6.7: Shared TDMA bus modeling.

tion is computed at Line 10. Otherwise, the instruction can be loaded only at next bus

slot available. Thus, it needs to wait for (∆+(n−1)×L) cycles for a TDMA-scheduled

bus shared between n PEs (line 12).

Figure 6.7 shows an example of memory access behavior of a code fragment on

PE1 via a TDMA bus shared by two PEs. The bus slot length is L = 50 cycles, and the

main memory latency is LAT = 20 cycles. For the illustration, we assume all 5 cache

accesses m1, . . . ,m5 encounter L1 cache misses, and we ignore instruction execution

time. In the worst case, the ready time ofm0 is at cycle L−LAT+1 = 31 (the access is

ready when bus is available, but the access can not finish in the remaining bus slot). The

starting time of m0 is at cycle 100 (at the next time the bus is available to PE1). If the

right branch is taken, m4 can not be loaded within the second bus slot for PE1. Thus, it

will wait till next assigned bus slot (start at cycle 200). Finally, m5 can be guaranteed

to complete within the third bus slot for PE2 in the worst case (at cycle 240). Thus, the

total time elapsed between m0 gets ready and m5 finishes is 240 − 31 = 209 cycles.

CHAPTER 6. MULTIPROCESSOR EXECUTION OF ESTEREL 103

On the other hand, without the bus modeling, the analysis assumes each miss with the

worst case delay (which corresponds to the delay of m1 in our example). For m1, the

ready time is at 31, start time is at 100 and finish time is at 120 — so the delay between

ready and finish time is 120−31 = 89 cycles. Thus, the WCET estimate of the example

program fragment without bus modeling is 4× 89 = 356 cycles (at most four accesses

on any program path).

6.3.4 WCRT Analysis

Our timing analysis framework is described in Algorithm 3. We first compute all

feasible control states of the generated multiprocessor programs in order to remove

inter-processor infeasible paths as discussed in Section 6.3.2. For each feasible control

state, basic blocks from all the programs are visited in topological order (line 4). Note

that for a signal guard node, corresponding signal resolution nodes are considered as

its predecessors and must be visited before the signal guard node. Esterel language

prohibits the use of loops within a clock tick (except for loops in external procedure

calls). Thus, the traversal in line 4 of Algorithm 3 is acyclic, where each basic block

will be analyzed at most once.

We set certain blocks (paths) to be infeasible according to the current control state

values in each analysis iteration (line 8-14). For a test block bi on control variable sk, its

successor block bj is set to be infeasible if the conditional branch bi → bj is taken when

“sk! = vk”. If a block is infeasible (not reachable) in current control state, the current

analysis iteration ignores it (line 5-7). Furthermore, for a basic block bi, it is reachable

CHAPTER 6. MULTIPROCESSOR EXECUTION OF ESTEREL 104

Algorithm 3 WCRT analysis for multiprocessor Esterel execution.
1: WCRT = 0;

2: getGlobalFeasibleState(); /*Section 6.3.2*/

3: for each feasible control state 〈v1, . . . , vn〉 do

4: for all basic block bi of all programs P in topological order do

5: if reachablebj
== false then

6: continue;

7: end if

8: if bi is a test node on state variable sk then

9: for ∀bj ∈ Succ(bi) do

10: if branch bi → bj is taken when sk! = vk then

11: reachablebj
:= false;

12: end if

13: end for

14: end if

15: if bi is a source node of any program then

16: /*Assume start at the next available bus slot for worst case*/

17: startbi
:= B; slotbi

:= B;

18: reachablebi
:= true;

19: else

20: reachablebi
:= ∨{reachablebj

|bj ∈ Pred(bi)};

21: if reachablebi
== false /*Infeasible path, refer Section 6.3.2*/ then

22: continue; /*no need WCET computation of this basic block*/

23: end if

24: startbi
:= computeStartT ime(bi); /*Equation 6.1 used here*/

25: slotbi
:= b

startbi
B
c ×B;

26: end if

27: finishbi
:= startbi

+ computeWCET (bi, startbi
, slotbi

);

28: end for

29: tmpWCRT := max{finishbi
|bi is a sink node of any program};

30: WCRT = max{WCRT, tmpWCRT};

31: end for

CHAPTER 6. MULTIPROCESSOR EXECUTION OF ESTEREL 105

in current control state only if at least one of its predecessors (Pred(bi)) is reachable

(line 20). Otherwise, if all predecessors of a basic block bi is unreachable, we ignore

this basic block (and subsequent paths from it) in current analysis iteration (line 21-23).

For any source node bi in any of the generated sequential programs, since we do

not know the exact starting time of bi, we consider the worst-case scenario by adding

the “maximum initial delay” to bi’s start time. The “maximum initial delay” is defined

as the distance between bi gets ready and it acquires the bus slot to execute, which is

always less than the bus period B (line 16-18). For any other reachable basic block bi,

we compute its start time as shown in Equation 6.1 in Section 6.3.1 (line 24). The latest

bus slot available to bi is computed at line 25. The finish time of bi is obtained using

our bus-aware WCET calculation as presented in Algorithm 2 (line 27). We perform

WCRT analysis to find a local WCRT value for each feasible control state, and the final

global WCRT is set to be the maximum among them (line 29-30).

6.4 Experimental Results

We extend the Columbia Esterel Compiler (CEC) for our multiprocessor code gener-

ation. Concurrent control flow graph (CCFG) representation of the Esterel program

produced by CEC is first duplicated into multiple copies, one for each PE. Based on a

given thread-to-PE mapping, for each PE, we remove CCFG nodes/edges that should

not be executed on it, except for nodes that need to be replicated (Section 6.2.1). Each

CCFG is converted into SCFG (SCFG) by adding signal guard/resolution nodes as de-

CHAPTER 6. MULTIPROCESSOR EXECUTION OF ESTEREL 106

Benchmark # of Esterel # of lines in generated C programs

lines 1 PE 4 PEs

(CEC) (our approach) [111]’s approach

abcd 101 827 1190 1255

mejia 555 2598 3464 5231

wristwatch 1088 1755 2560 3494

elevator 324 1241 2340 3272

Table 6.1: Esterel benchmarks and generated C programs.

scribed in Section 6.2.2. Additional indirect communication dependencies are then

added to ensure correctness of sequentialization (Section 6.2.3). Finally, a sequential C

program is dumped from each SCFG, where signals and guard/resolution variables are

implemented as shared memory objects.

Table 6.1 lists the benchmarks we used in our experiment, where the “elevator” is

taken from Esterel Studio [39] and the other three programs are from Estbench Esterel

benchmark suite [33]. For each Esterel program we show Esterel code size and the

compiled C programs’ total size for uniprocessor (CEC), 4 processors (our approach

with a random thread-to-PE mapping), and the approach of [111]. In [111], code size

of each generated program (for each concurrent thread) is related to neither number of

PEs nor thread-to-PE mapping. In general, code size increases in the multiprocessor

generation due to control-flow node replication and inserted resolution/guard nodes for

handling signal communication. Table 6.1 shows that our code generation produces

CHAPTER 6. MULTIPROCESSOR EXECUTION OF ESTEREL 107

h

4PE
wcet wcet w/bus wcet w/bus & inf

abcd 21080 11200 9380 0.4686907 0.555028463
mejia 52382 24862 22460 0.52537131 0.571226757
elevator 64270 39063 34622 0.39220476 0.461303874
wristwatc 60286 38542 32891 0.36068076 0.454417278

0
10000
20000
30000
40000
50000
60000
70000

abcd mejia elevator wristwatch

wcrt w/o bus & inf. wcrt w /bus wcrt w/ bus & inf.

Figure 6.8: WCRT analysis results.

5.2% to 33.8% smaller code compared to the approach of [111]. Further, our code

generation for any of the benchmarks takes less than 1 second.

Figure 6.8 shows the results from WCRT analysis of the generated multi-processor

code on a platform with 4 processors. We consider a direct mapped L1 instruction

cache with 256 cache blocks, where each block’s size is 8 bytes. The 4 processors are

connected by a shared bus running static bus scheduling (TDMA). We set the TDMA

bus slot length assigned to each PE to be L = 50 cycles, and memory access latency to

be LAT = 20 cycles. For each of the benchmarks, we compute: (i) WCRT without bus

modeling1 or infeasible path elimination (“wcrt w/o bus & inf.”), (ii) WCRT with bus

modeling only (“wcrt w/ bus”), and (iii) WCRT with both bus modeling and infeasible

path elimination (“wcrt w/ bus & inf.”).

The experimental results show that by employing our shared bus modeling we get a

reduction of 36.1% to 52.5% in the WCRT estimate. If we combine bus modeling with

1Assuming each memory access encounters worst case bus delay.

CHAPTER 6. MULTIPROCESSOR EXECUTION OF ESTEREL 108

infeasible path elimination, we get an overall reduction of 45.4% to 57.1% in the WCRT

estimates. In other words, WCRT estimation without bus modeling and infeasible path

elimination would have resulted in 83.3% to 133.2% overestimation.

6.5 Summary

In this chapter, we propose a scheme to compile Esterel specification for general-

purpose multiprocessor execution. A comprehensive timing analysis framework is pre-

sented for WCRT estimation of a single Esterel clock tick in the generated C programs.

We capture the blocking delay of signal guard blocks due to inter-processor commu-

nication, which is crucial for safe multi-processor timing estimation. Furthermore, we

eliminate inter-processor infeasible paths (control states) and model the shared bus be-

havior (with TDMA-based bus schedule) to produce tighter WCRT results.

Chapter 7

Schedulability Analysis for MSC

Model

An embedded system containing only one task can be entirely modeled in a synchronous

specification. In previous chapters, we have studied how to perform model-driven

WCET analysis on a single task modeled in Esterel, for both single processor and multi-

processor execution. However, the globally synchronous model is usually too strict for

a complex multi-tasking distributed system. In particular, forcing different (and pos-

sibly independent) tasks/applications to execute with a globally synchronized clock is

too restrictive (i.e., changing specification of one task may need modifications in many

other tasks). Furthermore, the computation and communication time in such systems

are inherently asynchronous. To consider a fairly general model for multi-tasking and

distributed systems, we adopt the globally asynchronous locally synchronous (GALS)

model specification (Section 2.1).

109

CHAPTER 7. SCHEDULABILITY ANALYSIS FOR MSC MODEL 110

Model-based design

Globally asynchronous
model

(e.g., MSCs)

Locally synchronous
model

(e.g., Esterel)

Timing analyses

System-level
schedulability analysis

(Chapter 7)

Code-level
WCET analysis

(Chapter 4, 5, and 6)

Micro-architecture
modeling

Model-to-code
compilation

Performance
feedback

Figure 7.1: Overview of our model-driven timing analysis framework (from Figure 1.1)

Figure 7.1 presents overview of our model-driven timing analysis framework, which

is reproduced from Figure 1.1 in Chapter 1. We use Message Sequence Chart (MSGs)

based specification as the globally asynchronous model for describing interaction sce-

narios between components of a distributed system. In this chapter, we propose a

schedulability analysis on an MSG based model, which captures (i) event partial or-

dering as defined in individual basic MSCs; (ii) asynchronous message communication

between events; and (iii) tight preemption cost between events mapped onto a single

processing element (PE) across different MSGs (that model different applications). We

can assume the local tasks (events) of the MSG specification are designed using syn-

chronous models, e.g., Esterel, from which executable code can be automatically gener-

ated. WCET estimates of these local tasks can be obtained via our model-driven timing

analysis techniques discussed in previous chapters, and fed into the schedulability anal-

ysis as input parameters.

CHAPTER 7. SCHEDULABILITY ANALYSIS FOR MSC MODEL 111

P1

e1

P2

e4

P3

e2

m1
e3

m2

PE1

e1
[1,3]

e2
[2,6]

PE2

e3
[1,1]

e4
[3,5]

BUS1

m1 [1,2] m2 [2,2]

Figure 7.2: A basic MSC and timing annotations

7.1 Overview

Currently there exists a large gap between the quantitative performance analysis tech-

niques that exist in the real-time systems literature, and the modeling/specification tech-

niques that are advocated by the formal methods community. As a result, although a

number of schedulability analysis techniques are known for a variety of task graph-

based models, it is not clear if they can be used to effectively analyze standard specifi-

cation formalisms such as MSCs. In this chapter we make an attempt to bridge this gap

by proposing a schedulability analysis technique for MSG-based global system specifi-

cations.

The standard MSC-specific terminologies have been explained in Section 2.1.2.

In our setting, a complete system specification consists of a set of message sequence

graphs (MSGs) denoting concurrently running applications that share common resources,

e.g., processing elements (PEs) and shared buses. We extend the system specification by

CHAPTER 7. SCHEDULABILITY ANALYSIS FOR MSC MODEL 112

mapping the different lifelines in a basic MSC to different processing elements and their

associated messages to different communication resources (e.g. buses). Further, we an-

notate the events and the messages constituting the different lifelines with lower and

upper bounds on their execution/communication times. Figure 7.2 shows a basic MSC

that contains 3 processes (lifelines), 4 local events, and 2 messages. For simplicity of the

presentation, we do not show the events that correspond to send and receive messages.

The messages m1 and m2 are represented in dashed lines with downward-slope, which

indicate the messages are asynchronously transmitted over a shared bus. Event-to-PE

and message-to-bus mappings are also shown in the figure, associated with lower and

upper bounds on their execution/communication times. Such execution/communication

times do not involve blocking times arising out of resource contentions, which is ac-

counted for by our schedulability analysis.

Given the above-mentioned system description, along with the scheduling/arbitration

policies at the different resources, our analysis can be used to compute upper bounds

on the end-to-end delays associated with various event (and/or message) sequences,

which can then be checked against pre-specified deadlines. Examples for such se-

quences might start with data arriving via a sensor, getting processed on several PEs

which also involves multiple transmissions over one or more buses, and then finally

ending at an actuator.

CHAPTER 7. SCHEDULABILITY ANALYSIS FOR MSC MODEL 113

ECU1

TDMA

radar 1 radar 2 radar 3 radar 4

e1:O
bject D

etection

e2:O
bject D

etection

e12:O
bject D

etection

e13:O
bject D

etection

ECU2

FPS

e3:D
ata Fusion

e14:D
ata Fusion

e6:Path Estim
ator

e5:A
daptive

C
ruise C

ontrol

e16:A
dvanced

C
rash Preparation

dependencies ECU3

FPS

e9:Throttle and
B

reak Torque
A

rbitration

e10:B
reak C

ontrol

e11:Throttle C
ontrol

e7:W
heel Sensor

sensor
ECU4

FPS

e8:A
nti-lock

B
raking System

e4:O
bject Selection

e15:O
bject Selection

m1 m2 m9 m10

DYN message
ST message

m3
m11

m7 m5 m6m8

m4

m12

Figure 7.3: A FlexRay-based ECU network.

7.1.1 Running Example

A distributed system has a number of processing elements (PEs) which are connected

by shared buses. A typical distributed application consists of a collection of local com-

putations that run on different PEs and communicate with each other through message

exchanging via buses. As an example, Figure 7.3 shows a distributed FlexRay([44])

based electronic control unit (ECU) network from the automotive electronics domain.

There are four PEs (ECUs) and one shared FlexRay bus in the system. Two concurrently

running applications, an Adaptive Cruise Controller (ACC) [80] and an Advanced Crash

Preparation (ACP) system [31], are shown in the example. The ACC application con-

tains local computations e1 to e11 and messages m1 to m8, while the rest belong to the

ACP system. Control dependency relations between local computations on the same

ECU are also shown, e.g., e10 and e11 can start only after e9 finishes execution.

CHAPTER 7. SCHEDULABILITY ANALYSIS FOR MSC MODEL 114

P6P4 P5

e5

e6

sensor

e7m5
e8

m6

P7b2

m7
m8

P2 P3 P4P1

e1

e2

radar1
P6

e3
e4

P5

m1

m2
m3

e5
m4

e6

sensor

e7m5
e8

m6

P7
b1

m7
m8

radar2

(a) Adaptive Cruise Control

P8P7

e9

e10

b3

e11

P10 P11 P12P9

e12

e13

radar3

radar4

e14
e15

m9

m10 m11

e16
m12

b4

(b) Advanced Crash Preparation

Figure 7.4: MSG model of the ACC and ACP applications.

CHAPTER 7. SCHEDULABILITY ANALYSIS FOR MSC MODEL 115

Figure 7.4 shows the MSG modeling of the ACC and ACP applications in above-

mentioned system. Each local computation is mapped to one local event on a lifeline

(process) in a basic MSC. Note that a lifeline can represent a piece of software pro-

gram which handles its corresponding event(s), or a hardware functional unit. Thus, the

mapping of events onto processes can be easily obtained from the given system specifi-

cation. Several processes can share a single PE, which implements its own scheduling

policy (e.g. the fixed priority preemptive scheduling for processes P5, P7, and P8

on ECU3). It may be noted here that our analysis is flexible enough to handle different

scheduling policies, specified at both MSG and PE/bus level. In fact, the example shown

in Figure 7.3 has a TDMA schedling implemented on ECU1, fixed-priority scheduling

implemented on the remaining ECUs and a FlexRay protocol implemented on the bus.

Communication between processes in an MSC can be modeled using message pass-

ing. Communication may take place via a shared bus (across PEs) or between processes

running on the same PE. If the communication is done via a shared bus, we label it with

a message name (e.g., m1 and m2 in MSC b1). We will only consider asynchronous

message passing in our MSG modeling/analysis. Synchronous message passing, where

the message sender and message receiver handshake, can be obtained as a special case

of our framework. Finally, a “coregion” (denoted by a dashed-line box) is used to relax

the strict ordering of local events along a lifeline, e.g. events e10 and e11 on process

P8 of MSC b3 can be executed in any order (decided by the scheduler of ECU3).

In our example, the ACC application has three external triggers, namely radar1,

radar2 and sensor. We assume the sensor receives input from environment twice faster

CHAPTER 7. SCHEDULABILITY ANALYSIS FOR MSC MODEL 116

than the two radars. Consequently, in the start-up stage of a complete run of the ACC

application, either it receives input data from both two radars and the sensor, which cor-

responding to the scenario described as in MSC b1; or it receives only the sensor’s input

which triggers the scenario in MSC b2, and uses the old output value from the “object

selection”. The different system behaviors due to environment input are modeled using

the indeterministic choice operation from the start of the application.

Given the system architecture and MSG-based modeling of applications, our goal

is to perform schedulability analysis by checking whether the worst-case response time

(WCRT) for each application meets its deadline. Towards this, we first need to extend

the standard MSG formalism with real-time annotations. Each MSG depicting an ap-

plication is associated with the application’s activation period P and deadline D. Each

event is associated with the best-case and worst-case execution time (BCET/WCET)

of its corresponding local computation. We assume the intra-processor communication

(e.g., from e9 to e10 and e11 in MSC b3 of Figure 7.4(a)), as well as the local events of

sending/receiving a message (implicitly denoted by the start/end of a message arrow),

take zero time. Messages are labeled with their transmission time, while the actual

communication time (including blocking time due to possible bus contentions) will be

calculated by our analysis.

7.1.2 Issues in Analyzing the Model

Before proceeding to present our schedulability analysis method, let us examine the

inherent difficulties in finding end-to-end delay of such an MSG model of distributed

CHAPTER 7. SCHEDULABILITY ANALYSIS FOR MSC MODEL 117

application. In order to obtain a tight analysis, we need to consider the effect of re-

source contention, event dependencies (e.g., partial order in an MSC, message commu-

nication), as well as conditional execution of MSCs in an MSG specification.

The possible contentions and data dependencies bring the timing anomaly phe-

nomenon ([46]) when the execution times of events are not constant. In such case,

the local WCET of an event may not lead to the global worst case end-to-end delay of

the application. Thus, the worst-case delay of an application cannot be simply obtained

by simulating the system using WCET of each individual events, over the LCM of all

applications’ periods.

Existing works on schedulability analysis of MSC-based specifications of distributed

systems (e.g. [102] and [96]) compute the local worst-case response time for each indi-

vidual event in critical instance, which assumes all events are independent. The global

worst-case delay is then obtained by summing up these local worst-case response times.

However, the dependencies between set of preempting events and preempted events re-

strict the possible preemption scenarios, which results in the critical/optimal instance

assumed for worst/best case response time analysis for set of independent tasks to be too

pessimistic/optimistic. For example, suppose events ei and ej belong to different appli-

cations in a system, and they are mapped to the same PE where ei has a higher priority

than ej . If ei and ej are ready at the same time (ei imposes the maximum interference

on response time of ej), we have the following.

• Dependency between preempting events: the successor of ei (say ek) cannot be

ready at the same time as ej , resulting in ek preempting ej fewer number of times

CHAPTER 7. SCHEDULABILITY ANALYSIS FOR MSC MODEL 118

than it could have preempted in the worst case scenario (where ek is ready at the

same time as ej).

• Dependency between preempted events: subsequent releases of ei may not be

ready at the same time as the successor of ej (say ep) which also mapped on the

same PE, results in less number of preemptions from ei on ep.

[110] proposes a schedulability analysis based on task (precedence) graph model,

which captures the dependency between preempted tasks by capturing phase adjust-

ment between a preempting task and preempted tasks. To retain a conservative anal-

ysis, the distance between two preempted tasks must be relatively small to preserve

phase adjustment. However, in a bus-based distributed application, it is common to

have computations mapped to other PEs as well as bus communications between two

preempted events (e.g. ej and ep in the above-mentioned example). Such gaps in many

cases counteract the usefulness of the phase adjustment.

We adopt the analysis framework from [110] and extend it to consider (a) the depen-

dencies between preempting events, and (b) control flow, in particular non-deterministic

branches, among the MSCs in an MSG. In our case, an event e in an application A can

be preempted by events in a different application A′. Conditional executions of events

in A′ should be exploited to avoid gross overestimation of the preemption cost of e.

This is done in our analysis by adapting ideas from the recurring real-time task model

in real-time systems literature [7], which allows for conditional branches.

CHAPTER 7. SCHEDULABILITY ANALYSIS FOR MSC MODEL 119

Modified Longest
Path Algorithm
(Algorithm 4)

Latest/Earliest
time information

Response
time Analysis
(Section 7.3)

BCRT/WCRT
of each event

Latest/Earliest
time information

Separated/
concurrent

analysis
(Section 7.3.1) Preemption cost

within an MSC

demand bound
criteria-based

analysis
(Section 7.3.2)

Latest/Earliest
time info

Preemption cost
by other MSGs

Input: MSG based
system model

Output: worst case delay
for each application

Figure 7.5: Overview of our schedulability analysis framework.

7.2 Schedulability Analysis Framework

Figure 7.5 shows the overview of our feasibility analysis framework for MSG-based

system models. Given a set of MSGs each representing a real-time distributed applica-

tion and annotated with required timing information, our analysis will return an upper

bound on the end-to-end delay for each MSG. We present our analysis method in two

levels. In this section, we present the top-level analysis for computing end-to-end de-

lay of MSG-based distributed real-time applications, which is a modified longest path

algorithm adopted from [110] with necessary modifications to handle MSC concatena-

tion and conditional branching in the MSG model. In the next section, we will present

response time analysis of individual events.

To facilitate the analysis, four time instances are defined for each event e and MSC

M in an MSG.

• earliest ready time (earliest[er], earliest[M r])

CHAPTER 7. SCHEDULABILITY ANALYSIS FOR MSC MODEL 120

• latest ready time (latest[er], latest[M r])

• earliest finish time (earliest[ef], earliest[M f]), and

• latest finish time (latest[ef], latest[M f]).

Algorithm 4 presents the top-level iterative algorithm for computing worst case end-

to-end delay (wcrt[MSGi]) for each application modeled by MSGi. The algorithm

terminates when (a) no time instance for any of the events is changed (the fixed point

is reached), or (b) the maximum number of iteration steps are executed (line 5). It uses

information of individual events’ response times to generate latest and earliest time

instances (line 8-9), which in turn will be used to refine the results of the response time

analysis in the next iteration (line 10-11). The top level framework captures the control

dependencies between individual MSCs. Since exactly one of the conditional edges

are taken for each branch, the earliest ready time of an MSC is set to be the minimum

value of the earliest finish times of its predecessors, while the latest ready time of an

MSC is set to be the maximum of the latest finish times of its predecessors (line 12-15).

The algorithm begins with a very coarse approximation for the start and completion

times of the events, and the worst/best case delay it may suffer. The results are refined

in each iteration based on the information computed in last iteration. The algorithm

is safe in the sense that it never produces under-estimation for the worst case delays

or over-estimation for the best case. For an application MSGi with deadline Di, our

analysis considers it schedulable if wcrt[MSGi] ≤ Di.

The LatestTimes calculation invoked at line 8 in Algorithm 4, is shown in Algo-

rithm 5. It is similar to the LatestTimes algorithm in [110]. Basically, the algorithm

CHAPTER 7. SCHEDULABILITY ANALYSIS FOR MSC MODEL 121

Algorithm 4 computeDelay(SY S) — Compute worst case end-to-end delay of each

application of the system SY S modeled in MSG specifications.
1: step = 0; /*number of iterations*/

2: for each application MSGi ∈ SY S do

3: latest[∇r
i] = earliest[∇r

i] = 0; /*initialization*/

4: end for

5: while any time instance changed and step < limit do

6: for each application MSGi ∈ SY S do

7: for each MSC Mj of MSGi in topologically sorted order do

8: LatestTimes(Mj); /*Algorithm 5*/

9: EarliestTimes(Mj);

10: latest[Mf
j] = maxe∈Mj{latest[ef]};

11: earliest[Mf
j] = maxe∈Mj{earliest[ef]};

12: for each successor MSC Mk of Mj do

13: latest[M r
k] = max(latest[Mf

j], latest[M r
k]);

14: earliest[M r
k] = min(earliest[Mf

j], earliest[M r
k]);

15: end for

16: end for

17: /*worst case delay of MSGi*/

18: wcrt[Ai] = latest[4f
i];

19: end for

20: step++;

21: end while

CHAPTER 7. SCHEDULABILITY ANALYSIS FOR MSC MODEL 122

Algorithm 5 LatestT imes(MSC) — Compute latest[er
i] and latest[ef

i] for all ei in

MSC.
1: for each event ei in MSC do

2: latest[er
i] = latest[MSCr]; /*initialize*/

3: end for

4: for each event ei respecting the partial order �MSC do

5: wi = computeWCRT (ei); /* See Equation 7.3 in Section 7.3 for details */

6: latest[ef
i] = latest[er

i] + wi;

7: for each immediate successor ek of ei do

8: if latest[er
k] < latest[ef

i] then

9: latest[er
k] = latest[ef

i];

10: end if

11: end for

12: end for

CHAPTER 7. SCHEDULABILITY ANALYSIS FOR MSC MODEL 123

uses a modified longest-path algorithm to take into account partial order and message

communication dependencies within a single MSC. Based on dependencies between

events of the MSC being analyzed, the main purpose of the algorithm is to update the

latest ready and finish times for each event (line 6-10). This updating is independent

of the resource scheduling policies on the PEs. The scheduling policy is only taken

into account in the calculation of the WCRT of an event (line 5); this calculation will

be elaborated in the next section. Finally, the LatestTimes algorithm can be easily

transformed into the EarliestTimes algorithm (invoked at line 9 in Algorithm 4),

which updates the earliest ready and finish times by calculating the best-case response

time for each event.

7.3 Response Time Calculation

The procedure for computing the earliest/latest ready and finish times of MSC events,

as discussed so far, only provides an algorithmic framework. In particular, it depends on

worst case and best case response time (WCRT/BCRT) estimates of individual events

inside MSCs. We now elaborate the WCRT/BCRT calculation of MSC events. Clearly,

this will require us to consider the scheduling policy inside the PEs on which these

events are executed. We use fixed priority preemptive scheduling for our response time

calculation in this section.

The standard WCRT calculation for fixed-priority scheduling of independent peri-

odic tasks is discussed in Section 2.2.2. To briefly recap, the calculation is given by the

CHAPTER 7. SCHEDULABILITY ANALYSIS FOR MSC MODEL 124

following recursive equation:

wn+1
i = ci +

∑
tj∈hp(ti)

cj · d
wn

i

Pj

e (7.1)

Here wi, ci, and Pi are the response time, computation time, and period for task ti

respectively. The set hp(ti) denotes the set of higher priority tasks mapped to the same

PE as ti. The fixed point computation starts with w0
i = ci, and terminates when the

response time calculated in n + 1th iteration (wn+1
i) equals to the value in previous

iteration (wn
i). Equation 7.1 computes the WCRT of a task ti in its critical time instance

(i.e. all higher priority tasks are ready when ti is ready).

The BCRT calculation is proposed in [92] as

bn+1
i = ci +

∑
tj∈hp(ti)

cj · (d
bni
Pj

e − 1) (7.2)

for the same setting. It is based on the best case phasing (or optimal instance) where ti

finishes simultaneously with the release of all its higher priority tasks.

However, in our distributed MSC-based system model, we can obtain much more

accurate WCRT/BCRT estimates by taking into consideration the dependencies be-

tween preempting events as discussed in Section 7.1.2. We divide the worst and best

preemption cost on the execution of any event ei as follows — (a) preemption on ei by

other events in the same application (denoted as WSi and BSi), and (b) preemption on

ei by events from other applications (denoted as WDi and BDi), respectively. Thus,

our WCRT and BCRT equations are given as follows.

wn+1
i = ci +WSn

i +WDn
i (7.3)

bn+1
i = ci +BSn

i +BDn
i (7.4)

CHAPTER 7. SCHEDULABILITY ANALYSIS FOR MSC MODEL 125

In the following sections, we elaborate the calculation of these four quantities — WSi,

BSi, WDi, BDi.

7.3.1 Preemption within an MSC

Equation 7.1 and Equation 7.2 assume deadline less than or equal to period for all tasks

(D ≤ P). This guarantees that, for a schedulable task set, a task instance will not get

delayed by any its previous instances. In our analysis, we also assume that deadline

is less than or equal to period for all the applications being analyzed. Thus, to show

that application MSG is schedulable (wcrt[MSG] ≤ D), interference from events in

previous instances of MSG need not be considered for the critical and optimal time

instances. Suppose ei and ej are events in the same application MSG, and there is no

dependency between them (neither ei � ej nor ej � ei). For ej to possibly preempt

ei, the events ei, ej cannot be events in different MSCs of the MSG model of MSG,

since MSCs in an MSG are synchronously concatenated. Moreover, ej may preempt ei

at most once owing to assumption that deadline is less than or equal to period for all the

applications.

Furthermore, for an event ej to preempt event ei in a same MSC M , there must

be overlap between their execution time intervals. Let event NCP (i, j) be the nearest

common predecessor event for ei and ej in M . If such a predecessor event does not

exist, we set NCP (i, j) to be the start of M . We define the following quantities.

• smallest time interval between NCP (i, j) finishing and ei becoming ready

SFR
NCP (i,j)
i = earliest[er

i]− earliest[NCP (i, j)f]

CHAPTER 7. SCHEDULABILITY ANALYSIS FOR MSC MODEL 126

which corresponds to the scenario that all events on path from NCP (i, j) to ei

execute in their BCRT.

• largest time interval between NCP (i, j) finishing and ei becoming ready

LFR
NCP (i,j)
i = latest[er

i]− latest[NCP (i, j)f]

which corresponds to the scenario that all events on path from NCP (i, j) to ei

execute in their WCRT.

• smallest time interval between NCP (i, j) finishing and ei finishing,

SFF
NCP (i,j)
i = earliest[ef

i]− earliest[NCP (i, j)f]

• largest time interval between NCP (i, j) finishing and ei finishing,

LFF
NCP (i,j)
i = latest[ef

i]− latest[NCP (i, j)f]

Executions of two events ei and ej from the same vertex are guaranteed to be separated

in one execution of the MSG if and only if

separated(i, j) = ei � ej ∨ ej � ei ∨ (LFF
NCP (i,j)
i ≤

SFR
NCP (i,j)
j) ∨ (LFF

NCP (i,j)
j ≤ SFR

NCP (i,j)
i)

(7.5)

evaluates to true, i.e. either there is a dependency between ei and ej (as per the partial

order for the MSC), or ei always finishes before ej releases, or vice versa. Note that the

instances of ei and ej involved in the preemption belong to the same run of the MSG.

Thus, the above intervals should be measured w.r.t their nearest common predecessor

event (instead of start of the MSG∇), which gives a much more accurate estimation.

CHAPTER 7. SCHEDULABILITY ANALYSIS FOR MSC MODEL 127

Finally, the worst case preemption cost imposed on event ei by events from same

application can be calculated as follows: let cuj be the WCET of event ej .

WSi =
∑
{ cuj | contend(j, i) ∧ ¬separated(i, j)}

where contend(j, i) is true if and only if the events ej and ei are mapped to the same

PE and ej has higher priority than ei (as per the scheduling policy of the PE).

For the BCRT calculation of ei, we find the events ej that are guaranteed to be ready

during ei’s execution.

concurrent(i, j) = ¬(ei � ej) ∧ ¬(ej � ei) ∧ (LFR
NCP (i,j)
i

≤ SFR
NCP (i,j)
j) ∧ (LFR

NCP (i,j)
j ≤ SFF

NCP (i,j)
i)

(7.6)

The best case preemption cost imposed on event ei by events from same application can

be calculated as follows: let clj be the BCET for event ej .

BSi =
∑
{ clj | contend(j, i) ∧ concurrent(i, j)}

7.3.2 Preemption by a Single MSC

WDi and BDi in Equation 7.3 and Equation 7.4 denote worst (best) case preemption

cost on event ei from other applications in system. Before computing the preemption

cost between full-fledged applications modeled in MSGs, let’s first consider a simpler

scenario, where an event e1 in application MSG1 get preempted by a single MSC M2

in another independent application MSG2.

Figure 7.6 gives the projection of the events in M2 executed by the same PE as

e1, including dependencies and priority assignments for the fixed-priority preemptive

CHAPTER 7. SCHEDULABILITY ANALYSIS FOR MSC MODEL 128

e1

e4

e2

e3

MSC1 MSC2

PE

Priority: e1<e2<e3<e4

A1 A2

Figure 7.6: Projection of Events on same PE.

scheduling on PE. The directed edges in Figure 7.6 denote event dependencies. Thus,

a directed edge from event ei to event ej indicates ei � ej , as per the partial order � of

the MSC in which ei, ej reside. Note that there might be events in between ei and ej ,

which are executed on other PEs. Assume that the set of events within an MSC M that

can preempt an event ei is denoted as psM
ei

. For instance, in the example given in Figure

7.6 we have psM2
e1 = {e2, e3, e4}.

Our goal is to find the worst-case preemption scenario for ei, when ei is preempted

by events in psM
ei

. Existing works calculate the WCRT of ei by assuming that all events

in psM
ei

release at the critical instance as ei is ready (see equation 7.1). Clearly, the

critical instance assumption will introduce over-estimation on the WCRT of ei when

dependencies exist between preempting events. In our example, e4 can only be ready

some time after e2 finishes. Thus, if e2 is released at the critical time instance (when

e1 releases), the worst case number of times e4 can preempt e1 may become less com-

CHAPTER 7. SCHEDULABILITY ANALYSIS FOR MSC MODEL 129

pared to the number assumed in equation 7.1. In our proposed analysis, we will use

the latest/earliest ready and finish times of each event in psM
ei

, calculated in each itera-

tion of the delay estimation algorithm shown in Algorithm 4, to tighten the worst-case

preemption cost on ei.

Preempting events in psM
ei

may either have dependencies (e.g. e2 and e4) or execute

concurrently with other events (e.g. e3). In order to explore number of preemptions

they may impose on a preempted event, we first construct a preemption chain to capture

the possible release times of events in psM
ei

. A preemption chain PCM
ei

= {N̂ , Ê}, is a

sequence of nodes n ∈ N̂ , and each directed edgeE(n1, n2) ∈ Ê is labeled with weight

W (n1, n2) representing the minimum time interval between request times of nodes n1

and n2. A node n contains a set of events from psM
ei

. Similar to our handling of events in

Section 7.3.1, four time instances earliest[nr], latest[nr], earliest[nf], latest[nf] are

defined for each node n in the preemption chain. The upper and lower bound computa-

tion time of a node n are denoted as cun and cln respectively; these estimates are obtained

from summing up the WCET/BCET of the events in node n.

The algorithm to construct preemption chain is shown in Algorithm 6, which takes

psM
ei

as input. Events that may execute concurrently are grouped into one node in the

constructed preemption chain PC - the release of any of these events may cause all

of them to preempt ei in the worst case. For each event ej ∈ psM
ei

, we insert it into

PC in the sequence of the partial order defined by M (line 2). If a newly created

node for an event ej (line 3) has overlapping execution time with the current source

node source(PC) of PC (Equation 7.5 evaluated to false), they are group into a single

CHAPTER 7. SCHEDULABILITY ANALYSIS FOR MSC MODEL 130

Algorithm 6ConstructPC(psM
ei

) — Construct a preemption chain that contains events

from MSC M mapped onto the same ECU with ei

1: PC = empty; /*initialize the preemption chain*/

2: for each ej in psM
ei

as the partial order �M of MSC M do

3: create a new node n containing ej ;

4: /*insert n into PC*/

5: if PC is empty then

6: PC.insert(n);

7: else if ¬separated(n, source(PC) then

8: merge(n, source(PC)); /*merge n into source(PC), Algorithm 7*/

9: else if earliest[nr] > earliest[source(PC)r] then

10: insertAfter(n,source(PC), PC); /*insert n after source(PC), Algorithm 8*/

11: else

12: insert n as the source node of PC; /*n is ready before source(PC)*/

13: end if

14: for each edge E(n, n1) in PC do

15: W (n, n1) = earliest[nr
1]− earilist[nr];

16: end for

17: W (sink(PC), source(PC)) = P (M)− latest[sink(PC)r]+earliest[source(PC)r]

18: end for

CHAPTER 7. SCHEDULABILITY ANALYSIS FOR MSC MODEL 131

Algorithm 7 merge(n, n1) — Merge node n into n1.
1: Cu(n1) = Cu(n1) + Cu(n); /*update computation time*/

2: earliest(nr
1) = min{earliest(nr

1), earliest(nr)};

3: latest(nr
1) = min{latest(nr

1), latest(nr)};

4: earliest(nf
1) = max{earliest(nf

1), earliest(nf)};

5: latest(nf
1) = max{latest(nf

1), latest(nf)};

Algorithm 8 insertAfter(n, n1, PC) — Insert node n after n1 in the generated pre-

emption chain.
1: if succ(n1) not exist then

2: insert n as the sink node of PC;

3: else if ¬separated(n, succ(n1) then

4: merge(n,succ(n1)); /*Algorithm 7*/

5: else if earliest[nr] > earliest[succ(n1)r] then

6: insertAfter(n,succ(n1), PC);

7: else

8: insert n between n1 and succ(n1);

9: end if

10: /*pred(n)/succ(n) denote immediate predecessor, and successor of n in the preemption

chain.*/

CHAPTER 7. SCHEDULABILITY ANALYSIS FOR MSC MODEL 132

node since they may cause same number of preemptions on ei (line 7-8). This is done

by invoking the merge procedure in Algorithm 6, which decides the earliest/latest

times for the merged node. Note that such a node is ready when any of its events is

ready (see line 2 of the merge procedure in Algorithm 7). Otherwise, we look for

the “correct” position of the newly created node in PC (line 9-10), via the procedure

presented in Algorithm 8. The distance between two nodes will be the minimum time

elapsed between their ready time (line 14-16, Algorithm 6). And the distance between

the sink node and the next occurrence of the source node is computed based on the

period P (M) of the preempting MSC M .

In our example shown in Figure 7.6, suppose e2 executes between time interval

[3, 6], and e3 executes between [4,7]. Then every time e2 preempts e1, it is also possibly

for e3 to preempt e1 before e1 resume its execution. Thus, when considering the worst-

case preemption scenario, we can group e2 and e3 into a single node n1, which has

an earliest ready time of 3, and execution time of cu2 + cu3 . On other hand, suppose

e4’s earliest ready time is 10. In this case, e1 could finish its execution in the interval

between e2 and e3 finish execution to e4 gets released. Thus, number of preemptions

caused by node n1 and the node containing e4 could be different.

Given the preemption chain PCM
ei

as defined in the preceding, we need to find the

maximum preemption cost it imposes on ei during the worst case response time wi of

ei. This is equivalent to the problem of finding the request bound function of a recurring

real-time task within a time interval t which is discussed by Baruah in [7] (which has

been briefly discussed in Section 2.2.2). The request bound function, PCM
ei
.rbf(t),

CHAPTER 7. SCHEDULABILITY ANALYSIS FOR MSC MODEL 133

accepts a non-negative real number t, and returns the maximum cumulative execution

requirement by releasing of nodes in PCM
ei

that have their ready times within any time

interval of duration t. We will discuss how the request bound can be calculated when

we present our analysis for the full-fledged MSG where conditional branches are added.

Given the request bound of PCM
ei
.rbf(t), the worst case preemption cost imposed

on an event ei by the execution of an independent MSC M within time interval t (quan-

tity WD in Eq. 7.3) is

WDn
i = PCM

ei
.rbf(wn

i)

The calculation for the best case preemption cost is similar modulo the following

changes:

• Events are grouped into a node of the preemption chain only if they are guaran-

teed to execute simultaneously, i.e. replace the condition check¬separated(n, n1)

by concurrent(n, n1) (line 7 in Equation 7.6) when constructing the preemption

chain.

• The computation requirement of a node is replaced with the summation of the

lower bound computation times.

• The distance between two connected nodes is modified to represent the maximum

time interval between ready times of the two node.

• The request bound function for PCM
ei
.rbf(t) is modified to return the minimum

cumulative execution requirement.

CHAPTER 7. SCHEDULABILITY ANALYSIS FOR MSC MODEL 134

The best case preemption cost imposed on an event ei via execution of other MSC M

(quantity BD in Eq. 7.4) is

BDn
i = PCM

ei
.rbf(bni)

7.3.3 Preemption by MSGs

An MSG modeled application may contain multiple MSC connected by conditional

branches, describing its reactions to different environment input (e.g., the packet types

obtained as input in an MPEG decoder). To calculate the worst case preemption cost

imposed on event ei by a complete run of application Ai modeled in MSG MSGi, we

first construct a preemption graph PGMSGi
ei

capturing the dependencies between the

events in MSGi that can preempt ei’s execution. This is done via the following steps.

1. We construct the preemption chain PCM
ei

for each MSC M in MSGi, based on

the algorithm in Algorithm 6.

2. If M ′ is a successor MSC of M in the MSG for application MSGi, we create a

directed edge E(M,M ′) from sink(PCM
ei

) to source(PCM ′
ei

) with weight of

earliest[source(PCM ′

ei
)r]− earliest[sink(PCM

ei
)r]

that is, the minimum distance between ready time of sink(PCMi
ei

) and source(PCMj
ei).

3. Finally, we create a unique dummy source node for the preemption graph, de-

noted as source(PGMSGi
ei

), representing the start time of applicationMSGi. The

dummy node is set as the immediate predecessor of each preemption chain PCM
ei

CHAPTER 7. SCHEDULABILITY ANALYSIS FOR MSC MODEL 135

which have no predecessor, with the weight of these edges (from the dummy

node) being earliest[source(PCM
ei

)r].

The above preemption graph PGMSGi
ei

captures the release information as well

as path information of events in application MSGi that preempt event ei. Thus, the

WCRT of ei can be found by computing the preemption cost from each of such ap-

plications over ei’s response time. Our preemption graph is similar to the graphical

representation of a recurring real-time task in [7], where (i) each node is labeled with

its execution requirement; (ii) edges are weighted with the minimum triggering-times

between two nodes; (iii) two out-going edges from a node represent conditional choice;

(iv) and the unique source node is triggered periodically. Thus, our problem of find-

ing PGMSGi
ei

.rbf(wn
i), the maximum cumulative execution requirement by releasing of

nodes in PGMSGi
ei

over ei’s n − th iteration response time wn
i , can be converted to the

problem of computing the request bound function of a recurring real-time task over a

given time interval. Note that in recurring real-time tasks, each node also has a dead-

line. However, this deadline information will not be used when calculating the request

bound function. In section, we briefly discuss how the request bound function can be

calculated given the preemption graph. The full-detailed computation for request bound

function can be found in [7].

Consider an event e1 of response time w1 = 50 preempted by events in an applica-

tion MSGi with period of 20, as shown in Fig 7.7. The cost of MSGi’s preemption

on ei within ei’s response time can be divided into two parts — (a) preemption on e1

by several complete runs of MSGi, and (b) preemption on e1 by possible incomplete

CHAPTER 7. SCHEDULABILITY ANALYSIS FOR MSC MODEL 136

0 20 40 60

A1

e1(case 1)

80

w1

e1(case 2) w1

Figure 7.7: Preemption from other applications.

n1

s

n2

n1

n1 n2

n1

n1

s

n2

n1

Figure 7.8: Constructing a super preemption graph.

runs of MSGi at the beginning and end of e1’s response time. Hence, the number of

complete runs of MSGi within the response time wi of ei may be either bwi

P
c − 1 as

shown in case 1 of Figure 7.7, or bwi

Pi
c as shown in case 2 of Figure 7.7.

Clearly, the worst-case preemption cost on ei from a complete run of MSGi —

denoted as C(PGMSGi
ei

) — is the maximum cumulative execution requirement of all

nodes along any path in PGMSGi
ei

from the source node to any of the sink nodes.

Finally, we calculate the preemption cost imposed on an event ei from incomplete

runs of applicationMSGi. As in [7], we construct a super preemption graph SPGMSGi
ei

by connecting two copies of PGMSGi
ei

. One edge is added between each sink node

CHAPTER 7. SCHEDULABILITY ANALYSIS FOR MSC MODEL 137

(nsink) of the first copy and the dummy source node of the second copy, with weight of

P − latest[nr
sink] where P is the period of application MSGi. Then the dummy source

node of the first copy as well as all its outgoing edges are removed from the super graph.

Fig 7.8 shows the super graph construction with an example.

The super graph depicts all possible preemption behaviors for the two possible in-

complete runs of MSGi at the beginning and end of the response time of ei, ignoring

the complete runs of MSGi in between. If the response time wi of ei is less than the

period P of MSGi, the request-critical trace can be found from all node sequences in

SPGMSGi
ei

(the dummy source node need not be included). However, if wi ≥ P , the

dummy source nodes must be included in the request-critical trace for the two incom-

plete runs of MSGi within event ei’s response time, that is, they must span over two

releases of MSGi. Let us denote the maximum cumulative execution requirement of

nodes in SPGMSGi
ei

over time interval t to be SPGMSGi
ei

.rbf(t) if the corresponding

request-critical trace includes the dummy source node, or SPGMSGi
ei

.rbf ′(t) other-

wise. The worst-case preemption cost on ei from other applications (the quantity WD

in equation 7.3 can be expressed as follows.

WDn
i =

∑
MSGj



SPG
MSGj
ei .rbf ′(wn

i), if wn
i < Pj ;

max{bwn
i

Pj
c · C(PG

MSSj
ei) + SPG

MSGj
ei .rbf(wn

i mod Pj),

(bwn
i

Pj
c − 1) · C(PG

MSGj
ei)+

SPG
MSGj
ei .rbf(Pj + wn

i mod Pj)}, otherwise.

(7.7)

CHAPTER 7. SCHEDULABILITY ANALYSIS FOR MSC MODEL 138

Similarly, to find the best-case preemption cost, we need to construct the preemption

graph and super preemption graph with the weight of edges showing the maximum time

interval between two connected nodes, and find the minimum cumulative execution

requirement over given time interval in the graph. Similar to Equation 7.7, we obtain:

BDn
i =

∑
MSGj



SPG
MSGj
ei .rbf ′(bni), if bni < Pj ;

min{b bn
i

Pj
c · C(PG

MSGj
ei) + SPG

MSGj
ei .rbf(bni mod Pj),

(b bn
i

Pj
c − 1) · C(PG

MSGj
ei)+

SPG
MSGj
ei .rbf(Pj + bni mod Pj)}, otherwise.

(7.8)

7.4 Case Study

7.4.1 Experimental Setup

In this section, we illustrate our analysis method by applying it to a setup from the

automotive electronics domain. The system architecture of a FlexRay-based ECU net-

work and two distributed applications (ACC and ACP) were presented in Section 7.1.1.

The underlying system architecture consists of four ECUs communicating via a shared

FlexRay bus, as shown in Figure 7.3. We assume ECU1 implements a Time Division

Multiple Access (TDMA) scheduler, while the remaining three ECUs use preemptive

fixed-priority scheduling.

Communication on the FlexRay bus takes place in periodic cycles (or bus cycles),

where each cycle is partitioned into a static (ST) and a dynamic (DYN) segment. The

ST segment is divided into several fixed static slots, and messages can only be sent

during their allocated slots. The DYN segment implements an event-triggered bus pro-

CHAPTER 7. SCHEDULABILITY ANALYSIS FOR MSC MODEL 139

tocol based on fixed priority scheduling. Further details of the FlexRay communication

protocol can be found in [44, 88]. We compute the best and worst response times for

each FlexRay message between its ready time (generated by the sender) and finish time

(available to the receiver). For a ST message mi with a transmission time of Ci, we

have

bi = Ci; wn+1
i = Ci + T + St(wn

i)× T ;

where T is the length of the bus communication cycle, and St(wn
i) is the number of

occurrences of higher priority ST messages using the same ST slot as mi, within a time

interval of length wn
i . For a DYN message mi, the response time is calculated as

bi = Ci; wn+1
i = Ci + T +Dyn(wn

i)× T ;

where Dyn(wn
i) is the number of occurrences of higher priority DYN messages mj

within wn
i time units, such that mj and mi are not allowed to be transmitted in the same

bus cycle (due to size restriction of the DYN segment).

The two applications receive data periodically from the external environment (i.e.

radars and sensors), and are required to complete before the next arrival of their input

data (i.e. deadlines are equal to periods). We assume input data received by the four

radars and the sensor every 100 ms and 50 ms respectively. Thus, the period/deadline

of the ACC and ACP applications are 50 ms and 100 ms respectively. Furthermore, we

assume the FlexRay bus has a communication cycle of 5 ms.

CHAPTER 7. SCHEDULABILITY ANALYSIS FOR MSC MODEL 140

ACC ACP

Proposed analysis 48 ms 95 ms

Saksena and Karvelas [96] 60 ms 110 ms

Table 7.1: End-to-end delay (from sensor/radar to actuator) for the ACC and ACP applications

shown in Figure 7.3.

7.4.2 Experimental Results

In this section we present the results obtained by analyzing the setup described above

using our proposed analysis technique. Further, we compare these results with those

obtained from response time analysis techniques for UML-based system models of

multi-threaded implementations of objects/processes [96], where the dependency be-

tween events are not considered. Our proposed analysis as well as the one in [96] are

safe (i.e., if analysis returns “schedulable” then it is guaranteed to be so).

Table 7.1 shows the results obtained using the two techniques when all the ECUs run

at a clock frequency of 500 MHz. Note that while our analysis returns a “schedulable”

result (i.e. the end-to-end delays of the two applications are lower than the sampling

periods of the radars/sensors that feed data into them), the analysis proposed in [96]

returns “not schedulable”.

Figure 7.9 shows the estimated end-to-end delays of the ACP application using the

two analysis techniques when the clock frequencies of ECU2 and ECU4 are chosen

between 400 to 700 MHz at a scale of 100 MHz, with the execution times of the as-

sociated tasks being scaled accordingly. The frequencies of the remaining ECUs are

kept at 500 MHz. Clearly, the delay estimates obtained using our technique are con-

CHAPTER 7. SCHEDULABILITY ANALYSIS FOR MSC MODEL 141

 400
 500

 600
 700 400

 500

 600

 700
 80
 90

 100
 110
 120
 130

Saksena and Karvelas[ECRTS’00]
proposed analysis

ECU2 (MHz)

ECU4 (MHz)

Figure 7.9: Delay bound for ACP obtained using our proposed analysis and the technique

presented in [96].

siderably tighter than those obtained using [96] (12% to 16% improvements). Such

tighter estimates immediately translate into better resource dimensioning and system

design. In Figure 7.9 the clock frequencies are scaled in steps of 100 MHz. It may be

noted that our analysis returns “not schedulable” only for two different combinations

of frequency settings, viz. (ECU2:400 MHz, ECU4: 500 MHz) and (ECU2:400 MHz,

ECU4: 400 MHz), from our underlying design space. On the other hand, the analysis

proposed in [96] marks a much larger portion of the design space as “not schedulable”.

In particular, only (ECU2:700 MHz, ECU4: 600 MHz) and (ECU2:700 MHz, ECU4:

700 MHz), are estimated to be feasible clock frequencies.

CHAPTER 7. SCHEDULABILITY ANALYSIS FOR MSC MODEL 142

source

ECU2
e14

e16

e3 e6

e5

e6 e3 e5

e6 e5

Figure 7.10: Preemption graph for e14 by events from the ACC application.

7.4.3 Discussion

There are a number of reasons behind the tighter estimates on the end-to-end delays

resulting from our proposed analysis. We discuss some of them below.

• On ECU2: e16 is dependent on e14. Hence, execution of e16 will never get

preempted by e14 in the same iteration of the ACP application.

• On ECU4: The execution intervals of e4 and e8 of the ACC application are not

interleaving. It can be guaranteed that one execution of e15 will not be preempted

by both e4 and e8.

• On ECU2: The set of events in ACC that can possibly contend with e14 are

psb1
e14 = {e6, e3, e5} if the MSC b1 in Figure 7.4(a) is executed; or psb2

e14 =

{e6, e5} if MSC b2 is executed. The dependency information and the resulting

CHAPTER 7. SCHEDULABILITY ANALYSIS FOR MSC MODEL 143

preemption graph as discussed in Section 7.3.3 is shown in Figure 7.10. By

computing the request bound function of this preemption graph over the response

time of e14, our analysis estimates that it is not possible for all three events from

ACC application (e3, e5, and e6) to preempt a single execution of e14. The worst

case actually happens when e3 preempts e14 first, followed by e5, which also

holds for the event e16.

None of the above scenarios can be taken into account in the technique presented in

[96] which, as shown above, leads to pessimistic bounds on end-to-end delay estimates.

7.5 Summary

In this chapter, we have presented a schedulability analysis technique for MSG-based

modeling of distributed real-time systems. This makes schedulability analysis tech-

niques accessible to formal system specifications such as MSCs which have long been

studied in the context of the Unified Modeling Language (UML). We show the utility of

our modeling and response-time analysis with real-life applications from the automo-

tive electronics domain. Our experiments show that our method can consider the event

dependencies as prescribed by an MSC partial order as well as sequencing and branch-

ing between MSCs in an MSG to produce tight response time estimates of MSG-based

system models.

Chapter 8

Conclusion and Future Work

8.1 Thesis Contributions

Worst case timing analysis is of paramount importance for hard real-time system de-

sign, by providing safe guarantees on the system timing behavior. Two fundamental

problems in static worst case timing analysis, WCET analysis and schedulability anal-

ysis, has been well-studied for decades. With the increasing complexity of embedded

software, model-based design methodologies have become industrial standard. It not

only provides an efficient and effective design environment, but also reduces possible

design flaws by automatically generating executable code from high-level models. In

this thesis, we have made attempts to extend existing timing analysis techniques and

seamlessly integrate them into the model-based design framework.

In order to illustrate our model-driven timing analysis, we consider a fairly gen-

eral model hierarchy called the Globally-Asynchronous Locally-Synchronous (GALS)

144

CHAPTER 8. CONCLUSION AND FUTURE WORK 145

model. For large-scale distributed systems, the globally asynchronous model provides

system designer with flexibility to relax interaction behaviors between subsystems, and

allows the designer to refine one local task at a time. On the other hand, the locally syn-

chronous models have deterministic behaviors which enables formal verification and

automatic code generation. In this work, we adopt Esterel as the locally synchronous

model and message sequence chart (MSC) as the globally asynchronous model.

Although the existing code-level WCET analysis can be directly applied to the gen-

erated executable code in a model-based design framework, it usually leads to signif-

icant overestimation due to unawareness of the fact that the code is compiled from a

high-level model. The overestimated WCET estimates may result in resource over-

dimensioning and poor design. Traditional task graph-based system models and their

schedulability analyses concern with independent tasks, which are lack of expressive

power to model all possible control and data dependencies for complex system func-

tionalities. However, a full-fledged message sequence graph based specification allows

designer to model all possible control and data dependencies (e.g., time/event triggering

and conditional execution) in a distributed execution platform.

The main contributions of our proposed model-driven timing analysis for the above-

mentioned GALS model are:

• We have proposed a comprehensive and accurate model-driven WCET analysis

framework for C programs generated from Esterel specification. Our analysis

is capable of finding the WCET of a single Esterel tick, or WCRT of multiple

consecutive ticks, on both single processor or multiprocessor platforms.

CHAPTER 8. CONCLUSION AND FUTURE WORK 146

• Our proposed WCET analysis efficiently and effectively identifies and removes

(inter- and intra processor) infeasible paths in the generated code by exploiting

the semantics and compilation information of the source Esterel specification. We

also captures inter-tick architecture contexts when computation of event(s) spans

multiple ticks.

• We automatically build a bi-directional traceability between Esterel specification

and generated executable code. It helps the designer to identify the performance

bottleneck, and refine the current design by optimizing Esterel specification or

choose/configure the architecture platform.

• We have proposed a general schedulability analysis for distributed system mod-

eled in a globally asynchronous MSC based specification. Our analysis is able

to capture both control and data dependencies in the model specification, via a

combination of WCRT based analysis and the demand bound approach.

8.2 Future Work

We have identified the following directions to be pursued in the future.

Model-driven multi-core architectural modeling. In our timing analysis methods

proposed for multiprocessor and distributed architecture (Chapter 6 and Chapter 7),

we have been mainly focus on the inter-processor control and communication depen-

dencies. Multiprocessor/multi-core architectures gain increasing popularity in both

CHAPTER 8. CONCLUSION AND FUTURE WORK 147

general-purpose computers and embedded systems. Meanwhile, providing tight and

complete architectural modeling for such systems is still a difficult problem, due to

complexity of modeling shared resources as well as inter-task interferences.

Multi-core architectural modeling has been recently studied for shared instruction

cache [72, 56], and shared bus [99, 27]. We believe our model-driven timing analysis

can be extended to produce tight timing model of a shared architecture, with the help

from model-level flow information that restricts the possible timing behavior of the

component.

Timing analysis of cyber-physical systems. Cyber-physical systems (CPSs) [67]

capture the interaction between networked computing systems and the complex phys-

ical world. They will dominate a large segment of the computing landscape in the

future. High-level models are of significant importance for design and verification of

large-scale CPSs. While many CPSs operate under real-time constraints, static timing

analysis of CPSs becomes a challenging research problem. In the future, we plan to

design a general timing analysis framework for typical CPSs, which consists of dis-

tributed execution, heterogeneous microprocessor architectures, and inter-component

communications.

Timing analysis for industrial standard models. Although the GALS model con-

sidered in this thesis is a fairly general system, we will consider modeling formalisms

other than Esterel and MSCs. In particular, our choice of Esterel in illustrating the

model-driven WCET analysis is mainly due to (i) its comprehensive and clear seman-

CHAPTER 8. CONCLUSION AND FUTURE WORK 148

tics to specify concurrent reactive application; and (ii) available of good open-source

compiler.

On the other hand, MATLAB Simulink/Stateflow is considered as de facto standard

in automobile industry. In the future, we plan to extend our proposed model-driven tim-

ing analysis techniques for MATLAB Simulink/Stateflow models. Simulink model is

substantially different from Esterel model in the sense that the execution time is usually

dominated by data-intensive computation, compared to the control dominated systems

in Esterel model. As a result, applying our model-driven techniques to architectural

modeling (e.g., for data caches) is expected to produce significant improvement in static

timing estimation.

Bibliography

[1] AbsInT GmbH, http://www.absint.com/.

[2] R. Alur and D. Dill. The theory of timed automata. Theoretical Computer Science,

126:183–235, 1994.

[3] R. Alur, K. Etessami, and M. Yannakakis. Realizability and verification of MSC graphs.

In ICALP, 2001.

[4] R. Alur and M. Yannakakis. Model checking message sequence charts. In CONCUR,

1999.

[5] T. M. Austin, E. Larson, and D. Ernst. SimpleScalar: an infrastructure for computer

system modeling. IEEE Computer, 35(2):59–67, 2002.

[6] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni. Model-based performance pre-

diction in software development: A survey. IEEE Transactions on Software Engineering,

pages 295–310, 2004.

[7] S. Baruah. Dynamic- and static-priority scheduling of recurring real-time tasks. Real-

Time Systems, 24(1):93,128, 2003.

149

CHAPTER 8. CONCLUSION AND FUTURE WORK 150

[8] S. Baruah, D. Chen, S. Gorinsky, and A. K. Mok. Generalized mulitframe tasks. Real

Time Systems, 1999.

[9] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling hard-real-time sporadic tasks

on one processor. Proceedings of the 11th Real-Time System Symposium, 1990.

[10] A. Benveniste and G. Berry. The synchronous approach to reactive and real-time sys-

tems. In Readings in hardware/software co-design, pages 147–159. Kluwer Academic

Publishers, 2001.

[11] A. Benveniste, P. Caspi, S.A. Edwards, N. Halbwachs, P. Le Guernic, and R. De Simone.

The synchronous languages 12 years later. Proceedings of the IEEE, 91(1):64–83, 2003.

[12] A. Benveniste, P. Le Guernic, and C. Jacquemot. Synchronous programming with events

and relations: The SIGNAL language and its semantics. Science of Computer Program-

ming, 16(2):103–149, 1991.

[13] R. Bernhard, G. Berry, F. Boussinot, G. Gonthier, A. Ressouche, J. P. Rigault, and J. M.

Tanzi. Programming a Reflex game in Esterel v3. Technical Report 07/91, Rapport de

Recherche, INRIA, Sophia-Antipolis, France, June 1991.

[14] G. Berry. Mechanized reasoning and hardware design, chapter Esterel on hardware.

Prentice-Hall, 1992.

[15] G. Berry and G. Gonthier. The ESTEREL synchronous programming language: design,

semantics, implementation. Science of Computer Programming, 19(2):87–152, 1992.

CHAPTER 8. CONCLUSION AND FUTURE WORK 151

[16] V. Bertin, E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Venier, D. Weil, and S. Yovine.

TAXYS= Esterel+ Kronos. A tool for verifying real-time properties of embedded sys-

tems. Proceedings of the 40th IEEE Conference on Decision and Control, 3(4-7), 2001.

[17] M. Bertogna and M. Cirinei. Response-time analysis for globally scheduled symmetric

multiprocessor platforms. In IEEE International Real-Time Systems Symposium (RTSS),

2007.

[18] M. Bertogna, M. Cirinei, G. Lipari, S.S. Sant’Anna, and I. Pisa. Improved schedula-

bility analysis of EDF on multiprocessor platforms. In Proceedings of 17th Euromicro

Conference on Real-Time Systems, pages 209–218, 2005.

[19] M. Boldt, C. Traulsen, and R. von Hanxleden. Worst Case Reaction Time Analysis

of Concurrent Reactive Programs. Electronic Notes in Theoretical Computer Science

(ENTCS), 203(4):65–79, 2008.

[20] A. Bouali. XEVE, an ESTEREL verification environment. In Computer Aided Verifica-

tion, 1998.

[21] F. Boussinot and R. De Simone. The Esterel language. Proceedings of the IEEE,

9(79):1270–1282, 1991.

[22] A. Burns. Advances in Real-Time Systems, chapter Preemptive priority based scheduling:

An appropriate engineering approach, pages 225 – 248. Prentice-Hall, 1994.

[23] G.C. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling Algorithms

and Applications. Kluwer Academic Publishers, 1997.

CHAPTER 8. CONCLUSION AND FUTURE WORK 152

[24] P.Y. Chang, E. Hao, and Y.N. Patt. Target prediction for indirect jumps. In Proceedings

of the 24th Annual International Symposium on Computer Architecture, 1997.

[25] DM Chapiro. Globally-asynchronous locally-synchronous systems. PhD thesis, Stanford

University, 1984.

[26] S. Chattopadhyay and A. Roychoudhury. Unified Cache Modeling for WCET Analysis

and Layout Optimizations. In 2009 30th IEEE Real-Time Systems Symposium, pages

47–56. IEEE, 2009.

[27] S. Chattopadhyay, A. Roychoudhury, and T. Mitra. Modeling Shared Cache and Bus in

Multi-cores for Timing Analysis. International Workshop on Software and Compilers for

Embedded Systems (SCOPES), 2010.

[28] M. Chiodo, D. Engels, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, K. Suzuki, and

A. Sangiovanni-Vincentelli. A case study in computer-aided co-design of embedded

controllers. Design Automation for Embedded Systems, 1(1):51–67, 1996.

[29] A. Colin and I. Puaut. Worst case execution time analysis for a processor with branch

prediction. Real-Time Systems, 18(2):249–274, 2000.

[30] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C. Patton, and B. M.

Horowitz. Model-based testing in practice. In Proceedings of the 21st International

Conference on Software Engineering, 1999.

[31] T.A. Dingus, SK Jahns, AD Horowitz, and R. Knipling. Human factors design issues

for crash avoidance systems. Human factors in intelligent transportation systems, pages

55–93, 1998.

CHAPTER 8. CONCLUSION AND FUTURE WORK 153

[32] T. Dinh-Trong, N. Kawane, S. Ghosh, R. France, and AA Andrews. A tool-supported

approach to testing UML design models. In 10th IEEE International Conference on

Engineering of Complex Computer Systems, pages 519–528, 2005.

[33] S.A. Edwards. The Estbench Esterel Benchmark Suite.

http://www1.cs.columbia.edu/ sedwards/software.html, 2003.

[34] S.A. Edwards and J. Zeng. Code generation in the columbia Esterel compiler. EURASIP

Journal on Embedded Systems, 2007.

[35] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, and P. Pop. Scheduling of conditional process

graphs for the synthesis of embedded systems. In Design, Automation and Test in Europe

(DATE), 1998.

[36] J. Engblom. Processor pipelines and static worst-case execution time analysis. PhD

thesis, Uppsala University, Sweden, 2002.

[37] J. Engblom and A. Ermedahl. Modeling complex flows for worst-case execution time

analysis. In IEEE International Real-Time Systems Symposium (RTSS), 2000.

[38] E. Erpenbach and P. Altenbernd. Worst-case execution times and schedulability analysis

of Statecharts models. Euromicro Conference on Real-Time Systems (ECRTS, 1999.

[39] Esterel Studio, http://www.synfora.com/products/esterelstudio.html.

[40] C.-G. Lee et al. Analysis of cache-related preemption delay in fixed-priority preemtive

scheduling. IEEE Trans. Computers, 47(6):700–713, 1998.

CHAPTER 8. CONCLUSION AND FUTURE WORK 154

[41] X. Li et al. Chronos: A timing analyzer for embedded software. Science of

Computer Programming, 69(1-3):56–67, 2007, http://www.comp.nus.edu.sg/

˜rpembed/chronos.

[42] C. Ferdinand and et al. Reliable and precise WCET determination for a real-life proces-

sor. In EMSOFT, 2001.

[43] C. Ferdinand and R. Wilhelm. On predicting data cache behavior for real-time systems.

In LCTES, 1998.

[44] The flexray communications system specifications, ver 2.1, www.flexray.com, 2005.

[45] R. France and B. Rumpe. Model-driven development of complex software: A research

roadmap. In Future of Software Engineering, pages 37–54, 2007.

[46] R. Gerber, W. Pugh, and M. Saksena. Parametric dispatching of hard real-time tasks.

IEEE transactions on computers, 44(3), 1995.

[47] A. Girault. A survey of automatic distribution method for synchronous programs. In In-

ternational Workshop on Synchronous Languages, Applications and Programs, SLAP’05,

2005.

[48] The Object Management Group. UML Profile for Schedulability, Performance, and Time

Specification. OMG, 2003.

[49] The Object Management Group. UML 2.0: Superstructure Specification. Version 2.0,

OMG, formal/05-07-04, 2005.

CHAPTER 8. CONCLUSION AND FUTURE WORK 155

[50] N. Guan, M. Stigge, W. Yi, and G. Yu. New Response Time Bounds for Fixed Prior-

ity Multiprocessor Scheduling. In IEEE International Real-Time Systems Symposium

(RTSS), 2009.

[51] J. Gustafsson, P. Altenbernd, A. Ermedahl, and B. Lisper. Approximate worst-case ex-

ecution time analysis for early stage embedded systems development. In Proc. of the

Seventh IFIP Workshop on Software Technologies for Future Embedded and Ubiquitous

Systems (SEUS 2009), 2009.

[52] J. Gustafsson, A. Ermedahl, and B. Lisper. Algorithms for infeasible path calculation.

WCET workshop, 2006.

[53] J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper. Automatic derivation of loop

bounds and infeasible paths for wcet analysis using abstract execution. In IEEE Interna-

tional Real-Time Systems Symposium (RTSS), 2006.

[54] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow program-

ming language Lustre. Proceedings of the IEEE, 79(9), 1991.

[55] M. G. Harbour, M. H. Klein, and J. P. Lehoczky. Timing analysis for fixed-priority

scheduling of hard real-time systems. IEEE Transactions on Software Engineering,

20(1):13 – 28, 1994.

[56] D. Hardy, T. Piquet, and I. Puaut. Using bypass to tighten WCET estimates for multi-

core processors with shared instruction caches. In IEEE Real-Time Systems Symposium

(RTSS), 2009.

[57] D. Harel. Statecharts: a visual formalism for complex systems. Science of computer

programming, 8(3):231–274, 1987.

CHAPTER 8. CONCLUSION AND FUTURE WORK 156

[58] D. Harel and P.S. Thiagarajan. UML for real: design of embedded real-time systems,

chapter Message Sequence Charts. Kluwer, 2003.

[59] R. Heckmann and et al. Combining a high-level design tool for safety-critical systems

with a tool for WCET analysis on executables. In 4th European Congress on Embedded

and Real Time Software (ERTS), 2008.

[60] ITU-T. 120: Message sequence chart (msc). ITU-T, Geneva, 1996.

[61] L. Ju, B.K. Huynh, S. Chakraborty, and A. Roychoudhury. Context-sensitive timing

analysis of Esterel programs. In Design Automation Conference (DAC), 2009.

[62] L. Ju, B.K. Huynh, A. Roychoudhury, and S. Chakraborty. Performance debugging of

Esterel specifications. In International Conference on Hardware-Software Codesign and

System Synthesis (CODES-ISSS), 2008.

[63] L. Ju, B.K. Huynh, A. Roychoudhury, and S. Chakraborty. Timing analysis of Esterel

programs on general-purpose multiprocessors. In Design Automation Conference (DAC),

2010.

[64] L. Ju, A. Roychoudhury, and S. Chakraborty. Schedulability analysis of MSC-based

system models. In Proceedings of the 2008 IEEE Real-Time and Embedded Technology

and Applications Symposium (RTAS), 2008.

[65] R. Kirner, R. Lang, G. Freiberger, and P. Puschner. Fully automatic worst-case execu-

tion time analysis for Matlab/Simulink models. In Euromicro Conference on Real-Time

Systems (ECRTS), 2002.

CHAPTER 8. CONCLUSION AND FUTURE WORK 157

[66] R. Kirner and P. Puschner. Transformation of path information for wcet analysis during

compilation. In Proceedings of the 13th Euromicro Conference on Real-Time Systems,

page 29, 2001.

[67] E. A. Lee. Cyber physical systems: Design challenges. In IEEE International Symposium

on Object Oriented Real-Time Distributed Computing (ISORC), 2008.

[68] J. P. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary deadlines.

In IEEE International Real-Time Systems Symposium (RTSS), 1990.

[69] X. Li, J. Lukoschus, M. Boldt, M. Harder, and R. Von Hanxleden. An Esterel processor

with full preemption support and its worst case reaction time analysis. In International

Conference on Compilers, Architectures and Synthesis for Embedded Systems (CASES),

2005.

[70] X. Li, A. Roychoudhury, and T. Mitra. Modeling out-of-order processors for WCET

analysis. Real-Time Systems, 34(3):195–227, 2006.

[71] X. Li and R. von Hanxleden. Multi-Threaded Reactive ProgrammingłThe Kiel Esterel

Processor. IEEE Transactions on Computers, 2010.

[72] Y. Li, V. Suhendra, Y. Liang, T. Mitra, and A. Roychoudhury. Timing Analysis of Con-

current Programs Running on Shared Cache Multi-Cores. In IEEE Real-Time Systems

Symposium (RTSS), 2009.

[73] J. Lilius and I. Paltor. Formalising UML state machines for model checking. Proceedings

of UML’99, volume 1723 of LNCS, pages 756–756, 1999.

CHAPTER 8. CONCLUSION AND FUTURE WORK 158

[74] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard-real-time

environment. Journal of the ACM, 20(1):46,61, 1973.

[75] G. Logothetis and K. Schneider. Exact high level WCET analysis of synchronous pro-

grams by symbolic state space exploration. In Design, Automation and Test in Europe

(DATE), 2003.

[76] G. Logothetis, K. Schneider, and C. Metzler. Exact low-level runtime analysis of syn-

chronous programs for formal verification of real-time systems. Forum on Design Lan-

guages (FDL), 2003.

[77] G. Logothetis, K. Schneider, and C. Metzler. Generating gormal models for real-time

verification by exact low-level runtime analysis of synchronous programs. In IEEE In-

ternational Real-Time Systems Symposium (RTSS), 2003.

[78] T. Lundqvist and P. Stenström. Integrating path and timing analysis using instruction-

level simulation techniques. In Languages, Compilers, and Tools for Embedded Systems

(LCTES), pages 1–15, 1998.

[79] T. Lundqvist and P. Stenström. An integrated path and timing analysis method based on

cycle-level symbolic execution. Real-Time Systems, 17(2):183–207, 1999.

[80] G. Marsden, M. McDonald, and M. Brackstone. Towards an understanding of adaptive

cruise control. Transportation Research Part C: Emerging Technologies, 9(1):33–51,

2001.

[81] M. Mendler, R. von Hanxleden, and C. Traulsen. WCRT algebra and interfaces for

Esterel-style synchronous processing. In Design, Automation and Test in Europe (DATE),

2009.

CHAPTER 8. CONCLUSION AND FUTURE WORK 159

[82] A. K. Mok and D. Chen. A mulitframe model for real-time tasks. In Proceedings of Real

Time Systems Symposium, 1996.

[83] J. Muttersbach, T. Villiger, and W. Fichtner. Practical design of globally-asynchronous

locally-synchronous systems. In Proceedings of the 6th International Symposium on

Advanced Research in Asynchronous Circuits and Systems, page 52, 2000.

[84] H. S. Negi, T. Mitra, and A. Roychoudhury. Accurate estimation of cache-related pre-

emption delay. In International Conference on Hardware-Software Codesign and System

Synthesis (CODES+ISSS), 2003.

[85] M.J.K. Nielsen. TURBOchannel. In Proceedings of 36th IEEE Computer Society Inter-

national Conference, COMPCON, 1991.

[86] P. Pop, P. Eles, and Z. Peng. Schedulability analysis for systems with data and control

dependencies. In Euromicro Conference on Real-Time Systems (ECRTS), 2000.

[87] T. Pop, P. Eles, and Z. Peng. Schedulability analysis for distributed heterogeneous

time/event triggered real-time systems. In Proceedings of 15th Euromicro Conference

on Real-Time Systems, pages 257–266, 2003.

[88] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei. Timing Analysis of the FlexRay Commu-

nication Protocol. Euromicro Conference on Real-Time Systems (ECRTS), pages 203–

213, 2006.

[89] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei. Timing analysis of the FlexRay commu-

nication protocol. Real-Time Systems, 39(1):205–235, 2008.

[90] D. Potop-Butucaru, S.A. Edwards, and G. Berry. Compiling ESTEREL. Springer, 2007.

CHAPTER 8. CONCLUSION AND FUTURE WORK 160

[91] K. Ramamritham and J. A. Stankovic. Scheduling algorithms and operating systems

support for real-time systems. Proceedings of the IEEE, 82(3):55,67, 1994.

[92] O. Redell and M. Sanfridson. Exact best-case response time analysis of fixed priority

scheduled tasks. In Euromicro Conference on Real-Time Systems (ECRTS), 2002.

[93] M.A. Reniers. Message Sequence Chart: syntax and semantics. PhD thesis, Technical

University of Eindhoven, Netherlands, 1999.

[94] T. Ringler. Static worst-case execution time analysis of synchronous programs. In 5th

Ada-Europe International Conference, LNCS 1845, 2000.

[95] P.S. Roop, S. Andalam, R. von Hanxleden, S. Yuan, and C. Traulsen. Tight WCRT

analysis for synchronous C programs. In CASES, 2009.

[96] M. Saksena and P. Karvelas. Designing for schedulability: Integrating schedulabil-

ity analysis with object-oriented design. Euromicro Conference on Real-Time Systems

(ECRTS), 2000.

[97] SCADE Suite, http://www.esterel-technologies.com/products/scade-suite/.

[98] K. Schneider. Embedding imperative synchronous languages in interactive theorem

provers. In International Conference on Application of Concurrency to System Design

(ICACSD), 2001.

[99] A. Schranzhofer, J.J. Chen, and L. Thiele. Timing Analysis for TDMA Arbitration in Re-

source Sharing Systems. In IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS), 2010.

CHAPTER 8. CONCLUSION AND FUTURE WORK 161

[100] R. K. Shyamasundar and J. V. Aghav. Realizing real-yime systems from synchronous

language specifications. In IEEE International Real-Time Systems Symposium (RTSS),

Work-in-Progress Session, 2000.

[101] MATLAB Simulink, http://www.mathworks.com/products/simulink/.

[102] F. Slomka, J. Zant, and L. Lambert. Schedulability analysis of heterogeneous systems for

performance message sequence chart. International Conference on Hardware-Software

Codesign (CODES), 1998.

[103] F. Soares and P.J.C. Branco. Simulation of a 6/4 switched reluctance motor based on

Matlab/Simulink environment. IEEE Transactions on Aerospace and Electronic Systems,

37(3):989–1009, 2001.

[104] V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen. Efficient detection and exploita-

tion of infeasible paths for software timing analysis. In Design Automation Conference

(DAC), 2006.

[105] L. Tan, B. Wachter, P. Lucas, and R. Wilhelm. Improving timing analysis for Matlab

Simulink/Stateflow. MoDELS’09 ACES-MB Workshop, 2009.

[106] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and precise WCET prediction by sepa-

rated cache and path analyses. Real-Time Systems, 18(2):157–179, 2000.

[107] K. Tindell and J. Clark. Holistic schedulability analysis for distributed hard real-time

systems. Microprocessing and microprogramming, 40(2-3):117–134, 1994.

[108] M. Utting and B. Legeard. Practical model-based testing: a tools approach. Elsevier,

2007.

CHAPTER 8. CONCLUSION AND FUTURE WORK 162

[109] R. Wilhelm et al. The worst-case execution time problem - overview of methods and

survey of tools. ACM Transactions on Embedded Computing Systems (TECS), 7(3), 2008.

[110] T.Y. Yen and W. Wolf. Performance Estimation for Real-Time Distributed Embedded

Systems. IEEE Transactions on Parallel and Distributed Systems, 9(11), 1998.

[111] L. H. Yoong, P. Roop, Z. Salcic, and F. Gruian. Compiling Esterel for distributed execu-

tion. In International Workshop on Synchronous Languages, Applications, and Program-

ming (SLAP), 2006.

[112] S. Yuan, S. Andalam, L.H. Yoong, P.S. Roop, and Z. Salcic. Starpro–a new multithreaded

direct execution platform for esterel. Electronic Notes in Theoretical Computer Science,

238(1):37–55, 2009.

