
NATIONAL UNIVERSITY OF SINGAPORE

DOCTORAL THESIS

Static Analysis Driven Testing of Performance
and Energy-consumption Properties of Software

Submitted by:

ABHIJEET BANERJEE

Supervisor:
Professor Abhik Roychoudhury

Department of Computer Science
School of Computing

National University of Singapore

March 2016





Static Analysis Driven Testing of Performance
and Energy-consumption Properties of Software

Abhijeet Banerjee
B.E.(Hons), IIEST, Shibpur

A THESIS SUBMITTED
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY,

DEPARTMENT OF COMPUTER SCIENCE, SCHOOL OF COMPUTING
NATIONAL UNIVERSITY OF SINGAPORE

2016





D E C L A R AT I O N

I hereby declare that this thesis is my original work and it has been written by me in its
entirety. I have duly acknowledged all the sources of information which have been used in the
thesis. This thesis has also not been submitted for any degree in any university previously.

Abhijeet Banerjee
23rd Mar 2016

ii





AC K N OW L E D G E M E N T S

I would like to take this opportunity to express my thanks to my supervisor Prof. Abhik
Roychoudhury for his continuous guidance and support throughout my graduate studies. I
respect the commitment he has towards all his students. His timely feedback and continuous
support were instrumental in advancing my research, as well as in writing this thesis.

I would like to thank Prof. Wong Weng Fai and Prof. Joxan Jaffar for their invaluable
comments during my thesis proposal. Their encouragement has motivated to me further
develop my research into meaningful solutions for real-life problems.

I would like to thank all my colleagues from System and Network Research Lab 1, System
and Network Research Lab 2 and the TSUNAMI Lab. It has been a pleasure working with
Dr. Sudipta Chattopadhyay, Lee Kee Chong, Dr. Clément Ballabriga and Dr. Hai-Feng Guo.
In particular, I am very glad to have known Dr. Sudipta Chattopadhyay, who has been a
colleague, a mentor and a good friend to me.

The journey from the qualifying examinations (QEs) to thesis submission can be a long one.
But I am glad that I had the company of many good friends along the way. In particular, I am
glad to have known Dr. Bablu Mukherjee, Dr. Marcel Böhme, Dr. Dawei Qi, Dr. Konstantin
Rubinov and Dr Jooyong Yi. I will always cherish the deep discussions we had on all the
topics scientific and otherwise. As for my soon to be Dr. friends, Sumanaruban Rajadurai,
Nimantha Thushan Baranasuriya, Girisha Durrel De Silva and Lahiru Thilina Samarakoon,
thanks for being there and making this long journey a memorable journey.

I wish to express my deepest gratitude towards my family for supporting me throughout
my studies. Any of this would not have been possible without their support.

I would to like thank the National University of Singapore for giving me the opportunity
to come and study at this wonderful institution. The facilities that we were provided for
everything from education to sports and recreation were marvellous. In particular, the facilities
at Central Library are exceptional. I have spent many happy hours browsing and reading the
vast array of books there. I would like to extend my thanks to the Central Library staff for
their dedication and effort.

Finally, I would like to thank A*Star and MoE for the "Scalable Timing Analysis Meth-
ods for Embedded Software" grant (Project Number 1121202007) and "Energy-aware Pro-
gramming" grant (MOE2013-T2-1-115) , respectively. These grants where instrumental in
conducting my research.

iii





C O N T E N T S

LIST OF TABLES ix

LIST OF FIGURES x

1 I N T RO D U C T I O N 1
1.1 Challenges in Testing Non-functional Properties 2
1.2 Are Testing And Profiling The Same Thing? 3
1.3 Static Analysis Driven Testing of Performance and Energy-consumption

Properties of Software: An Overview 3
1.3.1 Suboptimal Behaviour Identification 4
1.3.2 Static Analysis 5
1.3.3 Representing Non-functional Properties 5
1.3.4 Test-generation Through Dynamic Exploration 6

1.4 Key Contributions 7
1.5 Organization of Chapters 8

2 P E R F O R M A N C E A N A LY S I S : B AC K G RO U N D & L I T E R AT U R E R E V I E W 9
2.1 Real-time Embedded Systems 9
2.2 Overview of Performance Analysis Tools 10
2.3 Approaches Used for Performance Testing/ Estimation 11
2.4 Performance Profiling Techniques 12
2.5 Performance Estimation Techniques 13

2.5.1 Program Flow Analysis 13
2.5.2 Micro-architectural Analysis 14
2.5.3 Estimate Calculation 18

2.6 Precise Micro-architectural Modeling for WCET Analysis via AI+SAT 20
2.6.1 Overview 21
2.6.2 General Framework 24
2.6.3 Augmenting Abstract Interpretation 24
2.6.4 Instruction Cache Analysis via AI+SAT 26
2.6.5 Data Cache Analysis 29
2.6.6 Branch Target Buffer Analysis 30
2.6.7 Shared Instruction Cache Analysis 30
2.6.8 Experimental Evaluation 31

2.7 Performance-aware Test Generation Techniques 34
2.8 Chapter Summary 34

3 S TAT I C A N A LY S I S D R I V E N C AC H E P E R F O R M A N C E T E S T I N G 36
3.1 Need for Performance Testing 36
3.2 Static Analysis Driven Cache Performance Testing: An Overview 39
3.3 Test Generation Methodologies 42

3.3.1 Generating Assertions 42
3.3.2 Dynamic Test Generation 45
3.3.3 Salient Features of Generated Test Suites 48

3.4 Evaluation 48
3.4.1 Experimental Set-up 48

iv



3.4.2 Experimental Results 51
3.5 Applications in Design Space Exploration 52
3.6 Applications in Performance Optimization 53
3.7 Comparison with Existing Techniques 54
3.8 Chapter Summary 55

4 E N E R G Y- C O N S U M P T I O N A N A LY S I S : B AC K G RO U N D & L I T E R AT U R E R E -
V I E W 56
4.1 Energy Constrained Embedded Systems 56
4.2 Approaches Used for Energy Testing/Estimation 56
4.3 Estimating Average-case Energy-consumption 57

4.3.1 Architecture-based Energy Analysis 57
4.3.2 Profiling-based Techniques 60

4.4 Estimating Worst-case Energy Consumption 60
4.5 Detecting Energy-inefficiency 62
4.6 Energy Aware Programming 64
4.7 Chapter Summary 64

5 D E T E C T I N G E N E R G Y B U G S A N D H OT S P OT S I N M O B I L E A P P S 65
5.1 Need for Automated Energy-aware Test Generation 65
5.2 General Background 68
5.3 Detecting Energy Bugs and Hotspots in Mobile Apps: An Overview 71
5.4 Detailed Methodology 73

5.4.1 Preprocessing the Application 73
5.4.2 Test Generation 75

5.5 Experimental Evaluation 80
5.5.1 Experimental Setup 80
5.5.2 Choice of Subject Programs 81
5.5.3 Results 81

5.6 Comparison With Existing Techniques 85
5.7 Chapter Summary 86

6 R E PA I R I N G R E S O U R C E L E A K S TO I M P ROV E E N E R G Y- E FFI C I E N C Y O F

M O B I L E A P P S 87
6.1 Introduction 87
6.2 Android Background 89

6.2.1 Execution Model in Android 89
6.2.2 Inputs to an Android App 90
6.2.3 Energy Consumption of Android API calls 91
6.2.4 Energy Bug, Cause and Effect 92
6.2.5 Differences Between Present and Previous Work 92

6.3 Overview by Example 93
6.3.1 Detection Using Abstract Interpretation 93
6.3.2 Test Generation Using Symbolic Execution 94

6.4 Detection 94
6.4.1 Java Object Tracking 96
6.4.2 Resource Tracking 97
6.4.3 Detecting Potential Energy Bugs, Instrumenting Assertions 97

6.5 Validation 98
6.5.1 Search Space Reduction 98
6.5.2 Test Input Generation 99

v



6.6 Automated Repair 102
6.7 Eclipse Plugin EnergyPatch 103
6.8 Experimental Evaluation 104

6.8.1 Experimental Setup 104
6.8.2 Efficacy of Our Framework 106
6.8.3 Importance of Detection Phase in the Framework 107
6.8.4 Effectiveness of Automated Repair 108
6.8.5 Comparison with Existing Works 109

6.9 Threats to Validity 110
6.10 Chapter Summary 110

7 AU TO M AT E D R E - FAC TO R I N G O F A N D RO I D A P P S TO E N H A N C E E N -
E R G Y-E FFI C I E N C Y 111
7.1 Introduction 111
7.2 Overview 113

7.2.1 Example App 113
7.2.2 Design Extraction 113
7.2.3 Guideline-based Re-factoring 116
7.2.4 Code Generation 117

7.3 Guideline-based Re-factoring 118
7.3.1 Energy-efficiency Guidelines 118
7.3.2 Guideline Implementation 121

7.4 Evaluation 123
7.4.1 Subject Apps and Experimental Setup 123
7.4.2 Key Results 124
7.4.3 Case Study 124

7.5 Comparison With Existing Works 125
7.6 Threats to Validity 127
7.7 Chapter Summary 128

8 D E B U G G I N G E N E R G Y- E FFI C I E N C Y R E L AT E D FI E L D - FA I L U R E S I N M O -
B I L E -A P P S 129
8.1 Introduction 129
8.2 Detailed Methodology 131

8.2.1 Instrumentation and Logging 131
8.2.2 Profile Graph Generation 132
8.2.3 Patterns for Energy-inefficient Behaviour 136
8.2.4 Contextual Analysis for Energy-inefficient Pattern Detection 136
8.2.5 Defect Localization and Patch Suggestion 138

8.3 Tool Walk-through 140
8.4 Evaluation 142

8.4.1 Experimental Setup 142
8.4.2 Subject Programs 142
8.4.3 Efficacy of Defect-detection 143
8.4.4 Scalability of Defect-detection 145
8.4.5 Effectiveness of the Patch-suggestion 145

8.5 Comparison with Existing Works 146
8.6 Chapter Summary 146

9 R E FL E C T I O N S 147

vi



A B S T R AC T

Software testing is the process of evaluating the properties of a software. Properties of
a software can be divided into two categories: functional properties and non-functional
properties. Properties that influence the input-output behaviour of the software can be
categorized as functional properties. On the other hand, properties that do not influence
the input-output behaviour of the software directly can be categorized as non-functional
properties. In context of real-time system software, testing functional as well as non functional
properties is equally important. Over the years considerable amount of research effort has
been dedicated in developing tools and techniques that systematically test various functional
properties of a software. However, the same cannot be said about testing non-functional
properties. Systematic testing of non-functional properties is often much more challenging
than testing functional properties. This is because non-functional properties not only depends
on the inputs to the program but also on the underlying hardware. Additionally, unlike the
functional properties, non-functional properties are seldom annotated in the software itself.
Such challenges provide the objectives for this work. The primary objective of this work
is to explore and address the major challenges in testing non-functional properties of a
software. To attain this objective, we have designed a technique that can be summarized into
four key steps (i) identifying scenarios for suboptimal non-functional behaviour (ii) static
analysis to identify potential program points that may lead to such suboptimal non-functional
behaviour (iii) representing sub-optimal non-functional behaviour by means of assertions, at
appropriate program points and finally, (iv) dynamic exploration of these assertions, guided
by a well-defined coverage metric, in order to generate sub-optimal non-functional behaviour
revealing test-cases. It is worthwhile to note that in our technique generation of assertions (in
step three) is done in an automated fashion. In this work, we have presented instantiations of
our technique for specific applications such as performance-stressing test-input generation
for caches and energy-inefficiency revealing test-input generation for mobile apps. We also
present a couple of follow-up works on energy-aware code re-factoring and energy-aware
debugging to extend the support for energy-aware programming for mobile apps.

vii



R E L AT E D P U B L I C AT I O N S

Abhijeet Banerjee. Static analysis driven performance and energy testing. In proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering,
FSE 2014, Hong Kong, China, November, 2014

Abhijeet Banerjee, Lee Kee Chong, Sudipta Chattopadhyay and Abhik Roychoudhury. De-
tecting energy bugs and hotspots in mobile apps. In proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE 2014, Hong Kong,
China, November, 2014

Abhijeet Banerjee, Sudipta Chattopadhyay and Abhik Roychoudhury. Static Analysis Driven
Cache Performance Testing. In proceedings of the IEEE 34th Real-Time Systems Symposium,
RTSS 2013, Vancouver, BC, Canada, December, 2013

Abhijeet Banerjee, Sudipta Chattopadhyay, Abhik Roychoudhury. On Testing Embedded
Software, In Advances in Computers, Elsevier, 2016, Volume 101, Pages 121-153, ISSN
0065-2458, ISBN 9780128051580

Abhijeet Banerjee, Hai-feng Guo and Abhik Roychoudhury. Debugging Energy-efficiency
Related Field-failures in Mobile-apps In proceeding of the IEEE/ACM 3rd International
Conference on Mobile Software Engineering and Systems, MOBILESoft 2016, Austin, Texas,
USA, May 2016

Abhijeet Banerjee and Abhik Roychoudhury. Automated Re-factoring of Android Apps to
Enhance Energy-efficiency In proceeding of the IEEE/ACM 3rd International Conference on
Mobile Software Engineering and Systems, MOBILESoft 2016, Austin, Texas, USA, May
2016

Abhijeet Banerjee, Sudipta Chattopadhyay and Abhik Roychoudhury. Precise micro-architectural
modeling for WCET analysis via AI+SAT. In 19th IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium, RTAS 2013, Philadelphia, PA, USA, April, 2013

Abhijeet Banerjee and Abhik Roychoudhury. Energy-aware design patterns for mobile
application development (Invited Talk), In proceedings of the 2nd International Workshop on
Software Development Lifecycle for Mobile, DeMobile 2014, Hong Kong, China, November,
2014

viii



L I S T O F TA B L E S

Table 1 Key aspects of different performance analysis methodologies 11
Table 2 Program Set I 31
Table 3 Program Set II 33
Table 4 Programs used for cache performance study 49
Table 5 Classification of Energy Bugs and Energy Hotspots 67
Table 6 Categorization of Android API calls 74
Table 7 Statistics for all the Energy Hotspots/Bugs found in tested applica-

tions (out of the 30 applications that we analyzed) 79
Table 8 Coverage statistics from all open-source apps used in our experi-

ments 85
Table 9 Some of the Android API calls that have major influence on energy

consumption 91
Table 10 Subject apps for which energy bugs have been reported through

bug-reports and/or previous publications 105
Table 11 Results of Detection/Validation phase for app listed in Table 18 106
Table 12 Improvement in energy consumption of all apps with validated

energy bugs after the automatic repair 109
Table 13 Configuring resources for different QoS and energy-efficiency 118
Table 14 Key results. For each app, we provide app-description, size metrics,

observed defects and energy-saving observed as result of applying
the re-factoring suggested by our framework 122

Table 15 Design expression and re-factorings for commits highlighted in
Figure 58 126

Table 16 Event-handlers and Android API calls that are instrumented 132
Table 17 List of energy-inefficiency related defects with defect pattern, patch

suggestion, affected hardware components and a real-world example
with user comments. 135

Table 18 Open-source, Android apps that were used in the evaluation of our
framework 143

Table 19 Summary of defect localization and patch location suggestion for
patched-apps 144

Table 20 Line of log messages and analysis time for all apps 145
Table 21 Summary of results for unpatched apps 145
Table 22 Products offered by mobile-app testing companies (data collected

on 4th September 15) 149

ix



L I S T O F F I G U R E S

Figure 1 Estimating execution time in presence of micro-architectural com-
ponents 2

Figure 2 Key differences between profiling and systematic testing techniques 3
Figure 3 Key steps in our test generation technique 4
Figure 4 An abstract illustration of a timing analysis framework 13
Figure 5 Flow constraints to be used in ILP formulation 19
Figure 6 A typical WCET analysis framework 21
Figure 7 Illustrative example (a) control flow graph with accessed memory

blocks shown inside each basic block. (b) original must cache anal-
ysis, (c) must cache analysis instantiated by our framework 22

Figure 8 Program point (a) inside a basic block, (b) at a branch location 25
Figure 9 A schematic representation of the join, τbr and merge (Π) used in

our proposed analysis framework 26
Figure 10 Improvement in the WCET accuracy via AI+SAT approach, analysis

time (in seconds) is shown above each bar 32
Figure 11 Test generation framework 37
Figure 12 Overview of test generation (a) Control flow graph showing accessed

memory blocks (b) instrumented program (c) violation of assertion
showing cache thrashing scenario 38

Figure 13 Overview of our test generation framework 40
Figure 14 Control Dependence Graph, for Figure 12(a) 41
Figure 15 Instrumented code with assertions 42
Figure 16 Instrumentation scenarios for data caches 45
Figure 17 Key phases in the framework 49
Figure 18 Assertion Coverage and Thrashing Potential for different cache

configurations 50
Figure 19 Number of cache thrashing scenarios discovered for papabench for

various cache configurations 52
Figure 20 Illustration of conditional cache locking (a) Program with uncondi-

tional cache locking (lock instructions are preceded by # ) (b) Input
partitions (c) Conditional cache locking 53

Figure 21 Life-cycle of an Android activity 68
Figure 22 Code with a potential energy bug 69
Figure 23 (a) Code with energy hotspot due to disaggregated communication (b)

Code without energy hotspot 70
Figure 24 Power profile for LG Optimus L3 E400 smartphone 70
Figure 25 Overview of the test generation framework 72
Figure 26 (a) An example EFG (b) EFG after pressing "ejectbutton" 74
Figure 27 An example of energy-consumption to utilization (E/U) trace with

no hotspot/bug, with an energy bug and with an energy hotspot 76
Figure 28 Flow chart for our test-generation framework 78
Figure 29 Our experimental setup 80
Figure 30 Categories of the 30 Android applications used in our experiments 81
Figure 31 Energy trace of the event trace for Aripuca GPS Tracker 83
Figure 32 Energy trace of the event trace for Montreal Transit 84

x



Figure 33 System overview 88
Figure 34 Over-simplified representation of execution in Android apps 89
Figure 35 An example showing how inputs are provided to Android apps 90
Figure 36 Inputs to an Android app 91
Figure 37 Energy trace for Aripuca GPS Tracker (a) with an energy bug (b)

repaired energy bug. The additional energy consumption can be
observed in the recovery (REC) and the post (POST) stages 92

Figure 38 Overview by example (a) example code with a potential resource
leak (b) CFG othe example code (c) static analysis of the code. Input
and output abstract states are shown for each node in the graph (d)
assertion added to the exit node of the graph (e) symbolic exploration
and test case generation (f) limitation while using bounded symbolic
execution 95

Figure 39 Overview of the validation process 98
Figure 40 Example of transitive closure computation. EFG node E3 is resource

acquire location. Transitive closure computation gives the list of
nodes shown in shaded in (b) 99

Figure 41 An example showing how our slicing algorithm (Algorithm 2)
works. 100

Figure 42 An example for driver code generation 101
Figure 43 Test case generated for app Tachometer 101
Figure 44 An example scenario 102
Figure 45 Work flow for automated repair in our framework 102
Figure 46 Work flow inside EnergyPatch 103
Figure 47 Screenshot of EnergyPatch (a) shows how developer can manually

augment EFG (b) visualization inside tool showing information such
as the structure of the EFG, buggy nodes, etc 104

Figure 48 Repair expression for app Tachometer 108
Figure 49 An overview of the re-factoring framework 112
Figure 50 An example app 113
Figure 51 Event-flow graph (EFG) generation 115
Figure 52 Event-flow graph (EFG) and deterministic finite automata (DFA) for

the example-app of section 7.2.1 116
Figure 53 (a) A code fragment showing sub-optimal camera binding, (b) Sub-

optimal Wakelock acquisition in app ChessClock 117
Figure 54 Various parameter that affect QoS, energy-consumption for location

updates 118
Figure 55 Code-fragment from Sensorium showing nested resource usage

120
Figure 56 Re-factoring while maintaining flow-dependencies 122
Figure 57 (a) Measurement setup (b) Timing parameters 124
Figure 58 Some commit from the 214 commits of the project Sensorium 126
Figure 59 Overview of log-based, energy-inefficiency localization in mobile

apps 131
Figure 60 Example of code instrumentation 131
Figure 61 Log-messages generated from Shortyz app 133
Figure 62 Partial profile call graph for Shortyz app 134
Figure 63 Debugging Ushaihdi Android 140
Figure 64 Working with the debugging tool in Eclipse 141
Figure 65 Defect localization for the Shortyz app 142

xi



1 I N T RO D U C T I O N

Embedded systems are ubiquitous in the modern world. Such systems can be found in wide-variety
of applications, ranging from mission-critical applications (such as pacemakers, Anti-lock Braking
Systems), to casual applications (such as MP3 players and smartphones). Depending on the application
domain, such systems may have to operate under one or more types of non-functional constraints. Two
of the commonly observed non-functional constraints in such systems are performance constraints
(due to the real-time nature of such systems) and energy constraints (due to the limited on-board
battery capacity). Testing and validation of non-functional properties is an important aspect of quality
assurance for such systems. However, until recently not many systematic techniques existed for
automated testing of non-functional properties. Our work is an effort to address this need. In this
chapter, we first introduce the reader to the key challenges in testing non-functional properties of a
program. Subsequently, we shall present an overview of our framework that can be used for automated
testing of non-functional properties in a program.

Software testing is an important part of the software development life-cycle. It is by
conducting rigorous testing, one can be assured that the developed software meets the re-
quirements and specifications of its user. However, due to the ever-increasing complexity of
software systems, it is increasingly becoming impractical to adequately test software systems
manually. The only practical way to alleviate this challenge is to devise tools and techniques
that can automate software testing. Over the years, software engineering researchers have
proposed tools and techniques that address different challenges associated with automating
software testing. Our work is an effort to address one particular aspect of this challenge i.e.
automating software testing for non-functional properties.

Software properties can broadly be divided into two categories: functional and non-
functional properties. Properties that directly influence the input-output behaviour of the
software are referred to as functional properties, whereas properties that do not influence the
input-output relationship of the software are referred to as non-functional properties. Suitable
example of non-functional properties are performance or energy-consumption of the system.
In general, testing and validation of non-functional properties is very crucial for embedded
systems. This is because such systems are usually resource-constrained (e.g. limited battery
life such as in smartphones) and often have real-time constraints (e.g. timing deadlines such
as in Anti-lock Braking System). Therefore, such systems must be tested for functional as
well as non-functional properties. Over the years, researchers have developed a number of
tools and techniques for systematically testing the functional properties of software, however
the same cannot be said about non-functional properties. Systematic testing of non-functional
properties is often much more challenging than testing functional properties. The following
section describes some of the key challenges in testing and validation of non-functional
properties.

1



1.1 C H A L L E N G E S I N T E S T I N G N O N -F U N C T I O N A L P RO P -
E RT I E S

Testing non-functional properties is often more complicated than testing functional properties.
This is primarily due to the fact that non-functional properties are not only influenced by the
inputs to the program but also by the underlying hardware. As a result naive test-generation
strategies, such as exhaustive testing, may be insufficient to provide appropriate information
for the given non-functional property. Consider for example the scenario shown in Figure 1.
This figures shows a simple program, with a single i f condition (at line 3) within a while loop
(at line 2). The true branch (at line 3) and the f alse branch (at line 5) are taken in alternate
iterations. Assume that memory block m1 is accessed whenever the true branch is executed,
whereas memory block m2 is accessed on the f alse branch. Also assume that both memory
blocks m1 and m2 map to the same cache set (say cache set 1). In such a scenario, if the
program is executed on a system with a direct mapped cache, memory blocks m1 and m2 will
evict each other in alternate iterations, i.e. they would participate in cache thrashing. Such
cache thrashing may significantly increase the execution time of the program. It is worthwhile
to note that had the same program been executed on a system with 2-way, set associative cache
there would have been no cache-thrashing. This example goes on to show that when testing
non-functional properties it is important to account for the underlying hardware, on which
the software would be executed. Modern embedded systems are equipped with a wide-range
of hardware components. Research works that are targeted at the analysis and modeling of
such hardware components (for the purposes of analysing non-functional properties), are
commonly referred to as the micro-architecture analysis and are further described in this
work.

int i=0;

While(i<100){

   if(i%2==0){

 //access m1

   }else{

      //access m2

   }

   i++;

}

set 1

direct mapped cache

cache thrashing

set 1

2-way set associate cache

cache hit, 

after first iteration

m1 m2

- -

1

2

3

4

5

6

7

8

9

//true

//false

Figure 1: Estimating execution time in presence of micro-architectural components

Another challenge while testing non-functional properties arises due to the absence of
appropriate coverage metric for a given non-functional property. Typically systematic testing
frameworks would require a coverage metric to determine the completeness of the test-suite
(with respect to the given property). However, due to absence of explicit annotation of
non-functional properties in the program source-code, crafting such a coverage metric is often
non-trivial.

2



1.2 A R E T E S T I N G A N D P RO FI L I N G T H E S A M E T H I N G?

Often a common source of confusion is the interchangeable use of the terms testing and
profiling. Profiling, in general, is the process of generating and recording the runtime program
behaviour (for a given property of interest), for a given test-suite. The test-suite used to
generate the runtime program behaviour, or the profile, is assumed to be representative of
the entire input space of the program. However, manually generating such representative
test-suite, even to uncover functional defects in a real-life program is often non-trivial. In the
case of non-functional properties manually generating such a test-suite is almost impractical
for most real-life program. This is because, as explained in the previous section, non-
functional properties of a program depend on the inputs to the program as well as on hardware
configurations of the system on which the program is executed. Systematic testing, on the
other hand, can be used to explore the entire inputs space of the program and to generate
test-inputs that highlight the property of interest (i.e. when the property of interest has been
defined in an appropriate manner). Unlike profiling techniques, systematic testing techniques
require a model of the system (software + hardware), at the required level of abstraction (e.g.
control dependence graph, event flow graph). Figures 2 further illustrates the key difference
between the two techniques. In short, testing as in test-generation is not the same as profiling.

Pro�ling

Techniques
Program

Test

Suite
+

Information Related

To Property of Interest

Systematic

Testing
Program

Test

Suite
+

Information Related

To Property of Interest

Figure 2: Key differences between profiling and systematic testing techniques

1.3 S TAT I C A N A LY S I S D R I V E N T E S T I N G O F P E R F O R -
M A N C E A N D E N E R G Y-C O N S U M P T I O N P RO P E RT I E S

O F S O F T WA R E : A N OV E RV I E W

Existing software testing techniques can broadly be classified into two categories: techniques
based on static analysis and techniques based on dynamic analysis. Techniques in both these
categories have advantages and disadvantages of their own. For instance, techniques based
on static analysis rely on various kinds of abstraction mechanisms so as to reduce the search
space of the program, as a result of which such techniques tend to be scalable. This scalability,
however, does not come free of cost. Often, static analysis based methods produce sound but
imprecise results. Dynamic analysis techniques, on the other hand, can be much more precise
but these methods often suffer from the problem of state space explosion (when the search
space of the program is very large/infinite and the techniques takes impractical amount of
time to explore it). Our test-generation framework uses both the static as well as dynamic
analysis techniques at different stages of the analysis. This gives it the benefit of scalability as
well as precision. The non-functional properties for which we instantiate our framework are
performance and energy efficiency. In the following, we shall describe our framework around
the following three topics:

3



i. Representing non-functional properties in a manner such that existing techniques from
functional testing domain can be adapted for non-functional testing

ii. Identifying appropriate metrics to assist in exploration of non-functional properties

iii. Developing techniques for automated detection of inefficiencies related to non-functional
properties

Identify Suboptimal

Behaviour

Static Analysis to

Identify Potential 

Program Points

Represent Property

Using Assertions

Dynamic Exploration

Guided by

Coverage Metric

Benifits

Reduces Search for

Exploration

+

Provides garuntees for 

Abscence of Suboptimal 

Behaviour, if None Exsits 

Reduces Non-functional 

Property to a Functional

Property

Generates Feasible

Test Cases 

(no spurious test 

cases are reported)

Applications in 

Performance Optimization

or

Energy E�ciency 

Step 1 Step 2 Step 3 Step 4

Figure 3: Key steps in our test generation technique

Our objective is to develop a technique that can be used for testing non-functional properties,
specifically performance and energy-consumption. To obtain this objective we design a
technique that can be divided into four key steps (Figure 3) (i) Identifying scenario for
suboptimal non-functional behaviour (ii) Static analysis to identify potential program points
that may lead to suboptimal non-functional behaviour (iii) Representation of non-functional
properties as assertions, at appropriate program points and (iv) Dynamic exploration of
assertions guided by a well-defined coverage metric. We discuss these steps in the following
subsections.

1.3.1 Suboptimal Behaviour Identification

As with the development of any test-generation technique, we must first identify what consti-
tutes as a suboptimal (or undesirable) behaviour. In particular, we shall identify suboptimal
behaviour with respect to performance and energy consumption.

Performance (and execution time) of a program is dependent on the inputs to the program as
well as on the states of underlying micro-architectural components(such as caches, pipelines,
etc). Therefore, suboptimal performance of a program can be attributed to suboptimal
performance of one or more of the underlying micro-architectural components. In one of
our previous studies [1], we choose to focus on suboptimal performance due to caches. In
particular, we focus on the scenario of cache thrashing. Cache thrashing can be described as a
scenario when a frequently used cache line (or memory block) is replaced by other frequently
used cache lines thereby causing a large number of cache misses (as a result suboptimal
performance).

Identifying factors for energy-inefficiency in smartphone applications is important because
such applications usually run on mobile devices that have limited amount of battery power.
Additionally, such devices are equipped with a wide range of auxiliary hardware components,
many of which may have an energy consumption higher than that of the CPU itself. Therefore,
it is important to develop energy-aware programming and testing techniques for smartphone
applications. However, until recently smartphone application development has been performed
in an energy-oblivious fashion. Primarily because the major reasons for energy-inefficiencies
in smartphone applications were not well understood. Therefore, in one of our works [2] we
study (and categorise) the main reason for energy-inefficiencies in smartphone applications.
Subsequently, we shall use the results of this study to identify scenarios of suboptimal energy

4



behaviour in smartphone applications. Existing studies, such as [3], have pointed out that
I/O components (such sensor, GPS, Wifi, etc) play a substantial role in power consumption
in smartphone applications. Another factor that affects the energy efficiency of smartphone
applications is the misuse of power management utilities (such as Wakelocks in Android).
Since I/O components as well as power management utilities can only be accessed through a
set of API calls provided by the operating system, therefore presence of such API calls in an
application could be an appropriate indicator for high energy consumption. However, high
energy consumption does not necessarily imply the presence of energy inefficiency. Consider
a scenario where the energy consumption is high due to high computation demand. Therefore,
to detect energy-inefficiencies one must look for scenarios where energy consumption is
high but utilization (of device’s components) is low. Based on this intuition, we devised
a API-call coverage guided test generation framework to explore energy-inefficiencies in
Android applications [2]. The framework automatically explores a given application while
simultaneously analysing the energy consumption to utilization ratio of the device. Based on
the experiments conducted with our framework, we classified the prime reasons for energy
inefficiencies into two categories: energy inefficiencies due to energy hotspots and energy
inefficiencies due to energy bugs. An energy hotspot can be described as a scenario where
executing an application causes the device to consume abnormally high amount of battery
power even though the utilization of its hardware resources is low. In contrast, an energy bug
can be described as a scenario where a malfunctioning application prevents the smartphone
from becoming idle even after it has completed execution and there is no user activity. As a
result of which the ratio of energy consumption vs utilization stays high, long after the user
has navigated away from the application. Energy bugs are much more serious inefficiencies
that energy hotspots because they cause a sustained energy loss from the device.

1.3.2 Static Analysis

Once we have identified the scenarios for suboptimal behaviour, we wish to generate test
inputs that leads to such scenarios. Since non-functional behaviour depends on the program
inputs as well as the underlying hardware states, the search space that needs to be explored
to generate such test-inputs may be huge. Therefore, exhaustive exploration may often be
impractical for such purposes. To overcome this challenge we first statically analyse the
program using techniques based on the theory of abstract interpretation [4]. Such (abstract
interpretation based) techniques analyse the abstract semantics of the program to estimate the
property of interest. For instance, one example of property of interest could be presence (or
absence) of a memory block in the cache, at a given program point. Abstract Interpretation
based techniques are often very scalable because they analyse the abstract semantics of the
program instead of its concrete semantics Also due to fact that the abstract semantics is
superset of all possible concrete semantics of the program, therefore the results obtained are
always sound. However, due to the use of abstraction the results obtained from such methods
may be imprecise (overestimated). In our approach, we devise an abstract interpretation based
technique to find out the potential program points that may lead to cache thrashing (when
testing for performance) and energy bugs (when testing for energy consumption).

1.3.3 Representing Non-functional Properties

After we have obtained the potential program points that may have suboptimal behaviour
we systematically generate assertions at all such locations. Each assertion is crafted such
that its violation captures a scenario of suboptimal non-functional behaviour. For instance,
when testing for suboptimal cache performance the violations of assertion captures a unique

5



cache thrashing scenarios. Similarly, when testing of energy inefficiency, violation of an
assertion indicates the presence of an energy bug. Note that these assertions can be generated
automatically from the results of the previous (static analysis based) step. It is worthwhile to
know that by representing the non-functional properties, (such as presence of cache thrashing
or energy bugs) as assertions, we reduce the problem of non-functional testing to an equivalent
functionality testing problem.

One of the most important part of our technique is the formulation of the assertion. The
exact formulation of the assertions depends on the non-functional behaviour being tested as
well as the underlying hardware. For instance, when formulating the assertions for cache
thrashing one has to account for the cache associativity as well as the cache replacement
policy. Cache associativity can be used to estimate the number of memory blocks conflicting
in the cache and cache replacement policy is necessary to find out the exact order in which
the memory blocks would be evicted from the cache. In essence, all information that can
influence the non-functional behaviour of the hardware component (in this example cache)
must be known a priori.

1.3.4 Test-generation Through Dynamic Exploration

Existing dynamic exploration techniques, such as Directed Automated Random Testing
(DART) [5] can be used to explore (and test functional properties of) a program without the
need for writing specific test-cases. DART uses a combination of concrete and symbolic
program executions to generate path-constraints for a given program execution. The con-
straints thus generated are systematically modified and solved to generate test-inputs that can
be used to direct the execution along some previously unexplored path in the program. It
is worthwhile to know that exploration techniques such as DART in their original form are
only suited for checking the validity of functional properties. This is because the program
source-code (or binary) alone may be insufficient for testing non-functional behaviour, such
as performance. However, this is no longer a problem because with the addition of assertions
(in the previous step) we have augmented the functional properties with the set of assertions
capturing the non-functional properties as well. The instrumentation step therefore plays
a crucial role in our test-generation framework. There is however another issue that needs
to be addressed before we can start using functional testing technique such as DART for
non-functional testing. It is worthwhile to know that a DART like exploration strategy starts
from a random path in a program and keep exploring new paths until all feasible program
paths have been explored. The exploration strategy in a DART like approach is completely
oblivious to the presence of assertions (instrumented by us) in the program (i.e it does not
take into account the presence or absence of assertions while making the exploration choices).
Since we are primarily interested in checking the validity of assertions, hence such assertion-
oblivious exploration strategy would be suboptimal for our purpose. Therefore, for our
technique we devise an assertion-aware exploration strategy. Our technique computes a metric
called assertion-coverage, that indicates the likely hood of finding unchecked assertions on a
given program path. The algorithm then guides the exploration process towards a path that
maximizes assertion-coverage. The intuition behind such an strategy is simple. Exploring
paths that increase the net assertion-coverage, leads to maximum number of assertions being
checked and therefore provides a greater likely hood of uncovering scenarios that lead to
suboptimal behaviour. As a result of the assertion-aware exploration strategy our technique
can explore maximum number of unique assertions within a given amount of time. Every
time an assertions is encountered, its validity is checked. If an assertion is violated during
the exploration, a suboptimal performance/energy consumption issue is recorded along with
a symbolic formula capturing the set of inputs that leads to the violation of that assertion.

6



It is worthwhile to know that the unlike the static analysis phase, the dynamic exploration
phase of our framework is path-sensitive, due to which all test cases generated by the dynamic
exploration phase are real scenarios of suboptimal non-functional behaviour. The test cases
generated by our framework can be used to optimize non-functional behaviour of a program.
More specifically, for improving performance, the results from our framework can be used for
design space exploration and for developing input-sensitive cache locking techniques which
can provide better performance gains as compared to traditional cache locking techniques
such as [6]. For improving energy efficiency, the results from our framework can be used for
developing automated techniques for energy-efficient repair code generation .

1.4 K E Y C O N T R I B U T I O N S

The primary objective of this work is to explore and address the major challenges in testing
non-functional properties of a software. In particular, we focus on the non-functional proper-
ties of performance and energy-consumption. Systematic testing of non-functional properties
is often much more challenging than testing functional properties because non-functional
properties not only depends on the inputs to the program but also on the underlying hard-
ware. Additionally, unlike the functional properties, non-functional properties are seldom
annotated in the software itself. Such challenges provide the objectives for this work. The key
contributions of this work can be summarized as follows:

1. Performance

a. We propose a test-generation framework that exposes the cache performance
issues of an embedded software to the developer. One appealing nature of test
suite generated by this framework is that it does not include any spurious test cases
( i.e. a test-case that does not capture a cache performance issue in any feasible
execution). Our test-generation framework is guided by a well-defined coverage
metric that assists in uncovering cache-thrashing scenarios in a systematic fashion.

b. We demonstrate the use of an assertion-based approach by which non-functional
behaviour (such as cache thrashing), that is not explicitly encoded in the program
source code, can be represented as functional properties and thereby enabling
the use of variety of functionality testing tools for the purposes of non-functional
testing as well. It is worthwhile to know that in our test-generation technique the
assertions, that are used to represent the non-functional property of interest, are
generated and instrumented into the program in an automated fashion.

c. We further show the utility of our performance-stressing test-generation frame-
work in applications such as design space exploration and performance optimiza-
tion.

2. Energy-consumption

a. We present one of the first systematic definition for energy-inefficient behaviour
in mobile apps. We also introduce a new metric of E/U ratio ( EnergyConsumption

Utilization )
that can be used to measure energy-inefficiency of a given app. The intuition
behind the metric of E/U ratio is that higher utilization (of system resources) for
a given energy consumption is more energy-efficient than lower utilization (of
system resources) for the same amount of energy consumption. In essence, a
higher E/U ratio signifies more inefficiency.

7



b. We introduce a fault-model for energy-inefficient behaviour in mobile apps. In
particular, we categorize energy-inefficiency in mobile apps into two categories:
energy hotspots and energy bugs. An anomalously high E/U ratio exhibited by
the mobile device during the execution of an app indicates presence of an energy
hotspot whereas the scenario where the mobile device exhibits a high E/U ratio
even after an app has completed execution, indicates presence of an energy bug.
We also provide real-life examples for each type of energy hotspot and energy
bug in our work.

c. Based on our understanding of different types of energy-inefficiencies in mobile
apps, we were able to develop various tools and techniques that can assist a
programmer to do energy-aware programming. In particular, we provide tools
and techniques for systematic energy-aware testing, energy-aware re-factoring
and energy-aware debugging (of field-failures), in mobile apps.

1.5 O R G A N I Z AT I O N O F C H A P T E R S

This work targets at different aspects of non-functional testing. Depending on the nature and
application of an embedded system, different non-functional properties may be of interest.
However in this work, we specifically focus on two non-functional properties: performance
(crucial for real-time systems) and energy-consumption (important for battery-constrained,
mobile devices). We start by describing some of the key concepts and existing works on
performance analysis in Chapter 2. We also describe some our efforts to improve the state-of-
art in performance analysis in Chapter 2. Subsequently, Chapter 3 presents one of our works
that uses a combination of static and dynamic analysis to automatically generate test cases that
lead to inferior cache performance. It is worthwhile to know that this was one of the first works
to propose a systematic technique for non-functional test generation. Chapter 4 introduces
the reader to basic concepts and existing research work on the topic of energy-consumption
analysis. Chapter 5 presents a grey-box testing approach for automatically exploring and
detecting energy-inefficiencies in mobile apps. More importantly the work presented in
Chapter 5 describes what it means to exhibit bad energy consumption behaviour, for mobile
apps. This understanding is further used to define a fault-model for energy-inefficiency is
mobile apps. This fault-model provides the ground work for the framework presented in
Chapter 6, which presents a white-box testing approach to automatically detect, validate and
repair energy bugs in mobile apps. Chapter 6 also introduces the tool EnergyPatch which can
be used by app developers to test and repair their apps before deployment. We also present a
couple of follow-up works in Chapters 7 and 8 on energy-aware re-factoring and energy-aware
debugging in the context of mobile apps. Finally, we conclude this thesis in Chapter 9 with a
brief discussion on the contributions of this thesis and a potential future work direction.

8



2 P E R F O R M A N C E A N A LY S I S : B AC K -
G RO U N D & L I T E R AT U R E R E V I E W

This chapter introduces the reader to some of the key concepts in performance analysis. It briefly
describes the various commercial tools (such as ARM Streamline Performance Analyzer, Intel VTune
Amplifier, etc), available for the purposes of performance analysis. It is also describes some of the
existing research works related to performance analysis. In particular, the works on performance anal-
ysis are described in three different parts (i) works on performance profiling (ii) works on performance
estimation and finally (iii) works on performance testing. We also present a new micro-architectural
modeling framework that uses abstract interpretation and satisfiability checking to generate worst-case
execution time (WCET) estimates for a given program. This framework can be used to substantially
improve the accuracy of WCET analysis in the presence of many infeasible paths in the program.

2.1 R E A L -T I M E E M B E D D E D S Y S T E M S

Embedded systems represent the class of computer systems that are designed for a specific
application. Often such application involves the controller (or the computer) controlling a
custom piece of hardware (usually an electro-mechanical component). Embedded systems
come in variety of designs and complexities. They can be simple systems used for controlling
common, household appliances such as washing machines and dishwashers or they can be
complex, mission-critical medical equipment such as a pacemaker. Depending on the applica-
tion domain of such systems, they may have performance or timing constraints. These timing
constraints are often real-time in nature, hence referred to as real-time constraints. Having
a real-time constraints means that such systems should not only be capable of processing
the correct output for a given input, but it should do so within a given deadline. Inability to
complete a task within the deadline may cause a degradation in the Quality-of-Service or
even catastrophic consequences, in certain applications. Depending on the seriousness of the
real-time constraint, such systems are further classified into two categories: hard real-time
systems and soft real-time systems.

Hard real-time systems are computer systems which can not afford to miss even a single
timing deadline. Missing a deadlines in such systems can lead to catastrophic consequences.
For example, if a pacemaker fails to provide the right amount of electrical impulse, at the
right time, the patient’s heart may stop functioning, leading to fatal consequences.

Soft-real time systems in contrast, can afford to miss a few timing deadlines and may still
keep functioning. However, meeting all timing deadlines is highly desirable as missing a
deadline may lead to degraded Quality-of-Service. An example of such system would be
a live video playback system (video encoder/decoder). Such systems are used widely for
showing live feed from sports events. It is highly desirable, to have an un-interrupt video
stream of the sports event but occasionally missing a few video frames should not cause any
catastrophic consequences.

9



2.2 OV E RV I E W O F P E R F O R M A N C E A N A LY S I S TO O L S

Computer programmers and designers often use a number of profiling tools to understand
and optimize the system behaviour. Many commercially available profilers present today, use
sampling or instrumentation based techniques to profile performance or power consumption
of a system. In this section, we briefly describe some of the commercially available profilers,
which include ARM Streamline Performance Analyzer, ARM µVision4 IDE, Intel VTune
Amplifier, AMD CodeAnalyst, and Valgrind. The above mentioned profilers are targeted at
different platforms and provide wide range of features, however the common feature amongst
these tools is that they all perform dynamic program analysis. Recall that dynamic program
analysis, unlike static program analysis, comprises of executing programs on the target system.

Streamline Performance Analyzer, is a part of the ARM DS-5 toolchain. This is a GUI-based
tool and it is primarily targeted at the Cortex-A series and Cortex-R series of ARM processors.
It uses various performance counters and sampling-based techniques to capture profiling data.
The tool supports two modes of sampling, which are timer-based sampling and event-based
sampling. Quantitative properties such as cache-misses or cache-hits can be statistically
assigned to particular process or a thread in a program. Additionally, the streamline analyzer,
together with the ARM energy probe, can be used to capture power consumption of a program.
The ARM energy probe is essentially a USB device which can sample voltage, current and
power. The sampled data is then synchronized with the software execution trace and various
performance metrics, to give the developer an idea about the energy hotspots in the program.
This tool also has features to support profiling on symmetric multiprocessor (SMP) platforms.
It also displays the observed thread activity on a specific cores. This gives the programmers
an intuition of how their code is distributed across different cores.

µVision4 IDE is another GUI-based, embedded applications tool marketed by ARM Hold-
ings plc. This tool is targeted at the Cortex-M, Cortex-R4, ARM7 and ARM9 processor-based
devices. The performance analyzer in the µVision4 IDE is capable of recording the time
spent for executing a particular function in a program. Additionally, this tool can generate
the execution trace related information, for a given program. However, unlike the Streamline
Performance Analyzer, µVision4 IDE has no support for multi-core processors or power
consumption profiling.

VTune Amplifier, is a performance profiler developed and marketed by Intel Corporation.
This tool is primarily targeted at the systems with Intel processors, although some of the basic
features of this tool can be used for profiling other systems as well. The tool used event-based
sampling, performance counters and call-graph profiling to generate the profiling data. The
profiling results can be visualized through a GUI, on a per-process level, per-thread level or a
per-module level, with the resolution of a single instruction. For power analysis, the tool has
two built in modes, CPU sleep state and CPU frequency scaling. The amount of time spent
by the CPU in sleep-state and the frequency at which the CPU operates are key factors (but
not the only factors) for determining average power consumption. Therefore, profiling data
generated from these two modes can give a rough-estimate of the average power consumption,
while executing a program (or a module).

AMD CodeAnalyst, is a GUI-based performance profiler targeted at x86 and x86-64 based
systems. Additionally, the features provided by this tool support multi-core and non-uniform
memory access (NUMA) systems. CodeAnalyst is based on statistical profiling tool OProfile.
It uses various hardware based profiling techniques as well some generic timer-based profiling

10



techniques, to capture the profiling data. However, some of the hardware based profiling
techniques are specific to AMD processors and therefore applicable to systems with AMD
processors only. The profiling data can be examined on a per-function level or per-thread-level,
with an instruction-level resolution.

Valgrind Tool Suite is a set of debugging and profiling tools, targeted at a large number
of processors (such as x86, x86-64 and PowerPC, ARMv7) and is avialable under the GPL
license. The tools in Valgrind generates debugging/profiling related information using runtime
instrumentation. In particular, the Cachegrind and the Callgrind tools from the Valgrind Tool
Suite, are useful for performance analysis. Cachegrind is essentially a cache profiler, which
performs detailed simulation of caches to highlight source of cache misses in the program. It is
capable of generating summary for the memory references, cache misses and the instructions
executed for each line of source code. The results can be examined at per-function level,
per-module level or for the entire program. Callgrind is an extension to Cachegrind tool
and it provides additional information related to call-graphs. KCachegrind, is the GUI-based
version of the tool Callgrind and it is also available under the GPL license.

2.3 A P P ROAC H E S U S E D F O R P E R F O R M A N C E T E S T I N G /
E S T I M AT I O N

There can be a number of reasons to analyse the performance of a given system. For instance,
in the case of hard-real time systems knowing the upper bound on execution time is very
important. For such systems, techniques for worst case execution time (WCET) analysis
can be very useful. For other systems, performance may directly correlate to the quality-
of-service and hence the developer may want to fine-tune the system performance. In such
scenarios, the developer can use a performance-aware test generation technique to find out
the test inputs that degrade performance and subsequently, either change the program or
the hardware configuration to optimize the system performance. It is also possible that the
developer/tester wishes to compare the performance of a program on two different platforms
(hardware configurations). For such scenarios, profiling techniques can be useful. Profiling
techniques can be also used to approximate the performance trend for a given program. Table
1 shows some of the key aspects of the different performance analysis methodologies.

Table 1: Key aspects of different performance analysis methodologies

Profiling Test Generation Estimation

Estimates upper, lower bound
No No Yes

on execution time
Test inputs needed to conduct
performance analysis

Yes No No

Find test inputs for suboptimal
No Yes No

behaviour

Underlying framework
Dynamic Dynamic Static
Analysis + Static Analysis

Analysis

11



2.4 P E R F O R M A N C E P RO FI L I N G T E C H N I Q U E S

Profiling can be described as a dynamic analysis techniques where a program is executed for a
set of representative inputs to observe the program behaviour. Such profiling techniques often
work on full or compressed execution traces to extract useful information about the program
behaviour. It is assumed that the representative inputs for obtaining the execution traces
are known beforehand. Many commercially available profilers (such as ARM Streamline
Performance Analyzer, Intel VTune Amplifier and AMD CodeAnalyst), use sampling or
instrumentation based techniques to profile performance or energy consumption of a program.
However, for the purpose of brevity, in this section we shall restrict our discussion only to
existing research techniques based on profiling.

Profiling based techniques, in general, do not perform micro-architectural modeling (sys-
tematic analysis of underlying hardware components). As a result they are less complex
and light-weight. However, since they do not model (or take into account) the underlying
hardware, they cannot provide any guarantees on the upper or lower bounds on the execution
time of a program. Hence they are not very useful for analysis of hard real-time systems
(which require strict timing guarantees). Another challenge while using profiling based
techniques is completeness. For instance completeness in terms of program-paths would
mean that all program-paths have been executed at least once. However, in practice a com-
plete path coverage is seldom achieved because the number of paths in a program increases
exponentially with the number of decision variables. (A program with η decision variable
can have 2η paths.) Most profiling based techniques execute the (analysed) program only
for a subset of program-paths. Despite these limitations, profiling based techniques have
been extensively used for a number of practical purposes. In particular, systems (such as
soft, real-time systems), which do not require strict guarantees on performance, can benefit
from the use of profiling based techniques. In the following paragraphs, we shall see to two
extensions of the profiling based works; extending profiling to estimate WCET and extending
profiling techniques to estimate program cost.

As mentioned in previous paragraphs, inherent limitations of profiling make it almost
impractical for bounding the execution times (i.e. WCET). However, a number of works
[7],[8] have explored ways to overcome the aforementioned limitations. The work of [7] in
particular measures the execution times of small program segments and subsequently stitches
them together to estimate the overall execution time of the program. It is worthwhile to note
that the technique of [7] does not model the underlying hardware while profiling. This raise
some concerns over the correctness of generated results through this approach. To address
these concerns, [7] tries to use compiler-level techniques to reduce variability throughout
different executions. Another work [8], introduces a technique for WCET estimation for
probabilistic, hard, real-time systems. [8] suggests that a hard, real-time system must meet
the deadlines with a high probability. It proposes a framework, where execution profiles of
smaller program units are probabilistically combined to estimate the worst case execution
time of the entire program. Although, their method might generate better WCET estimates
than the conventional end-to-end measurement based techniques, but it should not be used to
determine the WCET of a hard real-time system, because by definition hard real-time systems
must meet all the deadlines, under all conditions.

Recent advances in profiling [9, 10] have extended on the traditional profiling techniques to
compute the performance behaviour of a program by means of an approximate cost function.
The cost function relates program inputs with the overall cost of the program execution. It
is worthwhile to know that such cost functions are approximations and do not necessarily
capture the actual cost of executing the program for a given input.

12



2.5 P E R F O R M A N C E E S T I M AT I O N T E C H N I Q U E S

Static analysis methods refers to the set of timing analysis techniques, which estimate a bounds
on the execution time of the program, without actually executing it on the real hardware.
Many quantitative properties of real-time software such as worst-case execution time (WCET)
and best-case Execution Time (BCET) are often undecidable. But a sound knowledge of such
properties for real-time software is essential. Therefore, static methods are used to generate
sound but an over-approximated estimates for such properties of a program. The process of
estimating static timing analysis can be divides into following three phases : Control Flow
Analysis, Micro-architectural Analysis, Estimate Calculation (see Figure 4).

  Program Executables

User Annotations Processor 
Con!guration

Program Flow
Analysis

Micro-architectural 
Analysis 

Estimate Calculation

CFG Generator

Timing Estimates

Figure 4: An abstract illustration of a timing analysis framework

2.5.1 Program Flow Analysis

Program Flow Analysis is a term often used to represent the set of techniques, which are used
to derive constraints on the paths of a program’s control flow graph (CFG). Flow analysis take
in the program CFG as an input and analyses it to generate various flow related information,
such as loop bounds and infeasible paths in the CFG. In general, it is difficult to precisely
calculate the program flows statically. Therefore, a safe-over approximation of the flow
related information is estimated. For example, in order to calculate the WCET of a program
containing loop, an upper-bound on the number of loop iteration must be known.

Previous research work such as [11], [12] propose techniques for automatic loop bound
detection. Infeasible path detection is also an important part of flow analysis. Unlike loop
bound detection, infeasible path detection is not a necessity for WCET estimation. But it is
highly desirable, because in the presence of infeasible paths, the WCET can be over-estimated.
For instance, consider a program CFG which has an infeasible path Ip. Also suppose Ip has
the longest execution time over the whole CFG, (say TIp). In absence of any infeasible path
related flow information, the WCET analyser would report the WCET to be TIp. Clearly,
since Ip is never executed in any concrete execution of the program, WCET of the program is
over-estimated. Additionally, in the presence of infeasible paths, micro-architectural analysis
can be imprecise, which can also lead to an over-estimated WCET. Methods such as the one
proposed in [13] can be used for automatic infeasible path detection. Flow information such as
loop bound and infeasible paths can also be added manually, as annotations or user-provided
constraints.

13



2.5.2 Micro-architectural Analysis

Most modern processors uses a number of performance enhancing features such as caches,
pipeline and branch predictors. These features are very useful for increasing performance, but
they also make the task of timing analysis complicated. Worst case execution time (WCET) of
a program is directly influenced by the various micro-architectural components. So, in order
to produce a safe and precise estimate of a program’s WCET, micro-architectural analysis
must be performed. The following paragraphs describe some of the existing research work
for analysing various micro-architectural components such as caches, pipelines and branch
predictors.

Caches are fast memory used in modern computer systems, to hide the latency of slower
memory access. The presence or absence of accessed memory blocks in the cache can
influence the execution time of a program. But for most programs it is statically undecidable
to accurately calculate the contents of the cache, at a given program point. Fortunately, static
analysis based methods can be used to estimate an over-approximation of cache contents, at a
given program point in the CFG.

The work in [14], proposes one of the first method to model the behaviour of instruction
caches. In their method they construct a cache conflict graph to model the inter-instruction
conflicts. This graph is used to generate constraints representing the cache behaviour. They
also suggest a method to represent the structural and functional properties of the program as
linear constraints. Structural constraints are derived from the flow analysis of the program
CFG. For example, the information that the execution count of a basic block is equal to the
number to time control flow edges enters the basic block can be represented by a structural
constraint. On the other hand, information such as the upper bound on number of iterations of
a loop are represented by functional constraints. Their approach provides an elegant way to
represent all the flow related information as well as micro-architectural behaviour as a system
of linear equations. An integer linear programming (ILP) solver can then be used to obtain
the worst case execution cycles of the program. A major limitation with their approach is that
as the associativity of the caches increase, the ILP problem increasingly gets more complex
and therefore takes a long time to solve.

One of first scalable approaches for performing cache analysis was proposed in [15]. They
presented an abstraction interpretation based approach to categorize the memory blocks in
the cache. The abstract semantics used in their framework consisted of an abstract domain of
caches states and a set of abstract functions. The abstract domain of cache states represents
an approximation of the set of all concrete cache states at a given program point, whereas, the
set of abstract function consists of an abstract Join function (used to merge multiple abstract
cache states into a single abstract cache states) and a abstract Update function (reflects the
side-effects of a cache reference on the abstract cache state). The authors use three different
approaches to perform cache analysis, they are Must, May, Persistence analysis. Must analysis
can be used to identify the always-hit (AH) memory block in the cache. Access to AH memory
blocks always results in a cache hit. Likewise, May analysis can be used to identify always-
miss memory blocks in the cache. Access to AM memory blocks always results in a cache
miss. Persistence analysis can be used to identify memory blocks, access to which will
always results in a cache-hit, except for the first access for which it would be a cache miss.
To get a more precise cache classification, their cache analysis framework employs VIVU
(virtual inlinning virtual unrolling). This is especially beneficial for program having loops
and recursive procedure calls as it helps in isolating the first iteration of a loop ( or recursive
call) from the renaming iterations (or recursive calls). Due to the use of abstract interpretation
for micro-architectural analysis, this approach is much simpler than the approach suggested
by [16], especially for set-associative caches.

14



The work of [17], extends the framework proposed in [15], to multilevel, non-inclusive,
set-associative caches. In order to model the cache behaviour for multi-level caches, a cache
access classification (or CAC) has been suggested in this paper. A CAC is utilized to safely
estimate whether an access to a memory block occurs at cache level L. The CAC classification
for a memory block can be Always Accessed, Never Accessed or Uncertain. CAC for a
cache level L depends directly on the CAC and the cache-hit-miss-classification (CHMC)
classification of the cache level L-1. If a memory block is classified as AH in cache level L-1,
that memory block would not be referenced in the cache level L and therefore it is classified
as Always Accessed. Likewise, Never Accessed memory block can also be identified. All
memory blocks which can not be safely classified as Always Accessed or Never Accessed
have a CAC of Uncertain. All blocks access the cache at level 1, therefore all blocks have a
CAC of Always Accessed CAC for cache level 1. CHMC for level 1 cache is calculated using
the technique proposed in [15]. For other cache levels, after the CAC has been calculated,
CHMC can be calculated in a similar manner.

Abstract interpretation based micro-architectural analysis method are fast and scalable, but
the result of analysis (WCET estimates) can be imprecise. Since abstract interpretation is
inherently path in-sensitive, it cannot distinguish between feasible and infeasible paths. In
the presence of infeasible paths, abstract interpretation based cache analysis might lead to
infeasible cache states. Although, the presence of such infeasible cache states does not affect
the correctness of the analysis but the WCET of the program might be overestimated. The
work of [18], proposes a method to improve the precision of abstract interpretation based
instruction cache analysis, with the help of model checking. First the cache analysis proposed
in [15] is used to obtain the CHMC for the memory blocks. After obtaining the CHMC for the
memory blocks, repeated runs of model checking are applied to efficiently refine the WCET
estimate. Given a potentially conflicting pair of blocks, a model checker (CBMC) is used
to verify if the pair actually conflict in any execution. If the conflict was indeed spurious
(possibly due to infeasible path in the program), the classification of the memory block is
adjusted. An advantage of this approach is that the refinement of cache categorization can be
stopped at any time and still the obtained WCET estimate would be sound.

Similar to instruction cache analysis, data cache analysis is also an important part of micro-
architectural analysis. But the process of analysing data caches is much more challenging
than analysing instruction caches. This is because, unlike instruction cache analysis, for
any memory access, multiple memory blocks might be accessed at different instances of the
access. Many of previous research work, overcome this challenge by using techniques such as
Address Analysis. Address Analysis generates an over-approximation of the set of addresses
that can be accessed by a specific load/store instruction, in a program.

The study by [19] extends the abstract interpretation based framework (by [15]), for data
caches. In particular, they suggest an approach to apply Persistence Analysis for data caches,
although neither details of address analysis nor any experimental results were presented in
this paper. [20] presents a technique for address analysis and they use the results of address
analysis to perform Must analysis on data caches. The original must analysis described in [15]
can not be directly applied to data caches because the each program point might be associated
with a range of memory blocks. They also unroll the loop partially to improve the precision
of their framework, but this makes their analysis more expensive. [21] present an approach to
apply May analysis for data caches. Their work also presents one of the first frameworks to
model unified caches. Unified caches are used to store data as well as instructions. Unified
caches have been used in commercial processors such as Intel Itanium 2, Intel Core i7 and
AMD Phenom II.

[22] extended the persistence analysis to multi-level, set-associative data caches. A Cache
access classification (CAC) is used to find out the memory references for a particular cache

15



level. The CAC for multi-level, data cache analysis is similar to the CAC define for multi-
level, instruction caches analysis proposed by [17] A recent work by [23], has shown that the
persistence analysis for data caches as proposed by [19], is not safe for WCET estimation.
The original persistence analysis has a flaw in the abstract Update function, due to which it
could underestimate the WCET. This flaw can be corrected by keeping track of Younger Set
for each memory block. A Younger Set for a memory block m, denotes the set of memory
blocks which may be younger, than m along any execution path. Additionally, [23] proposes a
scope-aware, persistence analysis for data caches. Scope-aware, persistence analysis exploits
the temporal scopes of the memory blocks to reduce the pessimism in the data cache analysis.
A temporal scope of a memory block m, captures the loop iterations of the program, where
m can be accessed. In particular, if two memory blocks m1 and m2 map to the same cache
set, but have different temporal scopes, they would not conflict in the cache. Essentially, the
original persistence analysis for data cache estimates the global persistence of a memory
block whereas the scope based persistence analysis only estimates the persistence of memory
block within its temporal scope. Therefore, scope-aware persistence analysis can lead to more
precise WCET estimate.

Pipeline Analysis : Advanced feature such as pipeline are a boost to performance but at
same time it makes the process of WCET estimation very challenging. In pipelined processors
the execution time of instructions might overlap, due which a execution time of a basic block
cannot be obtained by simply adding up the execution time of constituent instructions of
the basic block. In order to obtain a safe WCET estimate, the micro-architectural analysis
must analyse the effects of pipeline along with other components such as caches and branch-
predictors. Previous research work has presented techniques to model the pipeline behaviour,
for various processor architectures. Some of those works would be discussed in the following
paragraphs.

The work in [24], proposes a framework for WCET estimation in presence of pipelines
and caches. The target processor for their study was MIPS R3000, which has a simple
five-stage pipeline. The effect of pipeline is modeled by using a reservation tables of resources
for each instruction. The reservation table is used to analyse timing interaction between
instructions inside and across the basic block. A bottom-up algorithm is used to find worst
case execution time estimates for a path. WCET for the whole program can be estimated using
concatenation of paths. Every time a instruction is added to a path, a new reservation table is
computed. Reservation tables are compacted whenever possible by keeping information only
from the beginning and the end of a path. This framework of [24] is later extended in [25],
for multiple-issue architectures.

The micro-architectural analysis proposed in [26] also focuses on pipelines and instruction
caches. The target processor for their experiments was MicroSPARC 1, which has a very
simple, in-order pipeline. The analysis proceeds by first determining the cache-hit-miss
categorization (CHMC) using static, cache simulation. Each instruction is associated with the
set of registers which it can access. Additional information, such as the maximum number of
cycles per pipeline stage and the first and last pipeline stage, from which forwarding can take
place is stored for each instruction. The earliest and latest usage time for register files is also
tracked in order to avoid data hazards. Program path analysis is done by concatenation of
instruction on a path. Loops are analysed using a bottom up approach, beginning with the
inner-most loop All the paths through the loop are merged and this information is used to the
analyse the outer loops in an iterative manner.

[27] present an integrated, integer linear programming (ILP) based approach for analysing
the cache and pipeline behaviour. The processor model used for their experiments was Intel
i960KB, which has a very simple pipeline. The simple architecture of the pipeline allowed

16



the authors to restrict the model to look for structural hazards only. Therefore, their approach
would be much difficult to apply for superscalar, out-of-order processors.

The work of [28] presents an abstract interpretation based approach for modeling pipelines,
for in-order, superscalar processors. This key challenges while modeling pipeline in super-
scalar processors is that in such architectures resource allocation to the instruction occurs
dynamically. Due to this reason a static reservation table based approach as proposed in earlier
works would be inadequate to model superscalar processor pipelines. The target processor for
this study was Sun SuperSPARC 1. The modeling abstracts the pipeline by representing the
set of all pipeline states, at a program point, by a single abstract pipeline state. Although the
abstract semantics proposed in this paper was described only for in-order pipelines but they
can be extended to out-of-order pipelines as well.

The work in [29], proposed an abstract interpretation based analysis, for an architecture
with an in-order pipeline, caches and branch prediction. The target processor for their study
was Motorola ColdFire 5307. Their approach decomposes the pipeline into several smaller
and simpler units. These units (of the pipeline model), may represent single or a combination
of actual pipeline state. Additionally, these units can communicate with each other and the
memory by using signals. In their model, an abstract pipeline state represents a set of concrete
pipeline states. The abstracted model of pipeline groups together those states which have
similar timing behaviour. But such assumption has its own limitations, consider a scenario,
where the execution time of an instruction is not known statically (some instructions execution
time depends on the operands). In such a scenario, in their model, a pipeline state can have
several successor pipeline states, to account for the variable execution time. This feature is
the prime limitation of their model because it can cause state space explosion problem.

The work in [30], presents a ILP based approach to model an out-of-order, superscalar
processors with pipelines. To estimate the WCET of basic block, first it is analysed in
isolation (assuming an empty pipeline at the beginning of the execution). In absence of
instructions from any other basic block, a basic block will take maximum time to execute
when there is maximum resource contention amongst the instructions within the basic block.
Based upon this observation, a rough estimate for earliest starting time and latest finish times
for a instruction is estimated, in the presence of maximum possible delay. Note that some
contention (and possible delays), can be ruled out due to data dependencies. As a result of
ruling out some contentions, the earliest start times and latest finish times can be refined. The
process of refinement continues, iteratively, until a fixed point has been achieved. This gives
an estimate on WCET of a basic block when executing on an empty pipeline. But usually
some instruction would be executing before and after a basic block (termed as prologue and
epilogue of an basic block in the paper). The delay caused to due to possible contention
between instructions in prologue and epilogue is estimated conservatively. The basic block
estimates are then used in the ILP formulation to obtain the WCET of the whole program.

Branch Prediction Analysis : Another micro-architectural component which can affect
the execution time of a program is a branch predictor. Most superscalar processors use some
variation of branch prediction mechanism, to predict the result of a branch instruction. Such a
component is required because superscalar microprocessor pre-fetch instruction to keep the
pipeline busy. As long the instructions are in sequential order, pre-fetching is straightforward.
But when a branch instruction is encountered pre-fetching (and hence the pipeline) is stalled,
until the target address of the branch instruction is calculated in the later stages of the pipeline.
In order to prevent the pipelines stall, a branch predictor is used to speculate the outcome of
the branch instruction.

Due to the unpredictability introduced by branch prediction many processors targeted for
embedded application, employ some trivial form of branch prediction or no branch prediction
at all. [31] presents a brief overview of various branch predictions mechanisms for some of

17



the commonly used processors. Although this study does not present any new techniques
to statically estimate the WCET of program in presence of branch prediction, but it does
gives some idea about the impact of various branch prediction mechanisms on processor
performance. [31] compares the branch prediction mechanism of Intel Pentium III, Intel
Pentium 4 ,AMD Athlon, Sun UltraSparc II, Sun UltraSparc III, NEC V850 and ARM7. The
NEC V850 and ARM7 microprocessor are primarily designed for use in embedded application
and their branch prediction mechanism is very regular. As a result static analysis of programs,
for these processor architecture is very straightforward. The cost of high predictability
in such processors is paid by sacrificing performance. Since embedded application are
increasingly becoming more performance intensive, processors with better performance and
more aggressive branch prediction mechanisms must be used. Existing research work such as
[32], [33], [34] suggest methods for timing analysis of programs on processor architectures
with branch prediction. [32] suggest an abstract interpretation based micro-architectural
framework to analyse set-associative, Branch Target Buffers (BTB), for Pentium architecture.
[33] extends the ILP based framework proposed by [35], to integrate various global branch
prediction schemes. They also suggest one of first approaches to model instruction caches
in presence of speculative execution. Speculative execution can lead to a behaviour called
wrong-path cache effect. This behaviour can be described as pre-fetching of cache instructions
due branch mis-prediction. Although, this study proposes an elegant method for representing
constraints generated by program flow analysis, cache modelling and branch-prediction
modelling, but the framework has been applied only to direct mapped caches. Another work
[34] proposes an abstract interpretation based framework to model branch target instruction
caches (BTIC). They also present an instantiation of their framework for the Motorola
PowerPC 56x which has a fully-associative, 8-way, tgt-BTIC. However, since the framework
proposed in [34] is modular it might be possible to adapt the framework for analysing other
kinds of branch target buffer as well.

The methods mentioned in the above paragraphs describe some of the exiting frameworks
to model dynamic branch predictors. Another line of work exists, which presents an approach
to model static branch predictors. Recall that static branch prediction mechanisms, have a
regular prediction pattern, irrespective of the code (for example BTFN). This property can be
exploited by compilers to the benefit of static analysis. One such approach is proposed by
[36], which suggests the use of compiler optimizations, to increase the predictability of static
branch prediction techniques. Their algorithm for WCET estimation is composed of two key
steps. In the first step, all conditional branches which have not been statically predicted are
assumed to be mis-predicted and the worst case execution path and the WCET is computed.
In the second step, all conditional branches which are still unpredicted, are statically predicted.
The algorithm iterates over these two steps until the WCET is stabilized.

2.5.3 Estimate Calculation

The output of the program flow analysis phases and the micro-architectural analysis phases
are used as inputs to this phase. The purpose of this phase is to calculate the longest, feasible,
path in the program CFG. As a result of the analysis performed in this phase, an upper bound
on the execution time of a program can be estimated. Most of the existing methods for bound
calculation can be classified into following three categories

• Path based methods

• Tree based methods

• Implicit Path Enumeration based methods

18



Path Based Methods primarily search for the program path with longest execution time, in
the control flow graph of a program. Interestingly, the longest structural path in the program
CFG does not always have the longest execution time. In the paths based methods, the task
of finding the longest path is achieved by enumerating all the program paths in the CFG,
explicitly. Although, most of the path based methods can generate precise results but they are
not very scalable, since most of the real-life program have a huge number of paths. In-fact,
the number of paths in a program can be exponentially large, even for programs which are
guaranteed to terminate. For instance, a program with n branches can have a total of 2n paths.
For a large value of n, the task of determining the longest path can be very complex and
time-consuming. But it is possible that a fair share of these 2n paths, are infeasible in any
concrete execution. Therefore, the search space for find the longest path can be reduced with
the help of efficient heuristics. Example of path based WCET calculation can be found in
[37] and [38].

Tree-based Based Methods , estimate the WCET of a program by performing a bottom-up
traversal of the program parse tree. The study by [32], [24] are good examples of tree based
method. In most of the tree based methods rules are defined for each type of compound
statement in the program parse tree. The WCET of a program is calculated by combining the
WCET of each compound statements in the parse tree. Although tree based methods are easy
to perform but they have some serious limitation due which they haven’t been used widely.
On such limitation is the inability to handle flow related information, such as the one proposed
by [39]. This implies that the computation can not handle dependencies across different
statements. Another limitation with this class of methods is that rules are context-independent
making the results of the analysis imprecise.

Implicit Path Enumeration Based Methods , based methods do not enumerate all the
program paths explicitly. The approach of IPET based performance estimation was first
proposed by [14]. In an IPET based approach, program flow information, as well functional
constraints are encoded are linear constraints. The basic idea behind the IPET approach can
be described as follows. Each basic block in the program CFG is associated with an execution
count variable and cost variable. An execution count variable (xi), represents the number of
times the basic block i has been executed. A constant (ci), represents the execution time of
that basic block. ci can obtained by various static or measurement based methods. The total
execution time of the program can be calculated as

Total Execution Time =
N
∑

i=1
ci.xi

N denotes the total number of basic blocks in the CFG. Since a basic block can be executed
only an integral number of times therefore the variable xi can only have integer values.

Block 1

c  = 5

Block 2

c  = 10

Block 3

c  = 1

Block 4

c  = 2

x
1

x
2

x
3

x
4

1

2 3

4

d
01

d
12 d

13

d
24 d

34

Figure 5: Flow constraints to be used in ILP formulation

x1 = d01 = d12 + d13 (1)

x2 = d12 = d24 (2)

x3 = d13 = d34 (3)

x4 = d24 + d34 (4)

d01 = 1 (5)

19



Figure 5 shows an example control flow graph for a simple if-else program. The edges
between the basic blocks Blocki and Block j are denoted by dij and the cost of executing a
basic block Blocki is denoted by ci Once all the constraints of the program are specified
as linear constraints, an integer linear program (ILP) solver such as CPLEX, can be used
for the solving it. In order to obtain the WCET of the program, total execution time of the
program has to be maximized, subjected to all structural and functional constraints. For
instance, in the example of Figure 5 x1 = 1, x2 = 1, x3 = 0 and x4 = 1 maximizes the
execution time. The advantage of using IPET based methods for estimate calculation is
that, all information such as loop bounds, infeasible paths and user provided constraints can
be easily encoded as linear constraints. A limitation of using IPET based methods comes
from the fact that ILP problems are usually NP-hard to solve. Therefore finding a solution
for a large ILP problem can be very time consuming or even infeasible. Such behaviour
can be observed in the experiments by [16], where they perform cache analysis using IPET
based method. In the experiment, when associativity of caches is increased, the analysis time
increases dramatically. Nevertheless, IPET based approach is an elegant way to represent all
program related information in a homogeneous way. Subsequent research works such as that
of [15] (for instruction caches) have used scalable approaches such as abstract interpretation
for micro-architectural modelling and ILP based approach for bound calculation. Another
limitation with the IPET based methods is that, unlike the path based methods it does not
output the path which causes the worst case execution time, instead, it just generates the worst
case execution time of the program.

2.6 P R E C I S E M I C RO -A R C H I T E C T U R A L M O D E L I N G F O R

W C E T A N A LY S I S V I A A I+S AT

Micro-architectural modeling systematically considers the timing effects of underlying hard-
ware platform (e.g. pipeline, caches, branch predictors) and it produces the WCET of each
basic block in the program control flow graph (CFG). On the other hand, program flow analy-
sis usually involves finding infeasible program paths in the CFG. Such infeasible program
paths are ignored during WCET calculation phase to produce a tighter WCET estimate. This
WCET analysis process is shown in Figure 6. A crucial observation from Figure 6 is that
the micro-architectural modeling and program flow analysis are performed independently.
As a result, the information computed by program flow analysis is typically not used by the
micro-architectural modeling. In the absence of program flow information, micro-architectural
modeling involves considering many infeasible micro-architectural states, which may lead to
the imprecision in WCET estimate for each basic block. A typical example of such infeasible
micro-architectural state would be the set of memory blocks inserted into the cache along
some infeasible program path. With the help of some program flow information (which is
already computed during the program flow analysis), such infeasible micro-architectural
states can be ignored, which in turn will lead to a tighter WCET of each basic block after the
micro-architectural modeling. As a result, the integration of program flow information into
micro-architectural modeling may lead to a tighter WCET estimate of the overall program.
This is the key idea in this work. The main novelty of our work lies in the consideration
of infeasible program paths (computed by program flow analysis) into micro-architectural
modeling. Therefore, our work establishes this missing link (in Figure 6) between program
flow analysis and micro-architectural modeling.

However, considering program flow information into micro-architectural modeling leads
to several technical challenges. A naive strategy is to employ fully path sensitive micro-
architectural modeling. Such an approach will be infeasible in practice due to the classic

20



Program

analysis
Program flow Infeasible path, 

loop bound 

Micro−architectural 

WCET 

calculation

(caches, pipeline)

modeling
WCET of 

basic block

Figure 6: A typical WCET analysis framework

state-space explosion problem [40]. Therefore, micro-architectural modeling for real-time
systems is usually accomplished by abstract interpretation. Abstract interpretation is usually
efficient but often imprecise. This happens due to the “join” of several micro-architectural
states at control flow merge points, which may eventually lead to several infeasible micro-
architectural states (e.g. infeasible cache contents for cache analysis). However, due to this
“join” operation, abstract interpretation is path insensitive, which in turn leads to its scalability.

In this section, we propose a generic extension to abstract interpretation (AI) based analysis
framework using satisfiability (SAT) checking. Our baseline analysis is abstract interpre-
tation. At any program point, our proposed framework tracks a partial path with each
micro-architectural state µ. This partial path captures a subset of all the control flow edges
along which the micro-architectural state µ has been propagated. We define the partial path
as a propositional logic formula ϕ over the propositions associated with each control flow
edge. At each control flow branch (i.e. conditional statements), this partial path formula ϕ is
sent to an oracle. The oracle, in turn, is generated after program flow analysis and checks
the infeasibility of the partial path (defined by ϕ). Such a checking can be accomplished by
making an on-the-fly call to a satisfiability solver (e.g. using Minisat [41]). If the partial path
was infeasible, its associated micro-architectural state can be ignored for further consideration.
Due to a significant progress in SAT solver technologies for the past few decades, such calls to
SAT solvers can be processed very efficiently. The set of micro-architectural states generated
by our framework is always tractable. To control the number of micro-architectural states, we
employ strategies to merge different micro-architectural states at appropriate program points.
The growth in the number of micro-architectural states (compared to the original abstract
interpretation based framework) is always bounded by a magnitude equal to the incoming de-
gree of a control flow node, typically a small number. Therefore, we provide a comprehensive
and tractable strategy to integrate program flow analysis into micro-architectural modeling.

2.6.1 Overview

In this section, we shall illustrate the central idea behind our approach through a simple
example. Through the example, we shall show how the precision of cache analysis can be
improved using our proposed framework.

Figure 7(a) shows the control flow graph (CFG) of a program. The label inside each
basic block captures the memory blocks accessed by the same basic block. The branch
condition is shown beside each conditional branches. For the sake of illustration, let us
assume that variable x (used in the conditional branches) is not modified anywhere in the
CFG. Additionally, we assume a 2-way set associative cache, where the memory blocks in
the CFG are mapped to different cache sets as follows: m1 7→ S1, m2 7→ S1, m3 7→ S1,

21



m1

m2

m3

m4

m5

m6

m7

x < 0 x ≥ 0

x < 6x ≥ 6

m1

m2

m3

Join

Join

x < 0 x ≥ 0

x < 6x ≥ 6

〈m1, 1〉〈m1, 2〉

〈m1, 2〉

〈m1,∞〉

〈m1,∞〉

〈m1,∞〉

〈m1, 2〉

m1

m2

m3

Join

Join

merge

merge
Since e1 and e3 
cannot coexist, 

eliminated along e3

is 

e1 e2

e3 e4

J1

J2

x < 0 x ≥ 0

x < 6x ≥ 6

〈m1, 1, e2〉

〈m1, 2, e1〉
〈m1, 1, e2〉

〈m1, 2, e1〉

〈m1, 1, e2〉

〈m1, 2, {e2, e3}〉 〈m1, 2, φ〉

〈m1, 1, {e2, e3}〉

〈m1, 2, {e2, e3}〉
〈m1, 2, φ〉

〈m1, 2, φ〉

〈m1, 2, φ〉

〈m1, 1, {e2, e4}〉
〈m1, 2, {e1, e4}〉

〈m1, 2, e1〉

〈m1, 1, e1〉

(a) (b) (c)

Figure 7: Illustrative example (a) control flow graph with accessed memory blocks shown inside each
basic block. (b) original must cache analysis, (c) must cache analysis instantiated by our
framework

m4 7→ S2, m5 7→ S3, m6 7→ S4 and m7 7→ S7. Si captures the different cache sets.
Therefore, in our example, only the memory blocks m1, m2 and m3 conflict in the cache.

Figure 7(b) shows the state-of-the-art must cache analysis [15] for LRU replacement policy.
Each element in the cache state is represented as 〈m, a〉, where m is the memory block with
LRU age a. Let us see the propagation of abstract cache states associated with memory
block m1. Since m2 conflicts with m1, the join operation at the first control flow merge
point computes 〈m1, 2〉 (by taking the must join of 〈m1, 2〉 and 〈m1, 1〉). Since m3 also
conflicts with m1, the control flow after accessing m3 will evict m1 from the abstract cache
state (captured by the element 〈m1, ∞〉 in Figure 7(b)). As a result, the join operation at the
second control flow merge computes 〈m1, ∞〉. Therefore, must analysis cannot conclude any
subsequent accesses to m1 as cache hits. However, careful examination reveals that x < 0
and x ≥ 6 cannot be satisfied for any execution (recall that we assume x is not modified
anywhere in the CFG). The must cache analysis was unaware of this infeasible execution. As
a result, the traditional must cache analysis assumes two cache conflicts to m1 (from m2 and
m3), whereas at most one cache conflict is possible for any feasible execution. To summarize,
in the absence of any program flow information, abstract interpretation based cache analysis
cannot determine that accesses to memory block m1 are cache hits (excluding the cold cache
miss).

To resolve the gap between program flow analysis and micro-architectural modeling, we
propose to extend the abstract domain of the micro-architectural state with partial path
information. The instantiation of our proposed framework for cache analysis is shown in
Figure 7(c). We first label the control flow edges (as shown by e1, e2, e3 and e4 in Figure 7(c))
and define a predicate associated with each such labelling. Let us assume prede captures the
predicate associated with label e. prede is true if and only if control flow edge e is executed.
Program flow analysis can produce infeasible branch pairs in a program (e.g. using [42, 43]).
For our example, the infeasible branch pairs (i.e. x < 0 and x ≥ 6) are captured by the
following formula:

Ψin f ≡ ¬prede1 ∨ ¬prede3 (6)

22



With the augmented abstract domain, our analysis now labels the cache states with control
flow information. Such a labeling enables us to distinguish the control flow along which a
single cache state is propagated. As an example, in the beginning, 〈m1, 1, e1〉 and 〈m1, 1, e2〉
are propagated along control flow edges e1 and e2, respectively.

The join operation at first control flow merge point keeps both the elements (〈m1, 2, e1〉
and 〈m1, 1, e2〉) in the abstract cache state since they come along different control flows e1
and e2. The crucial difference is, however, made at the branch point x ≥ 6. Let us assume
that we want to propagate the cache state produced after the first join operation along the
control flow labelled e3. While propagating a cache state along a branch edge, our framework
checks the feasibility of the cache state along the same branch. Therefore, when we try to
propagate 〈m1, 2, e1〉 along e3, we check the feasibility of the state along e3 by consulting
the information generated by program flow analysis (i.e. Ψin f ). We make a call to the SAT
solver to check the feasibility of the following formula:

ϕ ≡ Ψin f ∧ prede1 ∧ prede3

≡ (¬prede1 ∨ ¬prede3) ∧ prede1 ∧ prede3 (7)

This is due to the fact that the propagation of 〈m1, 2, e1〉 along e3 must execute both the
control flow edges e1 and e3, which in turn means that prede1 ∧ prede3 must be true. Since the
formula in Equation 7 is unsatisfiable, we do not propagate the cache state 〈m1, 2, e1〉 along
e3. On the other hand, since Ψin f ∧ prede2 ∧ prede3 is satisfiable, 〈m1, 1, e2〉 is propagated
along e3. Additionally, such a propagation of cache state 〈m1, 1, e2〉 along e3 updates the
control flow information of the cache state from e2 to {e2, e3} (as shown by the element
〈m1, 1, {e2, e3}〉 in Figure 7(c)). 〈m1, 1, {e2, e3}〉 now captures that the original cache state
〈m1, 1〉 has been propagated through control flow edges {e2, e3}.

Now let us consider the branch edge labelled e4. We found that both the formula Ψin f ∧
prede1 ∧ prede4 and Ψin f ∧ prede2 ∧ prede4 are satisfiable. Therefore, both the cache states
〈m1, 2, e1〉 and 〈m1, 1, e2〉 are propagated along e4 and the control flow information of
〈m1, 2, e1〉 and 〈m1, 1, e2〉 are updated to {e1, e4} and {e2, e4}, respectively (as shown by
〈m1, 2, {e1, e4}〉 and 〈m1, 1, {e2, e4}〉 in Figure 7(c)). To control the number of cache states
containing m1, we perform a merge operation at control flow edge e4. The merge operation
for must cache analysis takes the maximum age of a memory block and loses the entire control
flow information. As a result, after merging 〈m1, 2, {e1, e4}〉 and 〈m1, 1, {e2, e4}〉 for must
cache analysis, we get 〈m1, 2, φ〉. Due to this merge operation, we can always control the
number of micro-architectural states in our framework.

It is worthwhile to note the difference between merge and join operation in our framework.
For the time being assume that we had performed the merge operation between 〈m1, 2, {e1}〉
and 〈m1, 1, {e2}〉 at the first control flow join point (i.e. at J1). As a result, we had obtained
a cache state 〈m1, 2, φ〉 after the first control flow join. If we try to propagate the cache state
〈m1, 2, φ〉 along e3, we check the satisfiability of a formula Ψin f ∧ prede3, which is clearly
satisfiable. Consequently, we had not eliminated any cache state along e3 and all subsequent
accesses to m1 would not be classified as cache hits. Continuing in a similar sequence of join
and merge operation, we obtain the cache state 〈m1, 2, φ〉 propagated along the backedge. As
a result, all subsequent accesses of m1 can be categorized as cache hits. Note that the key
difference in our framework was made by removing the infeasible cache state 〈m1, 2〉 (in the
traditional must cache analysis framework) along control flow edge e3. This infeasible cache
state was detected using the infeasible path information computed by program flow analysis
(i.e. Ψin f ) and augmenting the abstract interpretation framework.

23



2.6.2 General Framework

In this section, we shall introduce the general idea behind our analysis framework. We shall
show how an abstract interpretation based analysis framework can be augmented with the
help of a satisfiability solver to generate more precise analysis outcome.

P RO G R A M FL OW A N A LY S I S Our proposed framework uses program flow analysis to
rule out certain infeasible micro-architectural states. For program flow analysis, we currently
look at finding the infeasible branch pairs. Assume two branch conditions x ≤ 0 and
x ≥ 2 in a program. If x is not modified, both x ≤ 0 and x ≥ 2 cannot be true for any
execution. As a result, the control flow edges associated with the true evaluations of x ≤ 0
and x ≥ 2 constitute an infeasible branch pair. Such infeasible branch pairs can be computed
automatically (such as using [42], [43]) or they can be provided manually by the user.

In the past few decades, satisfiability (SAT) solver technology has made significant progress.
An interesting feature about infeasible branch pairs is that they can easily be encoded as
propositional logic formula. Let us introduce an atomic proposition prede associated with
each control flow edge e in the program. prede captures the execution of control flow edge e.
prede is true if control flow edge e is executed and false otherwise. Therefore, an infeasible
branch pair 〈bi, bj〉 can be encoded as the following propositional formula:

ϕ ≡ ¬predbi ∨ ¬predbj (8)

At the end of program flow analysis, therefore, we have a set of clauses (as shown in
Equation 8) in conjunctive normal form (CNF). Let us assume Ψin f represents this CNF
formula. Therefore, Ψin f captures certain infeasible path patterns (specifically infeasible
branch pairs) in a program.

Given the information computed by program flow analysis (i.e. Ψin f ), we define an oracle
Θ on any propositional formula η as follows:

Θ(η) =

{
true, if Ψin f ∧ η is satisfiable;
f alse, otherwise

(9)

Note that any satisfiability solver (such as Minisat [41]) can be used as the oracle Θ. Θ will
be used to eliminate infeasible micro-architectural states.

2.6.3 Augmenting Abstract Interpretation

The key idea behind our analysis framework is to inject the notion of path sensitivity inside
abstract interpretation. A fully path sensitive approach is definitely not scalable, as it leads
to a path explosion. Therefore, we augment the abstract interpretation in a fashion such that
path explosion never occur and the state space of the analysis can always be controlled. In the
following, we shall briefly describe the key components of the analysis.

C H A N G I N G T H E A B S T R AC T D O M A I N Assume an abstract interpretation based anal-
ysis framework with abstract domain D. To handle partial path sensitivity, our proposed
analysis framework augments this abstract domain D as follows:

D′ : D×P(E) (10)

In the above equation, E captures the set of all control flow edges in the program and P(E)
represents the set of all subsets of E. Therefore, at any specific program point p, an element

24



inst1

inst2

program point p

Basic block

dest(p)

src(p)

Basic block

inst1

inst2 inst3

dest(p)

src(p)

point p
program 

src(p’)

dest(p’)

program 
point p’

(a) (b)

Figure 8: Program point (a) inside a basic block, (b) at a branch location

from the changed abstract domain D′ is of the form 〈d, {e1, e2, . . . , ek}〉 where d ∈ D and
{e1, e2, . . . , ek} captures the set of control flow edges along which d has been propagated to
p.

T R A N S F E R A N D J O I N F U N C T I O N Before going into the details of transfer and join
function, we first briefly describe the notion of program points in our analysis framework. We
define the program point as the control flow between two instructions. We distinguish the two
different types of program points in our framework as shown in Figure 8. Figure 8(a) captures
the control flow inside a basic block of the program CFG. On the other hand, Figure 8(b)
captures the control flow between two different basic blocks. For a specific program point p,
we shall use src(p) to denote the source of the control flow captured by p, whereas dest(p)
will be used to denote the destination of the control flow captured by p.

Transfer function of our proposed analysis framework is applied at each program point.
However, our proposed transfer function has two key components, depending on the location
of the program point. More precisely, our proposed transfer function has the following
semantics (P denotes the set of all program points):

τ : D′ ×P→ D′

τ(d′, p) =


τbr • τin(d′, p), if src(p) is at the end

of a basic block;
τin(d′, p), otherwise.

(11)

• denotes the function composition. In Equation 11, τbr captures the transfer function used
at the control flow across basic blocks (Figure 8(b)) and τin captures the transfer function
used at the control flow inside a basic block (Figure 8(a)). The computation of τin largely
depends on the type of analysis, as it requires updating the abstract state by considering each
instruction. τbr, on the other hand, is the key to our proposed framework and it is used to
eliminate the spurious (i.e. infeasible) abstract states. Assume that ep captures the control
flow edge associated with program point p when src(p) is at the end of a basic block. Further
assume d′ ∈ D′ and d′ = 〈d, E〉 (where E ⊆ E and E is the set of all control flow edges).
We define τbr(d′, p) as follows:

τbr(d′, p) =

{
φ, if Θ(

∧
e∈E prede ∧ predep) is f alse

〈d, E ∪ {ep}〉, otherwise.
(12)

Recall that prede denotes the atomic proposition which evaluates to true if and only if control
flow edge e is executed. Θ is the oracle (as described in Equation 9) used to check the
feasibility of control flow E ∪ {ep}. Equation 12 serves two purposes: first, to eliminate

25



Basic block

Join

br
(Prunes infeasible abstract states)

(Merges abstract states to control 
state explosion)

Multiple elements from original abstract domain
along different control flow

Π

τbr

D

Figure 9: A schematic representation of the join, τbr and merge (Π) used in our proposed analysis
framework

spurious abstract states (captured by the first case in Equation 12) and secondly, to associate
the notion of path sensitivity with abstract states (captured by the second case in Equation 12).

Join operation with our augmented abstract domain D′ operates in a similar fashion as with
the join operation with original abstract domain D, with one crucial difference. After the join
operation is performed with D′, a single element from the original abstract domain D may
have multiple instances in the joined abstract state. These multiple instances may appear due
to the propagation of a single element in D along different control flow paths. As a result, a
single element from the original abstract domain D might be associated with different subsets
of control flow edges, leading to different elements in the augmented abstract domain D′ in
the joined abstract state.

C O N T RO L L I N G T H E N U M B E R O F A B S T R AC T S TAT E S The join operation in our
proposed framework may enlarge the number of abstract states compared to the original
abstract interpretation based framework. As a result, performing the join operation in an
uncontrolled fashion may lead to state explosion. Therefore, our proposed framework controls
the number of elements in the abstract state at each control flow edges (i.e. after performing
the τbr operation). This is done by pruning the number of tractable elements with a special
operation Π. If there is a pair of elements d′1, d′2 ∈ D′ such that d′1 = 〈d, E1〉 and d′2 =
〈d, E2〉, they are merged to a single element 〈d, φ〉 using the operation Π. In an abstract state,
Π is applied until there is at most one element in the abstract state (∈ D′) for each element in
the original abstract domain D.

Figure 9 shows a schematic view of our overall framework. The join operation used by our
framework may increase the number of elements in the abstract state, due to the presence of
different control flows. τbr operation at a branch location may prune some of the infeasible
elements in an abstract state as also shown in Figure 9. Finally, after merge operation (Π), the
size of the abstract state is controlled, which in turn lead to a tractable analysis framework.
Note that we apply the merge operation at each control flow edge. Therefore, the expansion
in the number of elements after the join operation is bounded by a magnitude equal to the
incoming degree of any basic block, typically a small number.

2.6.4 Instruction Cache Analysis via AI+SAT

In this section, we shall instantiate our proposed framework for instruction cache analysis.
Abstract interpretation based instruction cache analysis was initiated in [15]. Each instruction
is categorized as all-hit (AH), all-miss (AM) or not-classified (NC). An instruction is cate-
gorized as AH, if it is found in the cache whenever it is accessed, whereas an instruction is

26



categorized AM, if it is never in the cache whenever it is accessed. If an instruction cannot
be categorized as either AH or AM, it remains not-classified (NC). For such a categorization
of different instructions, usually two different analyses are employed: must and may. Must
cache analysis is used for statically predicting a sound under-estimation of cache content at
each program point. As a result, must cache analysis can be used for AH categorization of
different instructions. On the other hand, may cache analysis is used for statically predicting a
sound over-estimation of cache content at each program point. Consequently, we can use may
cache analysis for AM categorization of instructions.

M O D I F Y I N G A B S T R AC T D O M A I N The abstract domain of the original instruction
cache analysis can be defined as a cross product of two different abstract domains as follows:

D : P(M×A) (13)

with
A = {1, . . . , K} ∪ {∞} (14)

where M denotes the set of all memory blocks and A denotes the set of all possible ages
of a memory block inside a K-way set-associative cache. A tuple of the form 〈m, ∞〉 ∈ D

captures that m does not reside in the cache.
In our proposed framework we augment the original abstract domain D to D′ as follows:

D′ : P(M×A×P(E)) (15)

where E is the set of all control flow edges. Therefore, an entity in the abstract domain D′ is
a triplet 〈m, a, E〉.

M O D I F Y I N G T R A N S F E R A N D J O I N F U N C T I O N The modified transfer function can
now be described as follows:

τ : D′ ×P→ D′

τ(〈m, a, E〉, p) =


τbr • τin(〈m, a, E〉, p), if src(p) is at the end

of a basic block;
τin(〈m, a, E〉, p), otherwise

(16)

• denotes the function composition and the transfer function τ now has two different controls
depending on the location of program point p. If we assume that mp denotes the memory
block accessed at src(p), τin can be defined as follows:

τin(〈m, a, E〉, p) =

{
〈Urepl(〈m, a〉, p), φ〉, if mp = m
〈Urepl(〈m, a〉, p), E〉, otherwise

(17)

In Equation 17, Urepl captures the instruction cache update operation (in the original abstract
domain D) for a particular cache replacement policy repl. Note that our framework is not
restricted to a particular replacement policy employed by the instruction cache.

τbr is applied at a branch point. Some of the triplets present in the input abstract cache state
may not be feasible along some branches. Therefore, while performing the transfer operation
along a control flow edge, only the feasible triplets are transferred to the output abstract cache
state. Assume that ep captures the control flow edge associated with program point p. We
define τbr for instruction cache analysis as follows:

τbr(〈m, a, E〉, p) =

{
∅, if Θ(

∧
e∈E prede ∧ predep) is f alse

〈m, a, E ∪ {ep}〉, otherwise
(18)

27



Recall that Θ is the oracle (as described in Equation 9) used to check the feasibility of
control flow E ∪ {ep}. While performing a Join operation, a memory block m, may appear
along different control flows. Moreover, m might have different ages in the cache along
different control flows. In our proposed framework, we do not lose the information about
the different ages of the same memory block along different control flows. Therefore, in our
proposed framework, we define the must and may join operations as follows:⊔

Must

,
⊔

May

: D′ ×D′ → D′ (19)

⊔
Must

(D1, D2) =

{〈m, a1, E1〉 ∈ D1 | ∃a2, E2 : 〈m, a2, E2〉 ∈ D2} ∪
{〈m, a2, E2〉 ∈ D2 | ∃a1, E1 : 〈m, a1, E1〉 ∈ D1} (20)

⊔
May

(D1, D2) = D1 ∪ D2 (21)

May join operation simply takes the union of two abstract cache states, on the other hand,
must join operation takes also the union operation, but restricted to the memory blocks which
are present in both the abstract cache states (D1 and D2). It is important to note that the
different ages (∈ A) of a memory block (along different control flows) will be retained after
Equations 20-21. Changes in the age of a memory block in a cache set are handled in merge
operation (discussed next).

M E R G I N G A B S T R AC T S TAT E S We shall now show how we control the number of
abstract cache states at each control flow edges. Note that the join operation in our proposed
framework leads to more elements in the abstract cache state as compared to the original
analysis proposed in [15]. However, since we prune the number of abstract cache states at
each control flow edges, the expansion in the number of abstract cache states is still bounded.

Assume that we obtain an abstract cache state D ∈ D′ after performing τbr at a branch
location. The output of merge operation depends on the type of cache analysis (i.e. must or
may cache analysis). Assume that Πmust (Πmay) denotes the merge operation applied for
must (may) cache analysis. The main purpose of the merge operation is to control the number
of cache states and therefore, after each merge operation, we ensure that the resulting abstract
cache state contain at most one element for each memory block. Consider two elements
〈m, a1, E1〉, 〈m, a2, E2〉 ∈ D. The output of Πmust and Πmay will be as follows:

Πmust(〈m, a1, E1〉, 〈m, a2, E2〉) = 〈m, max(a1, a2), φ〉 (22)

Πmay(〈m, a1, E1〉, 〈m, a2, E2〉) = 〈m, min(a1, a2), φ〉 (23)

Therefore, after performing Πmust, we retain the maximum age of each memory block m.
On the other hand, after performing Πmay, we retain the minimum age of each memory block
m. Since the merge operation is performed at each control flow edge, we can now state the
following property for our proposed framework:

Property 2.6.1 Let us assume B denotes the set of all basic blocks and degin(B) denotes the
incoming degree of a basic block B in the CFG. For a K-way set-associative cache, there
could be at most |K| ×max

B∈B
degin(B) number of elements for any memory block in any

abstract cache state.

28



Since both degin(B) and K are typically small, we can easily control the number of abstract
cache states.

It is worthwhile to mention that the necessary pruning of abstract cache states has already
been performed during the computation of τbr (Equation 18). Therefore, by merging the cache
states using Πmust and Πmay we are not entirely losing the partial path sensitivity used by our
framework. On the other hand, merging of abstract cache states leads our computation to be
tractable in practice.

Since our proposed framework is built up on the basic abstract interpretation (AI) approach,
it is guaranteed to give at least as precise cache analysis as the basic AI approach [15]. The
main purpose of our proposed framework is to integrate the program flow information into
cache analysis. With little or absence of any program flow information, our framework will
give exactly same result as in [15].

2.6.5 Data Cache Analysis

In this section, we describe the extension of our framework for data cache analysis. We
use the scope-aware persistent (SCP) analysis [23] as the baseline analysis for data caches.
SCP analysis was selected because the WCET estimates generated by this method are safe
and more accurate than other existing methods. In SCP analysis, each memory block m
is associated with a temporal scope. For a particular memory block m, its temporal scope
denotes the set of loop iterations where m might be accessed. If two different memory blocks
map to the same cache set but they have disjoint temporal scopes, they cannot conflict in
the cache. SCP analysis categorizes data blocks as persistent or non-persistent, on the basis
of their temporal scopes. Although the SCP analysis is more accurate than other abstract
interpretation based methods, the WCET estimated by the method can still be over-estimated.
This might happen due to the presence of infeasible paths in the program CFG. By extending
the SCP analysis using our framework, we can remove such over-estimation and thereby
produce a more accurate WCET. Since the SCP analysis is based on temporal scopes, the
transfer functions (i.e. data cache update operations) are defined with respect to each program
loop. For a given loop level L, the transfer function of our proposed framework is similar to
Equation 16 and it can be described as follows:

τ(〈m, a, E〉, p, L) =


τbr • τin(〈m, a, E〉, p, L),
src(p) is at the end of a basic block;

τin(〈m, a, E〉, p, L), otherwise

(24)

Note that • denotes function composition. τbr for the extended SCP analysis operates in a
similar fashion as in the instruction cache analysis (see Equation 18). However, τin for the
SCP analysis is slightly different from the τin described in Equation 17. This is due to the fact
that SCP analysis is scope-sensitive (unlike the instruction cache analysis). Let us assume
Mp denotes the set of memory blocks accessed at a program point p. For a given loop level
L, τin can be defined as follows: τin(〈m, a, E〉, p, L) =

〈m, a, E〉, if ∀mi ∈Mp. (ψ(mi) ∩ ψ(m) = φ ∨
π(mi) 6= π(m))

〈UD(〈m, a〉, p, L), E〉, if ∃mi ∈Mp. (ψ(mi) ∩ ψ(m) 6= φ

∧π(mi) = π(m)) ∧m /∈Mp

〈UD(〈m, a〉, p, L), φ〉, otherwise

(25)

29



ψ(m) denotes the set of iterations in loop L where m might be accessed (i.e. temporal scope
of m) and π(m) captures the cache set in which memory block m is mapped. The first case
(in Equation 25) captures the scenario when none of the memory blocks in Mp conflict with
m in the data cache (either due to disjoint temporal scopes or due to the mapping in disjoint
cache sets). If some memory block in Mp conflicts with m in the data cache, the scope-aware
data cache update operation UD (used in [23]) is used to update the data cache state. Since
data cache replacement policy may only change UD in Equation 25, our proposed framework
remains unchanged for different data cache replacement policies. The SCP join function as
defined in [23], can be modified in the same fashion as we do for the join operation in the
instruction cache analysis (see Equations 20-21).

2.6.6 Branch Target Buffer Analysis

Branch Target Buffer (BTB) is used to predict the target address of a branch instruction, before
the target address is actually computed. Since the computation of a target address has some
associated penalty, correct prediction of a target address from BTB may greatly improve the
program execution time. As a result, an improved BTB analysis may lead to a more accurate
WCET prediction. Previous study (e.g. [32]) has shown the importance of BTB analysis for
static WCET prediction. The work of [32] uses an abstract interpretation based framework for
statically analyzing the BTB content and categorizing the branch instructions on the basis of
BTB states. As with any other abstract interpretation based approach, the analysis proposed
in [32] is also path in-sensitive and it suffers due to the estimation of infeasible BTB states.
We extend the framework for BTB analysis as proposed in [32] with our approach. The new
domain of the BTB analysis can be formulated as follows:

D′ : P(BR×A×P(E)) (26)

where BR is the set of all branch instructions. All other parameters in the equation have the
same interpretation as in equation (15). The join and the transfer functions can be modified
in exactly the same fashion as they were modified for the instruction cache analysis (see
Equations 16-21).

2.6.7 Shared Instruction Cache Analysis

Finally we show how our framework can be extended for analyzing multi-core systems with
shared instruction caches. We use our previous work [44] as a baseline for the augmented
abstract interpretation framework. Let us assume a multi-core system where each core has
a private L1 cache and all the cores share an L2 cache. The work in [44] first analyses
both the L1 and L2 cache using [15, 45] ignoring the inter-core cache conflicts and finally,
it recategorizes the memory blocks in L2 cache by taking into account the shared cache
conflicts.

Assume a program P1 running on Core 1 and assume that P1 accesses a memory block
mp1. Further assume mp1 is categorized as AH in the shared L2 cache without considering
inter-core cache conflicts. After inter-core cache conflict analysis, the AH categorization
of memory block mp1 is changed to NC if and only if the following condition holds: k−
agesinglecore(mp1) ≤ X, where k is the associativity of the shared L2 cache, agesinglecore(mp1)
captures the age of memory block mp1 in the shared L2 cache set before inter-core conflict
analysis and X is the amount of shared cache conflicts generated by cores other than Core 1.

If we use augmented abstract interpretation instead of basic abstract interpretation, we
can get a precise cache hit-miss categorization for L1 cache. A precise cache hit-miss

30



categorization of memory blocks in L1 cache leads to a lesser number of memory blocks
accessing the shared L2 cache. As a result, the amount of shared cache conflicts (i.e. X)
may reduce. Moreover, since our proposed framework may generate a better must cache
analysis (see Section 2.6.4), it may also reduce the quantity agesinglecore(mp1). Both of
these developments in turn reduce the number of memory blocks of P1 which need to be
re-categorized to NC in the shared L2 cache. As a result, we may increase the accuracy of
WCET estimates even in the presence of shared caches.

2.6.8 Experimental Evaluation

E X P E R I M E N TA L S E T-U P The experiments were performed using the timing analyser
Chronos [46]. It uses a 5-stage pipeline with in-order execution, when generating the WCET
estimates for our experiments. Chronos uses the abstract interpretation based framework
proposed in [15], to analyze instruction caches. This serves as the baseline for our instruction
cache analysis. The baseline for our data cache analysis framework was published in [23]. The
BTB analysis is implemented into Chronos using the abstract interpretation based framework
proposed in [32]. The framework proposed in [44] serves as a baseline analysis for the
multi-core, shared instruction cache analysis. To check the satisfiability of a given partial path
ϕ, we use the open-source SAT solver Minisat [41].

Subject Programs Description Code size
Bytes1 LOC

nsichneu Simulates an extended Petri Net. Auto-
generated code with many if-statements [47]

63720 4253

Papabench Auto-navigation utility from an Unmanned
Aerial Vehicles (UAV) controller [48]

16920 1097

Jetbench Single-thread getThermo utility from a real-
time jet engine performance calculator [49]

6984 315

Communication
manager

Auto-generated code from the Rhapsody [50]
model of CTAS weather manager [51]

4248 273

Table 2: Program Set I

Table 4 shows the subject programs for our experiments. Note that the prime motivation
behind our work is to reduce the over-approximation in WCET estimation, due to the presence
of infeasible paths. Infeasible paths can often be found in the programs, auto-generated
from high level modeling languages. Although, it is not uncommon to have a few infeasible
paths in manually written programs as well. Therefore, we choose a combination of auto-
generated and manually written programs for our experiments. All of our experiments were
performed on a machine having an Intel Core-i5 processor with 4 GB RAM and running
Ubuntu 9.04 OS. For all our experimental results, we measure the WCET improvement as
WCETbase−WCETaugmented

WCETbase
× 100%, where WCETaugmented captures the WCET obtained using

our approach and WCETbase captures the WCET obtained using the baseline approach.

I N S T RU C T I O N C AC H E R E S U LT Figure 10a shows the results of Instruction cache
analysis using the augmented abstract interpretation (AI+SAT) approach. We perform the
analysis for all programs in Table I, for a block size of 64 Bytes, on a 4-way set-associative L1
cache. For a fair comparison, we chose the cache size approximately equal to the program size
(closest power of two), for each subject program. We assume that there is no L2 cache for this
experiment and the latency for memory access is 36 cycles. We also compare our approach

1 code size in bytes = ending instruction address - starting instruction address

31



 0

 5

 10

 15

 20

 25

 30

nsichneu

papabench

jetbench

comm. manager

%
 im

pr
ov

em
en

t

142 s

142 s

33 s

33 s

1 s

1 s

2 s

2 s

AI + SAT AI + CBMC 

(a) Instruction cache analysis

 0

 5

 10

 15

 20

 25

 30

nsichneu

papabench

jetbench

comm. manager

%
 im

pr
ov

em
en

t

57 s

57 s
3 s

3 s

1 s

1 s
1 s 1 s

AI + SAT AI + CBMC

(b) Shared instruction cache analysis

 0

 2

 4

 6

 8

 10

nsichneu

papabench

jetbench

comm. manager

%
 im

pr
ov

em
en

t

99 s

5 s

1 s

2 s

(c) Data cache analysis

 0

 5

 10

 15

 20

nsichneu

papabench

jetbench

comm. manager

%
 im

pr
ov

em
en

t

4 s
41 s

1 s

12 s

(d) Branch target buffer analysis

Figure 10: Improvement in the WCET accuracy via AI+SAT approach, analysis time (in seconds) is
shown above each bar

with the work in [18] (say AI+CBMC). The framework proposed in [18] first generates the
cache hit-miss categorization of a program using basic abstract interpretation. It then uses
CBMC [52] to refine the set of NC categorized memory blocks. As a result of this refinement,
the WCET estimate might improve.

We compare the improvements in WCET estimation achieved by the AI+SAT approach,
with that of AI+CBMC approach. We observe that the estimates generated by the AI+SAT
approach are more accurate than that of the AI+CBMC approach, when both the analysis
are run for a comparable amount of time. We observed a maximum improvement in WCET
estimates of up to 25% for this set of experiments. This improvement can be attributed to
the fact that all the programs in Table I have multiple program paths inside loops. Some of
these program paths are infeasible and hence cause some over-estimation in the base analysis.
By applying the AI+SAT approach, we were able to remove some of the over-estimation
caused due to such infeasible paths. However, it is worthwhile to mention that AI+CBMC
is a verification based method. As a result, it might be able to produce better estimates, if
run for sufficiently long. This introduces a trade-off between WCET accuracy and analysis
time for using AI+SAT over AI+CBMC. In our experiments, we found that AI+SAT could
produce a 17% more accurate WCET estimate for nsichneu compared to the baseline
analysis in approximately 142 seconds, whereas AI+CBMC approach produced a maximum
improvement of 30% in approximately 1756 seconds.

DATA C AC H E R E S U LT Figure 10c shows the results of data cache analysis using the
AI+SAT approach. Note that the baseline analysis for data cache is scope-aware persistence
analysis [23]. We assume that L1 cache hit latency is 1 cycle whereas the memory access
latency is 36 cycles. Although all the programs in Table I have very little data accesses on
their infeasible paths, we still get a noticeable improvement for most of the programs via
AI+SAT approach. The improvements shown in Figure 10c are the maximum improvement
for programs in Table I, for any given cache size. The maximum time taken for all the
experiments under this section was under 2 minutes. As Figure 10c shows, all the subject
programs other than nsichneu have noticeable improvement in their WCET estimates. This
is because nsichneu has a very small data set and it has very little data accesses across its

32



infeasible paths. However, this should not be considered as a limitation of our approach, as
the AI+SAT based framework will give reasonable improvement for programs with many
conflicting data accesses along infeasible paths. Another factor which might be affecting
the efficacy of our method can be the underlying address analysis. Address analysis usually
generates an over-approximation of the memory ranges which can be accessed for a given data
access. Due to this over-approximation, additional memory blocks might lose their control
flow information over the merge operations. This leads to an imprecision in the abstract cache
states and overall WCET. Therefore, using a better address analysis will directly improve the
WCET accuracy via our approach.

B R A N C H TA R G E T B U FF E R R E S U LT Figure 10d shows the results of branch target
buffer (BTB) analysis, using the AI+SAT approach. All the experiments for this set of analysis
took less than a minute to complete. We used a 2-way set associative BTB with 256 entries.
Also we took the branch misprediction penalty as 15 cycles. The maximum improvement in
WCET estimation was observed for Papabench (approximately 14%). We did not observe
any considerable improvement for Jetbench. This can be due to fact that Jetbench has
very less branch instructions along the infeasible program paths. For the other two subject
programs we observed a moderate improvement in the WCET estimation.

S H A R E D C AC H E R E S U LT Finally, we present the results for the shared instruction
cache analysis. For this set of experiments, we assume a multi-core system with two cores.
Moreover, we assume that each core has a private L1 instruction cache and the L2 instruction
cache is shared by both the cores. We ran a program from Table I on Core1 and a program
from Table II (Table II programs are taken from [47]) on Core2.

Subject programs Description
Code size

Bytes1 LOC
jfdcint Discrete cosine transform on 8x8 block 5512 375

edn Signal processing application 3160 285
ndes Complex embedded code 3816 231

adpcm ADPCM coder 12568 879

Table 3: Program Set II

We used a direct mapped L1 cache with a cache size of 256 Bytes and a block size of
32 bytes. We choose a small L1 cache to generate sufficient number of conflicts in the L2
cache. The size of the shared L2 cache is chosen depending upon the code size of the program
running on Core1. L2 cache hit latency is taken as 6 cycles and memory access latency is
taken as 30 cycles. We perform the shared cache analysis using the AI+SAT approach and
measure the improvement in WCET estimation for the programs running on Core2. We then
compare the improvements achieved by our approach, with the improvements achieved by
using the AI+CBMC [18] approach (using the same cache configurations). AI+CBMC was
run for the same amount of time as AI+SAT.

Figure 10b shows the geometric mean of improvements in WCET estimation, for all
the programs running on Core2. All of the results reported in Figure 10b were completed
under 2 minutes. We observed a noticeable improvement in the WCET estimates for all
the programs running on Core2, produced by the AI+SAT approach. We also observed that
the improvements achieved by the AI+SAT were significantly better than the improvement
achieved by the AI+CBMC, in the same amount of time. By applying AI+SAT to the programs
running on Core1, we were able to reduce a reasonable number of conflicts in the shared
cache. This leads to more accurate WCET estimates, for programs running on Core2. Using
AI+SAT, the maximum improvement was observed for ndes (while running nsichneu

33



on the other core), which was around 41% in 50 seconds, whereas for the same experiment,
maximum improvement using AI+CBMC was observed to be around 42% in 85 seconds.

2.7 P E R F O R M A N C E -AWA R E T E S T G E N E R AT I O N T E C H -
N I Q U E S

There have been few works that address the need for techniques that can automatically explore
programs and generate test-inputs that witness suboptimal performance behaviour. One of
our works proposes a technique to address this need and is further described in Chapter 3.
However, in the following paragraphs, we shall discuss only two works ([53] and [54]) that
are related to this topic.

Computational complexity is one of the factors that affects the execution time of a program.
The work of [53] proposes a technique to automatically find test inputs for which the program
exhibits worst-case computational complexity. The technique in [53] uses symbolic execution
to explore all feasible program paths for a small (the definition of small is ambiguous)
input size. While exploring the program for a small inputs size, the technique analyses the
executions to create a branch policy generator. The generator is constructed such that it
contains information pertaining to the worst-case path, in the observed executions. After
the generator has been crafted, it is used to guide the symbolic exploration for larger input
sizes. It is worthwhile to know that the technique in [53] does not takes the underlying
micro-architecture in to account. Therefore, even though this techniques can provide some
idea about the influence of an input on the program behaviour but it cannot be used to identify
test-inputs that lead to bad performance due to specific micro-architectural components.

The work of [54] presents a technique more relevant to generating test-inputs that highlight
suboptimal performance in micro-architectural components. It proposes a technique that uses
constraint-based test generation [5, 55] to partition the input domain of a program with respect
to cache performance. Once all the partitions are computed, some manual interventions
is needed to locate the set of program locations that may exhibit issues related to cache
performance. It proposes a way to compute the cache performance range for each such
partition. The cache performance range in [54] is computed via static invariant generation
methods. As a result, the computed cache-performance range may be over-approximated,
leading to false positives.

2.8 C H A P T E R S U M M A RY

In this chapter we presented a number of methods that can be used for performance analysis.
Specifically, the methods discussed included methods on performance profiling, performance
estimation and performance testing. It is worthwhile to know that no one class of method may
be suitable for all performance analysis needs. In the scenario which requires the estimation of
upper bound on executing times, such as for hard real-time systems, performance estimation
methods are more suitable. Performance estimation techniques are often assisted by program
flow analysis techniques and micro-architectural analysis. Program flow analysis is used to
analyse and represent the path constraints within a program while micro-architectural analysis
is used to analyse the underlying micro-architecture. We also presented a general micro-
architectural modeling framework using abstract interpretation and satisfiability checking.
This framework can be used to substantially improve the accuracy of WCET analysis in the
presence of many infeasible paths in a program.

34



Unlike performance estimation techniques which uses static analysis, profiling relies
on dynamic analysis techniques. Profiling techniques do not model the underlying micro-
architecture, as a result they can be light-weight. However, no guarantees about the com-
pleteness of the results (generated through profiling) can provided. Additionally, profiling
techniques require test-inputs to generate the profile. Manually obtaining test-inputs that can
represent the entire input-space or highlight suboptimal behaviour is non-trivial. Hence, there
is a need for performance-aware test-generation techniques, that can automatically explore
the program’s input space and generate test-inputs that lead suboptimal behaviour. One of our
works address this need and is described in the following chapter.

35



3 S TAT I C A N A LY S I S D R I V E N C AC H E
P E R F O R M A N C E T E S T I N G

Real-time, embedded software are constrained by several non-functional requirements, such as timing.
With the ever increasing performance gap between the processor and the main memory, the performance
of memory subsystems often pose a significant bottleneck in achieving the desired performance for
a real-time, embedded software. Cache memory plays a key role in reducing the performance gap
between a processor and main memory. Therefore, analysing the cache behaviour of a program is
critical for validating the performance of an embedded software. In this chapter, we propose a novel
approach to automatically generate test inputs that expose the cache performance issues to the developer.
Each such test scenario points to the specific parts of a program that exhibit anomalous cache behaviour
along with a set of test inputs that lead to such undesirable cache behaviour. We build a framework
that leverages the concepts of both static cache analysis and dynamic test generation to systematically
compute the cache-performance stressing test inputs. Our framework computes a test-suite which does
not contain any false positives. This means that each element in the test-suite points to a real cache
performance issue. Moreover, our test generation framework provides an assurance of the test coverage
via a well-formed coverage metric. We have implemented our entire framework using Chronos worst
case execution time (WCET) analyzer and LLVM compiler infrastructure. Several experiments suggest
that our test generation framework quickly converges towards generating cache-performance stressing
test cases. We also show the application of our generated test-suite in design space exploration and
cache performance optimization.

3.1 N E E D F O R P E R F O R M A N C E T E S T I N G

Real-time embedded systems are required to satisfy several non-functional properties, such
as timing. Therefore, performance validation marks a crucial stage before certifying such
time-critical software. In the absence of appropriate performance-validation techniques, the
deployed software may suffer from severe performance problems, such as missing deadlines.
For example, in the context of an anti lock braking systems (ABS), missing a deadline may
lead to serious accidents, potentially costing human lives.

Due to the inherent gap between processor and memory performances, memory subsystems
may significantly affect the performance of an embedded software. To reduce such effect, a
fast cache memory is often employed between a processor and main memory. In a modern
embedded processor cache memories are several magnitudes faster than the main memory.
Therefore, at any point in execution, the content of the cache memory significantly impacts
the performance of the underlying embedded software. The content of a cache is managed at
runtime and such content depends on the accessed memory block sequence. Since different
inputs to the same application may follow different execution paths, the sequence of accessed
memory blocks in an execution critically depends on the input provided to the application.
As a consequence, the performance of caches (and hence the performance of an application)
critically depends on the input provided to the underlying embedded software.

In this chapter, we propose a novel approach to automatically generate test inputs that
expose performance problems due to memory subsystems. In particular, we generate test
inputs to automatically detect performance stressing memory access sequences. Such poor
memory access sequences are undesirable, as they may lead to critical cache performance
issues, specifically cache thrashing at runtime. We propose a test generation framework that

36



Program
Static cache

analysis

Instrument
assertions

Dynamic assertion 

checker
Test input witnessing

cache thrashing

Violation

Program locations 
that may exhibit 
cache thrashing

Figure 11: Test generation framework

aims to report cache thrashing scenarios that exist in some program execution. Each element
in our report contains a unique cache thrashing scenario and a symbolic formula capturing the
set of inputs that expose the issue in a program execution.

However, the generation of cache-performance stressing test inputs requires solving several
technical challenges. This is primarily due to the fact that cache performance issues cannot
be detected solely by monitoring the program execution (unlike most of the problems in
functionality testing). To overcome this problem, we employ novel strategies to instrument the
original program with a set of assertions at appropriate locations. Such an instrumentation is
entirely automatic. The violation of any assertion captures a unique cache thrashing scenario
in the original program (and not in the program instrumented with assertions). Thus, such
assertion violations can be reported to the developer for investigation. We first carry out static
cache analysis on the program to decide the set of program points that may exhibit cache
thrashing. Subsequently, we systematically generate assertions at such places to expose cache
thrashing in the program itself. In a broader view, therefore, we reduce the problem of testing
cache performance to an equivalent functionality testing problem. The required functionality
of the software is augmented with the set of assertions introduced by us.

To check the validity of different assertions, we build a dynamic path exploration strategy
that directs the path searching process towards the set of instrumented assertions. Each time
an assertion is encountered during execution, its validity is checked on-the-fly. If an assertion
is not satisfied during program execution, a cache-performance issue is recorded along with
the respective input state (i.e. the set of inputs that leads to the violation of the assertion,
cf. Figure 11). Primary objective of the path exploration strategy is to check maximum
number of unique assertions, in a given amount of time. Therefore, to improve the search
efficiency of path exploration, we direct the search process towards a control flow that has
maximum number of unchecked assertions control dependent on it. Such a directed search
is accomplished by consulting the control dependency graph of the instrumented program.
Finally, since we dynamically explore the set of assertions, our computed test-suite does
not contain any false positives. Precisely, any test case included in the computed test-suite
captures a cache performance issue (specifically, a cache thrashing scenario) in some feasible
execution of the software.

37



B0

B1 B2

B3

B4 B5

B6

B7

B8

B9

m1 
(NC)

m 
(PS)

m1 
(NC)

m3 
(NC)

m4 
(NC)

m2 
(NC)

m2 
(NC)

m5
(PS)

m7
(PS)

m6
(PS)

y ≤ 10

x ≤ 3

x ≥ 1

x > 3

y > 10

x < 1

m3m1

m

m5

m6

Instrumented code

Instrumented code Instrumented code

Instrumented code

m2m4

m7

m1

m2

Memory blocks 

outside loop 

are not considered

f (C_m1,C_m2)
1

f (C_m1,C_m2)
2f (C_m3,C_m4)

2

f (C_m3,C_m4)
1

x ≤ 3 x > 3

x < 1 x ≥ 1

y ≤ 10

y > 10

assert (C_m3 ≤ 0 V C_m4 ≤ 0)

assert (C_m1 ≤ 0 V C_m2 ≤ 0)

assert (C_m1 ≤ 0 V C_m2 ≤ 0)

assert (C_m3 ≤ 0 V C_m4 ≤ 0)

B0

B1 B2

B3

B4 B5

B6

B7

B8

B9

(a) (b)

Test Input

x = 3 , y = 0 

symbolic input condition

x ≤ 3 ^ x ≥ 1 ^ y ≤ 10  

f (C_m1,C_m2)

assert (C_m1 ≤ 0 V C_m2 ≤ 0)

f (C_m1,C_m2)

1

2

assert (C_m1 ≤ 0 V C_m2 ≤ 0)

f (C_m1,C_m2)
1

assert (C_m1 ≤ 0 V C_m2 ≤ 0)

assert (C_m1 ≤ 0 V C_m2 ≤ 0)

f (C_m1,C_m2)
2

Increment C_m2

Increment C_m1

Violation 

(Cache thrashing 

between m1 and m2)

 

 

Test Input

x = 3 , y = 0 

symbolic input condition

x ≤ 3 ^ x ≥ 1 ^ y ≤ 10  

f (C_m1,C_m2)

assert (C_m1 ≤ 0 V C_m2 ≤ 0)

f (C_m1,C_m2)

1

2

assert (C_m1 ≤ 0 V C_m2 ≤ 0)

f (C_m1,C_m2)
1

assert (C_m1 ≤ 0 V C_m2 ≤ 0)

assert (C_m1 ≤ 0 V C_m2 ≤ 0)

f (C_m1,C_m2)
2

Increment C_m2

Increment C_m1

Violation 

(Cache thrashing 

between m1 and m2)

f (C_m3,C_m4)

assert (C_m3 ≤ 0 V C_m4 ≤ 0)

f (C_m1,C_m2)

1

2

assert (C_m1 ≤ 0 V C_m2 ≤ 0)

f (C_m3,C_m4)
1

assert (C_m3 ≤ 0 V C_m4 ≤ 0)

assert (C_m1 ≤ 0 V C_m2 ≤ 0)

f (C_m1,C_m2)
2

(no assertion violation)

Test Input

x = 4 , y = 0 

symbolic input condition

x > 3 ^ x ≥ 1 ^ y ≤ 10  

(c)

Figure 12: Overview of test generation (a) Control flow graph showing accessed memory blocks (b)
instrumented program (c) violation of assertion showing cache thrashing scenario

38



3.2 S TAT I C A N A LY S I S D R I V E N C AC H E P E R F O R M A N C E

T E S T I N G : A N OV E RV I E W

In this section, we shall give an outline of our test generation process that stresses the cache
performance of a program. We shall walk through a simple example as shown in Figure
12. For the sake of illustration, let us assume a direct-mapped cache where memory blocks
{m1, m2, m3, m4, m, m5, m6, m7} in the control flow graph are mapped to different cache sets
{S1,S2,S3,S4,S5,S6} as follows: m1 7→ S1, m2 7→ S1, m3 7→ S2, m4 7→ S2, m 7→ S3,
m5 7→ S4, m6 7→ S5 and m7 7→ S6. Therefore, m1 and m2, as well as m3 and m4 conflict
in the cache.

Figure 13 presents an overview of our test generation framework. Broadly, our approach
contains two separate steps: (i) static cache analysis and (ii) dynamic test generation to expose
different cache thrashing scenarios in the program. The static cache analysis directs the
dynamic test generation process to explore only the relevant portions of a program. Such
relevant portions capture designated program points that are more likely to expose cache
thrashing behaviour.

Static cache analysis is performed via abstract interpretation [15]. Memory blocks are
categorized as AH (always cache hit), AM (always cache miss) and PS (persistent or never
evicted from the cache). If a memory block cannot be categorized as AH, AM or PS, it is
categorized as NC (not classified). As an AH/PS categorized memory block can face only
cold cache misses, we conclude that AH/PS categorized memory blocks can never be involved
in a cache thrashing scenario. Therefore, only AM or NC categorized memory blocks exhibit
potential sources of cache thrashing. If we employ abstract interpretation based cache analysis
in the example program of Figure 12(a), we observe that memory blocks m, m5, m6 and m7
are categorized as PS (note that m, m5 and m6 do not face any cache conflict within the loop).
On the contrary, memory blocks m1, m2, m3 and m4 are categorized as NC (as m1 conflicts
with m2 and m3 conflicts with m4 in the cache).

The key to our test generation approach is to create an interface between static cache
analysis and dynamic test generation. Such an interface is developed via systematically
generating assertions. The set of assertions has an one-to-one correspondence with the set of
cache thrashing scenarios. The violation of any assertion exposes a unique cache thrashing
scenario. Therefore, in a broader perspective, our performance testing framework can be
viewed as a reduction of the cache performance problem to an equivalent functionality testing
problem. Figure 12(b) demonstrates the schematic of the interface. The interface mainly
consists of two parts: (i) instrumented code to count cache conflicts, and (ii) set of assertions
to be checked. It is worthwhile to note that the instrumented program (i.e. Figure 12(b))
may have a different cache behaviour compared to the original program. This is due to
the presence of additional instrumented code in Figure 12(b). However, the instrumented
code (i.e. functions f1 and f2) as well as the assertions (cf. Figure 12(b)) take input from
memory blocks in the original program (i.e. memory blocks m1,m2,m3 and m4 in Figure
12(a)). Therefore, violation of any assertion captures a cache thrashing scenario in the original
program shown in Figure 12(a) (and not in the instrumented program shown in Figure 12(b)).

Let us first consider the set of memory blocks {m1, m2} in Figure 12(b). C_m1 (C_m2)
captures the amount of cache conflicts generated to memory block m1 (m2). Specifically,
for least recently used (LRU) cache replacement policy, C_m1 (C_m2) captures the number
of unique cache conflicts (i.e. number of unique memory blocks mapping to the same cache
set) between two consecutive accesses of memory block m1 (m2). Therefore, if C_m1 > 0
(recall that we assumed a direct-mapped cache) before accessing memory block m1, accessing
m1 will result in a cache miss. The instrumented code essentially manipulates the set of
variables {C_m1, C_m2, C_m3, C_m4} through some additional code fragments. At this

39



Program

Instrumented

Program 

CHMC
(Cache hit-miss

classification)

Test Suite
All assertions 

violated

Timeout /

Cache analysis by

Abstract 

Interpretation 

Instrumentation

automatically adds

assertions to the program 

Report 

violated 

assertions

Explore a

path

leading to 

assertions

(symbolic 

execution)

Figure 13: Overview of our test generation framework

point, without going into the details of instrumentation, we represent the instrumentation as
functions to show the specific variables they manipulate. As shown in Figure 12(b), a function
f1(C_m1, C_m2) only manipulates C_m1 and C_m2 (and neither C_m3 nor C_m4). In
general, a cache miss does not necessarily capture a cache thrashing scenario. For the set
of memory blocks {m1, m2}, we informally say that a cache thrashing happens when both
m1 and m2 are evicted from the cache at least once. Therefore, the cache thrashing scenario
involving memory blocks m1 and m2 is captured by the following formula:

Φ12 ≡ C_m1 > 0∧ C_m2 > 0

The placed assertion checks the formula ¬Φ12 ≡ C_m1 ≤ 0∨ C_m2 ≤ 0 during dynamic
test generation process. As a result, any violation of the assertion (formula ¬Φ12) captures a
cache thrashing scenario in a real execution. The cache thrashing scenario involving memory
blocks {m3, m4} can be captured in a similar fashion using the formula Φ34 ≡ C_m3 >
0∧ C_m4 > 0. Therefore, the violation of ¬Φ34 during the dynamic test generation process
will capture a real cache thrashing scenario involving memory blocks m3 & m4.

Let us now investigate our dynamic test generation process. The primary goal of the
dynamic test generation module is to stress the execution towards the set of instrumented
assertions. The idea of our dynamic test generation has been inspired by recent advances
in satisfiability modulo theory (SMT) and constraint-based test generation [5]. Our test
generation module first executes the instrumented program with a random input, records
the set of violated assertions (i.e. the set of real cache thrashing scenarios) and collects the
constraints along the executed path. We assume x and y are inputs to the program. Figure
12(c) captures the execution trace for an input x = 3, y = 0. Due to the increment of
both C_m1 and C_m2 (by the instrumented code f1(C_m1, C_m2) and f2(C_m1, C_m2),
respectively), the assertion assert(C_m1 ≤ 0∨ C_m2 ≤ 0) is violated (as shown in Figure
12(c). Such an assertion violation captures the cache thrashing scenario involving memory
blocks m1 and m2. To drive the execution towards other assertions, we first collect the
constraints along the current execution trace. For an input x = 3, y = 0, such constraints can
be expressed by the formula x ≤ 3∧ x ≥ 1∧ y ≤ 10. To execute a different path, one of the
branch conditions (i.e. x ≤ 3, x ≥ 1 or y ≤ 10) must be negated [5]. Our test generation
employs strategies to systematically negate the branches, so that the execution may lead to
maximum number of unchecked assertions.

To check maximum number of assertions, we consult the control dependency graph (CDG)
of a program. CDG captures the set of control conditions that are necessary to execute a
certain statement. Figure 14 shows the CDG of Figure 12(b). The two assertion from the 12(b)

40



ENTRY

B9

B8

B1(A1)

B7B7B6

B0 B3

A1 : assert (C_m1 ≤ 0 V C_m2 ≤ 0)

A2 : assert (C_m3 ≤ 0 V C_m4 ≤ 0)

UA : Unchecked Assertions

B2(A2) B4(A2) B5(A1)

UA    = 2
B0

UA    = 2
B3

UA     = 4
B6

UA   = 0
B7

Figure 14: Control Dependence Graph, for Figure 12(a)

as shown as literals A1 and A2 in the CDG. The value against each control dependency nodes
denotes the maximum number of unchecked assertion (UA) reachable from that node. In the
example shown in Figure 12(b) three control conditions x ≤ 3, x ≥ 1 and y ≤ 10 correspond
to blocks B0, B3 and B7 respectively. As can be observed from Figure 14, negating the
control condition at B7 (i.e. y ≤ 10) will not lead to any unchecked assertions. Therefore,
we must negate the control conditions at B0 (i.e. x ≤ 3) or B3 (i.e. x ≥ 1). In general, our
method employs a greedy strategy to pick a control condition, which can lead to maximum
number of unchecked assertions. Assume that branch x ≤ 3 is chosen for negation and we
obtain a test input x = 4, y = 0 for the symbolic condition x > 3. Executing the program
for x = 4, y = 0 never violates any assertions. Note that the formula x > 3 ∧ x < 1 must
be satisfied to execute both f1(C_m3, C_m4) and f2(C_m3, C_m4). However, the formula
x > 3∧ x < 1 is clearly unsatisfiable. Therefore, x > 3∧ x < 1 captures an infeasible path
in Figure 12(a) and f1(C_m3, C_m4) and f2(C_m3, C_m4) cannot appear in any execution
trace together. As a result, the assertion assert(C_m3 ≤ 0∨ C_m4 ≤ 0) is always validated.

In the end, for the example shown in Figure 12, our framework finds exactly one cache
thrashing scenario (that involves memory blocks m1 and m2) and a test input capturing the
same thrashing scenario (i.e. x = 3 for a symbolic formula x ≤ 3∧ x ≥ 1). Our framework
guarantees to cover all the assertions at the end of the test generation method. Note that
due to the inherent limitations imposed by constraint solvers the test generation process may
go on forever. However, our test generation has the anytime property, meaning that the test
generation process can be terminated anytime if the time budget is violated. After such a
premature termination, the computed test-suite exposes a subset of thrashing scenarios that
exist in the program. In fact, due to our directed search via CDG, our experimental results
suggest that we can find most thrashing scenarios very early in the test generation process.

S Y S T E M A N D A P P L I C AT I O N M O D E L In this work, we shall assume the traditional
configuration of WCET analysis. Therefore, we consider only uninterrupted executions of a
program and the computed thrashing scenarios appear solely due to the intra-task variant of
cache conflicts. However, given a set of preemption points, our technique can be extended
to capture thrashing scenarios that may appear only in the presence of preemptions. Such
an extension will need to instrument the preempting tasks to compute the inter-task cache
conflicts and it will require to shift the execution across tasks during test generation. Moreover,
for the sake of simplicity, our framework is shown for separated instruction and data caches.
To consider unified caches, the computation of cache conflicts can be combined during
instrumentation (i.e. the computation of variables {C_m1, . . . , C_m4} in Figure 12).

41



3.3 T E S T G E N E R AT I O N M E T H O D O L O G I E S

In this section, we shall describe our test generation methodologies in detail. Broadly, our test
generation methodology contains two substeps: (i) systematically generating assertions to
expose cache thrashing behaviour and (ii) a dynamic test generation to check the validity of
the generated assertions. We shall elaborate these two steps in the following sections. For the
sake of simplicity, we shall describe the core methodologies for instruction caches and we
shall mention the minor changes required in the instrumentation to handle data caches.

3.3.1 Generating Assertions

Code Instrumentation

Figure 15 shows the instrumented code for our example program in Figure 12. We assume
that memory blocks m1 and m2 conflict in a direct-mapped cache. Therefore, after the
static cache analysis, both m1 and m2 are categorized as unclassified (NC). Informally, the
instrumented code manipulates the cache conflict faced by a particular memory block. Such
an instrumentation depends on the underlying cache replacement policy. For the sake of
illustration, we shall use least recently used (LRU) cache replacement policy. However, such
an instrumentation can easily be changed for other cache replacement policies (e.g. FIFO) in
a similar fashion as in the work of [18].

C_m1 = 0

�ag_m2 = 0

m3

m

m5

m6

m1

Y

Y

Instrumented code Instrumented code

Assertion

Assertion

Original code

cold_m1 == 0

cold_m1 = 1

C_m2++

YN

Y

N

N

N

�ag_m1 == 0

�ag_m1 = 1

cold_m2 == 0

cold_m2 = 1

�ag_m2 == 0

�ag_m2 = 1

C_m1++

C_m2 = 0

�ag_m1 = 0m4 m2

assert (C m1 ≤ 0 V C m2 ≤ 0)

x > 3

x ≤ 3

x ≥ 1

x < 1

assert (C m1 ≤ 0 V C m2 ≤ 0)

Figure 15: Instrumented code with assertions

The heart of the instrumentation shown in Figure 15 lies in manipulating the two variables
C_m1 and C_m2. For LRU cache replacement policy and a particular memory block m, C_m
captures the number of unique cache conflicts between two consecutive accesses of memory
block m 1. While counting such cache conflicts, we do not count the conflicts generated
merely due to cold misses. Let us consider the instrumented code before memory block m1

1 For FIFO cache replacement policy, C_m captures the number of unique cache conflicts faced by m since it is last
reloaded into the cache [18]

42



(as shown in Figure 15). Since memory block m1 creates conflicts to only memory block
m2, such cache conflicts are captured by the increment of variable C_m2. Variable f lag_m1
is used to count only unique cache conflicts (i.e. the number of unique memory blocks
conflicting with memory block m1). Besides, variable cold_m1 is used to discard the cold
cache miss for accessing memory block m1. The instrumented code introduced for memory
block m2 is entirely symmetric to the one introduced for block m1.

Formulation of assertions

The crucial step of the instrumentation is to systematically inserting assertions to expose cache
thrashing. Cache thrashing behaviour only happens inside program loops. Therefore, for rest
of the discussion, we shall only consider memory blocks inside program loops. Moreover,
without loss of generality, we shall consider memory blocks mapped to a single cache set. For
set-associative caches, the process is identically applied for each cache set.

The formulation of an assertion depends on the definition of cache thrashing. Therefore,
we first formally define the notion of cache thrashing used in this work.

Definition 3.3.1 Consider a K-way set associative cache. A set of memory blocksM :=
{M1, M2, . . . , MK+1} is said to have cache thrashing if and only if, for all i ∈ [1,K+ 1],
access to Mi suffers at least one non-cold miss and all the cache conflicts for this non-cold
miss are generated by the set of memory blocksM\ {Mi}.

In the preceding definition of cache thrashing, the number of non-cold misses (say X ) is a
tunable parameter. In our work, we assume X = 1. However, in the following, we show that
our technique can be generalized for different values of X .

The instrumented code in Figure 15 takes the accessed memory blocks in the original pro-
gram (i.e. the set of memory blocks {m1, m2, m3, m4} in Figure 12(a)) as input. Therefore,
it is worthwhile to note that the instrumented code manipulates cache conflicts in the original
program (i.e. Figure 12(a)) and not the instrumented program shown in Figure 15. Since
the validity of inserted assertions are based on this instrumented code, any violation of an
assertion essentially captures a cache thrashing scenario in the original program (i.e. the
program shown in Figure 12(a)).

To describe the generation of assertions, we shall begin with a few notations and definitions.
Let us assumeMl = {M1, M2, . . . , MN} is the set of memory blocks accessed inside some
program loop. We define a thrashing set as a subset ofMl that may be potentially involved
in cache thrashing. Formally, a thrashing set T S l is defined as follows

T S l = {m | m ∈ Ml ∧ CHMC(m) 6= PS∧ CHMC(m) 6= AH} (27)

In Equation 27, CHMC captures the cache hit-miss classification obtained via static cache
analysis [15]. Note that AH (all-hit) and PS (persistent) categorized memory blocks can
never be evicted from the cache (due to the inherent guarantee provided by static analysis).
Therefore, we do not include such memory blocks as the potential cause of cache thrashing.

From a thrashing set, we define a number of thrashing scenarios. Informally, a cache
thrashing scenario contains just enough memory blocks from a thrashing set to create a
potential cache thrashing. If we assume that the associativity of the cache is K, the minimum
number of memory blocks to create a cache thrashing is K + 1. Therefore, a thrashing
scenario for a thrashing set T S l is defined as any K+ 1 combination of the thrashing set
T S l . The set of all cache thrashing scenarios Ωl can be defined as follows.

Ωl = { S ⊆ T S l | |S| = K+ 1} (28)

Note that a thrashing set T S l has a total of (|T S l |
K+1 ) different cache thrashing scenarios.

43



Finally, we generate exactly one assertion for each cache thrashing scenario. Let us assume
one such cache thrashing scenario Θ ∈ Ωl and its respective assertion AΘ. Informally, the
assertion AΘ captures the property that thrashing scenario Θ never happens in any program
execution. As a result, any violation of the assertion AΘ during dynamic test generation
captures a realization of the thrashing scenario Θ. Formally, thrashing scenario Θ is captured
by the following property.

ΦΘ ≡
∧

m∈Θ

(Cm > K) (29)

In Equation 29, Cm captures the amount of unique cache conflicts faced by two consecutive
accesses of memory block m. Since the assertion checks the negation of thrashing scenario, it
can be formalized as follows.

AΘ ≡ assert(¬ΦΘ) (30)

The assertion AΘ is placed before each memory block involved in the thrashing set Θ.
For example, in Fig. 15, the set {m1, m2} captures a thrashing scenario and the assertion
assert(C_m1 ≤ 0∨ C_m2 ≤ 0) was placed before accessing memory blocks m1 and m2.

The purpose of the preceding assertion (Eq. 30) is to validate that at least one of the
memory block from the thrashing set is never evicted from the cache. Therefore, if all of
the memory blocks in a thrashing set are evicted at least once, an assertion violation will
be triggered and a cache performance issue will be reported. The assertion AΘ is checked
dynamically before accessing each memory block involved in the thrashing scenario Θ.

It is worthwhile to mention that our formalization to capture cache thrashing (i.e. Definition
3.3.1 and Equation 29) is independent of cache replacement policy. Therefore, such a formal-
ization can be applied to a wide variety of cache architectures. However, the instrumentation
which is carried out to transform the program code depends on cache replacement policy. For
instance, in the Least Recently Used replacement policy, a cache hit causes the cache state to
be updated such that the age of the most recently accessed memory block is 0 however in the
First In First Out cache replacement the cache state is not changed after a cache hit. These
difference are reflected in the computation of the variable C_m (cf. Section 3.3.1). Finally, we
can also generalize the notion of reporting a cache thrashing scenario at runtime. Specifically,
a cache thrashing scenario can be reported for X number of violations of an assertion (and
thereby X number of evictions for each memory block in the respective thrashing set) instead
of only one violation. Such a generalization also corresponds to the reconfiguration of the
number of non-cold misses, as described in Definition 3.3.1.

Handling data caches

For data caches, the memory block classification is obtained using the scope-aware persistent
(SCP) analysis [23]. SCP analysis can be used to classify data memory blocks as persistent
or non-persistent. Unlike the instruction cache analysis, determining the set of data memory
blocks accessed at a program point, can be challenging. Existing address analysis techniques
such as the one used in [23] can be used to obtain the set of memory blocks, which may be
accessed at a given program point. Once the SCP analysis has been performed on the set of
memory blocks generated by address analysis, the assertions can be generated as described in
preceding paragraphs.

The basic structure for instrumentation is similar to what was described for instruction
caches. However, unlike an instruction access, a data access may correspond to multiple
memory blocks. For example, in Figure 16, access to Array_X might result in fetching of
memory block m1 or m2, depending upon the loop iteration. Likewise, access to Array_Y
might result in fetching of memory block m3 or m4.

44



for (i=0; i<10; i++)

{

    sum += Array_X[i] 

                 + Array_Y[i];

  //Array_X points to m1, m2

  //Array_Y points to m3, m4

  //m1, m3 are accessed for 0 <= i < 5

  //m2, m4 are accessed for 5 <= i < 10

}

(a) Original Code                            

for (i=0; i<10; i++)

{

   if(i >= 0 && i < 5)

assert(C_m1 ≤ 0 V C_m3 ≤ 0)

   if(i >= 5 && i < 10)

assert(C_m2 ≤ 0 V C_m4 ≤ 0)

sum += Array_X[i] 

                 + Array_Y[i];

}

                            (b) Instrumented Code

Figure 16: Instrumentation scenarios for data caches

Assume that the address analysis has reported that the memory blocks m1 and m3 are
accessed for loop iterations i ∈ [0..4] and memory blocks m2 and m4 are accessed for loop
iterations i ∈ [5..9]. Also assume that the only sets of memory blocks which conflict in
the cache are {m1,m3} and {m2,m4}. Under these assumptions, memory block m1 and
m3 can participate in a thrashing scenario, only during loop iterations [0..4]. Therefore,
the instrumented code for m1 and m3 needs to be proceeded by conditional checks on the
iteration number (i >= 0 && i < 5). Conditional checks for memory block m2 and m4 can
be placed in a similar fashion. Figure 16(b) shows the instrumented code for the example
program shown in Figure 16(a).

3.3.2 Dynamic Test Generation

Dynamic test generation tries to find violations of the instrumented assertions (cf. Section
3.3.1). Our dynamic test generation process is inspired by recent advances in constraint
solving and concolic testing [5]. As an output of the dynamic test generation process, we
obtain a pair 〈Θi, Ψi〉 for each cache thrashing scenario Θi. In the output pair, Ψi captures a
symbolic formula on the input variables, such that any input satisfying the formula leads to
the cache thrashing scenario Θi. In our example (cf. Figure 12), one such output would be
〈{m1, m2}, x ≤ 3∧ x ≥ 1〉. This implies that any input value of x ∈ [1,3], would lead to a
thrashing scenario, involving memory blocks m1 and m2.

Algorithm 1: The primary goal of Algorithm 1 is to check the validity of instrumented
assertions (cf. Section 3.3.1). It takes the instrumented program PA and the set of instru-
mented assertions A as inputs and generates a set of test cases T . Each element in T realizes
a unique cache thrashing scenario. To begin with, Algorithm 1 executes the instrumented
program PA with a random input I and collects the execution trace X. The exploration of
different assertions is performed by systematically manipulating the path condition of this
execution trace. Formally, path condition is defined as follows.

Definition 3.3.2 For a particular execution trace X, path condition is a quantifier free first
order logic formula that captures exactly the set of inputs which drives the program execution
through the execution trace X.

45



Algorithm 1 Dynamic exploration of instrumented assertions

1: Input:
2: PA: instrumented program with assertions
3: A: set of instrumented assertions
4: Output:
5: T : a set of test cases, each of which realizes a unique cache thrashing scenario
6: AllPathConditions = unchecked = T = empty
7: /*build the control dependency graph (CDG) of PA */
8: CDGPA ← BuildCDG(PA)
9: select a random input I

10: ExecuteAndReport(PA,A, I ,CDGPA)
11: while unchecked 6= empty ∧ A 6= NULL do
12: /*pick a partial path with maximum number
13: of reachable and non-violated assertions */
14: select 〈ϕ,Fϕ〉 ∈ unchecked with maximum Fϕ

15: unchecked := unchecked \ {〈ϕ,Fϕ〉}
16: let ϕ← ψ1 ∧ ψ2 ∧ . . . ∧ ψr−1 ∧ ψr
17: /* execute an unexplored path */
18: if ϕ is satisfiable then
19: τϕ ← some concrete inputs satisfying ϕ
20: ExecuteAndReport(PA, A, τϕ,CDGPA)
21: end if
22: end while
23: procedure EXECUTEANDREPORT(PA,A,τ,CDGPA)
24: execute PA on input τ
25: let X be the execution trace on input τ
26: let ϕ ≡ ψ1 ∧ ψ2 ∧ . . . ∧ ψk be the path condition
27: let {Aθ1 ,Aθ2 , . . . ,Aθr} be the set of violated
28: assertions, on input τ
29: A = A \ {Aθ1 ,Aθ2 , . . . ,Aθr}
30: let π be the shortest path-prefix along the execution
31: trace X that captures at least one violation of each
32: assertion in the set {Aθ1 ,Aθ2 , . . . ,Aθr}
33: let ϕ̂ captures the partial path condition corresponding
34: to the path-prefix π
35: /* augment the test suite with witnesses for cache
36: thrashing scenarios */
37: T ⋃

= {〈θ1, ϕ̂〉, 〈θ2, ϕ̂〉, . . . , 〈θr, ϕ̂〉}
38: /*build all partial path conditions */
39: for i← 1, k do
40: let ϕi ← ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ¬ψi
41: if ϕi /∈ AllPathConditions then
42: AllPathConditions

⋃
= ϕi

43: let bend be the control dependency edge in
44: CDGPA w.r.t. the branch condition ¬ψi
45: /* compute the number of non-violated
46: assertions (∈ A) reachable from bend */
47: Fϕi := GuidanceFunction(bend)
48: if Fϕi 6= 0 then
49: unchecked

⋃
= {〈ϕi,Fϕi〉}

50: end if
51: end if
52: end for
53: end procedure

46



For example, in Figure 12(c), the symbolic formula x ≤ 3 ∧ x ≥ 1 ∧ y ≤ 10 captures the
path condition for the execution trace on input values x = 3 and y = 0.

The variable unchecked represents the set of unexplored partial path conditions in the
instrumented program PA. Each partial path condition ϕi is associated with a metric Fϕi .
This metric measures the maximum number of non-violated assertions reachable from ϕi. We
employ a greedy strategy based on the value of Fϕi to continue exploration. More precisely,
we generate a test input τθ from an unexplored, partial path condition ϕi that has the maximum
value for Fϕi . Subsequently, we invoke the procedure ExecuteAndReport with input τθ .

Procedure ExecuteAndReport executes the instrumented program PA for an input τ to
obtain the execution trace X. For a particular execution, assume that ϕ ≡ ψ1 ∧ ψ2 ∧
. . . ∧ ψk−1 ∧ ψk captures the path condition for the execution trace X. Further assume that
{Aθ1 ,Aθ2 , . . . ,Aθr} is the set of violated assertions and π is the shortest path-prefix in the X

which captures at least one violation of each assertion in the set {Aθ1 ,Aθ2 , . . . ,Aθr}. There-
fore, an assertion, if violated beyond path-prefix π, must belong to the set {Aθ1 ,Aθ2 , . . . ,Aθr}.
If ϕ is the respective path condition, say ϕ̂ be the prefix of the path condition corresponding to
path-prefix π. Note that ϕ � ϕ̂, however, ϕ̂ is a compact yet lossless formula to manifest the
set of thrashing scenarios (i.e. the set of thrashing scenarios exposed by violations of the set
of assertions {Aθ1 ,Aθ2 , . . . ,Aθr}). Therefore, for each thrashing scenario θi, we construct a
test pair 〈ϕ̂, θi〉 and add such test pairs to the existing test suite T . To avoid any redundant
computation, we manipulate ϕ̂ on-the-fly during the execution.

To continue exploration, we must deviate from the present path. Such a deviation is
performed by negating a branch conditions along the execution trace X. Assume that we pick
a partial path condition ϕi ≡ ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ¬ψi. Let us also assume that bend is the
control dependency edge in the CDG (of the instrumented program) that captures the negated
branch condition ¬ψi. We rank each partial path condition ϕi with a metric Fϕi and add it to
the set of unchecked partial path conditions. Fϕi captures the maximum number of assertions
in A that are reachable, if the program is executed with a test input satisfying ϕi.

GuidanceFunction captures the computation of Fϕi . Formally, Fϕi is defined as follows.

Fϕi = |{Aθ ∈ A | bend  Aθ}| (31)

Where bend  Aθ captures that the assertion Aθ is reachable from the control dependency
edge bend (i.e. the control dependency edge corresponding to the negated branch condition
ψi). Therefore, Fϕi accounts for all the assertions in A that are reachable from bend. It is
worthwhile to note that the definition of Fϕi (in Equation 31) can be changed very easily
depending on the criticality of different assertions. In Equation 31, we have only considered
the reachability of assertions, giving each assertion equal priority. However, the definition
Fϕi can be easily changed to incorporate other priorities (e.g. assertions in an innermost loop
can be given higher priorities than assertions in an outermost loop).

T E R M I N AT I O N Algorithm 1 terminates as soon as we obtain a witness (i.e. test case)
for each cache thrashing scenario (captured by the condition A 6= NULL in the outermost
loop of Algorithm 1). However, some thrashing scenarios might not be manifested due to the
presence of infeasible paths in a program (e.g. the assertion assert(C_m3 ≤ 0∨ C_m4 ≤ 0)
in Figure 12(c)). In such cases, the test generation process may go on forever in the presence
of unbounded (e.g. input-dependent) loop iterations and due to the inherent incompleteness
of any constraint solver. However, one appealing nature of our test generation process is
that it can be terminated anytime. The resulting test-suite might be incomplete, but it can
still be used for investigating cache performance issues in the program. Our experiments
suggest that we can find most of the cache performance stressing test inputs in very early

47



phase of Algorithm 1. This is primarily due to the directed search strategy along the control
dependency chain (via the CDG) to reach the set of instrumented assertions.

3.3.3 Salient Features of Generated Test Suites

Our generated suite has several important properties. In the following description, we shall
formally capture the properties of the generated test suite.

Property 3.3.1 At any point in time during the execution of Algorithm 1, for any cache
thrashing scenario Θi, if no path witnessing Θi has been explored - no test case containing
Θi appears in the test-suite T computed so far. Otherwise, the entry 〈Θi, Ψi〉 appears in the
test-suite T where Ψi captures the set of all inputs which witness Θi, and whose paths have
been explored already by Algorithm 1.

Property 3.3.2 If Algorithm 1 terminates, we can guarantee to find all feasible cache thrash-
ing scenarios in any uninterrupted execution, that is, all cache thrashing scenarios witnessed
by at least one program input. Each such feasible cache thrashing scenario will appear as an
entry 〈Θi, Ψi〉 in the generated test suite T reported at the end of Algorithm 1. Any solution
for the formula Ψi is a test input witnessing cache thrashing scenario Θi.

3.4 E VA L UAT I O N

3.4.1 Experimental Set-up

Figure 17 shows an outline of our implementation framework. To generate cache hit-miss
classifications (CHMC), we use the abstract interpretation (AI) based cache analyses (using
[15] for instruction caches and using [23] for data caches) implemented in Chronos [46].
Outcomes of AI-based cache analyses are used by the instrumentation engine to compute
thrashing sets and to insert assertions at appropriate program points (as explained in Section
3.3.1). This instrumented program is passed to the dynamic test generation process.

Dynamic test generation process is implemented on top of LLVM compiler infrastructure
[56]. The instrumented program is compiled into LLVM bitcode format and its control flow
graph (CFG) is extracted from the LLVM bitcode. We also implement a module inside
LLVM to compute the control dependency graph (CDG) of a given program. This CDG is
used to guide our test generation, as explained in Algorithm 1. To generate path conditions
for different execution traces, we use KLEE symbolic execution engine [57]. To solve and
manipulate path conditions along an execution trace, we use the STP constraint solver [58].
We have performed all the experiments on a machine having an Intel Core-i5 processor, with
4 GB RAM and running Ubuntu 9.04 OS.

S U B J E C T P RO G R A M S Table 4 shows the subject programs, used in our experiments.
Nsichneu[47] is an automatically generated code, which simulates an extended Petri Net. It
was taken from the Mälardalen WCET benchmarks suite. It has a code size much larger than
other programs used in our experiments. Also it contains a large amount of if-statements.
Papabench[48] is an Unmanned Aerial Vehicle (UAV) control application. In our experiments,
we used the auto-navigation utility from papabench. The auto-navigation utility contains a
lot of input dependent paths, therefore it can potentially show different thrashing scenarios
for different symbolic input formulas. Jetbench[49] is a real-time, Jet engine performance
calculator. It uses Jet engine parameters and thermodynamic equations from the NASA’s

48



EngineSim program to perform real-time thermodynamic calculations. We use a single-
threaded version of Jetbench for our experiments.

Table 4: Programs used for cache performance study
S. No Test Program Program Description Lines of Code

1 Nsichneu [47]
Automatically generated code.

4253Simulates extended Petri Net
Contains large number of if-else statements

2 Papabench [48]
Part of a Unmanned Aerial Vehicle

1097controller application. Only
auto-navigation utility is used

3 Jetbench [49]
Real-time, Jet-engine performance

770calculator. User parameter and thermodynamic
equations from NASA’s EngineSim program

Test

Program

Instrumented

Test Program

Phase I Phase II

Thrashing 

Scenarios

CHRONOS

INSTRUMENTATION

ENGINE

LLVM

STP

P’

KLEE

P

Tools Used:-
Chronos [46]: Static analysis based timing analysis tool
LLVM [56]: Compiler infrastructure
STP [58]: Constraint solver
KLEE[57]: Symbolic execution engine

Figure 17: Key phases in the framework

49



 0

 2
0

 4
0

 6
0

 8
0

 1
0

0

 0
 5

0
 1

0
0

 1
5

0
 2

0
0

 2
5

0
 3

0
0

   
   

   
   

   
 A

ss
e

rt
io

n
 C

o
v

e
ra

g
e

 (
C

a
ch

e
 8

K
B

)
   

   
   

   
   

T
h

ra
sh

in
g

 P
o

te
n

ti
a

l (
C

a
ch

e
 8

K
B

)
   

   
   

   
   

 A
ss

e
rt

io
n

 C
o

v
e

ra
g

e
 (

C
a

ch
e

 1
6

K
B

)
   

   
   

   
   

T
h

ra
sh

in
g

 P
o

te
n

ti
a

l (
C

a
ch

e
 1

6
K

B
)

Percentage

T
im

e
 (

se
co

n
d

s)

(a
)n

si
ch

ne
u

(I
ns

tr
uc

tio
n

C
ac

he
)

 0

 2
0

 4
0

 6
0

 8
0

 1
0

0

 0
 5

0
 1

0
0

 1
5

0
 2

0
0

 2
5

0
 3

0
0

   
   

   
   

   
 A

ss
e

rt
io

n
 C

o
v

e
ra

g
e

 (
C

a
ch

e
 2

K
B

)
   

   
   

   
   

T
h

ra
sh

in
g

 P
o

te
n

ti
a

l (
C

a
ch

e
 2

K
B

)
   

   
   

   
   

 A
ss

e
rt

io
n

 C
o

v
e

ra
g

e
 (

C
a

ch
e

 4
K

B
)

   
   

   
   

   
T

h
ra

sh
in

g
 P

o
te

n
ti

a
l (

C
a

ch
e

 4
K

B
)

Percentage

T
im

e
 (

se
co

n
d

s)

(b
)p

ap
ab

en
ch

(I
ns

tr
uc

tio
n

C
ac

he
)

 0

 2
0

 4
0

 6
0

 8
0

 1
0

0

 0
 5

0
 1

0
0

 1
5

0
 2

0
0

 2
5

0
 3

0
0

   
   

   
   

   
 A

ss
e

rt
io

n
 C

o
v

e
ra

g
e

 (
C

a
ch

e
 2

K
B

)
   

   
   

   
   

T
h

ra
sh

in
g

 P
o

te
n

ti
a

l (
C

a
ch

e
 2

K
B

)
   

   
   

   
   

 A
ss

e
rt

io
n

 C
o

v
e

ra
g

e
 (

C
a

ch
e

 4
K

B
)

   
   

   
   

   
T

h
ra

sh
in

g
 P

o
te

n
ti

a
l (

C
a

ch
e

 4
K

B
)

Percentage

T
im

e
 (

se
co

n
d

s)

(c
)j

et
be

nc
h

(I
ns

tr
uc

tio
n

C
ac

he
)

 0

 2
0

 4
0

 6
0

 8
0

 1
0

0

 0
 5

 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

   
   

   
   

   
 A

ss
e

rt
io

n
 C

o
v

e
ra

g
e

 (
C

a
ch

e
 5

1
2

B
)

   
   

   
   

   
T

h
ra

sh
in

g
 P

o
te

n
ti

a
l (

C
a

ch
e

 5
1

2
B

)
   

   
   

   
   

 A
ss

e
rt

io
n

 C
o

v
e

ra
g

e
 (

C
a

ch
e

 1
K

B
)

   
   

   
   

   
T

h
ra

sh
in

g
 P

o
te

n
ti

a
l (

C
a

ch
e

 1
K

B
)

Percentage

T
im

e
 (

se
co

n
d

s)

(d
)n

si
ch

ne
u

(D
at

a
C

ac
he

)

 0

 2
0

 4
0

 6
0

 8
0

 1
0

0

 0
 5

 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

   
   

   
   

   
A

ss
e

rt
io

n
 C

o
v

e
ra

g
e

 (
C

a
ch

e
 5

1
2

B
)

   
   

   
   

  T
h

ra
sh

in
g

 P
o

te
n

ti
a

l (
C

a
ch

e
 5

1
2

B
)

   
   

   
   

   
A

ss
e

rt
io

n
 C

o
v

e
ra

g
e

 (
C

a
ch

e
 1

K
B

)
   

   
   

   
  T

h
ra

sh
in

g
 P

o
te

n
ti

a
l (

C
a

ch
e

 1
K

B
)

Percentage

T
im

e
 (

se
co

n
d

s)

(e
)p

ap
ab

en
ch

(D
at

a
C

ac
he

)

 0

 2
0

 4
0

 6
0

 8
0

 1
0

0

 0
 2

0
 4

0
 6

0
 8

0
 1

0
0

 1
2

0

   
   

   
   

   
 A

ss
e

rt
io

n
 C

o
v

e
ra

g
e

 (
C

a
ch

e
 5

1
2

B
)

   
   

   
   

   
T

h
ra

sh
in

g
 P

o
te

n
ti

a
l (

C
a

ch
e

 5
1

2
B

)
   

   
   

   
   

 A
ss

e
rt

io
n

 C
o

v
e

ra
g

e
 (

C
a

ch
e

 1
K

B
)

   
   

   
   

   
T

h
ra

sh
in

g
 P

o
te

n
ti

a
l (

C
a

ch
e

 1
K

B
)

Percentage

T
im

e
 (

se
co

n
d

s)

(f
)j

et
be

nc
h

(D
at

a
C

ac
he

)

Fi
gu

re
18

:A
ss

er
tio

n
C

ov
er

ag
e

an
d

T
hr

as
hi

ng
Po

te
nt

ia
lf

or
di

ff
er

en
tc

ac
he

co
nfi

gu
ra

tio
ns

50



3.4.2 Experimental Results

In following paragraphs, we shall describe some of the experiments which were performed to
measure the efficacy of our framework. Also we shall discuss the applications of our frame-
work for answering some of the issues related to design space exploration and performance
optimization.

EFFICACY OF OUR FRAMEWORK, IN EXPOSING CACHE PERFORMANCE ISSUES We
performed experiments with the three real-time programs listed in Table 4. The results of
which are discussed subsequently. But first we shall describe a few metrics which are used to
present the experimental results.

Assertion Coverage : Our framework aims to find all thrashing scenarios due to intra-task
cache conflicts. However, our test generation framework may not terminate (in general, this
problem is undecidable [5]). Therefore, we define a metric named Assertion coverage which
measures the percentage of unique assertion checked, within a given amount of time.

Assertion Coverage =
unique assertion checked

unique assertion instrumented
× 100

A 100% assertion coverage implies that all unique assertions have been checked at least once.
Thrashing Potential : It is not necessary that all the checked assertion will be violated.

However, the number of unique assertions violated, tells us about the potential for cache
thrashing, for a program, on a given cache-configuration. Therefore, we define Thrashing
Potential as follows

Thrashing Potential =
unique assertion violated

unique assertion instrumented
× 100

Through our experiments we investigated the assertion coverage and the thrashing potential
for all the program listed in Table 4, for various cache-configurations. Some of the results
from our experiments are shown in Figure 18. The plots in Figure 18 show the assertion
coverage ( and thrashing potential) on the y-axis and the exploration time on the x-axis. Since
our framework looks for all possible thrashing scenarios due to intra-task cache conflicts,
it is possible that the test generation will not terminate (refer to section 3.3.2). Therefore,
we tested the subject programs, with an exploration budget of 5 minutes. We performed the
experiments for instruction caches as well as data caches. Overall, we observed an assertion
coverage ranging from 53% to 100% for different experimental set-ups (within a exploration
budget of 5 minutes). Essentially, programs which had lesser number of input dependent paths
(such as nsichneu) were explored much faster than program which had more number of input
dependent paths (such as papabench). We also observed that for most of the experiments with
instruction caches, only a small fraction of instrumented assertion were actually violated.

The figures presented in the first row ( Fig. 18 (a), (b) and (c)) show the results, for
instruction caches. On one hand, our chosen cache sizes are sufficient to avoid capacity
misses. On the other hand, cache sizes are also small enough to generate conflict misses. Since
nsichneu has a large code within a loop, we choose a relatively bigger cache for nsichneu,
compared to the other two subject programs. Figure 18(a) shows the percentage coverage
for nsichneu, on a 2-way, set-associative, LRU, instruction cache. The results reported here
are for cache configuration of 8 KB and 16 KB. For both the configuration, the framework
achieved a 100% assertion coverage, in less than 5 minutes. The thrashing potential for
nsichneu, was observed to be less than 31% for both the experiments. Note that since the
framework achieved a 100% assertion coverage for nsichneu, therefore the recorded thrashing
potential is accurate. We performed experiments with papabench and Jetbench on a 2 KB
and 4 KB for 2-way, set-associative, LRU cache. Neither of these experiments, resulted in a

51



100% assertion coverage, within the exploration budget of 5 minutes. However, this doesn’t
imply that the greedy exploration strategy is inefficient. This observation is supported by the
fact that most of the explored assertions in Figure 18 were discovered early in the exploration.
Additionally, some of the instrumented assertions may be present along infeasible paths (such
as x = 0∧ x = 1), therefore they might not be checked throughout the exploration.

Figure 18 (d), (e) and (f) show the analysis results for data caches. For all the experimental
results reported in this paragraph we used a direct-mapped, data caches of size of 1KB and
512B. We used small caches for this set of experiments, so as to create sufficient number of
thrashing scenarios. For nsichneu and Jetbench we observed an assertion coverage of almost
100%. In fact, for nsichneu only one cache thrashing scenario was reported for both the cache
configurations, which was covered (and violated) during exploration. Also, for Jetbench (see
Figure 18(f)) most of the checked assertions were violated during exploration. However, for
papabench (see Figure 18(e)), we observed an assertion coverage of 80% and a thrashing
potential of less than 40%, for both the cache-configurations.

3.5 A P P L I C AT I O N S I N D E S I G N S PAC E E X P L O R AT I O N

The process of embedded system design can be quite challenging due to sheer size of the
design space that needs to be explored. While choosing a design for an embedded application,
the designer has to consider various constraints such as timing and energy consumption.
For instance, while choosing a cache-configuration, a designer can choose from a large,
highly-associative cache or smaller, less-associative cache. A large, highly-associative cache
might have lesser number of cache-thrashing scenarios however it will consume more power
and possibly slower than the smaller cache. Therefore, determining the ideal cache size for a
given application might be tricky. Our framework can provide a suitable way to choose the
appropriate cache configuration for an application.

 0

 100

 200

 300

 400

 500

2KB 1-W
ay

2KB 2-W
ay

4KB 2-W
ay

8KB 2-W
ay

8KB 4-W
ay

#
 T

h
ra

si
n

g
 S

ce
n

a
ri

o
s 

U
n

co
v
e
re

d

Figure 19: Number of cache thrashing scenarios discovered for papabench for various cache configu-
rations

Essentially, our framework can be used to compare the number of thrashing scenarios for
different cache configurations, for a given application. For example Figure 19 shows the
number of thrashing scenarios discovered for different cache configurations, for papabench.
It is worthwhile to note that our framework pinpoints the real thrashing scenarios, witnessed
by a feasible execution. Existing techniques, which are purely based on static analysis (e.g.
[15, 23]) may include false thrashing scenarios that never appear in any execution (cf. Figure
18). As a result, one can choose a more appropriate cache configuration using our framework,
compared to the techniques based purely on static analysis. There exists a number of works
[59] which can be used to determine the appropriate cache for a given system requirement.

52



In Figure 19, it might be interesting to know that a 2KB, 1-way (direct-mapped) cache has
lesser number of cache thrashing scenarios then a 2KB, 2-way set-associative cache. Also,
the experiments suggest that the number of cache thrashing scenarios for a 8KB, 2-way set-
associative cache and a 8KB, 4-way set-associative cache are the same. So for this program, a
8KB, 2-way set-associative cache will be sufficient, to avoid cache-thrashing.

3.6 A P P L I C AT I O N S I N P E R F O R M A N C E O P T I M I Z AT I O N

In this section, we shall discuss the application of our framework for input sensitive opti-
mization, specifically for cache locking. The main intuition is explained via Figure 20(a).
Assume a direct-mapped cache and memory blocks m1, m2, m3 and m4 all map to the
same cache set. Clearly, this would result in a cache-thrashing scenario (for thrashing sets
{m1, m2} and {m3, m4}) and our test generation framework computes the following test
cases: 〈{m1, m2}, z ≤ 5〉 and 〈{m3, m4}, z > 5〉. In a way, therefore, our dynamic test
generation framework can also be viewed as partitioning the input domain, where all inputs
constituting a partition realizes the same set of cache thrashing scenarios. In our example,
there are two such partitions - ∆1 and ∆2 (cf. Fig.20(b)).

// input z
# _Lock(m1)
while(iteration < 100){

    if(z ≤ 5) {

      // access m1

      // access m2

    } else {

      // access m3

      // access m4

}

// input z
# if (z ≤ 5) _Lock (m1)
# else  _Lock (m3)  

while(iteration < 100){

    if(z ≤ 5) {

      // access m1

      // access m2

    } else {

      // access m3

      // access m4

}

z > 5z ≤ 5

Partition ∆

Partition ∆

I
3

2

1

I
1

I
2

 (a)                                              (b)                                           (c)

}
}

Figure 20: Illustration of conditional cache locking (a) Program with unconditional cache locking
(lock instructions are preceded by # ) (b) Input partitions (c) Conditional cache locking

Assume that we want to selectively lock memory blocks so that such memory blocks are
never evicted from the cache. Traditional cache locking techniques, such as [6] can be used
for such purposes. The work in [6] requires a memory trace (sequence of memory blocks) to
determine the set of memory blocks that should be locked in the cache. However, a program
might have different memory traces for different sets of inputs. If we use a memory trace
generated for an input I1 ∈ ∆1, either m1 or m2 will be locked in the cache (as shown in Fig
20(a)). However, it can be observed that when the program is executed for any input I2 ∈ ∆2,
locking m1 or m2 (as shown in 20(a)) will not improve the cache performance. This is due to
the fact that m3 and m4 will encounter cache thrashing.

Based on the discussion in the preceding paragraph, we argue the potential of performance
optimization (e.g. cache locking) techniques that is sensitive to inputs. In particular, for cache
locking optimization in Figure 20, we could lock m1 (or m2) for all inputs satisfying z ≤ 5
and lock m3 (or m4) for all inputs satisfying z > 5. Such a conditional cache locking (as
shown in Figure 20(c)), will improve the program performance for both the input partitions
∆1 and ∆2 (cf. Figure 20(b)).

To validate our argument, we have studied the feasibility of conditional cache locking
technique on the subject program nsichneu. For baseline cache locking optimization, we
use [6], that locks a set of memory blocks from a given memory trace. We conduct several
experiments for two arbitrary inputs I1 and I2; where I1 is used to generate a memory trace

53



based on which we decide which memory blocks to lock in the cache, using the technique of
[6], and I2 is used to run nsichneu after the cache locking optimization is performed for
the memory trace on input I1. We have made the following crucial observations.

• If I1 and I2 belong to the same input partition produced by our framework, the perfor-
mance improvement from cache locking observed in nsichneu is significantly greater
than the situation where I1 and I2 belong to different input partitions. These results
seem to motivate the use of conditional locking instructions.

• For the situation where I1 and I2 belong to the same partition, we also observed the
performance improvement from locking varies across input partitions. On average, we
observed a variation from ∼ 10% to 20% in performance improvement across different
input partitions in nsichneu. Note that inputs from different partitions have different
memory traces and so, they lead to different set of locked memory blocks using [6].

The preceding observations motivate the need for conditional cache locking, which can be
studied at length in the future. Specifically, our observations conclude that memory blocks
should be locked differently across different input partitions computed by our framework.

3.7 C O M PA R I S O N W I T H E X I S T I N G T E C H N I Q U E S

Over the past two decades, a significant research effort has been put forward for the perfor-
mance validation of embedded software. Such efforts include abstract interpretation (AI)
based method, such as [15], which was proposed to analyze the cache behaviour of a program.
The work of [18] improves the precision of such AI-based cache analyses via a gradual and
controlled use of model checking. These works [15, 18] analyse the cache behaviour of a
program irrespective of its inputs. On the contrary, our primary goal is to build a connection
between the set of inputs and anomalous cache behaviours (e.g. cache thrashing). Our test
generation methodology is inspired by the recent advances in constraint solving and concolic
testing [5, 55]. These works aim to detect software functionality bugs. In contrast, we aim to
detect software performance problems due to memory subsystems.

Different techniques used for program profiling [60, 61] also aim to find performance
problems in a program. Such profiling techniques work on full or compressed execution
traces to derive useful information about program performance. It is assumed that the relevant
inputs for obtaining an execution trace are known a priori. Our approach is complementary
to these profiling techniques, as our aim is to systematically find test inputs that lead to poor
cache performance. Once such test inputs are found, they can be fed back to a traditional
profiler for further analysis.

Recent advances in profiling [9, 10] have extended the traditional profiling technique to
compute a performance trend of a program. Such a performance trend is captured by an
approximate cost function. The cost function relates program inputs with the overall cost of
the program. However, such cost functions are approximations and they do not necessarily
capture the actual cost. Besides, these works do not introduce any notion of test coverage.
On the contrary, any cache thrashing scenario reported by our framework is indeed a cache
thrashing scenario, witnessed by a concrete input. Besides, our framework also reports the
coverage of cache thrashing scenarios via the set of dynamically checked assertions.

The work proposed in [53] automatically finds test inputs for the worst-case computational
complexity. Our work differs from [53] on several aspects: first, our notion of performance
is based on the execution time rather than computational complexity. Secondly, the primary
goal of our work is to compute test inputs for possible anomalous cache behaviour in a single
program.

54



A recent work [54] uses constraint-based test generation [5, 55] to partition the input
domain of a program with respect to cache performance. Once all the partitions are computed,
some manual interventions are required to locate the set of program locations that may exhibit
issues related to cache performance. Besides, the work proposed in [54] computes a cache
performance range for each partition. The cache performance range in [54] is computed via
static invariant generation methods. As a result, the computed cache-performance range
might be over-approximated, leading to false positives. Our approach, on the contrary, directly
relates a cache thrashing scenario with the set of inputs (without any manual intervention).
Moreover, since we generate test inputs based on dynamic analysis, our generated test-suite
does not contain any false positives.

3.8 C H A P T E R S U M M A RY

In this chapter, we described a test generation framework that stresses the cache performance
of a program. The key novelty in this technique is a systematic combination of static cache
analysis and dynamic test generation via a set of instrumented assertions. Violation of any
such assertion exposes a unique cache performance issue, specifically, a cache thrashing
scenario in the program. As an output, our framework reports a test-suite where each test case
in the test-suite points to a unique cache thrashing scenario along with a set of program inputs
that leads to the same. Due to the use of dynamic test generation, our generated test-suite
does not contain any spurious test cases. We have shown the application of our test generation
framework in design space exploration and in cache performance optimization via cache
locking.

55



4
E N E R G Y- C O N S U M P T I O N A N A LY-
S I S : B AC K G RO U N D & L I T E R AT U R E
R E V I E W

This chapter introduces the reader to some the of key research directions on the topic of energy
consumption analysis. In certain application scenarios, embedded systems are required to work in
a mobile environment. Often such devices are powered by an on-board power-source with a finite
capacity, such as a battery pack. To prolong the functional period of such energy-constrained devices,
the programs running on such devices must be energy-efficient. This requirement of energy-efficiency
creates a new set of challenges in the development and testing of programs intended for such systems.
Existing research work have proposed a number of approaches to address these challenges. The
research works which we shall discuss in this chapter are divided into four categories i.e. (i) techniques
for average-case energy estimation, (ii) techniques for worst-case energy estimation, (iii) techniques
for energy-aware testing and (iv) techniques for energy-aware programming.

4.1 E N E R G Y C O N S T R A I N E D E M B E D D E D S Y S T E M S

Embedded systems are often used in applications that have real-time constraints. However, in
certain application scenarios often energy constraints are the primary concern. For examples, a
battery-powered sensor node deployed in a remote, inaccessible environment, that is required
to collect and report data for weather monitoring purposes or the more ubiquitously used
mobile devices such as smartphones, the usage for which is dictated by operational time
between re-charges. Even though energy-efficiency is desired in all application scenarios, but
it is specially crucial in the case of embedded devices that have limited amount of on-board
battery power. There can be a number of approaches to ensure energy-efficiency in such
systems. Some of the existing research works have presented techniques that assist in energy-
aware design and development, while others propose the use of energy-aware testing and
verification techniques. The choice of energy-consumption targeted technique however may
depend on the application scenario itself. For instance, in the case sensor nodes, programs
targeted at such systems must be analysed for the worst-case as well as average-case energy
consumption, so as to make sure that the on-board battery is sufficient for the operational
needs. Whereas, in the case of smartphones, using energy-aware development and testing
techniques may suffice. In the following we shall discuss some of the existing research works
on this topic.

4.2 A P P ROAC H E S U S E D F O R E N E R G Y T E S T I N G /E S T I -
M AT I O N

In the following sections, we shall discuss some of existing techniques that have been proposed
on the topic of energy-consumption analysis. Most of the existing methods for energy analysis
can be divided into the following four categories:

• Estimating average-case energy consumption: Some of the earliest works on energy-
aware testing were proposed in this category. Such methods can be used to obtain

56



an estimate or an average-case, energy-consumption for a given program, on a given
hardware, for a given input. Such methods can be further divided into two categories:

– Architecture-based Energy Analysis: Techniques discussed in this category model
the energy consumption of underlying hardware (such as processor, pipelines,
etc) at varying levels of abstraction. An energy cost is associated with each
operation that is conducted on a given hardware unit. Net energy consumption of a
program is estimated as (approximately) the sum of energy-cost of all constituents
instructions. Cycle-accurate simulators also fall under this category. These works
are described in section 4.3.1.

– Profiling-based Energy Analysis (section 4.3.2): These works, in general take
the system (consisting of the hardware and software) as a black box and execute
the given program for given set of inputs. The behaviour obtained as a result of
execution (i.e. profile) is analysed for extracting appropriate information.

• Estimating worst-case energy consumption: As is the case with estimating worst-case
execution time, worst-case energy-consumption analysis requires, static analysis based
program flow analysis and micro-architectural modelling techniques. These works are
described in section 4.4

• Technique for detecting energy-inefficiencies: These set of technique are mostly targeted
at detecting suboptimal energy consumption behaviour in program. Techniques in
this category may use static or/and dynamic analysis techniques. Energy-aware test
generation techniques can also be found in category. These techniques are described in
section 4.5.

• Energy-aware programming: Techniques in this category are primarily targeted at
assisting the developer in developing energy-efficient programs rather that testing or
validating them for energy efficiency. Such technique propose the use of energy-aware
programming languages and energy-efficient programming constructs. These works
are described in section 4.6.

4.3 E S T I M AT I N G AV E R AG E -C A S E E N E R G Y-C O N S U M P -
T I O N

Technique in this category can provide the approximate energy-consumption of a program, on
a given hardware, (for a given test-input). In general. such techniques by themselves cannot
be used to detect scenarios of sub-optimal energy-consumption behaviour or to estimate
the worst-case energy consumption of a program (for a given hardware). In this section,
such techniques are discussed in two parts: (i) Architecture-based energy analysis and (ii)
Profiling-based energy analysis.

4.3.1 Architecture-based Energy Analysis

Techniques discussed in this category model the underlying hardware (such as processor,
pipelines, etc) at varying levels of abstraction. An energy cost is associated with each
operation that is conducted on a given hardware unit. Net energy consumption of a program
is estimated as (approximately) the sum of energy-cost of all constituents instructions. These
techniques can be further sub-divided into following three categories:

• Instruction Level Energy Analysis

57



• Cycle-accurate Simulators Based Energy Estimation

• Functional-block Level Energy Analysis

I N S T RU C T I O N L E V E L E N E R G Y A N A LY S I S Traditionally, estimation of energy con-
sumption for processors, was performed at a very low level, which depended on detailed
physical specification of the processor involved. Since this process is very cumbersome, the
authors of [62] propose a instruction level modelling framework which can be applied to
any off-the-shelf processor. The motivation behind their approach is that, given a instruction
level power model for a processor and the program binaries (or assembly code), one should
be able to determine the power consumption of the program on that processor. In order to
obtain an instruction specific power model, they associated each instruction with a base energy
consumption cost. To estimate the base cost of a particular instruction (say I), a program
consisting of only instruction I is executed on the processor and resultant average energy
consumption for I is measured. Although, this is a very simple way to estimate the base cost
of an instruction but this approach might not be accurate. Inaccuracy might arise due to the
fact that most modern processors have complex performance enhancing features (such as
pipelines). Also note that the base cost for the same instruction may vary depending upon
its operands. The authors argue that since the variation in the measured values is very small,
average case values (for the base cost) can be used for most practical purposes. To compute
the base energy consumption for the entire program, one needs to add-up the base energy
costs of all the instructions in the program. The base energy consumption of a program is not
equal to the actual energy consumption of the program, because a number of inter-instructions
effects also influence the net energy consumption. Example of inter-instructions effects are
the energy consumption due to the circuit state and energy consumed due to the hit or miss in
the cache. The authors also found through their experiments, that the cost of executing a pair
of instructions is always greater than the sum of the base cost of the instructions-pair. Authors
term this cost as the circuit state overhead. Note that circuit state overhead can be potential
source inaccuracy with their method. Another limitation and potential source of inaccuracy in
their methods is the in-ability to model resource contention while executing instructions and
other micro-architectural behaviour such as cache misses and branch mis-prediction.

Another such technique suggested by [63], uses a method of instruction level energy
profiling for high performance RISC, embedded processors. Their techniques also assigns
fixed, average-case energy value to each instruction, for all the instructions in the ISA of
the architecture. But unlike the methods suggested by [62], they suggest that the average-
case energy consumption for an instruction can be estimated by measuring the time it takes
to execute that instruction (since energy = power × time). Through their experiments they
observed that on an average, energy estimation by their method could lead to error of up to 8%.
Also note that their methods does not take into account the variation in power consumption
due to the inter-instruction effects which were mentioned in the above paragraph.

C Y C L E - AC C U R AT E S I M U L ATO R S This subcategory of energy analysis methods calcu-
late the total energy consumption while executing a program, by performing a cycle-accurate
simulation. SimplePower ([64]) and Wattch ([65]) are two such tools, which are based on
methods for cycle-accurate power simulation.

SimplePower takes in a program (executables) as input and simulates it to generate a cycle-
by-cycle energy estimate for that program. It also provides statistics for switch capacitance
of the processor datapath, memory and on-chip buses using analytical energy models. The
instruction set used in SimplePower is a subset of Simplescalar architecture ([66]) . The
underlying architecture for SimplePower consist of a five stage pipeline, consisting of fetch,
decode, execution, memory access and write back stages. The simulation method is very

58



straightforward, for each clock cycle, the tool simulates the execution of all active instruction
and estimates the power for each active functional unit for that cycle. This simulation
continues until the halt instruction is fetched, after which all the instructions in the pipeline
are executed and the simulation stops. The tool uses a cache power simulator to simulates
both the instruction as well as data caches. The tool also has bus simulator, which records the
number of transitions on the bus. The bus statistics is combined with an interconnect power
model to obtain the switch capacitance of the on-chip buses. A table for switch capacitance is
maintained, which maps each input transition to a switch-capacitance. Note that the switch-
capacitance table is architecture dependent. The table creation for this approach, is a tedious
process because the size of table can grow exponentially with the number of input transitions.
For complex modules such as memory, the tool uses an analytical, transition-independent
model for energy estimation.

Wattch is another Simplescalar based tool for cycle-accurate performance estimation. It
also provides cycle-accurate information for datapath elements, memory, control logic, and
the clock distribution network. It is less expensive than the SimplePower, because it does
not looks-up the switch-capacitance for each cycle. Instead, it keeps track of the number
of access to a particular functional unit and scales it by average base-power dissipation
for that functional unit, in order to calculate the total power consumption. Base power
consumption for each functional unit is calculated before the analysis begins. The power
estimates computed by Wattch may be less accurate than SimplePower, but Wattch has a very
less computation overhead therefore it is more scalable for obtaining average-case energy
consumption estimates of a program. However, it should be noted that neither Wattch not
SimpleScalar, provide any mechanisms to estimate an upper bound on the energy consumption
for a program execution.

F U N C T I O N A L - B L O C K L E V E L E N E R G Y A N A LY S I S A number of previous research
works have demonstrated that the energy analysis of a program, can be performed at a much
higher level of abstraction. Unlike the energy analysis methods mentioned in the previous
categories, the methods of this category rely on functional decomposition of a systems,
for power estimation. The key advantage of functional decomposition analysis is that, it
very loosely coupled to processor architecture. For example, in order to estimate the power
consumption of a program on a DSP, these methods would perform a functional analysis of
the target DSP. Functional analysis of a DSP will include analysis with components such as
control unit, memory management unit, etc.

One the first approaches for functional level energy analysis for embedded systems was
proposed in [67]. In their approach, the power consumption of a functional unit is computed
on the basis of a library of consumption rules. To build the library, a functional analysis of
the targeted architecture is performed. All the components of the architecture which consume
negligible power (for example, control registers for the DMA), are discarded. Some of the
major high level components which are considered for functional decomposition are the
control unit, memory management unit, instruction management unit and the processing
unit. (Note that in the experiments the above mentioned functional units were sub-divided
into smaller units) In order to induce the power consumption in a functional block, specially
crafted code are executed on the DSP and the results are plotted on a set of charts. These
charts are then used to identify parameters which influence the power consumption in a
functional unit and finally, the library of consumption rules are created on the basis of these
charts and parameters. The methods proposed in [68], [69], [70] have a similar approach.

59



4.3.2 Profiling-based Techniques

Techniques under this approach essential revolved around executing the program for set of
input that generates the desired behaviour. While execution, power consumption can be
estimated in a number of ways, each with different level of abstraction. One of the most
straightforward ways would be measure the power consumption accrues the entire system.
However, such a method may not provide enough information to deduce which components
of the system cause the power consumption. Another approach is to measure the frequency
of access to a given component during the execution and use these (frequency) number to
estimate power consumption. (this is assuming that the power model for underlying hardware
components are already available). [71] present one such work. In this work, the framework
inserts probes or counters at appropriate program locations. These counters essentially
measure the invocation of certain datapaths. Data obtained from these counters are then
plugged in a library of existing empirical power model to obtain the net power consumption.

In recent times, due to the prevalent use of smartphone devices, topics related to functional
and non-functional testing of smartphone applications have attracted the attention of software
engineering research community. Recent works on energy-aware profiling [3, 72] have shown
poor energy behaviour of several smartphone applications. In particular, the work in [3]
present a energy-profiling technique for mobile apps. It also presented a few cases studies
where it discusses the possibility of energy-inefficiency in a number popular mobile app (such
as Angry Bird and Facebook). Another category of work [73] extends the idea of instruction
level energy modeling to mobile devices. The key idea in [73], as well as earlier works
such as [62], is to obtain a per-instruction, energy model for a given hardware system. The
energy model associates each instruction with an energy consumption cost. One obvious
complexity with such techniques is that the energy model is hardware-specific, therefore it
must be recomputed every time the hardware changes. Additional complexities may arise (in
creating the energy model), due to program-specific behaviour such as cache misses, branch
mis-predictions, etc. Another recent work [74] has proposed a technique to relate power
measurements with source lines of applications. Essentially the technique in [74] tries to map
the power measurement data (obtain from the power-profile) to lines in the app source-code.
To do so, it monitors the paths that are being executed while the profile is being recorded.
Subsequently, it employs regression based techniques to map the path to estimated energy
consumption, while accounting for high-level events such as thread-switches.

Since it is not possible to execute (or profile) an program for all possible inputs/configura-
tions, it is not piratical to use profiling techniques such as the ones described in this section
to estimate worst-case energy consumption of a program. We discuss the techniques for
worst-cases energy consumption in the following section.

4.4 E S T I M AT I N G WO R S T-C A S E E N E R G Y C O N S U M P T I O N

Most of the previous work on energy analysis, which was mentioned in the above few
paragraphs (such as [62],[65],[67]), focusses on estimating the average-case energy con-
sumption for a program. In particular, instruction level analysis methods are not capable of
modeling the micro-architectural behaviour of architecture and may suffer from potential
under-estimations. Therefore, such methods are unsuitable candidates for worst-case energy
consumption (WCEC) analysis. Architectural level frameworks do not offer a good solution
either, when it comes to worst-case energy consumption analysis. Because in order to obtain
WCEC, such methods would be required to simulate the program, on it’s entire input space,
which is clearly infeasible. For similar reasons, functional level frameworks, also do not offer

60



a good solution for obtaining the WCEC for real-time, embedded systems. In the following
subsection, we will describe some of the static analysis based methods which have been used
for estimating the WCEC of a program.

One of methods described in section 2.4 ([63]), uses average-case execution time of an
instruction to estimate the average-case execution energy of that instruction. So with the
same intuition, one might wonder, if the worst case execution time of a program can used
to estimated the worst case energy consumption of that program. Interestingly, experiments
by [75] revealed that the worst case energy path for a program does not necessarily coincide
with the worst case execution time path. They suggested that such un-intuitive behaviour, is
observed because the switching activity in the processor circuit, may not be directly related to
the execution time of the program. Based on this observation they proposed one of the first
techniques for WCEC estimation of a program. They split the WCEC analysis into two parts:
time dependent and time independent analysis. The authors classify the instruction specific
energy analysis as a time-independent component whereas the time-dependent analysis
consists of component such as pipeline specific energy analysis. The reason for such a
classification, they explain, is that the energy spent on various hardware components such
as switch-off power, clocking circuit, leakage power can not be attributed to any particular
instruction and it is roughly proportional to the execution time. Therefore, the energy of basic
block (Energyb), can calculated as

Energyb = Dynamicb + SwitchO f fb + Leakageb + Clockb

where the Dynamicb represents the instruction specific energy consumed of the basic
block and SwitchO f fb, Leakageb, Clockb represents the switch-off power, leakage power
and clock circuit power respectively, during the execution time of the basic block b. Leakage
power is the term used to denote the unintended power loss in the processor. The rate of
leakage power depends on the processor technology but it is usually a constant for a given
architecture.

Most modern processor employ some mechanism to switch-off the unused portions of the
circuit, when they are not in use. Ideally, a component should draw peak power when it is
in use and no power when it is not used. But the observed behaviour is somewhat different,
even when an unit is switched-off it dissipates some power. The power consumed by a
component in switched-off state is termed as switch-off power. Some approaches assume
that a (multi-ported/single-ported) component (such as a register file) would consume a peak
power even if there is a single access to the unit (this approach is also known as simple clock
gating mechanism). Other approaches, such as realistic clock gating mechanism assume
that, even in the switched-off state components can consume up to 10% of their peak power
consumption. The techniques presented by [75], uses a combination of these approaches. It
assumes that the peak power is consumed by a component c, while executing a basic block
b, for min(accessb(c), wcetb) cycles. Here wcetb refers to the worst case execution time of
basic block b. For the switch-off power estimation, it assumes that 10% of the peak power is
consumed by a component in the switch-off state. So the switch-off power for a component c,
while execution of basic block b, can be written as

SwitchO f fb(c) = {WCETb -
Accessb(c)

Portsc
} × PeakEnergyConsumptionc ×10%

The processor model used for this work is similar to the Simplescalar and has a five-stage
pipeline (Fetch-Decode & Dispatch-Execute-Write Back-Commit). Instruction are executed
in an out-of-order fashion, but they are fetched, decoded and committed in program order.

61



In the above equation for energy calculation of a basic block, the Dynamicb component
represents the sum of energy spent by all the instructions in a basic block. The Dynamicb
for a basic block is affected by a number of factors such as, energy consumption for register
access, energy consumed in the circuit-selection logic and the energy consumed in the wake-
up 1 logic. The authors assume that the energy consumed in the register files is proportional
to the number of registers used in the basic block. The wakeup logic energy consumption
is assumed to be proportional to the number of output variables produced in the basic block.
The selection logic is assumed to be accessed in every cycle. To estimate the WCEC of the
entire program, the constraints are represented as ILP problem, as done by [35]. The ILP
formulation is also used to capture the effects of cache and branch prediction behaviour, along
with the program flow analysis. The objective function represents the total energy consumed
by the program. So the WCEC can be estimating by maximizing the objective function.

4.5 D E T E C T I N G E N E R G Y- I N E FFI C I E N C Y

Techniques based on static analysis: Existing works have proposed program analysis based
techniques to uncover energy inefficiencies in mobile apps. Recent works such as [76, 77]
propose static analysis based techniques for detecting resource leaks in Android apps. Static
analysis based resource leak detection techniques have been proposed for Java programs
as well [78]. Such works, in general, try to verify that resources that are acquired during
the execution of the program are released along all paths leading to exit(s). The idea being
that the certain resources are energy-intensive, therefore, should be released by the program,
before it ceases to execute. [76] in particular, formulates the resource leak detection problem
as a reaching definition problem. It essentially analyses all program-paths where an energy-
intensive resource is acquired or released in the program, using data-flow analysis. However,
the technique describe in [76] may be limited in finding resource leaks due to the representation
(of mobile apps) it uses. One of the key challenges in analysing mobile apps arises due to
the fact that they are event-driven applications. What this implies is that such programs do
not have an explicit main method, instead, what is present is a set of event-handler, each one
programmed to process pre-defined set of events. Since the ordering of arrival of events is
unknown (events come from the environment) apriori, actual execution of event handlers
is also unknown. The work of [76] does not address this important challenge, instead it
constructs aggregate CFG, consisting of several smaller CFGs (from event handlers). How
the ordering of these event-handlers is obtained, is not explained. However, one possible
source for obtaining such information could be profiling. [76] also mentions the possible use
of developer-assistance to bypass this challenge. The work of [77] uses a similar approach
based on static analysis, for resource leak detection. However, it does tries to address the
challenge of analysing event-driven applications, such as mobile apps. Essentially, it uses a
data-structure which associates events to respective event-handlers, for a given activity. As a
result, knowing the ordering between event-handlers beforehand, may not be necessary. One
common drawback with static analysis based approaches, such as the ones mentioned in this
paragraph, is that they may generate false positive (as observed in [77]). This may be due to
the presence of infeasible program-paths within the app source code.

Techniques based on dynamic analysis: A number of works , such as [79, 80], have
proposed techniques based on dynamic program analysis to estimate the energy consumption
of a program. For instance, the work of [79] uses symbolic execution along with platform
specific energy profiles to generate estimated energy-consumption along a given (explored)

1 The energy required to re-start dependent instructions, when all of their dependencies are fulfilled

62



program-path. The energy-profiles essentially contain the energy-consumption profiles of
each basic-block in the program. To compute the energy consumption for a given path, the
energy consumption for a given block is multiplied by the counter for each basic block,
on a given path. The counter essentially counts the number of times a given basic block
is executed for a given execution. Such an approach can be considered preliminary in the
sense that it only considers the CPU power consumption. In contrast, power consumption
to access memory subsystems, network card and other I/O components were not considered.
In smartphone devices, I/O components consume the most power, hence this technique may
not be very suitable for analysing mobile apps. The work of [80] is more suitable for testing
the energy-consumption behaviour of mobile-apps. It dynamically explore the graphical
user interface model of the subject app to detect the presence of resource leaks. A common
limitation to the dynamic analysis method as described in preceding paragraphs is that these
method need to explore all program paths in the program in order to produce complete results.
This however, may be impractical for many program which may have explicit loops( f or,
while, do− while) or implicit loops (due to cycles in GUI model). This issue (commonly
referred to as state-space-explosion problem) may also lead to scalability issues while testing
real-life programs.

Test generation for mobile apps: Works related to test generation in mobile apps have
mostly been confined to the domain of functional testing. Works such as [81, 82] have
proposed techniques to test the functional properties of mobile apps. [81] in particular uses a
biased-random testing technique to explore the various GUI states of an app, whereas [82]
uses symbolic execution to achieve the same goal.

As of this writing, there were two different approaches, [2] and [83], targeted at detecting
energy-inefficiencies in mobile apps. One of the approaches is our previous work [2] which
uses a hardware-software hybrid approach to systematically generate test inputs that leads
to energy-inefficient scenarios. On a high-level, the technique of [2] can be described as a
grey-box testing approach where real-time measurements from the device are used to detect
energy-inefficiencies in app, that is being executed on the device. Due to the use of real-power
measurements, the technique of [2] of can skip the expensive, model-generation stage. Also
using real measurements instead of power model further reduces the number of false-positives
in final results.

Another approach for generating energy-consumption related test cases was proposed in a
recent work of [83]. The technique in [83], unlike the technique of [2], can be described as a
white-box testing based approach, which uses bounded symbolic execution to detect resource
leaks in mobile apps. Bounded symbolic execution is an attempt to bypass the problem of
state-space-explosion. As explained in the previous paragraph, any technique which relies
on exploring all program path within a program may have scalability issues. This is because
in the presence of unbounded exploration there may be infinite number of feasible program
paths to explore. Using bounded symbolic execution alleviates this issue but may introduce
new limitations. For instance, bounded symbolic execution may be unable to detect feasible
resource leaks, if the bounds (for the bounded exploration) are set too cautiously.

To provide a complete solution to the requirement of detecting, validating (generating test
cases) and repairing resource leaks in mobile apps, we have developed a framework which
is described in Chapter 6. This technique differs from the existing two directions of works
(as described in previous paragraphs) in three aspects (i) the way energy inefficiencies are
detected (power measurement vs static analysis) (ii) the way test-cases are generated (search
heuristics vs guided symbolic execution) and (iii.) automatic repair expressions generation
(other test-generation technique such as [2] and [83] may require manual effort).

63



4.6 E N E R G Y AWA R E P RO G R A M M I N G

A different line of work aims to produce energy-efficient applications from different imple-
mentations of the same functionality [84, 85]. Specifically, in application scenarios where fast
but approximate answer is acceptable, such approaches could be quite useful. For example,
while compressing files, there is always a trade-off between the achieved compression rate
and time required for compression. Likewise, many applications scenarios, can benefit by
using approximate, energy efficient computing. The decision to choose an implementation
is influenced by monitoring the power consumption for a given test-suite. For instance,
the work in [84] dynamically chooses approximate implementations of an energy-intensive
functionality (such as long-running loops), to reduce the power consumption. The framework
can dynamically approximate the resource expensive loops and functions depending upon the
requirements, while maintaining a pre-defined, minimum quality of service(QoS). Through
their framework, a programmer can provide a minimum required QoS, along with multiple
approximate versions of the same function, for function approximation. Likewise loops
approximation can be achieved by running the loop for a fewer number of iterations. The
framework can calculate the loss in QoS, to determine the best approximation to be used for a
particular scenario. Along the same lines, a recent work [85] monitors the power consumption
of different API implementations and computes the potentially best implementation in terms
of energy-efficiency. Specifically, given a program that uses Java Collection Framework, the
technique of [85] automatically generates several alternative versions of the same program by
replacing a Java-collection object by another object of similar behaviour. Subsequently, it
executes this alternate versions to find the most energy-efficient alternative.

A complimentary approach to energy-aware programming has been proposed by [86]. The
work of [86] proposes a new language consisting of novel type system, Energy Types. In
general, non-functional properties, such as energy-consumption, are not specifically encoded
in the program source-code. As result of which testing and verification of energy-constraints
is challenging. With this kind of type system, not only the task of energy-aware testing and
verification is much easier, but it also enables the programmer to encoded their assumption and
expectation about energy-consumption of the program within itself. For instance, exploiting
the information provided by the programmer, energy saving mechanisms such as dynamic
voltage and frequency scaling can be used aggressively.

4.7 C H A P T E R S U M M A RY

In this chapter we discussed four important direction of work on the topic of energy-
consumption analysis, which are, (i) techniques for average-case energy consumption, (ii) tech-
niques for worst-case energy consumption, (iii) techniques for detecting energy-efficiencies
and (iv) techniques for energy-aware programming. In general, average-case energy consump-
tion techniques can be light-weight and fast (such as profiling techniques) or accurate and
slow (such as cycle-accurate simulators). However, these techniques cannot be employed for
estimating worst-case estimation. Techniques for detecting energy-inefficiencies in program
comes in may flavours. There exists static analysis based techniques which verify the absence
of energy-intensive resource leaks in programs and there exists symbolic execution based
techniques that can give per-path energy consumption cost for a given program. Finally,
we looked at some of the existing works on energy-aware programming and optimization.
Such works either provide novel programming constructs for energy-aware programming or
provide technique to automatically optimize the energy-consumption of a given program for
the given input space.

64



5 D E T E C T I N G E N E R G Y B U G S A N D
H OT S P OT S I N M O B I L E A P P S

Over the recent years, the popularity of smartphones has increased dramatically. This has lead to a
widespread availability of smartphone applications. Since smartphones operate on a limited amount of
battery power, it is important to develop tools and techniques that aid in energy-efficient application
development. Energy inefficiencies in smartphone applications can broadly be categorized into energy
hotspots and energy bugs. An energy hotspot can be described as a scenario where executing an
application causes the smartphone to consume abnormally high amount of battery power, even though
the utilization of its hardware resources is low. In contrast, an energy bug can be described as a
scenario where a malfunctioning application prevents the smartphone from becoming idle, even after
it has completed execution and there is no user activity. In this chapter, we present an automated
test generation framework that detects energy hotspots/bugs in Android applications. Our framework
systematically generates test inputs that are likely to capture energy hotspots/bugs. Each test input
captures a sequence of user interactions (e.g. touches or taps on the smartphone screen) that leads to
an energy hotspot/bug in the application. Evaluation with 30 freely-available Android applications
from Google Play/F-Droid shows the efficacy of our framework in finding hotspots/bugs. Manual
validation of the experimental results shows that our framework reports reasonably low number of
false positives. Finally, we show the usage of the generated results by improving the energy-efficiency
of some Android applications.

5.1 N E E D F O R AU TO M AT E D E N E R G Y-AWA R E T E S T G E N -
E R AT I O N

Global penetration of smartphones has increased from 5% to 22% over the last five years.
As of 2014, more than 1.4 billion smartphones are being used worldwide [87]. Over the
recent years, smartphones have improved exponentially in terms of processing speed and
memory capacity. This improvement has allowed application developers to create increasingly
complex applications for such devices. Additionally, modern smartphones are equipped with
a wide range of sensors and I/O components, such as GPS, WiFi, camera, and so on. These
I/O components allow developers to create a diverse set of applications. In spite of such high
computation power and developer flexibility, the usage of smartphones has been severely
impeded by their limited battery capacity. In terms of computation capacity, most of the
current-generation smartphones are two or even three orders of magnitudes better than their
decade-old counterparts. However, the battery-life of these modern smartphones has improved
only two or three times1. High computational power coupled with small battery capacity and
the application development in an energy-oblivious fashion can only lead to one situation:
short battery life and an unsatisfied user base.

Energy inefficiencies in smartphone applications can broadly be categorized into energy
hotspots and energy bugs. An energy hotspot can be described as a scenario where executing
an application causes the smartphone to consume abnormally high amount of battery power
even though the utilization of its hardware resources is low. In contrast, an energy bug can be

1 For instance, if we compare Nokia 9000 Communicator (released in 1996) to Samsung S3
(released in 2012), we can observe that the processing power has increased from 24MHz to 1.4GHz,
whereas the battery capacity has only increased from 800mAH to 2100mAH

65



described as a scenario where a malfunctioning application prevents the smartphone from
becoming idle even after it has completed execution and there is no user activity. Table 5
lists the different types of energy bugs and energy hotspots that can be found in Android
applications. It is also worthwhile to know that most contemporary smartphone devices
are designed to operate at different power states and prolong the battery life. However, as
listed in Table 5, malfunctioning applications may lead to inappropriate power states, such as
energy hungry GPS/sensor updates, non-idle power state in the absence of user activity and
so on. Moreover, most of these energy inefficiencies appear when the application does not
access the device resources in an appropriate fashion (e.g. not releasing WiFi/GPS/Wakelocks
or expensive sensor updates), eventually hampering the battery life. Therefore, to build
energy-efficient applications, it is crucial for the developer to know these energy inefficiencies
in the application code. Presence of such energy inefficiencies in the application code can be
highlighted to the developer via our proposed methodology.

In this chapter, we present an automated test generation framework to detect energy
hotspots/bugs in Android applications. Specifically, our framework systematically generates
test inputs which are likely to capture energy hotspots/bugs. Each test case in our generated
test suite captures a user interaction scenario that leads to an energy hotspot/bug in the
respective application. We argue that the systematic generation of such user interaction
scenarios is challenging. This is primarily due to the absence of any non-functional property
(e.g. energy consumption) annotations in the application code. As a result, any naive test-
generation strategy may either be infeasible in practice (e.g. exhaustive testing) or it may lead
to an extremely poor coverage of the potential energy hotspots/bugs. This also brings us to
the difficulty of defining an appropriate coverage metric for any test generation framework
that aims to uncover energy hotspots/bugs. In our framework, we address these challenges by
developing a directed search strategy for test generation.

To design a directed search strategy, it is critically important to know the potential sources
of undesirable energy consumption. Table 5 lists such sources of energy consumption in
Android applications. Moreover, existing works such as [3] have shown that I/O components
are primary sources of energy consumption in a smartphone. One crucial observation is that
I/O components are usually accessed in application code via API calls.

Besides, the power management functionality (e.g. Wakelocks), background services and
other hardware resources (cf. Table 5) of a device can only be accessed through a set of API
calls. In summary, most of the classified energy hotspots/bugs (cf. Table 5) are exposed via
the invocation of API call(s). Therefore, the general intuition behind our directed search
strategy is to systematically generate user interaction scenarios which potentially invoke such
API calls.

Our search strategy revolves around systematically traversing an event flow graph (EFG)
[88]. EFG is an abstraction to capture a set of possible user interaction sequences. Each node
in an EFG captures a specific user interaction (e.g. touching a button on smartphone screen),
whereas an edge in the EFG captures a possible transition between two user interactions.
Therefore, each trace in an EFG captures a possible sequence of user interactions. Since ex-
haustive enumeration of EFG traces is potentially infeasible, our directed search methodology
generates appropriate EFG traces which are likely to lead to undesirable energy consumption.
To accomplish this, we primarily employ two strategies. Based on our observation from
Table 5, we execute selected EFG traces and these selected EFG traces invoke API calls that
might be responsible for irregular power consumption . Besides, if an energy hotspot/bug is
detected after executing an EFG trace, we record the sequence of API calls responsible for
such irregular energy behaviour. Subsequently, we prioritize unexplored EFG traces that may
invoke a similar sequence of API calls. Such a guidance heuristic primarily aims to uncover
as many energy hotspots/bugs as possible in a limited time budget.

66



Ta
bl

e
5:

C
la

ss
ifi

ca
tio

n
of

E
ne

rg
y

B
ug

s
an

d
E

ne
rg

y
H

ot
sp

ot
s

#
C

at
eg

or
y

E
ne

rg
y

B
ug

E
ne

rg
y

H
ot

sp
ot

a
H

ar
dw

ar
e

R
es

ou
rc

es
R

es
ou

rc
e

Le
ak

:
R

es
ou

rc
es

(s
uc

h
as

th
e

W
iF

i)
th

at
ar

e
ac

-
qu

ir
ed

by
an

ap
pl

ic
at

io
n

du
ri

ng
ex

ec
ut

io
n

m
us

tb
e

re
le

as
ed

be
fo

re
ex

iti
ng

or
el

se
th

ey
co

nt
in

ue
to

be
in

a
hi

gh
-p

ow
er

st
at

e
[8

9]

Su
bo

pt
im

al
R

es
ou

rc
e

B
in

di
ng

:B
in

di
ng

re
so

ur
ce

s
to

o
ea

rl
y

or
re

le
as

in
g

th
em

to
o

la
te

ca
us

es
th

em
to

be
in

hi
gh

-p
ow

er
st

at
e

lo
ng

er
th

an
re

qu
ir

ed
[9

0]
,[

91
]

b
Sl

ee
p-

st
at

e
tr

an
si

tio
n

he
ur

is
tic

s

W
ak

el
oc

k
B

ug
:

W
ak

el
oc

k
is

a
po

w
er

m
an

ag
em

en
tm

ec
ha

-
ni

sm
in

A
nd

ro
id

th
ro

ug
h

w
hi

ch
ap

pl
ic

at
io

ns
ca

n
in

di
ca

te
th

at
th

e
de

vi
ce

ne
ed

s
to

st
ay

aw
ak

e.
H

ow
ev

er
,i

m
pr

op
er

us
ag

e
of

W
ak

el
oc

ks
ca

n
ca

us
e

th
e

de
vi

ce
to

be
st

uc
k

in
a

hi
gh

-p
ow

er
st

at
e

ev
en

af
te

r
th

e
ap

pl
ic

at
io

n
ha

s
fin

is
he

d
ex

ec
ut

io
n.

T
hi

s
si

tu
at

io
n

is
re

fe
rr

ed
to

as
a

W
ak

el
oc

k
bu

g
[9

2]

Ta
il-

E
ne

rg
y

H
ot

sp
ot

:
N

et
w

or
k

co
m

po
ne

nt
s

te
nd

to
lin

ge
r

in
a

hi
gh

po
w

er
st

at
e

fo
r

a
sh

or
t-

pe
ri

od
of

tim
e

af
te

r
th

e
w

or
kl

oa
d

im
po

se
d

on
th

em
ha

s
co

m
pl

et
ed

.
T

he
en

er
gy

co
ns

um
ed

by
th

e
co

m
po

ne
nt

be
tw

ee
n

th
e

pe
ri

od
of

tim
e

w
he

n
th

e
w

or
kl

oa
d

is
fin

is
he

d
an

d
th

e
co

m
po

ne
nt

sw
itc

he
s

to
th

e
sl

ee
p-

st
at

e
is

re
fe

rr
ed

to
as

Ta
il

E
ne

rg
y

[9
3]

.
N

ot
e

th
at

ta
il

en
er

gy
do

es
no

tc
on

tr
ib

ut
e

to
an

y
us

ef
ul

w
or

k
by

th
e

co
m

po
ne

nt
.

Sc
at

te
re

d
us

ag
e

of
ne

tw
or

k
co

m
po

ne
nt

s
th

ro
ug

ho
ut

th
e

ap
pl

ic
at

io
n

co
de

in
cr

ea
se

s
po

w
er

lo
ss

du
e

to
Ta

il-
E

ne
rg

y
c

B
ac

kg
ro

un
d

Se
rv

ic
es

Va
cu

ou
s

B
ac

kg
ro

un
d

Se
rv

ic
es

:
In

th
e

sc
en

ar
io

w
he

re
an

ap
pl

ic
at

io
n

in
iti

at
es

a
se

rv
ic

e
su

ch
as

lo
ca

tio
n

up
da

te
s

or
se

ns
or

up
da

te
sb

ut
do

es
n’

tr
em

ov
es

th
e

se
rv

ic
e

ex
pl

ic
itl

y
be

-
fo

re
ex

iti
ng

,t
he

se
rv

ic
e

ke
ep

on
re

po
rti

ng
da

ta
ev

en
th

ou
gh

no
ap

pl
ic

at
io

n
ne

ed
s

it
[9

4]

E
xp

en
si

ve
B

ac
kg

ro
un

d
Se

rv
ic

es
:B

ac
kg

ro
un

d
se

rv
ic

es
su

ch
as

se
ns

or
up

da
te

s
ca

n
be

co
nfi

gu
re

d
to

op
er

at
e

at
di

ff
er

-
en

ts
am

pl
in

g
ra

te
s.

U
nn

ec
es

sa
ri

ly
hi

gh
sa

m
pl

in
g

ra
te

m
ay

ca
us

e
en

er
gy

ho
ts

po
ts

an
d

th
er

ef
or

e
sh

ou
ld

be
av

oi
de

d.
[9

5]
Si

m
ila

rl
y,

fin
e-

gr
ai

ne
d

lo
ca

tio
n

up
da

te
s

ba
se

d
on

G
PS

ar
e

us
ua

lly
ve

ry
po

w
er

in
te

ns
iv

e
an

d
ca

n
be

re
pl

ac
ed

by
in

ex
-

pe
ns

iv
e,

W
iF

i-
ba

se
d

co
ar

se
-g

ra
in

ed
lo

ca
tio

n
up

da
te

s,
if

an
ap

pl
ic

at
io

n
is

us
in

g
bo

th
th

e
W

iF
ia

nd
th

e
G

PS
[9

6]
d

D
ef

ec
tiv

e
Fu

nc
tio

na
lit

y
Im

m
or

ta
lit

y
B

ug
:B

ug
gy

ap
pl

ic
at

io
ns

m
ay

re
-s

pa
w

n
w

he
n

th
ey

ha
ve

be
en

cl
os

ed
by

th
e

us
er

,t
he

re
by

co
nt

in
ui

ng
to

co
ns

um
e

en
er

gy
[9

7]

Lo
op

-E
ne

rg
y

H
ot

sp
ot

:P
or

tio
ns

of
ap

pl
ic

at
io

n
co

de
ar

e
re

-
pe

at
ed

ly
ex

ec
ut

ed
in

a
lo

op
.F

or
in

st
an

ce
,a

lo
op

co
nt

ai
ni

ng
ne

tw
or

k
lo

gi
n

co
de

m
ay

be
ex

ec
ut

ed
re

pe
at

ed
ly

du
e

to
re

a-
so

ns
su

ch
as

un
re

ac
ha

bl
e

se
rv

er
[9

7]

67



Besides the challenges encountered in generating energy stressing test inputs, it is also non-
trivial to automatically detect a potential energy hotspot/bug in a given trace. To detect energy
hotspots/ bugs, our framework executes a test input (i.e. a user interaction scenario) on a
off-the-shelf smartphone, while simultaneously measuring the power consumption via a power
meter. To detect an energy bug in a specific trace, we measure the statistical dissimilarities in
power-consumption trace of the device, specifically, before and after executing the respective
application. As the power consumption of an idle device should be similar, a statistical
dissimilarity indicates an energy bug. To detect an energy hotspot, we employ an anomaly
detection technique [98] to locate anomalous power consumption patterns. Once we finish
the process of detecting hotspots/ bugs in a power-consumption trace, we generate a different
user interaction scenario (using the directed search strategy in the EFG) to investigate. The
test generation process continues till the time budget permits or all event traces invoking
API calls have been explored. As the API calls are the potential locations to cause irregular
energy behaviour, the quality of our test suite is provided via the coverage of API calls in the
application.

5.2 G E N E R A L B AC K G RO U N D

Android is an open-source operating system (OS) designed for mobile devices such as
smartphones. We choose Android as our target platform primarily due to its relevance in the
real world (globally 57% of all smartphones/tablets are Android based [99]). Additionally,
a wide variety of tools are publicly available for Android application developers. This
includes, among others, tools to monitor the state of an application in real-time (e.g. logcat),
to communicate with the device (e.g. android debug bridge) and to facilitate application
development and testing (e.g. emulator).

Activity

Launch

Activity

Shutdown

Activity

Running

onCreate onDestroy

onStart onStop

onResume onPause

another activity

comes to foreground

user returns 

to activity

onRestart

activity finished 

or destoryed

activity not

visible to user

Activity

Killed

activity with higher 

priority needs memory
user navigates 

to activity

Figure 21: Life-cycle of an Android activity

The user interaction interface of an Android application is referred to as an Activity. Figure
21 shows the life-cycle of an Android activity. An activity can be in one of the seven stages
during its life-cycle. Usually, all the set-up tasks (such as acquiring resources and starting
background services) take place in four stages of the activity, namely onCreate, onStart,
onResume and onRestart. Similarly, all the tear-down tasks (such as releasing resources
and stopping background services) take place in three stages, namely onPause, onStop and

68



onDestroy. However, some real-life applications do not follow the ideal set-up and tear-down
scenarios as explained via Figure 21. Such applications may contain energy bugs. This
situation is made worse by the fact that most real-life applications have a huge number of
feasible user interaction scenarios (due to complex GUIs). As a result, it can be impossible
for a developer to test an application for all possible scenarios.

1 LocationManager locationManager;

2 long Min_Update_Time = 10, Min_Distance = 1000 * 60 * 1;

3  

4 @Override

5 public void onCreate(Bundle savedInstanceState){

6    super.onCreate(savedInstanceState);

7 setContentView(R.layout.main);

8 locationManager = (LocationManager)getSystemService

9      (LOCATION_SERVICE);

10 locationManager.requestLocationUpdates

12 (LocationManager.GPS_PROVIDER,Min_Update_Time, 

13     Min_Distance, this);

14 someOtherFunctionality();

15 }

16

17 @Override

18 public void onPause(){

19 super.onPause();

20 try{

21  functionMayThrowsException();  <---------

22  locationManager.removeUpdates(this);

23 }catch(Exception ex){

24  Log.v(”test”,”exception occured”);

25 }

26 }

Figure 22: Code with a potential energy bug

Figure 22 shows a snippet of application code that has a potential energy bug. The application
code is supposed to start a location-update background service (Line 10) in the onCreate
method. Subsequently, it performs some operation with list data (Line 12). When the user
stops the application, the location-update service is removed (Line 19) in the onStop method.
However, if there is an exception before Line 19 (for instance, due to Line 18), the location
update service is never stopped, resulting in an energy bug. The example in Figure 22 shows
one possible scenario (cf. Table 5 #c: Vacuous Background Services) which can lead to an
energy bug. Next, we shall show an example that can lead to an energy hotspot.

The code snippet in Figure 23(a) shows an example with energy hotspots due to disaggre-
gated network activities (cf. Table 5 #b: Tail-Energy Hotspot). Observe that in Figure 23(a),
network related code (Line 6) is interleaved with CPU-intensive code (Line 8) within the same
loop. Such an interleaving causes energy-inefficiencies due to Tail-Energy (see Table 5 #b:
Tail-Energy Hotspot). Tail-Energy behaviour has been observed for network components
such as 3G, GSM and WiFi [93]. Other works [3] have observed Tail-Energy in components
such as storage disks and GPS as well. In order to reduce energy-loss due to Tail-Energy, the
network related code in Figure 23(a) can be aggregated as shown in Figure 23(b).

Finally, we shall explain the method used for obtaining the power consumption ratings of
the hardware components in our smartphone. One approach to obtain the power consumption
ratings would be to perform empirical experiments based on the guidelines provided on

69



public Object[] nonAggregatedComm() 

{

  Object[] objectArray = 

  new Object[10];

  for(int i=0; i<10; i++){

    Object temp = downloadObject(i);

    objectArray[i] = 

 processObject(temp);

  }

  return objectArray;

}

public Object[] aggregatedComm() 

{

  Object[] tempArray = new Object[10];

  for(int i=0; i<10; i++){

    tempArray[i] = downloadObject(i);

  }

  Object[] objectArray = new Object[10];

  for(int i=0; i<10; i++){

    objectArray[i] = 

 processObject(tempArray[i]);

  }

  return objectArray;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

(a)     (b)

Figure 23: (a) Code with energy hotspot due to disaggregated communication (b) Code without energy
hotspot

the Android developer web page [100]. However, there is a more elegant way to obtain
the power consumption ratings. Most Android smartphones are shipped with a XML file
(usually named as power_profile.xml) containing the average power consumption ratings for
the hardware components in the device. The data contained in this XML file is provided by
the device manufacturer and therefore it is reliable. Moreover, the Android framework uses
this data to show battery related statistics. However, note that the data in this XML file is
an indicator of average power consumption of the hardware components of the device and
does not correspond to any particular application being run on the device. The data from
power_profile.xml for our smartphone LG L3 E400, is shown in Figure 24.

0 

50 

100 

150 

200 

250 

300 

350 

Screen Bluetooth GPS Wifi Radio CPU 

Po
w

er
 C

on
su

m
pt

io
n 

(m
W

)  

Figure 24: Power profile for LG Optimus L3 E400 smartphone

70



5.3 D E T E C T I N G E N E R G Y B U G S A N D H OT S P OT S I N M O -
B I L E A P P S : A N OV E RV I E W

An overview of our test-generation framework is shown in Figure 25. Our framework has
two essential components: (i) guided exploration of selected event traces that are more likely
to uncover energy hotspots/bugs, and (ii) detection of hotspots/bugs in a given event trace
for an application. The information provided by the hotspot/bug detection component is
also utilized by the guidance component to select subsequent event-traces. The process of
selection, execution and detection continues until the given time-budget has expired or all
event-traces invoking API calls have been explored. Finally, event traces that lead to energy
hotspots/bugs are reported to the developer for further investigation.

To detect a hotspot/bug, we measure the power consumption of the application for a given
event-trace. However, it is impossible to detect a hotspot/bug in an application solely by
analyzing its power consumption trace. For instance, consider a scenario where two programs
P1 and P2 have similar power consumption traces. However, program P1 has a much higher
utilization of system resources (such as CPU) compared to P2. In such a scenario, program P1
is more energy-efficient than program P2. Therefore, to accurately detect energy inefficiencies,
it is important to define an appropriate metric for system-resource utilization.

For a hardware component x, the Loadx represents the average amount of computational
work performed by the hardware component x over a given period of time. Loadx has a range
from 0 to 1. For example, LoadCPU represents the fraction of time CPU is in use and therefore
LoadCPU can be a number between 0 and 1. For other hardware components (i.e. WiFi,
screen, Radio and GPS), Loadx captures whether the respective components are in use. For
instance, LoadWiFi is set to 1 if the WiFi is transmitting data and it is set to 0 otherwise. For
any hardware component x, we measure Loadx directly from the device, while the application
under test is being executed. It is important to note that a higher Loadx in a high-power
consuming component x would result in a higher power consumption for the device. Based
on this information we define a new metric of utilization that will be subsequently used in
energy hotspots/bugs detection.

Definition 5.3.1 Utilization (U) can be defined as the weighted sum of utilization rates of all
major power consuming hardware components in a device, over a given period of time.

Based on the power profile for our device (cf. Figure 24), major power consuming components
in our mobile device are the screen, WiFi, Radio, GPS and CPU. Therefore, for a given time
interval, the utilization of system resources can be computed by Equation 32.

Utilization = UScreen + UCPU + UWiFi + URadio + UGPS (32)

UCPU =


WCPU320 · LoadCPU , if CPU is operating at 320MHz

WCPU480 · LoadCPU , if CPU is operating at 480MHz

WCPU600 · LoadCPU , if CPU is operating at 600MHz

WCPU800 · LoadCPU , if CPU is operating at 800MHz

UScreen =

{
WScreenON · Loadscreen, if screen on

WScreenFULL · Loadscreen, if at full brightness

Ux = Wx · Loadx, x ∈ {WiFi, Radio, GPS}
In Equation 32, Ux represents the utilization of hardware component x. Utilization of a

component x is directly proportional to its Loadx. For any component x, the value of Wx is
computed from the power profile (Figure 24). Specifically, the value of Wx is normalized

71



Application

Event Trace

Utilization

Energy Consumption

Trace

Energy

Hotspots/Bugs

Event Flow Graph

Test Suite 

Hotspot / Bug

Detection Guidance

Module 

Database 

EFG Extraction 

Event Trace

Generation 

Power Meter 

Smartphone 

Time Budget Expired

HOTSPOT/BUG DETECTION COMPONENT GUIDANCE COMPONENT 

Figure 25: Overview of the test generation framework

such that Wx for the most power consuming component is 1 (in our case ScreenFULL as
shown in Figure 24). Note that in our case Equation 32 does not include Bluetooth. This
is because in our target device Bluetooth has a very low power consumption compared to
other components. However, if required, we can easily extend Equation 32 to accommodate
Bluetooth as well. Using the new metric of utilization (U), we can now compute the magnitude
of energy-inefficiency as follows.

Definition 5.3.2 Energy-consumption to Utilization (E/U) ratio is the measure of energy-
inefficiency of an application for a given time period.

If E/U ratio of an application is high, it implies that the energy-consumption is high, while
utilization is low. Therefore, a high E/U ratio indicates that the application is energy-
inefficient. Recall that we discuss two categories of energy issues that can make an application
energy-inefficient i.e. energy hotspots and energy bugs. They can be defined as follows: A
high E/U ratio during the execution of an application indicates the presence of an energy
hotspot. A persistently high E/U ratio even after the application has completed execution
indicates the presence an energy bug.

Now we shall briefly discuss the exploration of event traces to reveal hotspots/bugs. In our
framework, guided exploration of selected event traces is based on event flow graph (EFG)
[88]. EFG of an application can be defined as follows.

Definition 5.3.3 An Event Flow Graph (EFG) is a directed graph, capturing all possible
user event sequences that might be executed via the graphical user interface (GUI). Nodes of
an EFG represent GUI events. A directed edge between two EFG nodes X and Y represents
that GUI event Y follows GUI event X.

In our experiments, we use a modified version of the Dynodroid tool [81] to generate the
EFG. Subsequently, our framework generates event sequences up to maximum length k and

72



stores them in a database. After the event traces have been generated, our framework initiates
a guided exploration of those traces. The crucial factor during the exploration is to identify
the event traces that may lead to hotspots or bugs. Our framework accomplishes this by
selecting event traces based on the number of invoked API calls and guidance heuristic. The
guidance heuristic gathers information from previously detected hotspots/bugs, specifically
the sequence of API calls which are likely to lead to energy inefficiencies. Subsequently, the
selection process is biased towards event traces invoking a similar sequence of such API calls.
This process of selection, execution and detection continues until the time-budget has expired
or all event-traces invoking API calls have been explored. Finally, event traces that lead to
energy hotspots/bugs are reported to the developer for further investigation.

5.4 D E TA I L E D M E T H O D O L O G Y

In the following sections, we shall describe our test generation methodology in detail. Broadly,
our framework contains two substeps; (i) preprocessing the application under test to build a
database of possible event traces, and (ii) test generation using event traces generated in the
first step.

5.4.1 Preprocessing the Application

Preprocessing of application can be divided into three steps: (i) EFG extraction (ii) Event
trace generation (iii) Extraction of API calls sequence for each event trace. Note that this
preprocessing step is performed only once for each application. The generated EFG and
database are stored for later use and need to be updated only if the application’s user interface
changes. Since this preprocessing is done offline, a developer can rerun the test generation
step (detailed in Section 5.4.2) without repeating preprocessing step.

(i) Event Flow Graph Extraction : We build the Event Flow Graph (EFG) based on the
UI model proposed in [88]. For the purpose of EFG construction we use two third-party tools
Hierarchy Viewer[101] and Dynodroid[81]. Hierarchy Viewer provides information about the
UI elements of the application under execution and Dynodroid is used to explore these event
sequence automatically. Note that Dynodroid does not generate the EFG by itself, therefore
we modified the Dynodroid source code to build the EFG. The EFG was constructed gradually
each time Dynodroid interacts with the application. Figure 26 shows how our EFG is being
gradually built as Dynodroid performs the exploration of event sequences. It is worthwhile to
note that Dynodroid does not guarantee to reach all GUI states during exploration. Therefore,
our constructed EFG is in fact a partial EFG of the entire application. However, in our
experiments, we observed that the generated EFGs cover most of the GUI elements for the
tested applications.

(ii) Event Trace Generation : EFG is primarily used to generate a set of event traces. Note
that each application has a start GUI screen. This GUI screen is presented to the user when
an application is launched. We refer to this GUI screen as the root screen. Therefore, for a
sequence of user interactions performed in an application, the first action corresponds to an
event present in the root screen. Using this notion, we define an event trace as follows.

Definition 5.4.1 An event trace is defined as a path of arbitrary length in the EFG. Such a
path must start from an event in the root screen of the respective application.

73



Based on our EFG, we generate a complete set of event traces upto length k. These event
traces are stored in a database for further analysis during test generation. Figure 26(b)
shows the partial EFG of an application. The node containing the event playbutton captures
the root screen of the same application. An example event trace of length 3 would be
playbutton → stopbutton → playbutton or skipbutton → ejectbutton→ BackButton. Note that
events playbutton and skipbutton correspond to different events in the root screen of the
application.

rewindbutton

playbutton

pausebutton

stopbutton

ejectbutton

skipbutton

rewindbutton

playbutton

pausebutton

stopbutton

ejectbutton

skipbutton

button1button2BackBut ton

( a) ( b)
Figure 26: (a) An example EFG (b) EFG after pressing "ejectbutton"

(iii) Extraction of API Calls : Existing literature [3] has shown that I/O components are
one of the major sources of energy consumption in smartphones. On observing the power
profile of our smartphone (see Figure 24) we find this argument to be consistent. In general,
for modern smartphones the major power consuming components are the screen, CPU, WiFi,
Radio, GPS, SDCard, Camera and Audio hardware. We observed that these components
(except for the CPU) can only be accessed via a set of API calls provided by the Android SDK
framework. Therefore, we create a pool of such API calls. Table 6 shows a categorization of
these API calls based on their functionalities. Since our target device (LG L3 E400) uses
Android 2.3 (Gingerbread), therefore we only consider API calls available in Android 2.3. It
is worthwhile to note that such a pool is constructed only once and it needs to be updated only
if the Android SDK framework changes.

Table 6: Categorization of Android API calls

Functionality Number
of APIs Example

Power Management 3135 WakeLock.acquire()
Local Area
Wireless Networks

2116 WifiLock.acquire()

Telecomm Networks 1691 SmsManager.sendTextMessage()
Haptic Feedback 783 Vibrator.vibrate()

GPS 146 LocationManager.requestLocationUpdates()
Audio/Video 94 Camera.startPreview()

Storage 66 DownloadManager.enqueue()
Others 25 SensorManager.getAltitude()

74



We instrument the application code locations which invoke any API calls from our con-
structed pool. This instrumented code runs in an emulator on our desktop PC. The sole
intention of this instrumentation is to collect the API call traces during the execution of an
event trace. We execute the instrumented code on the emulator and record the API calls
invoked for each event trace. These API calls are annotated with the EFG node corresponding
to the triggered event. Thus, for each event trace generated from the EFG, we can gener-
ate the respective API call trace. It is important to note that the event traces are executed
on the smartphone, as well as in the emulator. The instrumented application runs on the
emulator whereas the instrumentation-free application run on smartphone. Therefore, the
instrumentation does not influence the energy consumption behaviour of the application.

5.4.2 Test Generation

In this subsection, we shall describe (i) technique for hotspot/bug detection (ii) guidance
heuristic for the framework and (iii) algorithm for test-generation

(i) Technique of Hotspot/Bug Detection: As described in section 5.3, energy hotspots/bugs
are those regions of code that lead to high E/U ratio (cf. Def 5.3.2). To detect energy hotspots
during an event trace T, we must first obtain the E/U ratio trace (E/UT), during the execution
of T. E/UT is divided into four different stages: pre-execution stage (PRE), execution stage
(EXC), recovery stage (REC) and post execution stage (POST) (see Figure 27). The rationale
for dividing E/UT trace into four stages is as follows: in the PRE stage the execution of
event trace T has not started yet. Therefore, PRE stage records the idle-behaviour (low-power
state) of the device. Similarly, in the POST stage, the devices has completed execution of
T and so in an ideal scenario the device would have gone back to its idle-behaviour during
POST stage. The execution stage, as the name suggests, is when T is actually executing on
the device. After the execution of T, the device takes a brief period of time (referred to as
screen-time-out duration) to return to its idle-behaviour. In our framework this time period
between the EXC and POST stage is referred to as REC stage 2.

To detect the presence (or absence) of an energy bug we compare the E/UT values in PRE
and POST stages using statistical methods. If the dissimilarity between E/UT values in PRE
and POST stage is more than a predefined threshold (in our experiments the threshold was
set to 50%), an energy bug is flagged (i.e execution of T changed the idle-behaviour of the
device).

Compared to detection of bugs, detection of hotspots is much trickier. Hotspots may appear
only during the execution of an event trace (i.e. EXC stage) or just after the execution of an
event trace (i.e. REC stage) stage. Note that E/UT values obtained in EXC stage and REC
stage may substantially vary for different event traces. Besides, different executions of the
same event trace may show different E/UT values in EXC stage or REC stage, due to different
hardware states. Therefore, we first need a clear definition of energy hotspots to detect them
automatically. We believe that abnormally high energy wastage during the execution of
an event trace is a suitable indicator of energy hotspots. To detect such unusual energy
behaviours, we draw connections from the data mining and classification techniques. We
observe that the problem of detecting unusual energy behaviours is similar to detect unusual
subsequences in time-series data. We use an anomaly detection technique that computes
discords [102] in a time-series data. Discords are subsequences in a time-series data, that

2 In all our experiments, REC stage was much larger than the screen-time-out duration. This allowed the device to return back
to its idle behaviour by the POST stage after a bug-free event trace has completed execution.

75



Figure 27: An example of energy-consumption to utilization (E/U) trace with no hotspot/bug, with
an energy bug and with an energy hotspot

are maximally different from the rest of the time-series. We employ the discord detector on
the E/UT values from the EXC and REC stage. As a result, the discord detector highlights
subsequences in E/UT that are abnormally different from the rest of the subsequences in
the EXC and REC stage. Additionally, the anomaly detector also points out the magnitude
of each computed discord. For instance, in Figure 27, discord D1 has a higher anomaly
magnitude than the discord D2. These magnitudes are extremely helpful. This is because
the computed energy hotspots can be ranked based on their magnitude, before reporting to
the developers. As the anomaly detector, we integrate JMotif [98] into our framework.
JMotif is an off-the-shelf data mining library and it includes the implementation of finding
discords in a time-series data, as proposed in [102].

(ii) Guidance Heuristics for Test Generation: The primary objective of the guidance
heuristics is to select an unexplored event trace that has a substantial likelihood of leading
to a hotspot or a bug. The guidance function uses three parameters to rank the unexplored
event traces: (a) number of API calls in the event trace (b) similarity to previously explored,
hotspot/bug revealing event traces (c) starvation of event traces due to unexplored API calls.
The rationale for using these parameters is explained subsequently.

We have described in an earlier section (4.1:(iii) Extraction of API calls) that the major
power consuming component in smartphones can be accessed through a set of API calls.
Therefore, the presence of API calls that activate (or deactivate) such hardware components
can be used for guiding our test generation. At the beginning of test generation process,
all event traces are ranked according to the number of such API calls they can invoke. In
subsequent iterations, the guidance module becomes more intelligent by learning specific API
call sub-sequences that are more likely to generate energy hotspots/bugs, which is where the
guidance by similarity (or exploration history) comes into play. While selecting an unexplored
event trace, the guidance heuristics compares an unexplored trace to all previously explored
event traces that had uncovered an energy hotspot or a bug. Comparison between two event
traces is performed in terms of the sequence of API calls they can invoke. Note that such
a comparison is perfectly feasible, as we extracted the API call trace for each event trace
during the preprocessing stage. Similarity between two API call traces is compared using Jaro
Winkler Distance algorithm [103]. Finally, our third parameter, guidance by starvation, aims
to cover as many API calls as possible during exploration. Since the first two parameters are

76



based on the number of API calls and the exploration history it is possible that the guidance
heuristics may ignore several unexplored API calls. This leads to starvation, where a set of
API calls will never be explored by the test generation process. Such starvation is undesirable,
as unexplored API calls may potentially expose new energy hotspots/bugs. Therefore, to
ensure a fair coverage of all the API calls invoked by an application, we add a guidance
parameter to deal with the problem of starvation. Essentially, guidance by starvation ranks all
unexplored event traces by the ratio of number of unexplored API calls in an event trace to
the total number of API calls in all event traces.

(iii) Algorithm for Test-Generation: The algorithm for our test-generation framework is
shown using a flow chart (see Figure 28). The primary objective of our framework is to uncover
as many energy hotspots/bugs as possible in an application, within a given time budget. Input
to our framework is an Android application from which the database of the application’s event
traces is generated. Recall that generation of event traces from the EFG of an applications
was explained in section 5.4.1. Our framework systematically executes the event traces from
the database on the smartphone. Each execution is monitored for presence of hotspots/bugs.
The exploration continues until the allocated time budget has expired. On completion, the
framework reports a set of event traces, each of which leads to an energy hotspot/bug when
executed on the device. The two most important components of our framework, that are
Guidance heuristics for test generation and Technique of hotspot/bug detection, have been
discussed in preceding paragraphs. There is however, one more component of the framework
that must be explained. Notice that in the flow chart (Figure 28), the first block indicates
Refine Guidance Parameters, α, β, γ. Essentially, this indicates the step in our framework
where the reliance (or the weight) of the various guidance parameters are refined. Recall
that our guidance heuristics is based on three parameters, guidance by number of API calls
(corresponding weight would be α), guidance by exploration history (corresponding weight
would be β) and guidance by starvation of API calls (corresponding weight would be γ).
Assume that, for a given event trace E, guidance by number of API calls assigns a rank Gn,
similarly guidance by exploration history assigns a rank Gh and guidance by starvation assigns
a rank Gs. To obtain a single score SE for an unexplored event trace E, we use equation 33.

SE = α× Gn + β× Gh + γ× Gs (33)

where α + β + γ = 1. In equation 33, α, β and γ are three tunable factors which drive the
priorities of different guidance parameters. In the beginning, we do not have any knowledge
about likely hotspots/bugs. Therefore, α is initialized to 1 and both β and γ are initialized to 0.
In each iteration, the value of α, β and γ are refined to uncover likely energy hotspots/bugs, as
well as to get a fair coverage of invoked API calls. Specifically, in each iteration, we decrease
the value of α by a fixed amount ∆ (0 < ∆ < 1). If an energy hotspot was found in the
previous iteration, we increase the value of β to β + ∆. The intuition behind this refinement
is to find energy hotspots/bugs that had similar API call sub-sequences as previously found
hotspots/bugs. We continue increasing the value of β as long as we find hotspots/bugs or the
value of β reaches 1. If we are unable to find any hotspots/bugs in some iteration, we hope to
reach previously unexplored API calls and therefore, we increase the weight of γ to γ + ∆.
This assignment of extra weight ∆ is taken out from α, if α ≥ ∆. Otherwise, we modify the
value of β to β− ∆ to decrease the priority of execution history.

77



Refine Guidance Parameters α, β, γ
α: weight for guidance by number of API calls

β: weight for guidance by exploration history

γ: weight for guidance by API call starvation

Update 

Test Suite

Database of Unexplored Events

Test Suite

Update Database

Re-rank all unexplored event traces

Select Execution Trace, E

Start Monitoring Device

Execute Event Trace, E, on the smartphone

Stop Monitoring Device

Analyze E/U  data to

detect Hotspots / Bugs

Time Budget Expired?

Contains Hotspot / Bug ?
Y

N

N

Y

Figure 28: Flow chart for our test-generation framework

78



Ta
bl

e
7:

St
at

is
tic

s
fo

ra
ll

th
e

E
ne

rg
y

H
ot

sp
ot

s/
B

ug
s

fo
un

d
in

te
st

ed
ap

pl
ic

at
io

ns
(o

ut
of

th
e

30
ap

pl
ic

at
io

ns
th

at
w

e
an

al
yz

ed
)

A
pp

lic
at

io
n

D
es

cr
ip

tio
n

Fe
as

ib
le

Tr
ac

es
(k

=4
)

B
ug

s
Fo

un
d

/
Fa

ls
e

Po
si

tiv
e

H
ot

sp
ot

s
Fo

un
d

/
Fa

ls
e

Po
si

tiv
e

H
ot

sp
ot

/B
ug

Ty
pe

Pr
ev

io
us

ly
R

e-
po

rt
ed

A
ag

tl
A

ge
oc

ac
hi

ng
to

ol
13

1
Y

es
/N

o
Y

es
/Y

es
R

es
ou

rc
e

L
ea

k
N

o
A

ri
pu

ca
R

ec
or

ds
tr

ac
ks

an
d

w
ay

-
po

in
ts

50
2

Y
es

/N
o

N
o

/n
/a

V
ac

uo
us

B
ac

kg
ro

un
d

Se
r-

vi
ce

s
N

o

M
on

tr
ea

l
Tr

an
si

t
Fe

tc
he

s
bu

s,
su

bw
ay

an
d

ot
he

rt
ra

ns
it

in
fo

rm
at

io
n

64
N

o
/n

/a
Y

es
/n

o
E

xp
en

si
ve

B
ac

kg
ro

un
d

Se
rv

ic
es

,
Su

bo
pt

im
al

re
so

ur
ce

s
bi

nd
in

g

N
o

O
m

ni
dr

oi
d

A
ut

om
at

ed
ev

en
t/a

ct
io

n
m

an
ag

er
23

3
Y

es
/N

o
N

o
/n

/a
V

ac
uo

us
B

ac
kg

ro
un

d
Se

r-
vi

ce
s,

Im
m

or
ta

lit
y

bu
g

Y
es

Z
am

ni
m

Sh
ow

s
lo

ca
tio

n-
aw

ar
e

zm
an

im
96

5
Y

es
/N

o
N

o
/n

/a
V

ac
uo

us
B

ac
kg

ro
un

d
Se

r-
vi

ce
s

Y
es

Se
ns

or
Te

st
M

on
ito

rs
an

d
lo

gs
se

ns
or

ou
tp

ut
2,

80
0

Y
es

/N
o

N
o

/n
/a

Im
m

or
ta

lit
y

bu
g

N
o

E
po

nt
e

D
is

pl
ay

s
tr

af
fic

in
fo

rm
a-

tio
n

20
0

N
o

/n
/a

Y
es

/N
o

Su
bo

pt
im

al
re

so
ur

ce
sb

in
d-

in
g

N
o

76
0

K
FM

B
A

M
L

is
te

ns
to

on
lin

e
ra

di
o

26
Y

es
/N

o
Y

es
/N

o
V

ac
uo

us
B

ac
kg

ro
un

d
Se

rv
ic

es
,

Su
bo

pt
im

al
re

so
ur

ce
s

bi
nd

in
g

N
o

Fo
od

C
ou

rt
Fi

nd
s

re
st

au
ra

nt
s

ne
ar

a
lo

ca
tio

n
42

Y
es

/N
o

N
o

/n
/a

V
ac

uo
us

B
ac

kg
ro

un
d

Se
r-

vi
ce

s
N

o

Fi
re

an
d

B
lo

od
Si

m
pl

e
to

uc
h

an
d

dr
aw

ga
m

e
15

6
Y

es
/N

o
N

o
/n

/a
V

ac
uo

us
B

ac
kg

ro
un

d
Se

r-
vi

ce
s

N
o

Sp
ee

do
m

et
er

Sh
ow

s
m

ea
su

re
m

en
ts

of
se

ns
or

s
2,

49
2

Y
es

/N
o

N
o

/n
/a

V
ac

uo
us

B
ac

kg
ro

un
d

Se
r-

vi
ce

s
N

o

79



5.5 E X P E R I M E N TA L E VA L UAT I O N

We evaluated our framework to answer the following three research questions: (i) Efficacy
of our framework in uncovering energy bugs and hotspots in real-world applications, (ii)
How can an application developer benefit from the reports generated by our framework, and
(iii) Is guidance based on API call coverage more appropriate metric than code coverage for
uncovering energy bugs and hotspots? First, we describe our experimental setup and the set
of subject programs that we analysed in our experiments.

5.5.1 Experimental Setup

In our experiments, we use an LG Optimus L3 smartphone as the device to run our subject pro-
grams. The device has a single core processor and features standard I/O components such as
GPS, WiFi, 3G and Bluetooth. The device uses Android 2.3.3 (Gingerbread) operating system
(OS). To monitor energy consumption of the smartphone, we used a Yokogawa WT210[104]
digital power meter for precise power measurement. Our energy-testing framework runs on
top of a Desktop-pc that has an Intel Core i5 processor and 4 GB RAM. The OS used on our
Desktop-pc was Windows 7.

+-

Battery Power Meter

Smartphone Desktop PC

Power Meter

output over

serial port

communication 

over adb

voltage

measurement

current

measurement

Figure 29: Our experimental setup

Figure 29 shows the setup for our experiments. For the purpose of this experiment we
created a special apparatus to house the smartphone battery, such that we could measure the
voltage and current flowing through the battery without any distortion. Note that contemporary
smartphone batteries may have more than two terminals. Additional terminals may be used
by the battery to report data such as internal temperature. However, for our experiments
only the positive and the negative terminals need to be monitored (as shown in Figure 29).
Any additional terminals may be directly connected to the smartphone. Our framework runs
on the Desktop-PC, which also serves as the global clock. All the measurements from the
power-meter (reporting power consumption data) and the smartphone (reporting utilization
data) are collected at the Desktop-PC. Each reading is recorded with a timestamp generated
on the Desktop-PC. Since the timestamps are generated by a single clock (the clock on the
Desktop-PC) we can use these timestamps to synchronize [105] the data from the power-meter
and the smartphone. Also note that we use the android debug bridge to communicate with
the smartphone. These communication includes sending event traces to the smartphone and
recording utilization data.

80



5.5.2 Choice of Subject Programs

The subject programs for our experiments are available on Google Play store/F-droid repos-
itory [106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122,
123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135]. We have analyzed a total
of 30 Android applications from different categories (e.g.tools, productivity, transportation)
as shown in Figure 30. The subject programs are diverse in terms of apk (Android application
package file) size. The largest application tested was 8.0MB in size while the smallest applica-
tion was 22KB in size. The average apk size of the subject programs was 1.1MB. The subject
programs also had varying GUI complexity. We measure GUI complexity of an application
by the number of feasible event traces that could be explored, starting from the main screen
of the application. By fixing the length of the event traces to explore (to a length of 4), we
observe that our chosen subject programs contain between 26 to 2,800 feasible event traces.
We also estimate the popularity of an application by observing the number of times it has been
downloaded, as well as its user ratings. These two statistics are only available for applications
on the Google Play store. As of March 10, 2014, the subject programs have an average user
rating of 4.0 out 5, with a minimum rating of 2.7 and a maximum rating of 4.6. The median
number of downloads for the subject programs is between 10,000 - 50,000, with a minimum
download count of 1,000 and a maximum download count of 10,000,000.

Figure 30: Categories of the 30 Android applications used in our experiments

Note that our framework does not require the source code of an application to detect energy
hotspots/bugs. However, the source code is required to obtain code coverage metrics and for
debugging purposes. Therefore, we only consider open-source applications for the second
and third research questions (where the source code is needed to perform our evaluation). The
lines of code for the open-source applications used in our experiments varied from 448 to
11, 612, with an average of 4010 lines of code per application.

5.5.3 Results

RQ1: Efficacy of our framework in uncovering energy bugs and hotspots in real-world
applications

81



One of the objective of our experiments was to observe the efficacy of our framework to
quickly uncover energy bugs and energy hotspots in real world applications. To do so, we
evaluated the applications using our framework with a time budget of 20 minutes. Additionally,
we also limit our exploration for event traces up to a length of 4. A summary of the bugs and
hotspots reported by our framework is listed in Table 7.

Our framework reported energy bugs for 10 out of 30 subject programs. The framework also
reported energy hotspots for 3 subject programs. Note that our hotspot detection technique
is based on an anomaly detection method [102]. Therefore, some of the reported hotspots
may contain false positives due to the presence of noise in the measured data. Such noise may
arise due to unpredictable behaviours such as network load. To confirm a reported energy
hotspot, we manually execute the respective event trace on our device and we observe whether
the same energy hotspot can be replicated. The result of the manual validation (cf. Table 7)
revealed only one false positive, for the application Aagtl. It is important to note that the
number of feasible event traces can be substantially large even for event traces having length
4 (as shown in Table 7). In spite of this large number of event traces, we observed that our
framework can quickly gravitate the exploration process towards more energy-consuming
event traces. Existing tools for Android application UI testing , such as Monkey, cannot
uncover such high energy consuming event traces because they are designed to stress test the
UI of the application by generating pseudo random stream of user events irrespective of the
application’s EFG or the API call usage.

RQ2: How can an application developer benefit from the reports generated by our
framework?

After analyzing an application, our framework generates a test report. This report serves as
a guide to optimize energy consumption and to remove potential energy issues. The report
contains a set of test cases, where each test case captures an energy issue reported by our
framework. Each test case includes (i) a MonkeyRunner script for automatic execution of
events that lead to the energy issue , (ii) energy trace pattern (iii) details of the energy issue
(e.g. magnitude of energy hotspot) and (iv) the set of API calls invoked.

From the report, the developer may prioritize energy issues exhibiting an energy bug or
an energy hotspot of relatively high magnitude. For each test case, the developer can run the
provided MonkeyRunner script and observe the event sequence that navigates the application
to trigger the reported energy issue. This would help the developer in identifying the root
cause of the energy issue. For instance, let us assume that an event trace T exposes an energy
hotspot. While executing T, if the hotspot appears before the execution of a certain event E,
neither E nor any subsequent events in T are responsible for causing the hotspot. Thus, the
search space for identifying the root cause of the hotspot is reduced to the code fragments
that were executed before E was triggered. This will help the developer in fixing the reported
energy issues. We have performed case studies on two of the analyzed applications (our
framework reported energy bug for one and a hotspot for another) to demonstrate how a
developer can utilize the generated reports to debug and fix energy issues in applications.

A R I P U C A G P S T R AC K E R Our framework reports two event traces with energy bugs in
Aripuca GPS Tracker. The energy consumption pattern for such an event trace is shown in
Figure 37(a). As shown in Figure 37(a), the energy consumption in the POST stage is not
similar to the PRE stage, indicating an energy bug. Therefore, the device did not become
idle even in the absence of user activity. The effect of the bug is permanent, unless (i) GPS
location update is explicitly removed, or (ii) the application is killed. We manually verified
that the reported event traces do not exercise the functionality of the application that requires
GPS location update to run in the background. The reported event traces were:

82



waypointsButton − waypoint_details − MenuButton − button1

waypointsButton − waypoint_details − MenuButton − BackBtn

The reported bug indicated that the location updates (GPS updates) were not removed before
the application becomes inactive. By observing the similarity between the two traces (i.e.
the event sequence waypointsButton − waypoint_details − MenuButton), we deduced that the
bug was triggered upon arriving at a certain GUI state. We manually execute the event trace
waypointsButton − waypoint_details − MenuButton and suspend the application afterwards by
pressing the Home button. At this point, location updates are not needed by the application
any more and they should be switched off. Upon inspecting the source code, we observed
that the application had a missing code fragment for removing location updates when exiting.
We fix the issue by adding the release code at an appropriate location. Thereafter, we re-run
the reported event trace using our framework. The energy consumption graph after fixing is
shown in Figure 37(b). As shown in Figure 37(b), the energy consumption in the POST stage
is similar to the PRE stage, resolving the energy bug.

(a) Before fix

(b) After fix

Figure 31: Energy trace of the event trace for Aripuca GPS Tracker

M O N T R E A L T R A N S I T Five event traces with hotspots are reported for the application
Montreal Transit. The energy consumption trace for one such event trace is shown in
Figure 32(a). Immediately after the execution enters the REC stage (cf. Figure 32(a)), we can
observe potentially high E/U ratios in a period of around 5 seconds. Note that this energy
issue is an energy hotspot and not an energy bug. This is because the high E/U ratio does not
persist. The code for pausing the application consumes abnormally high amount of energy,
causing the hotspot to appear during the same period. We observed that all the five reported
event traces exhibit similar hotspots. On a closer inspection, we found that the GPS location
updates continue to run for a few seconds even after the application exits. Before we explain
the exact cause for the hotspot, let us first give an overview of the application.

Montreal Transit is an application to show transit information, where each screen shows
transit information for some mode of transportation. When a screen for some transportation,
say subway, is displayed, it fetches the distances to some of the nearest subway stations.
However, in order to do so, it needs to acquire the location of the device. Surprisingly, we
found that the location update was triggered twice, instead of once. The second location update
was triggered by a third-party advertisement module to display location-based advertisements
in the application. We found that the code to load advertisement is being executed on the main
thread of the application. As a result, any delay in loading the advertisement from the network
prolongs the entire main thread. If the user exits the application while the main thread is being

83



delayed, the release of GPS based location updates is delayed as well. The hotspots reported
in our experiment can be best explained by such delay. To confirm our speculation, we moved
the code related to the loading of advertisements in a separate asynchronous thread. As a
result, we observed that the event traces which earlier exhibit hotspots, no longer do so (cf.
Figure 32(b)). On a different note, we suggest that to develop energy-efficient applications,
the developer should use expensive resources as optimally as possible. For instance, the
location updates in the preceding scenario should be performed just once and shared between
the various modules that need it. We also suggest that any feature that is surplus to the
requirements of users (e.g. advertisements), should be put in a separate asynchronous thread
to improve the user experience.

(a) Before fix

(b) After fix

Figure 32: Energy trace of the event trace for Montreal Transit

RQ3: Is guidance based on API call coverage more appropriate than code coverage for
uncovering energy bugs and hotspots?

We have argued that I/O components and power management utilities contribute signifi-
cantly to the energy consumption of a mobile device. Therefore, we use the number of API
calls invoked by an event trace as one of the guiding parameters in the exploration. As a
result, the test-suite generated by our framework should cover as many API calls as possible.
On the other hand, a more conventional approach would be to measure code coverage of the
test-suite to evaluate the efficacy of a test-generation framework. Therefore, we evaluated the
efficacy of API call based coverage with respect to code coverage, to obtain a minimal test
suite for uncovering energy bugs or energy hotspots.

We choose line of code (LoC) as our code coverage metric and use EMMA, a Java code
coverage tool, to obtain LoC covered by a test suite compared to the total LoC of the
application. We observed that the generated test-suites had a API call coverage of more than
83%, while having code coverage ranging from 11%− 90% (see second and third columns
of Table 8). Subsequently, we wanted to observe if achieving an incremental code coverage
uncovers any additional hotspots/bugs. Therefore, we manually generated additional test cases
for the applications in Table 8. We observed that the manually generated test cases increased
the code coverage ranging from 4% to 17%. However, no additional hotspots/bugs were
revealed. This is most likely due to the inefficiency of a human user to systematically find
energy-inefficient event traces, based on a given metric. Additionally, on inspecting the EMMA
coverage reports (and the source code), we observed that for real-life applications, a substantial
portion of the code is present to give feedback to the user and to ensure compatibility over
different versions of the OS. Therefore, the coverage achieved by executing such code would
not necessarily contribute to finding energy hotspots/bugs.

84



Table 8: Coverage statistics from all open-source apps used in our experiments

Application API Call Code Lines
Name Coverage (%) Coverage (%) of Code
Aagtl 100 21 11,612

Android Battery Dog 100 17 463
Aripuca 100 15 4,353

Kitchen Timer 100 30 1,101
Montreal Transit 89 11 10,925

NPR News 100 24 6,513
Omnidroid 83 36 6,130
Pedometer 100 56 849

Vanilla Music Player 86 20 4,081
Simple Chess Clock 100 49 448

WiFi ACE 100 27 504
World Clock 100 90 1,147

5.6 C O M PA R I S O N W I T H E X I S T I N G T E C H N I Q U E S

In recent times, due to the prevalent use of smartphone devices, topics related to functional
and extra-functional testing of smartphone applications have attracted the attention of software
engineering research community. Recent proposals, such as [82] and [81], have discussed
functionality testing of Android applications based on symbolic execution and biased random
search. In contrast, we focus on automated testing of extra-functional aspects for smartphone
applications, specifically the energy behaviour.

Recent works on energy-aware profiling [3, 72] have shown poor energy behaviour of
several smartphone applications. These works on profiling validates the idea of energy-aware
development for smartphone applications. However, like any other program profiling tech-
niques, works proposed in [3, 72] require specific input scenarios to execute the application
on smartphone device. A more recent work [74] has proposed a technique to relate power
measurements with source lines of applications. Such a technique also requires input scenarios
to execute an application. Automatically finding such input scenarios is extremely non-trivial,
as the poor energy behaviour might be exposed only for a specific set of user interaction
scenarios. Therefore, our approach on generation of input scenarios complements the works
proposed on energy-aware profiling or source-line level energy estimation. Once the set of
user interaction sequences is generated by our framework, they can be further used with works
such as [3, 72] or [74].

The work proposed in [79] discusses energy-aware programming support via symbolic
execution. For each code path explored by a symbolic execution toolkit, the base energy
cost can be highlighted to the programmer. However, such an approach is preliminary in the
sense that it only considers the CPU power consumption. In contrast, power consumption
to access memory subsystems, network card and other I/O components were not considered.
In smartphone devices, I/O components consume the most power. Since we perform direct
power measurements for an application, we can highlight the gross energy consumption to
the developer, without ignoring the energy consumption of any hardware component. The
work in [73] proposes to analyze the overall energy behaviour of an application via an energy
model. Our goal is orthogonal to such approach. We aim to find user interaction scenarios
that may lead to undesirable energy behaviours of an application. Therefore, our work has
a significant testing flavour compared to the work proposed in [73]. More importantly, we

85



rely on direct power measurements rather than relying on any energy model. Another work
[76] uses data flow analysis to detect wakelock bugs in Android applications. The detection
of wakelock bugs is relatively easy. This is due to the fact that the acquire and release of
wakelocks can be related directly to program statements. Therefore, the detection of wakelock
bugs can be performed even in the absence of power measurements. In contrast, we aim
to solve a more general problem of detecting energy inefficiencies and in addition, we also
compute the specific input scenarios that witness the same.

A different line of work aims to produce energy-efficient applications from different
implementations of the same functionality [84, 85]. The decision to choose an implementation
is influenced by monitoring the power consumption for a given test-suite. For instance, the
work in [84] dynamically chooses approximate implementations of a given functionality
to reduce the power consumption. Along the same line, a recent work [85] monitors the
power consumption of different API implementations and computes the potentially best
implementation in terms of energy-efficiency. Our work is complementary to such approaches,
as we aim to automatically detect input scenarios that result in energy inefficiencies and
generate a test-suite that can be used for improving the energy-efficiency of the application.
Finally, the work in [86] introduces programming language constructs to annotate energy
information in the source code. Since we directly measure the power consumption, our
approach does not require any new language construct.

5.7 C H A P T E R S U M M A RY

In this chapter, we provide a systematic definition, detection and exploration of energy hotspot-
s/bugs in smartphone applications. Our methodology is used to develop a test-generation
framework that targets Android applications. Each entry in our generated test report contains
a sequence of user-interactions that leads to a substantial wastage of battery power. Such test
cases are useful to understand several corner scenarios in an application, in terms of energy
consumption. Our evaluation with 30 applications from Google Play/F-Droid suggest that our
framework can quickly uncover potential energy hotspots/bugs in real-life applications. It
is worthwhile to mention that our test generation method is not complete. This is due to the
fact that our computed event flow graph (EFG) may only cover a portion of the application.
As a result, we may not expose all the energy hotspots/bugs in an application. Besides,
our current test generation framework revolves around directing the test generation towards
I/O operations, as I/O components are some of the major sources of energy consumption in
smartphones. However, it is possible in some pathological cases (e.g. unusual cache thrashing
and memory traffic) that CPU-bound applications may lead to substantial drainage of battery
power. Detection of such energy stressing behaviours can be studied in the future. In our
current implementation, we can deal with GUI-based applications by generating UI inputs
automatically. However, certain applications (such as game applications) require human intel-
ligence in navigating through the different GUI screens. For example, the transition between
two GUI screens might happen only by answering questions that require human intelligence.
In such a situation, we may not be able to generate sufficient event traces automatically to
stress the energy behaviour.

86



6
R E PA I R I N G R E S O U R C E L E A K S TO
I M P ROV E E N E R G Y- E F F I C I E N C Y O F
M O B I L E A P P S

Increased usage of mobile devices, such as smartphones and tablets, has led to widespread popularity
and usage of mobile apps. If not carefully developed, such apps may demonstrate energy-inefficient
behaviour, where one or more energy-intensive hardware components (such as Wifi, GPS, etc) are
left in a high-power state, even when no apps are using these components. We refer to such kind of
energy-inefficiencies as energy bugs. Executing an app with an energy bug causes the mobile device to
exhibit poor energy behaviour and drastically shortened battery life. Since mobiles apps can have huge
input domains, therefore exhaustive exploration is often impractical. We believe that there is a need for
a framework that can systematically detect and fix energy bugs in mobile apps, in a scalable fashion.
To address this need, we have developed EnergyPatch, a framework that uses a combination of static
and dynamic analysis techniques to detect, validate and repair energy bugs in Android apps. The use
of light-weight, static analysis techniques enables EnergyPatch to quickly narrow down the potential
program paths along which energy bugs may occur. Subsequent exploration of these potentially-buggy
program paths using dynamic analysis technique helps in validations of the reported bugs and to
generate test cases. Finally, EnergyPatch generates repair expression to fix the validated energy bugs.
Evaluation with real-life, apps from Google Play/F-droid store shows that EnergyPatch is scalable and
can produce results in reasonable amount of time. Additionally, we observed that the repair expressions
generated by EnergyPatch could bring down the energy consumption on tested apps between 10% to
60%.

6.1 I N T RO D U C T I O N

Over the recent years there has been an increased usage of complex applications on battery
powered mobile devices, such as smartphones and tablets. Such mobile applications or
apps exploit a wide variety of sensors and other hardware components available on modern
smartphones to provide a diverse set of functionalities. There is however one factor which
greatly limits the usage of such apps. Battery power on mobile devices is often a constrained
resource. Therefore, it is worthwhile to test and remove energy-inefficiency in such mobile
apps before deployment.

In this chapter, we shall present our framework (and tool) EnergyPatch, that can help
app-developers to detect, validate and repair a specific class of energy-inefficiencies in mobile
apps, which we refer to as energy bugs. Executing an application containing an energy bug
may cause the mobile device to consume excessive amounts of battery power even after the
buggy application has completed execution and there is no user-activity. Such excessive
energy consumption can drastically reduce the battery life of the mobile device, in a relatively
short period of time1. In our recent work [2], we have observed that inappropriate usage of
energy-intensive, hardware components (such as Wifi, GPS) or power management utilities
(such as Android Wakelocks) may give rise to energy bugs. We also observed that such
hardware components/power management utilities can only be accessed by an app through a
predefined set of API calls. These observations indicate that inappropriate usage of API calls
that give access to such hardware resources/power management utilities leads to energy bugs,
resulting in energy-inefficient apps and shortened battery life. Hence, there is a need for a

87



framework that can provide an end-to-end solution to address the challenges associated with
detection, validation and repair of energy-inefficiencies related to energy bugs. In particular,
such a framework should be able to address the following questions:

i. How to determine if an app contains an energy bug, in a scalable fashion ?

ii. How to generate test-cases that can demonstrate the presence of energy bugs, in an
automated fashion ?

ii. How to generate repair expressions that can fix the reported energy bugs ?

iv. How to bring this (detection — test generation — repair) functionality to commonly
used mobile-app development platforms such as Eclipse ADT ?

Our framework, EnergyPatch, is the culmination of our effort to answer these questions.
EnergyPatch extracts a model of the app (under test), using automated analysis. It then
analyses this model using a light-weight, static analysis technique to detect program paths
that may potentially lead to an energy bug. These potentially-buggy program paths are then
explored using a dynamic analysis technique to validate the presence of energy bugs. During
exploration, if the presence of an energy bug is validated, EnergyPatch generates test-cases
that bear witness to the presence of the reported energy bug. Finally, EnergyPatch, generates
repair expressions for the reported energy bugs.

EFG 

Generation
Detection Validation Repair

App Generates Event Flow 

Graph. Associates events 

with event handlers

Detects potential program 

points that may lead to 

Energy Bugs, if any present

Validates reported Energy 

Bugs using Symbolic Execu-

tion. Generates test cases as 

witness

Repairs validated Energy 

Bugs using reported test 

cases

Energy Bug 

free App

Figure 33: System overview

Figure 33 shows the three key phases EnergyPatch: detection, validation and repair. More
specifically, the detection phase is based on abstract interpretation technique, the validation
phase is based on symbolic execution technique and the repair phase uses template based
repair. It is worthwhile to know that using symbolic execution alone to explore non-trivial
programs may lead to the problem of path-explosion. To ensure scalability of framework, we
use a multi-staged approach that is described in the following paragraphs.

To begin with, in the detection phase, our framework conservatively computes the set of
program paths along which energy bugs may occur. If no such program paths can be found
through detection phase, we conclude that no energy bugs are indeed present in the app. It is
worthwhile to know that results of the detection phase are always sound (i.e. if there is an
energy bug in the tested app the detection phase will always report it). On the other hand, if
detection phase reports presence of program paths with potential energy bugs, we proceed
to validation phase. However, before executing the potentially-buggy program paths using
symbolic execution, we employ a couple of search-space reduction techniques to reduce the
time required for exploration. These search-space reduction techniques are based on transitive
closure computation and program slicing. Transitive closure computation (conservatively)
determines which event (and corresponding event-handlers) in the app will never occur on
potentially-buggy program paths (as reported by the detection phase). Program slicing is used

1 One of the buggy applications we evaluated - Sensor Tester, drained a fully charged battery on a LG Optimus
E400 smartphone in less than 8 hours whereas the standby time for the phone is approximately 600 hours [136]

88



to (conservatively) estimate the subset of program inputs that do not influence the execution
of the potentially-buggy program paths. Finally, in the repair stage we use the information
provided by the previous phases to generate repair expressions for validated energy bugs.

We have implemented our framework as an Eclipse Plugin, named EnergyPatch. It is freely
available from BitBucket[137]. Since a large number of Android app developers use Eclipse
ADT Toolset for Android app development, we believe that our framework will be most useful
in this form. Additionally, our tool provides an intuitive user interface that helps the developer
in visualizing the potential energy bugs in the app. For the evaluation of our framework and
tool we created a test suite using thirty five real-life Android apps. Our framework was able to
detect energy bugs for twelve out of these thirty five tested apps. The test cases generated by
our framework were manually executed on a mobile device and resultant power consumption
measured by a power meter to confirm the presence of energy bugs. On measuring the
energy consumption of the buggy applications post repair we observed a reduction in energy
consumption between 10% − 60%. Finally, we conclude the evaluation of our framework by
comparing it with existing research works on detection and/or test-generation for resource
leaks in mobile-apps.

6.2 A N D RO I D B AC K G RO U N D

Android is a widely-used operating systems designed for mobile devices such as smartphones
and tablets. Android is open-source, additionally there exist a number of freely available
development tools (such as Eclipse ADT) and debugging utilities (such as Android Debug
Bridge) for Android app development. All these factors motivated us to use Android apps as
test subjects for our framework. In the following subsections we shall briefly describe some
of the key aspects of execution model and energy-efficiency in Android apps.

6.2.1 Execution Model in Android

Android apps, in general, are composed of four key components: Activities, Services, Broad-
cast Receivers and Content Providers. Communication between the various components
happens by means of messaging objects that are commonly referred to as Intents. Figure 34
shows an oversimplified representation of the execution model for Android apps.

<start> <stop>

Activity

Service

Broadcast Receiver

Content Provider

Intent

Intent

Intent

*

Figure 34: Over-simplified representation of execution in Android apps

An activity can be described as an entity which encapsulates the user interface (UI) through
which the user interacts with the app. Services, unlike activities, do not have any UI associated
with them. Services are run in the background and are often used for performing lengthy
tasks. Broadcast receivers, as the name suggests, are used to receive broadcasted messages
(such as arrival of call or SMS etc). Content providers provide access to various data sources.

89



All components of an app have well-defined life-cycles. For instance, the life-cycles of an
activity is shown in Figure 21.

An activity goes through seven distinct stages of life-cycle throughout its execution (cf.
Figure 21. The life-cycle stages shown in the left-arm of Figure 21 i.e. onCreate, onStart and
onResume are invoked when an activity begins execution. Therefore, all tasks related to ini-
tialization and resource acquisition are usually performed in these stages. Likewise, the stages
on the right-arm of the Figure 21 i.e. onDestroy, onStop and onPause are invoked when an
activity stops execution. In addition, the onRestart stage is invoked when a previously stopped
activity is restarted. To implement a custom functionality to an activity, app-developers simply
need to override the above mentioned methods (i.e. onCreate, onStart, onResume, onDestroy,
onStop, onPause and onRestart ).

Figure 35: An example showing how inputs are provided to Android apps

6.2.2 Inputs to an Android App

As shown in Figure 36, there are two possible ways for providing inputs to Android apps
(i) through events and (ii) through return value from Android API calls. Events can be user-
generated (such as by pressing buttons) or system-generated (such as broadcast of change
in battery state). Figure 35 shows an example of input through an event as well as through
return value. In the example of Figure 35, when the user clicks the button (event), the
onClickListener (event handler) for the button is invoked(Line 18). Subsequently, the user
inputs from the text field is read (input through return value), by means of another Android
API call getText (Line 21). Observe that the else part of the example code is executed only if
the return value from getText does not contain the string hello (Line 22).

This example goes on to show that only exploring the event of the app is not sufficient to
exercise all the functionalities in the app. Based on this understanding we define an input to
an Android app as follows:

Definition 1 Inputs to an Android app are a combination of events and return values from
API calls.

90



ANDROID FRAMEWORK

API Event Listener

APPLICATION

Call Site Event Handler

return 

value

event

invocation

Figure 36: Inputs to an Android app

6.2.3 Energy Consumption of Android API calls

As is the case with any other non-functional property, energy consumption (or any non-
functional) behaviour is seldom explicitly encoded in the application code. Therefore, in
a generic scenario program analysis alone would be insufficient to determine the energy
consumption behaviour of a program. However, in the specific case of Android apps we have
identified a set of API calls that can substantially impact the energy consumption behaviour
of the mobile device. In Android for instance, all power management utilities and I/O
components must be accessed through predefined API calls. It is also worthwhile to know that
these power management utilities and I/O components have significant impact on the power
consumption of the device. Figure 24 shows the power profile graph of our test device LG
L3 E400. The data for Figure 24 is obtained from the power_profile.xml file which is
created by the original equipment manufacturer (OEM) and shipped along with the device.

We found that in a typical Android distribution, the API calls that significantly impact the
energy consumption behaviour are a very small subset of all available API calls. For instance,
in Android Gingerbread, which was one of the most widely used distributions at the time of
writing, less than hundred of the total nine thousand or so public API calls significantly affect
the energy consumption behaviour. Some of these high-energy-consuming API calls are listed
in Table 9.

Table 9: Some of the Android API calls that have major influence on energy consumption

Resources API calls Hardware Resource

PowerManager (Wakelock) acquire/release CPU + Screen + Keypad

WifiManager
setWifiEnabled

Wifi Hardware
acquire/release

Camera
open/close

Camera
startPreview/stopPreview

SensorManager registerListener/unregisterListener Sensors

LocationManager
requestLocationUpdates/removeUpdates

GPS receiver
addProximityAlert/removeProximityAlert

LocationClient
requestLocationUpdates/removeLocationUpdates

GPS receiver
addGeofences/removeGeofences

MediaRecorder start/stop Video Hardware

AudioRecord startRecording/stop Audio Hardware

BluetoothAdapter enable/disable Bluetooth Hardware

91



6.2.4 Energy Bug, Cause and Effect

An energy bug is a type of non-functional defect (i.e. it does not affect the functionality
of the app), however, it may cause the device to consume excessive power, even when no
useful computation is being performed. It is worthwhile to know that energy bugs are often a
manifestation of improper usage of I/O components and power management utilities. There
are two possible ways in which the effect of energy-bugs can handled. These are (i) through
system-level mechanisms and (ii) through testing-and-repair technique such as presented in
this work. System-level techniques which aggressively release resources whenever an app
exits may make the system inflexible. This is because in certain cases it is possible that the
app’s functionality may necessitate that resources are not released as soon as the app exits. For
instance, consider a location-tracking app that wants to log the user’s whereabouts throughout
the day. In such a scenario, the app may want to keep working in background using GPS while
the user interacts with other apps in the foreground. For such apps, forceful system-level
mechanisms that aggressively release resources whenever an app exits may make the system
inflexible. In comparison, a case-by-case analysis using a technique such as presented in this
work can help the developer to make judicious changes to the app source-code, wherever
needed.

Figure 37(a) shows the energy-consumption data from a real-world Android app, Aripuca,
while an energy bug is triggered. Figure 37(b) shows the energy-consumption behaviour of
the same app, for the same input but when the energy-bug has been repaired. The portion of
the energy-consumption trace marked with label PRE indicates the period of time when the
device is idle (no apps running). Label EXC indicates the period of time where the app is
executed on the device, whereas label REC indicates the period of time the device takes to
return to its idle state. Finally, the label POST indicates the period of time when the device has
returned to its idle state, post execution. In an idle scenario, where there are no energy bugs
involved, the energy-consumption behaviour in the PRE stage and the POST stage should
be statistically similar. However, in the case of an app that has an energy bug (such as in
Figure 37(a)), there will be significant dissimilarities in the energy-consumption data when
comparing between the PRE and the POST stages.

(a) Energy trace with an energy bug

(b) Energy trace with the energy bug fixed

Figure 37: Energy trace for Aripuca GPS Tracker (a) with an energy bug (b) repaired energy bug.
The additional energy consumption can be observed in the recovery (REC) and the post
(POST) stages

6.2.5 Differences Between Present and Previous Work

The key contributions of our previous work[2] were the introduction of a fault-model for
energy-inefficiencies in mobile apps and a guided, search-based test-generation framework.
The energy-inefficiency detection in [2] was done using a hardware-software, hybrid approach.
Like our current work, it used an automated technique [81] to generate the event-flow graph
of the app (under test). However, unlike our present work, it uses a guided, search-based

92



algorithm to select the test-inputs to execute the app on the target mobile device. While
the app is being executed on the test device (with the selected test-input) the framework
simultaneously measured the power consumption using a power meter. The acquired power
trace is then analysed using statistical and anomaly detection techniques to uncover energy-
inefficient behaviour. In contrast, in our current work, we use a combination of a static
and dynamic analysis techniques to ascertain the presence of energy bugs and to generate
test-cases. The use of measurement setup (cf. Figure 57), in our present framework, is
simply to measure the resultant energy savings. Another key difference is in the way of
exploration itself. In the previous work, the exploration algorithm generates events traces,
by walking through the event flow graph. However, if an UI screen needed inputs through
an input-container (such as text-fields), random data was used. As a result the exploration
algorithm may not have been able to explore all feasible paths inside an event-handler. In
contrast, in our present work, due to the use of symbolic execution our framework can explore
all feasible paths inside the event handler. To summarize, the key differences between the two
work arise due to (i) the way energy bugs are detected (power measurement vs static analysis)
(ii) the way test-cases are generated (search heuristics vs guided symbolic execution) and (iii.)
automatic repair expressions generation (only in the current framework).

6.3 OV E RV I E W B Y E X A M P L E

In this section, we shall describe the workings of our framework by means of a simple example.
In particular, we shall focus on (i) use of abstract interpretation to detect energy bugs and (ii)
use of symbolic execution to generate test cases that leads to the reported energy bugs. In
our framework, we also use an event-flow graph (EFG) generation phase as a pre-processing
phase. However, for the purposes of simplicity, we shall omit the EFG generation phase in
this example. We shall base our discussion on the simple code fragment shown in Figure
38(a). It has a simple input-dependent, do-while-loop, in which, a source line acquires a
reference-counted resource R at Line 4 and another source line releases the acquired resource
at Line 6. The only input to the program is N, which determines the number of loop iterations.
Figure 38(b) shows the control flow graph (CFG) of the code shown in Figure 38(a). It can be
observed that the the resource R is never released for all inputs satisfying the formula N > 3.
Using this example, we shall first describe how static analysis is used in our framework to
detect that the resource R may not be released at the end of the program (i.e. exit node E4).
Subsequently, we will describe the use of dynamic analysis to generate test cases that witness
the scenarios where the R hasn’t been released.

6.3.1 Detection Using Abstract Interpretation

The detection phase tracks an (over)estimate of the state of resource R, at each program point.
Assume that the state of resource R is denoted by a tuple <R, k> at each node of the graph
(cf. Figure 38(c)). The input (in) and output (out) state of resource R is shown using a tuple
<R, k> at each node of the graph in Figure 38(c), where k = 0 implies R is not acquired and
k = 1 implies R is acquired. Every time the API call Acquire(R) is encountered the resource
state is updated to <R, 1>. Similarly, whenever the API call Release(R) is encountered the
resource state is updated to <R, 0>. It is worthwhile to know that resource state update
operation is object-insensitive.

In the scenario where there are multiple incoming resource states (from different branches)
we perform a Join operation to merge multiple resource states into one. For instance, in the
this example at the node marked Join, the incoming resource states from both the branches

93



(<R, 0> from i < 3 branch and <R, 1> from i ≥ 3 branch) are joined to create an over-
approximated state (<R, 1>). By performing such path-insensitive joining of states, we can
avoid the problems associated with state-space explosion. The update and join operations
that are described here, are applied until the in and the out states of each node in the graph
do not change over an entire iteration (i.e. fixpoint is achieved). At the end of detection phase
(once the fixpoint is reached), we check the out state of exit nodes to see if any resource is still
in the acquired (i.e. k = 1) state. If so, presence of potential resource leak is reported by the
detection phase. In our example (cf. Figure 38(c)), observe that at the exit node, the resource
state is indeed <R, 1>, indicating the presence of a resource leak. This leak will manifest for
all inputs satisfying the condition N ≥ 3. Observe that in this specific example, if the path
satisfying the condition i ≥ 3 had been infeasible for some reason, the results of the detection
phase would have been false positive. Therefore, to rule out any possibility of false positives
(due to infeasible paths/execution scenarios) we perform further analysis to validate the results
of the detection phase. Essentially, we wish to validate that the property (Prop: resource R is
not acquired) at all exit nodes. To facilitate this, our framework automatically instruments two
new variables acq_r and rel_r in the program. Specifically, wherever Acquire(R) is called
variable acq_r is incremented and wherever Release(R) is called variable rel_r is incremented.
Additionally, at the exit node the assertion acq_r− rel_r ≤ 0 is instrumented that represents
the property resource R is not in the acquired state. The resultant CFG is shown in Figure
38(d).

6.3.2 Test Generation Using Symbolic Execution

The instrumented program is then explored symbolically. That is to say that the program is
executed with symbolic inputs. In our example symbolic input being N. In our framework,
we also perform a couple of search-space-reduction techniques to make symbolic execution
phase faster. However, for the sake of simplicity we shall not describe them in this example.
The objective of symbolic execution of the instrumented program is to see if any of the
instrumented assertions ( acq_r− rel_r ≤ 0, in this example), are violated for any feasible
execution. Figure 38(e) shows one possible execution path where the instrumented assertion
is violated. It is worthwhile to know that if we had used bounded symbolic execution instead
of unbounded symbolic execution for exploration, we may not have been able to find such
a assertion violation (as demonstrated by Figure 38(f)). Assertion violation demonstrates a
feasible scenario where a resource leak happens in this example. The symbolic execution also
provides us with the test-cases that witness the failure of assertion. These test-cases can be
used by the tester/developer to re-create the reported bugs manually.

6.4 D E T E C T I O N

In this section, we shall provide a detailed description of the detection phase. As mentioned
in Section 6.3, the static analysis technique used in the detection phase is an instantiation of
the abstract interpretation based approach proposed in [138]. Therefore, before describing the
details of our approach we shall provide a very brief introduction to abstract interpretation
itself.

To implement an abstract interpretation based program analysis framework, one needs to
define the abstract semantics, in particular, (a) an abstract domain and (b) a set of abstract
operations. At each program point (P) an abstract state captures the state of the program. The
set of all abstract states is referred to as the abstract domain (D). The abstract operators,
namely update and Join, can be used to manipulate the abstract state to reflect the effect of

94



1. Prog (N)

2.  i = 1;

3.  Do {

4.    Acquire(R);

5.    If(i<3) {

6.      Release(R);

7.    }else{

8.      //Code not using

9.  //Resource R

10.   }

11.   i++;

12. }while(i<N);

Acquire(R)

Release(R)

i<3 i>=3

N times
E1

E2 E3

E4

E5

E0

(a) (b)

Acquire(R)

Release(R)

N times
in = <R,0>

out = <R,1>

Join

in = <R,1>

out = <R,0>

in = <R,1>

out = <R,1>

in = <R,1>

out = <R,1>

out = <R,1>

in = <R,0> in = <R,1>

E1

E2 E3

E4

E5

.

i<3 i>=3

E0

Acquire(R)

Release(R)

N times
E1

E2 E3

E4

E5

acq_R++

rel_R++

assert(Prop )

Prop : acq_R - rel_R <= 0 (i.e. resource R is not acquired)

i<3 i>=3

E0

(c) (d)

E1

E2

E4

i = 2

Acquire(R)

Release(R)

acq_R = 2

rel_R = 2

E1

E3

E4

i = 3

Acquire(R)

acq_R = 3

acq_R = 3

Release(R)
E2

E4

rel_R = 1

Acquire(R)
E1

acq_R = 1

i = 1

assert(Prop ) E5
assertion

violated

Symbolic Input: N

E0

E1

E2

E4

i = 2

Acquire(R)

Release(R)

acq_R = 2

rel_R = 2

E5
E3

E4

Release(R)
E2

E4

rel_R = 1

Acquire(R)
E1

acq_R = 1

Symbolic Input: N

i = 1

assertion

valid

assert(Prop )

bounded at 

depth 2

resource leak not detected

E0

(e) (f)

Figure 38: Overview by example (a) example code with a potential resource leak (b) CFG othe
example code (c) static analysis of the code. Input and output abstract states are shown
for each node in the graph (d) assertion added to the exit node of the graph (e) symbolic
exploration and test case generation (f) limitation while using bounded symbolic execution

95



execution (on the property of interest) along a program path. More specifically, the update
operation reflects the effect of executing an instruction over the abstract state and has the type
of Equation 34.

U : D× P→ D (34)

The abstract join operation (J), on the other hand, is used to combine two abstract states into
one. In our implementation, the join operation computes the least upper bound on the abstract
domain (D). Whenever there are multiple abstract states coming from different control flows
into a program point, we use the abstract join operation to combine them. The abstract join
operation has the type of Equation 35.

J : D× D → D (35)

The property of interest in our framework is shown in Property 1. A resource can be
present in either of these two states : acquired or not acquired. Furthermore, if a resource is
reference-counted, it is associated with an integer that is incremented whenever the resource
is acquired, and decremented whenever the resource is released. If there are one or more
resources that are in the acquired state at the end of the detection phase we report the potential
for an energy bug.

Property 1. All energy-intensive, hardware resources and power-management utilities should
be in the released state at all exit nodes of the (analysed) app.

Resources in the Android applications are represented by Java objects. Therefore, we shall
first define the semantics for Java object tracking in subsection 6.4.1. Subsequently, we shall
extend this representation for resource tracking in subsection 6.4.2.

6.4.1 Java Object Tracking

To reliably track Java objects, we need to have a domain D, that abstracts the various memory
structures containing objects. We will need to represent (1) the set of object references (O),
(2) the Java stack (s) and (3) the variables (v).

1. Let O = J ∪ {>} be the set of abstract object references. The set J represents the set
of concrete Java object references. Element o ∈ O either represents a concrete Java
object, or is equal to {>} (any Java object).

2. Let s : N→ O be a function representing an abstract stack state, and let S be the set
of abstract stack states. For any stack state s, the value s(0) represents the top-most
(most recently pushed) element, the value s(1) represents the element pushed before
s(0) and so on.

3. Let v : E→ O be a function representing the abstract variable states, and let V be the
set of such states. The set E represents the set of possible Java variable expressions. An
element in E can refer to a local variable, a member field, or a static field.

The abstract domain (D) for tracking Java objects is of type as shown in Equation 36, where
P(O) represents the power set of all abstract object references, S represents the abstract stack
state and V represents the abstract variable states.

D = P(O)× S×V (36)

96



6.4.2 Resource Tracking

In order to track a resource object we need to extend the domain of D with the state of the
resource and the set of possible acquire locations. The resultant abstract domain D′ is shown
in Equation 37, where K represents all possible states for a resource and P represents the
set of all program points. A resource can either be in acquired or not acquired state. If the
resource is reference counted, its state is equal to the upper bound on the acquire count, or to
the value +∞, if it cannot be statically bounded. Therefore, the resource state K equals the
set N∪+∞.

D′ = D× K× P (37)

Now since our abstract domain has been defined we can further elaborate on the nature of
the abstract operations for resource tracking. The update operation (U′) at a program point P,
can be represented by Equations 38 and 39. Here d′ ∈ D′ and d′ = 〈d, k, p〉, where d ∈ D,
k ∈ K represents the state of the resource and p is the set of acquire locations.

U′ : D′ × P→ D′ (38)

U′(d′, P) =


U •Ures(d′, P) , if instruction at P is an acquire

or release instruction

(U(d, P), k, P) , otherwise

(39)

U denotes the abstract update operation for an instruction that is not related to resource
acquire or release. The symbol • denotes function composition. The operation Ures in
Equation 39 is invoked whenever a resource acquire or release instruction is encountered. The
function of Ures is as follows. Whenever we encounter an instruction for acquiring a resource
r, we add P to the set of acquire locations for r. Additionally, if the resource r is reference
counted we increase kr(∈ k) by one, otherwise we set kr to 1. On encountering a release
instruction, we reduce kr(∈ k) by one, if kr > 0.

The join operation (J) can be represented by Equation 40 and 41, where we join resources
from two sets (D1, D2 ∈ D′). If both sets contain the same resource (i.e. associated with the
same Java object), we take the maximum of the reference counts (Max operation in Equation
41), and we merge the acquire-location sets. For all other cases (i.e. when d1 6= d2) we
abstract the Java object to top (>, represents the largest element) and add to the resultant set.

J : D′ × D′ → D′ (40)

Let D1 = 〈d1, k1, p1〉 and D2 = 〈d2, k2, p2〉.

J(D1, D2) =

{
〈d, Max(k1, k2), p1 ∪ p2〉 if d1 = d2;
〈>, k1, p1〉 ∪ 〈>, k2, p2〉 otherwise.

(41)

6.4.3 Detecting Potential Energy Bugs, Instrumenting Assertions

As a result of the abstract interpretation analysis, we can get the abstract state at each program
point. Let 〈d, k, p〉 ∈ D′ be the abstract state at the end of the program. Then k represents the
state of resources at the end of the program. An abstract state at the end of the program with
∃(kr ∈ k), kr > 0 denotes that resource r that may have been acquired but not released on
some path, in the program. In other words, Property 1. is violated. Such a scenario implies
the presence of a potential energy bug.

97



To detect resource leaks, our framework automatically instrument Property 1. as assertions
at all exit node of the (analysed) app. The exact instrumentation slightly differs for reference
counted and non-reference counted resources. However, in the both cases we first instrument
two new counter variables acq_r and rel_r for each (potentially) unreleased resource r. The
instrumentation is such that the variable acq_r is increased every time resource r is acquired
and variable rel_r is increased every time resource r is released. For a reference counted
resource, the assertions is such that it checks the value of formula acq_r − rel_r ≤ 0 i.e.
there are at least as many releases as acquires for the resource r. Whereas for a non-reference
counted resource the assertions checks the value of formula acq_r 6= 0∧ rel_r = 0 i.e. there
are one or more acquires but no releases for resource r. Once instrumented these assertion are
tested for violations in the validation phase.

6.5 VA L I DAT I O N

The potential energy bugs detected in the previous phase are validated in this phase. In
this phase, we use a symbolic execution based technique to test the assertions instrumented
in the previous phase. It is worthwhile to know that symbolically executing the entire
application may often be impractical due to the issue of state-space explosion. Therefore,
before symbolically exploring a potentially buggy application, we apply a couple of search
space reduction techniques to reduce the number of program paths that need to be explored
(in ordered to validate or invalidate the instrumented assertions). The search-space reduction
techniques, namely (a) Transitive closure computation of EFG and (b) Symbolic input
reduction, are discussed in Section 6.5.1. Subsequently, test input generation process is
detailed in Section 6.5.2. The complete flow of the validation phase is shown in Figure 39.

Figure 39: Overview of the validation process

6.5.1 Search Space Reduction

Transitive closure computation of EFG: The event flow graph (EFG) of an application
captures all events in an application. However, some of the events (represented by nodes in
the EFG) may not influence the acquiring of a resource in any feasible execution. Therefore,
such events (EFG nodes) can be excluded during exploration. The nodes that need to be
explored are grouped into two sets. The first set (S1) consists of all nodes that fall on a path
from an entry node to the resource acquiring node. The second set (S2) consists of all nodes
that fall on a path from the resource acquiring node to an exit node. All nodes that are not
contained in these two sets (i.e. S1

⋃
S2) need not be explored symbolically. This computation

98



is repeated for all resources that may lead to potential energy bugs (as reported in detection
phase). Figure 40 shows an example of transitive closure computation. In Figure 40(a) there
are three paths from entry node (E1) to exit node (E6), however only the path E1− E3− E6
is of interest for checking the validity of Property 1.

E1

E2 E3

E4 E5

E6

resource 

acqurie 

location

E1

E2 E3

E4 E5

E6

resource 

acqurie 

location

(a) (b)

Figure 40: Example of transitive closure computation. EFG node E3 is resource acquire location.
Transitive closure computation gives the list of nodes shown in shaded in (b)

Symbolic input reduction: Techniques based on symbolic exploration often face the issue of
scalability whenever there are a large number of symbolic program states to be explored. The
number of symbolic states to be explored is directly influenced by the number of symbolic
inputs to the program. Since Android applications are event-driven, inputs to an application
may arrive during execution. As shown in Figure 36, the two potential inputs for an Android
application are (i) the return value of an Android API call, and (ii) the arguments supplied to
an application-level event handler when the Android system invokes the callback routine (due
to an event trigger). A typical Android application may receive many such inputs (e.g. the
application may frequently invoke Android APIs and read the return values). As the values
of the inputs are not known statically, we have to treat the input values as symbolic during
exploration. However, exploring the program with all input variables made symbolic may be
very expensive (or even impractical). To alleviate this issue, we selectively make an input
variable symbolic only if that input-variable may affect the execution of program paths where
the potential resource leaks are reported.

To realize this, we use an existing static program slicing technique to capture the set
of instructions in a program that may influence the execution of the program towards an
energy bug, due to a resource R. Specifically, for each acquire(release) site of resource R,
we statically compute a backward slice with respect to the instruction that acquires(releases)
R. Subsequently, only the input variables that are used by any instruction captured in any of
the computed slice have to be made symbolic. Figure 41 shows a simple example of slicing
algorithm shown in Algorithm 2. The bold lines (figure on the right) shows the slice after
application of Algorithm 2. The inputs to this example program are i1, i2, i3 and i4
while v1 and v2 are local variables. For the resource to be acquired and not released, only
input variables i1 and i2 ( source code lines numbers 1, 2, 3, 8, 9 and 10 ) are relevant. It is
worthwhile to note that the entire else branch (lines 13 - 19) is irrelevant as no resource is
ever acquired if the execution comes to the else branch.

6.5.2 Test Input Generation

The final step in the validation phase is the generation of test inputs that expose assertion
violation (and hence energy bugs) in the analysed app. For this purpose we use the tool
JPF-SE [139], which is a symbolic execution extension for the tool Java PathFinder (JPF). It is
worthwhile to know that Android apps, unlike conventional Java programs do not have a main
method as the starting point of execution. Instead the execution of an Android application

99



Algorithm 2 Slicing for relevant inputs in a
program

1: Input:
2: R: resource that may be involved in an

energy bug
3: Output:
4: V: the set of input variables to be made

symbolic
5:

6: T ← {}
7: for all acquire sites of resource R, Iacq do
8: S← compute backward slice w.r.t. in-

struction Iacq
9: T ← T ∪ S

10: end for
11: for all release sites of resource R, Irel do
12: S← compute backward slice w.r.t. in-

struction Irel
13: T ← T ∪ S
14: end for
15: V ← PARSESLICE(T)
16:

17: function PARSESLICE(slice)
18: return set of all input variables that

are used in any instruction contained in
slice

19: end function

1 if (i1 == 0) {

2  if (i2 == 0) {

3   v1 = 0;

4  }

5  if (i3 == 0) {

6   v2 = 0 ;

7  }

8  acquire(R);

9  if (v1 == 0) {

10   release(R);

11  }

12 }

13 else {

14  if(i4 == 0) {

15   release(R) ;

16  } else {

17   v1 = 0 ;

18  }

19 }

      Set of relevant inputs: i1, i2

Figure 41: An example showing how our slicing algorithm (Algorithm 2) works.

100



starts from a root UI screen. JPF-SE however works for conventional JAVA programs only,
therefore our framework automatically generates a driver file that represents the structure
of the analysed app’s EFG. The generation of the driver code is a straightforward process.
The first event handler to be called in the driver is that of the root UI screen, followed by
its child nodes (event handlers). In the scenario where an EFG node E contains multiple
child nodes c1, c2, . . . , ci, we create conditional branch statements for each child node ci.
The execution of a conditional branch statement is decided based on a newly added variable
ctrl_E. Essentially, the variable ctrl_E represents the event (or user input) that decides the
execution of a child node at E. While executing the application symbolically, we make the
variable ctrl_E symbolic. This allows us to explore all possible event sequences at a given
EFG node in the application. Figure 42 shows an example for driver code generation.

(a) (b)

Figure 42: An example for driver code generation

As described in Section 6.4.3, for all potential energy bugs reported by the detection phase,
we instrument assertions at the exit points in the EFG. Symbolically executing through the
application via the driver code allows us to check the validity of the instrumented assertions.
Each assertion violation is recorded and the corresponding failure revealing test-cases is
presented to the developer as a witness for the reported bug.

Following sequence provides an example of a bug-revealing test sequence generated by our
framework for the app Tachometer. The bug-revealing test sequence contains all the informa-
tion that the developer needs to replicated the reported bug. For instance in the following ex-
ample the bug-revealing scenarios tell about the UI events and their relative ordering that needs
to be triggered to observed the reported bug. In addition, the framework also reports the event-
handler signatures (shows in square brackets in the following example), to further assist the
developer. It is worthwhile to know that a single user event can trigger multiple event-handlers,
such as in the following example, event id/button1/TAPSCREEN_120_93 triggers
event-handler WahlActivity$1_onClick followed by PositionActivity_onCreate.

Buggy Sequence:
entryNode/KEYPRESS_82 [WahlActivity_onCreate]
-> id/button1/TAPSCREEN_120_93 [WahlActivity$1_onClick]
-> [PositionActivity_onCreate]
-> MenuButton/KEYPRESS_82/
-> BackButton/KEYPRESS_4/
-> [PositionActivity_onPause]

Figure 43: Test case generated for app Tachometer

101



6.6 AU TO M AT E D R E PA I R

In the final phase, our framework automatically generates repair expressions for the validated
energy bugs. Figure 45 shows the work-flow of this final phase. To generate a repair
expression, we need to determine (i) the repair expression and (ii) the repair location. The
repair expression is affected by the choice of repair location and hence we first discuss how
the repair location is obtained.

Activity 1 Activity 2

Resource Acquired

onCreate() onCreate()onPause() onPause()

Resource Location 1 Resource Location 2

Figure 44: An example scenario

It is worthwhile to mention that the objective of the repair phase is primarily to fix the
reported energy bug. In some scenarios there might be multiple locations at which the repair
expression can be added. Techniques such as those discussed in [59] can be used for finding
the optimal repaired program from a set of repaired programs. However, for our work we
would only consider repairing such that the repaired program does not fail at the energy bug
revealing test case. For example, in the simplistic scenario shown in Figure 44, the repair
code can be either put at RepairLocation1 or at RepairLocation2, depending on whether or
not Activity 2 needs the resource acquired in Activity 1. For energy efficiency, an acquired
resource should be released as soon as it is not required anymore. However, determining
whether an acquired resource is still needed may not feasible just by analyzing the instructions
of the application code. This is because for certain resources, such as Wakelocks, last-use
information is not explicitly found in the application code (a Wakelock prevents the CPU
from going to sleep as long as it is acquired). In such cases, we choose a conservative repair
strategy for our framework. The repair expression is always put in the last method (onPause)
of the exiting activity in the bug revealing test case (generated by the validation phase). Our
strategy is always guaranteed to fix the energy bugs as witnessed by the test case, but the
automatically generated repair may not be optimal under all circumstances.

<resource_expr> . <release_API_call> (42)

Get Resource

Acquire Activity

Get Exiting

Activity

Acquire Activity 

= Exiting Activity? 

Get Resource Variable, 

Argument Names

Put Release Expression in 

Exiting Activity

Generate Resource 

Release Expression 

Generate New 

Global File

Share Variable, 

Argument Names 

Using Global File

Yes

No

Figure 45: Work flow for automated repair in our framework

102



The repair expression automatically generated by our framework has the format shown in
Equation 42. resource_expr in Equation 42 denotes the expression to access the resource
object at the repair location and release_API_call represents the API call to release the
resource object. To form a syntactically correct repair expression we need to obtain the
variable name for the resource object and the arguments to the release API call. These
information are obtained from the result of the detection phase (described in Section 6.4).
In the scenario where resource acquiring activity and exiting activity are different (such as in
the example of Figure 44), our framework adds additional pieces of code to ensure syntactic
correctness. In particular, a new global file is automatically added by our framework. This
global file is used to share the resource variable name and parameters to release API call from
the resource acquiring activity to the exiting activity. This work-flow is also shown in Figure
45.

6.7 E C L I P S E P L U G I N E N E R G Y PAT C H

Dynodroid based 

EFG generation
(reads app class �les & 

explores GUI automatically )

XML Layout Parsing

based EFG generation
( reads app class �les & parses

(GUI-related) XML �les 

automatically. Edges between 

GUI events  added manually) 

App 
(Eclipse workspace

provides class �les, XML 

layout, Manifest �les, 

etc)

EFG
( Event Flow Graph )

Validation

Energy Bug Free

/ Repaired App

Set of system call APIs

that are used to access 

energy heavy resources

OR

1. Finds the class/method that needs   

 to be �xed

2. Generates the repair expression

1. Analyses class �les

2. Detects presence of energy bugs

3. Instruments class �les for the 

validation phase

1. Generates driver �le

2. Executes symbolically

3. Generate test inputs (in case of 

    assertion failure)

Repair

Driver Generator

+

Java Path Finder

Custom abstract

interpretation

engine

Repair

code

generation

Detection

Figure 46: Work flow inside EnergyPatch

Our framework has been implemented into an Eclipse plugin named EnergyPatch. This source
code for the plugin is available under the BSD 3-Clause license [140] from BitBucket[137].
In this section we shall briefly describe the structure and working of the tool. An interested
reader can find the detailed instructions for installation and usage at http://www.comp.
nus.edu.sg/~rpembed/epatch/home.html.
Figure 46 shows the work flow of EnergyPatch. In the plugin, the EFG generation can be done
by using an automatic GUI exploration tool Dynodroid [81] or by parsing the GUI-related
XML files from the app (In Android, it is common practice to specify the GUI layout of the
app by means of XML files). We have also added an option (cf. Figure 47 (a)) that allows
the developer to manually augment any additional flow dependencies (intra or inter event)
within the EFG. This can be an useful feature in the case where the automatic GUI exploration
misses any event in the EFG during exploration.

For the detection phase, we have implemented an abstract interpretor for Java bytecode
(for app class files). The abstract interpretation based analysis also requires the set of resources
and associated API calls that need to be tracked with in the app. This information is also
provided through an XML file and can be modified/replaced by the user as required. In case
the abstract interpretor does not find any energy bugs, the analysis stops. However, in the
case where potential energy bugs are found, the framework alerts the developer of same. This
potential energy bug information is mapped to the EFG of analysed app and displayed in the

103

http://www.comp.nus.edu.sg/~rpembed/epatch/home.html
http://www.comp.nus.edu.sg/~rpembed/epatch/home.html


graph view of the tool (Figure 47(b) shows an example). Such a pictorial representation may
further assist the developer in understanding the debugging process.

In case a potential energy bug is found, the validation phase generates the driver code
as described in Section 6.5.2. Also the required class files (from the analysed app) are
instrumented using ASM [141], as described in Section 6.4.3. Subsequently, the app (after
search space reduction as described in Section 6.5.1) is executed symbolically. For Symbolic
execution, our tool relies on Java Pathfinder (JPF), more specifically three components of
JPF: JPF-core [142] , JPF-SE [143] and JPF-Android [144]. Where JPF-core provides the
base JPF classes, JPF-SE provides the symbolic execution support and JPF-Android provides
the model of Android framework. During symbolic execution, all assertion violations are
reported to the developer. All reports are accompanied by a witness test-case, that can be used
to replicate the said energy bug, using a mobile device and a power meter. Subsequently, the
repair expressions are generated and presented to the developer as described in section 6.6.

(a) (b)

Figure 47: Screenshot of EnergyPatch (a) shows how developer can manually augment EFG (b)
visualization inside tool showing information such as the structure of the EFG, buggy
nodes, etc

6.8 E X P E R I M E N TA L E VA L UAT I O N

Experiments for the evaluation of framework answer the following research questions: (i)
Efficacy of our framework i.e. how effective is our framework in uncovering test cases that lead
to real energy bugs (ii) Importance of the detection phased in our framework (iii) Effectiveness
of the automated repair i.e. does the repair expression generated by our framework actually
makes the application more energy efficient? and finally (iv) Comparison of our framework
with existing works on resource leak detection in mobile apps. We shall discuss these research
questions in Sections 6.8.2 - 6.8.5. However first we shall discuss the experimental setup and
choice of subject apps in Section 6.8.1.

6.8.1 Experimental Setup

We created a suite of subject apps using 35 apps available from online sources such as Google
Play, F-droid app repository, Github and Google Code. These apps are diverse in terms of
functionality, complexity, application size and popularity (based on user ratings and number
of downloads for apps available from Google Play). It is worthwhile to know that energy bugs
can manifest only in those apps where energy-intensive Android API calls have been used
(as discussed in Section 6.2.3), therefore, while creating the suite of subject apps we only

104



Table 10: Subject apps for which energy bugs have been reported through bug-reports and/or previous
publications

App Name, ver-
sion / code

App Description LoC /
Size(KB)

Event
Handler
Classes

Defect Description

Aripuca, 1.3.4 /
24 [108]

Recording tracks
and saves way-
points

8093 / 660
14

Moving from MainActivity to WaypointAc-
tivity causes location updates to stay on even
after the app is paused

2 Omnidroid,
0.2.1 / 6 [123]

Automated even-
t/action manager for
Android

12425 /
258

28
Location updates started by the app are not
stopped after app is paused or phone is
restarted

Tachometer 1.0
/ 1 [121]

App to measure lo-
cation and speed

793 / 540
9

Selecting PositionActivity from main screen
of the app causes location updates to be ac-
quired but not released

4,2 Bab-
blesink 1.0 / 1
[145]

An app to help lo-
cate lost phones

521 / 21
1

An exception may cause the app to have a
potential wakelock bug

Sensor Tester
1.0 / 1 [126]

Sensor monitoring
and logging app

1719 / 400
6

App acquires location and sensor services
without releasing them on app pause

Aagtl 1.0.31 /
31

Geocaching based
app for Android

20572 /
307

4
Pressing Home button during cache down-
load causes the wakelock to remain acquired
by the app

2 DroidAR 1.0
/ 1 [146]

An augmented-
reality app for
Android

18177 /
398

6
Going to the ArActivity then switching back
to another activity causes the GPS to stay on
even after closing app

Benchmark
1.1.5 / 9 [147]

Benchmarking app
for Android

9739 /
1020

23
Navigating from Benchmark activity to
show results causes the wakelock to be not
released by the app

♦,2 Osmdroid
3.0.1 / 2[148]

Provides replace-
ment for Android’s
MapView

8107 / 276
10

Selecting the sample loader followed by first
sample causes the app to not release the lo-
cation updates

2 Recycle-
locator 1.0 / 1
[149]

Area-specific rest-
room, mailbox find-
ing app

717 / 116
3

Location services are not disabled when the
map module is paused as a result GPS is
constantly looking for a signal

2 SP Transport
1.17 / 18 [150]

Android app that as-
sists in bus-travel

1766 / 161
3

Defective behaviour observed in the Loca-
tionView class, GPS is never turned off
when the activity is paused

4,2 Ushaidi
v2.2 / 13 [151]

App for Collection,
visualization for cri-
sis data

10621 /
713

22
CheckinMap keeps the GPS on, even after
the user has navigated away from the activity

2 Zmanim
3.3.84.296 / 84
[152]

List of halachic / ha-
lakhic times

72977 /
842

4
GPS signal acquisition from the ZmanimAc-
tivity is never stopped even after the app is
paused

2: app used in [83] 4 : app used in [76] ♦ : app used in [77]

choose apps that have usage of atleast one energy-intensive component (such as wakelock,
GPS, Wifi, etc). In addition, we also try to make the suite of subject apps diverse by including
apps that use different kinds of energy-intensive resources (such as wakelock, sensor, GPS,
Wifi, etc). Additionally, the test-suite also includes apps that were used in our previous works
such as [2] and other related works such as [83], [76] and [77]. This will allows us to compare
our framework with existing related works. Table 18 lists down a few details of the subject
apps which contains energy bugs. These details include the app description, app size (LoC),
number of event handlers and defect description for each of these apps. In Table 18, apps
used in [83] are marked using the symbol 2, apps used in [76] are marked using the symbol
4 and apps from [77] are marked using the symbol ♦.

Our test-generation and repair framework was implemented in Java. It was run on a on a
Desktop-PC with an Intel Core i7-2600 CPU (quad-core) with 8GB of RAM and Ubuntu 14.04

105



Table 11: Results of Detection/Validation phase for app listed in Table 18

App name Resources Detection Phase Validation Phase
Not Released Time (s) Scenario Time (s) Event-handlers Invoked

Aripuca GPS 21 Activity Switching 53 17
Omnidroid GPS 3 Activity Switching 44 3

Tachometer
Sensor

<1 Resource Acquire Loop 12 6
GPS

Babblesink Wakelock <1 Uncaught Exception 2 n/a (app crashes)

Sensor Tester
Sensor

4
Resource Acquire Loop

32 7
GPS Activity Switching

Aagtl Wakelock 4 Activity Switching 28 4
DroidAR GPS 6 Activity Switching 51 5

Benchmark Wakelock 4 Activity Switching 3 3
Osmdroid GPS 5 Activity Switching 14 6

Recycle-locator GPS 1 Activity Switching 3 4
SP Transport GPS 2 Activity Switching 3 5

Ushaidi GPS 4 Activity Switching 4 6
Zmanim GPS 7 Activity Switching 34 5

OS. The mobile device used to run app was an off-the-shelf LG Optimus E400 smartphone.
This mobile device was running an Android Gingerbread(v2.3.6) operating system(OS),
which was the most widely used OS at the time of these experiments. It is worthwhile to
know that newer versions of Android such as Android Jelly Bean and Ice Cream Sandwich
have similar API calls (for resource usage) to that of Android Gingerbread (v2.3.6), therefore
our framework should work equally well for app intended for these platforms as well. Finally,
for measuring energy savings in the patched apps we used a Yokogawa WT210 digital power
meter using the a setup shown in Figure 57.

6.8.2 Efficacy of Our Framework

The most important research question in the evaluation is about finding out the efficacy of
our framework in finding and reporting energy bugs in real-life Android apps. To answer this
we ran our framework for all subject apps (including the apps listed in Table 18) to observe,
(i) if our framework could detect energy bugs and (ii) whether the test-cases generated our
framework can be used to replicate these reported bugs on a real mobile-device.

In our experiments, our framework reported bugs (with test-cases) for 12 of the apps.
Among these 12 apps, 8 had energy bugs involving GPS (not all apps use the same APIs
for accessing the GPS), 2 apps had energy bugs involving both the GPS and Sensors and
2 apps had energy-bugs due to improper usage of Wakelocks. It is important to know that
our framework reports the presence of energy bugs in an app only after both the detection
(static analysis) and validation (symbolic execution) phases have been completed. It is also
worthwhile to know that our framework has a relatively less performance overhead as both the
computationally intensives phases i.e. the detection and validation phases, were completed in
approximately a minute even though some of the application were significantly large with
thousands of lines of code. This goes on to show that our framework can be applied to energy
bug detection in real-life apps. When we manually inspected the apps for which potential
energy bugs were detected we observed following three scenarios:

i. Activity Switching: a resource is acquired in an activity, however the app navigates to
another activity or stops execution without releasing the acquired resource.

ii. Resource Acquire Loop: a resource is repeatedly acquired within a loop however it is
not released a sufficient number of times before exiting the application.

106



iii. Uncaught Exception: unexpected execution flow in the program due to uncaught
exception may leave resource(s) in the acquired state.

To check the usefulness of the generated test-cases we manually replayed these test-inputs
on the test device and compared the resource states using the debugging tool Android debug
bridge. By doing this additional step we were able to confirm that the test cases do indeed lead
to buggy scenarios. Additionally, for some apps such as DroidAR, Osmdroid, Recycle-locator,
SP Transport and Ushaidi there exists user reports (on code repositories) describing the
user-observed energy-related defect. For these apps, we were able to compare the test-cases
generated by our framework to the test-scenarios reported by the user. We observed significant
similarities in these comparisons as well. In the following subsection, we shall describe our
observations from the analysis for two apps Sensor Tester and Babblesink in more details. For
one these apps, Sensor Tester our framework generates failure-revealing test-case whereas
for the other Babblesink our framework detected potential for an energy bugs but still did not
generate any failure-revealing test-cases.

Case Studies

Sensor Tester[153] app allows its user to monitor and log data from Sensor/GPS on the mobile
device. An user can start/stop logging data from the sensor by simply toggling the "Logging"
button. For this app, the detection phase reported two potential bugs, one due to Sensor
and another due to the GPS. Further evaluation with JPF-SE validated the presence of these
bugs. JPF output (test cases) suggest that while the application is logging data, pressing the
"Back" button exits the application but does not release the acquired resources. Additionally,
every time the user re-enters the application and restarts logging, a new sensor connection
is established, while the previous sensor connections keep getting accumulated. We also
observed that the GPS stays acquired when the application exits. Testing this app with the
bug-revealing test inputs on a fully charged smartphone caused the battery to completely drain
in less than eight hours (standby time of the test device is approximately 600 hours[136]).
Babblesink [145] app allows the owner of a lost phone to locate it. For this app, the detection
phase of our framework reported a potential Wakelock related energy bug. However, further
analysis during the validation phase failed to produce a feasible test case that triggers the
reported bug. In the app, a Wakelock object is acquired to ensure the interruption-free
initialization of an IntentService. Ideally, the Wakelock should have been released after the
initialization of the IntentService is completed. However, there exists a path in the application
that will bypass the release instruction. This path is executed when an exception occurs after
the acquire instruction for the Wakelock object has been executed but before the execution of
the release instruction. This bug was initially reported by [76]. We manually inspected this
app to find out the reason due to which the validation phase did generate any valid test-case.
We observed that the exception that caused the release code to be skipped actually crashes the
app because it is uncaught up to the top level function of the application. Since all acquired
Wakelocks are released in the event of an app crash, no actual energy bug can occur in any
feasible execution scenario therefore the validation phase couldn’t generate any test-case for
this app.

6.8.3 Importance of Detection Phase in the Framework

We have emphasized in previous sections (c.f. Section 6.3), that the use of static analysis in the
detection phase make our framework scalable and also helps in reducing the overall analysis
time. Here we present some observations to support these claims. We compare the (Symbolic

107



Execution) SE only approach to the (Abstract Interpretation + Symbolic Execution)AI+SE
approach for uncovering energy bugs, where

• SE only approach implies only symbolic execution is used to uncover energy bug(s)
without the preceding static analysis

• AI+SE approach (our approach) implies that we perform static analysis (Abstract
Interpretation or AI) followed by validation (Symbolic Execution or SE)

Specifically, we conducted experiments for two scenarios: (i) analysis time for both ap-
proaches in the absence of energy bugs, and (ii) analysis time for both approaches if energy
bugs do exist. For the scenario where no energy bugs exist, static analysis terminates relatively
fast (less than 15 seconds) when using the AI+SE approach (the one implemented in our
framework). Additionally, since the results of the detection phase are always sound, we can
be assured that no energy bug indeed exists at least for the portion of app represented by its
EFG. However, to come to the same conclusion using SE only approach, all feasible program
paths must be explored. Since there can be an unbounded number of event sequences in an
app (because UI elements in the app can be repeatedly navigated), the SE only approach can
potential take forever to conclude.

For the second scenario (where at least one energy bug exists in the analysed app), the
AI+SE approach can produce results in up to one-third of the time of SE only approach
for certain apps (e.g. validation time for Omnidroid [154] was 117 seconds for SE only
as compared to 44 seconds for the AI+SE approach). This difference in evaluation time
happens because the detection phase of our framework helps in search space reduction. The
magnitude of search space reduction is directly influenced by the program location at which
the (energy-bug-causing) resource/utility is acquired. The farther the (energy-bug-causing)
program location is from the root UI node, the more the gains by using our search space
reduction technique.

6.8.4 Effectiveness of Automated Repair

Our framework uses the test-cases generated by the validation phase to generate the repair
expressions (described in Section 6.6). For instance, the test case for the app Tachometer that
is shown in Figure 43, is used to generate the repair for class PositionActivity.java
as shown in Figure 48.

Figure 48: Repair expression for app Tachometer

To evaluate the effectiveness of the repair, we compared the energy consumption of the original
app to that of the repaired app, for the buggy test-input. The setup for energy-measurement
used a test device (LG Optimus E400 smartphone running Android v2.3.6) and a power meter
as shown in Figure 29. The power meter used in our experiments was Yokogawa WT210 that
has approximate sampling rate of 50 KS/s . Energy consumption of the device is measured
for a period of 300 seconds after the bug revealing test-case has been executed. This is done

108



to measure the impact of the buggy app code on the energy-consumption behaviour of the
device. It is worthwhile to know that the test-cases were executed manually. Also no other
apps were being executed on the test-device while the power-measurement experiments were
being conducted. Power measurements were conducted thrice for each experiment and the
average value for reading were computed. Additionally, during these experiments the screen
timeout duration of the device was set to 30 seconds. Table 12 shows the increase in energy
efficiency of the buggy apps before and after the repair has been applied.

Table 12: Improvement in energy consumption of all apps with validated energy bugs after the
automatic repair

App Name Energy Consumption (J) Avg. Improvement
Before Repair After Repair %

Aripuca 161.3 89.0 44.8
Omnidroid 103.4 89.3 13.6
Tachometer 224.3 89.5 60.1

Sensor Tester 205.9 88.5 56.0
Aagtl 91.7 74.6 18.6

Benchmark 125.1 81.6 34.7
DroidAR 192.4 76.1 60.4
Osmdroid 197.5 75.7 61.6

Recycle-locator 186.8 76.9 58.9
SP Transport 208.2 84.2 59.5

Ushaidi 217.4 85.0 60.9
Zmanim 197.8 79.5 59.8

6.8.5 Comparison with Existing Works

The works of [76], [77] and [83], are most related to our current work as they all presents
techniques for detecting and/or characterizing resource leaks in mobile apps. Therefore, in
this subsection we shall discuss how our technique compares to the technique presented in
these works. Additionally, we shall see how effective our framework is when analysing the
subject program used by these works.

The works of [76], [77] use static analysis to detect resource leaks in Android apps. In
particular, [76] proposes a technique based on data-flow analysis, whereas, the technique
presented in [77] is based on function call graph traversal. Both of these works have observed
that their technique may produce some false positives. Unlike our framework, the techniques
used in these works do not have a dynamic analysis or a test-generation phase, as a result there
is no mechanism to automatically prune out the false positives that may be introduced due to
the over-approximations in the static analysis phase. One such false positive was observed
for the app Babblesink which was described in the section 6.8.2. Unfortunately, we could
only obtain the source-code for three apps from [76] and [77] (some apps of [77] were closed
source whereas some programs used in [76] were individual class file from older versions
of the Android framework). Those apps for which we could obtain the source-code, our
framework was able to successfully find bugs in two of them (Osmdroid and Ushaidi) while
for the third app Babblesink our framework reported that no feasible test-cases was present
to trigger a potential resource leak. More details of the Babblesink analysis can be found in
Section 6.8.2.

The work in [83] proposes a dynamic analysis based technique for resource leak detection.
In particular, it uses bounded symbolic execution for finding test-cases that lead to resource
leaks. In general, bounded symbolic execution implies that the depth at which symbolic
exploration takes place is bounded. Bounding the depth of symbolic exploration may create
limitations of its own. For instance, if in the example of Figure 38(f), the (loop) bound for
exploration is set to 2 iterations, symbolic exploration would be unable to find any resource

109



leaks. In general, knowing the adequate bound (such that all bugs can be revealed) can be
quite challenging. Therefore, using only symbolic execution may not be optimal strategy for
exploration. On the contrary, in our framework we first use static analysis to conservatively,
detect the presence (or absence) of resource leak, after which we use symbolic execution
to generate test-cases. From the work of [83] we were able to obtain eight apps, seven out
of which we were able to analyse successfully with our framework. For the eighth app,
Babblesink, our framework did not produce any test-cases for reasons mentioned in Section
6.8.2.

6.9 T H R E AT S TO VA L I D I T Y

One of the major threats to the results produced by our framework is due to the incompleteness
of the EFGs used in our analysis. In our framework, EFG of an app is generated using a
dynamic analysis technique. Since we cannot guarantee the completeness of the EFG,
therefore, we cannot provide any completeness guarantee for the generated results as well.
As a consequence of this limitation, in case of incomplete EFG our framework may leave
portions of the app code unanalysed that have not been represented in the EFG.
Another source of threat to the results generated by our framework arises due to the use of
Android framework model. In our framework we use an Android framework model in order
to ensure the correct execution of the app. We have based our Android framework model on
an existing Android model proposed in [144]. It is worthwhile to mention that defects in the
Android framework model can affect the results of our framework, so we invest additional
effort to ensure that the framework model works appropriately.

6.10 C H A P T E R S U M M A RY

In this chapter, we presented a framework that can provide an end-to-end solution for detect-
ing, validating and repairing energy bugs in real-life mobile apps. The use of light-weight
static analysis technique in the detection phase allows us to quickly narrow down the po-
tential program paths along which energy bugs may occur. Subsequent exploration of these
potentially-buggy program paths using dynamic analysis technique helps us in validating these
potential energy bugs. Our framework also generates test-cases for all validated energy-bugs
which can be used by the app-developer to manually recreate the buggy scenarios. Finally, our
framework generates repair expression to fix the validated energy bugs. We implemented our
framework as an Eclipse plugin so that it can be easily installed and used by app-developers
during app-development. We conducted experiments to evaluate the effectiveness and efficacy
of our framework by testing real-life Android apps. During these experiments our framework
reported energy bugs in twelve out of thirty-five tested apps. Also the test-cases generated by
our framework were able to trigger the reported energy bugs on a real mobile-device. Finally,
we compared the energy-consumption of the buggy apps post repair on our test-device. In
these experiments we observed that the repair code generated by our framework can improve
the energy-efficiency of the buggy apps significantly.

110



7
AU TO M AT E D R E - FAC TO R I N G O F
A N D RO I D A P P S TO E N H A N C E E N -
E R G Y- E F F I C I E N C Y

Mobile devices, such as smartphones and tablets, are energy constrained by nature. Therefore, apps
targeted for such platforms must be energy-efficient. However, due to the use of energy-oblivious
design practices, often this is not the case. In this chapter, we present a light-weight, re-factoring
technique that can assist in energy-aware app development. Our technique relies on a set of energy-
efficiency guidelines, that encode the optimal usage of energy-intensive (hardware) resources. Given
a prototype for an app, our technique begins by generating a design-expression for it. A design-
expression can be described as a regular-expression representing the ordering of energy-intensive
resource usages and invocation of key functionalities (event-handlers) within the app. It also generates
a set of defect-expressions, that are design-expression representing the negation of energy-efficiency
guidelines. A non-empty intersection between an app’s design-expression and a defect-expression
indicates violation of a guideline (and therefore, potential for re-factoring). To demonstrate the efficacy
of our technique we analysed a suite of open-source, Android apps with our technique. The resultant
re-factoring when applied, reduced the energy-consumption of these apps between 3 % to 29 %. We
also present a case study for one of our subject apps, that captures its design evolution over a period of
two-years and more than 200 commits. Our framework found re-factoring opportunities in a number
of these commits, that could have been implemented earlier on in the development stages, had the
developer used an energy-aware re-factoring technique such as the one presented in this work.

7.1 I N T RO D U C T I O N

Easy access to app-development tools (such as Eclipse ADT[155]) and a low barrier to entry1

has led to an abundance of mobile apps in recent days. As of year 2015, there were more than
1.8 million apps available on Google Play Store [157] alone. A plethora of online tutorials
and publicly available testing tools, such as MonekyRunner[158], make it relatively easy,
even for new app-developers to develop and test the functionality of their apps. However, the
same cannot be said for the non-functional behaviour of apps, specifically energy-efficiency.
Mobile devices, such as smartphones and tablets, are energy-constrained by nature. Therefore,
it is important that apps targeted at such platforms be designed and optimized for energy-
efficiency. However, due to a combination of factors such as, lack of proper understanding
of energy-efficient designs and a lack of tools that can enforce such energy-efficient designs,
app development has mostly been done in an energy-oblivious manner.

In recent years, research works have proposed a number of techniques (such as profiling
[3], testing [2]) that can be used post development, for quality assurance purposes. Such tech-
niques however, do not provide adequate support for energy-efficient design and development
of apps. In this chapter, we present an orthogonal (and complimentary) approach, to address
this issue. We present a light-weight, re-factoring technique that uses a set of energy-efficiency
guidelines, to generate energy-efficient re-factorings for a given app. These energy-efficiency
guidelines were formulated under the assumption that energy-efficiency can be increased
by optimizing the usage of energy-intensive (hardware) resources. Resources such as I/O
Components and power management utilities have the biggest impact on energy-consumption,

1 Registration fees for a publisher account at Google’s Play store costs 25 USD [156]

111



EFG 

Generation
DFA

Construction
Expression 

Generation

Detect Guideline 

Violation
Re-factor

Expression

User

Feedback

Identify Lines

(source code lines)

Identify Location

(Class/Method)

Design Expression

Refactored Design Expression

EFG DFA
App 

Source

Re-factored 

App Source

DESIGN EXTRACTION

GUIDELINE-BASED 

RE-FACTORING

CODE GENERATIONAbbreviations:
EFG: Event Flow Graph
DFA: Deterministic Finite Automata

Figure 49: An overview of the re-factoring framework

hence their usage must be reduced as much as possible, without affecting the functionality
of the program. Additionally, certain resources (such as sensors) can be accessed through
multiple configurations, each of which provide specific trade-offs between Quality-of-Service
and energy-efficiency. Judicious usage of less-expensive resources, based on the functionality
of the app can further decrease energy consumption.

To detect re-factoring opportunities, our framework checks for violations of (energy-
efficiency) guidelines in a given app. However, doing so directly on the app source-code
may be in-appropriate for a number of reasons. For instance, mobile apps being event-
driven in nature, usually consists of segregated pieces of code (or event-handlers), ordering
between which may not be explicit in the app-source code. This makes it difficult to detect
guideline violations across event-handlers boundaries. Additionally, real-life apps may contain
thousands of lines of code, not all of which affect the energy-consumption behaviour of the
app significantly. Therefore, before our framework looks for re-factoring opportunities, it first
generates an intermediate, succinct representation of the app. This intermediate representation,
henceforth referred to as design-expression, contains only those information which is most
relevant to the energy consumption behaviour of the app. More formally, a design-expression
can be described as a regular expression, that represents the ordering of energy-heavy, resource
usages and invocation of key functionalities (event-handlers), within the app. The use of
design-expression allows us to re-factor energy-intensive resources across event-handler
boundaries. Additionally, since design-expression are customized regular expression we can
use off-the-shelf tools and techniques to analyse/manipulate them. It is also worthwhile to
know that our framework generates the design-expression for a given app automatically.

In order to detect guideline violations our framework also generates a set of defect-
expressions. A defect-expression has same syntax as that of design-expression but represent
the negation of an energy-efficiency guideline. So essentially, design-expression represents
what an app is supposed to do (in order to achieve its functionality) whereas the defect-
expression represents what an app is not supposed to do in order to be energy-efficient. A
non-empty intersection between design-expression and defect-expression indicates violation of
the energy-efficiency guideline that is associated with the defect-expression. It is worthwhile
to know that such an analysis is possible because both the design-expression, as well as the
defect-expression are constructed from the same alphabet. On detecting a guideline violation,
our framework generates a re-factored design-expression such that it has an empty intersection
with the defect-expression. Finally, the re-factored design-expression is presented to the

112



app-developer for approval. If the developer approves the presented re-factoring, the changes
are mapped back to the source code.

7.2 OV E RV I E W

Our framework is composed of three key components (overview shown in Figure 49): (i)
design extraction component (ii) re-factoring component and (iii) code generation component.
The objective of design extraction component is to generate the design-expression for the
app. The most crucial processing happens in the re-factoring component, where the design-
expression is evaluated for guideline violation and design expression re-factoring takes place
(if any guideline violations are detected). Finally, the code generation component maps the
changes from the re-factored design-expression to the app source code. These components are
discussed in detail in sections 7.2.2 - 7.2.4, with the help of an example-app that is described
in Section 7.2.1.

7.2.1 Example App

Screen 1 Screen 2

Figure 50: An example app

To keep the proceeding discussion concrete,
we shall explain the overview of our frame-
work using an example-app. Let us consider
a simple app that allows its user to search for
famous landmarks based on provided key-
words. If the user selects any of the land-
marks, the app shows the landmark on a map,
along with the distance of the device to the
selected landmark. The app has local copies
of all the information (landmark names, co-
ordinates, map tiles, etc) that is required to
do its computation, except for the user/de-
vice location. The user/device location is
obtained through an on-board GPS receiver.
The app initiates the location updates as soon
as it is started and the location updates are stopped only when the app exits (the foreground).
The screen-shots provided in Figure 50 can provide a rough idea about the graphical user
interface (GUI) layout of the app. It is worthwhile to know that location-updates are one of
the most energy-intensive operation on a mobile device and hence it should be used for as
small duration of time as possible. However, in this example-app location-updates have been
used sub-optimally. More specifically, the location updates are active for the entire duration
of time the app is active (in the foreground), whereas the location-updates are used only when
the user selects a landmark (i.e when Screen 2 is shown). Through our framework we wish to
detect and re-factor instances of energy-inefficient behaviour, such as sub-optimal resource
binding as present in this example-app.

7.2.2 Design Extraction

Our framework begins analysis by generating an appropriate intermediate representation of the
app that is to be evaluated. Performing re-factorings directly on the app source code would be
in-appropriate for a number of reasons. For instance, mobile apps being event-driven in nature,

113



usually consists of segregated pieces of code (or event-handlers), ordering between which
may not be explicit in the app-source code. This makes it difficult to detect energy-inefficient
patterns across event-handlers. Additionally, real-life apps may contain thousands of lines
of code, not all of which affect the energy-consumption behaviour of the app significantly.
Therefore, we create a succinct intermediate representation of an app which contains only the
information that is most relevant to its energy consumption behaviour.

Energy consumption in mobile apps has a direct co-relation to the use of Android API calls
that are related to acquire, usage and release of energy-intensive resources [3]. Previous works
such as [159] have found that the Screen, Wifi, GPS, Sensors, Camera, CPU and Keypad
are some of the most energy-intensive resources on a mobile device. Hence, acquire, usage
and release API calls for these energy-intensive resources are included in the intermediate
representation. Additionally, the intermediate representation also captures the different user-
interaction patterns by which an user can interact with the app. Our objective, after all, is to
re-factor an app so as to remove (or at least minimize) the user interaction (UI) patterns that
may lead to energy-inefficient behaviour. Considering all these requirements we create the
notion of design-expression.

Definition 7.2.1 A design-expression is a regular expression which represents the ordering
of Android API calls (acquires, release & usages) for energy-intensive hardware resources
and invocation of event-handlers within an app.

A design-expression is similar to a regular expression in terms of syntax and expressibility.
Like a regular expression, a design-expression is constructed with symbols and operators.
The symbols of the expression are user-inputs (such touches, taps, etc) while operators are
the same as regular grammar (eg. ∗ implies 0 or more). A detailed discussion on regular
expression grammar can be found in [160]. The key advantages of using design-expression
can be summed up as follows:

• It is a succinct representation for an app and contains only that information which
is most relevant to its energy consumption behaviour. It is worthwhile to know that
design-expression can be used to represent the set of all input strings that can be used
to interact with the app.

• Since design-expressions are based on regular expressions we can use a wide-variety of
existing tools and techniques that are applicable to regular expressions, to manipulate
design expression (such as minimizing an expression or computing the intersection of
two expressions, etc).

Generation of the design-expression from app sources takes place in three steps: (i) EFG
Generation, (ii) DFA Construction and (iii) Expression Generation.

(i) EFG Generation: An event-flow graph (EFG) [88] can be used to represent the GUI
model of an app and can be defined as in Definition 7.2.2. Figure 52 shows a simplified EFG
for the example-app of section 7.2.1. The GUI states A and D correspond to app start and
exit states. While the states B and C correspond to the app being in Screen 1 and Screen
2, respectively (cf. Figure 50). The events a and d represent the starting and closing of the
app. Whereas the event b represents the user pressing search button and the event c represents
the user selecting a landmark. Since an user can repeatedly press the search button on the
screen 1 therefore there is a self-loop at EFG node B. It is worthwhile to know that EFGs
for real-life apps can be more complicated because of the omnipresent UIs such as the Back
button and the Menu button. However, for the purpose of simplicity we shall not include these
UIs (Back and Menu button) in the EFG of Figure 52. Finally, the Android API calls xr, ur

114



and yr represent the acquire, usage and release of resource r, (in the example of section 7.2.1
it is location updates).

Definition 7.2.2 An event-flow graph is a directed graph, that captures all possible event-
sequences that can be used to interact with an app. The nodes of an EFG represent GUI states.
A directed edge between two nodes of an EFG X and Y represents that state Y follows state X.
Additionally, nodes of the EFG are annotated with event-handler information associated with
their respective events.

In order to generate the EFG we use an automated, GUI exploration tool Dynodroid
[81]. Dynodroid uses a publicly-available, Android tool Hierarchy Viewer [101], to ob-
tain the UI layout of an app. It then uses this layout information to progressively ex-
plore all the UI states of an app. By extending Dynodroid we can obtain the events
as well the directed edges between the GUI states. We also need to obtain the event
to event-handler mapping information for EFG generation. This information can either
be obtained by modifying the Android platform or instrumenting the apk files. We
choose the later because it is more straightforward and maintainable as it need not be
re-implemented every time the Android platform is updated. In particular, the instru-
mentation is done for event-handlers that are defined in the android.app.activity,
and roid.app.service and android.content.Broadcast Receiver pack-
ages of the Android framework. We also obtain an event-handler to Android API
call mapping for all the energy-intensive resources by statically analysing the byte-
code of an app. For instance, invocation of API call com.google.android.m
aps.MyLocationOverlay.enableMyLocation would be recorded as an acquire
for the resource GPS in the event-handler where the API call was used. It is also worth-
while to mention that this event-handler to Android API call mapping is done in an
object-insensitive manner. For instance, in this location example all invocation of the API
call com.google.android.m aps.MyLocationOverlay.enableMyLocation
would be allocated to the same GPS resource. Finally, the event-handler to Android API call
mapping is combined with the event to event-handler mapping as shown in Figure 51, to
generate the EFG.

Android 

Apk

Explore

UI

Analyse 

Bytecode

event to event-handler 

mapping

Combine EFG

event-handler to Android API call 

mapping

Figure 51: Event-flow graph (EFG) generation

(ii) DFA Construction: Once the EFG is obtained, it is converted into a deterministic finite
automata (DFA). This conversion is done so that we can use standard algorithms to do
DFA-to-Expression generation. The DFA is constructed such that each node in the DFA
either represents the starting of (execution of) an event-handler, stopping of (execution of) an
event-handler, acquiring of a resource, release of a resource or usage of a resource. In the
scenario where an EFG node is not associated with a resource-related Android API call, the
conversion from EFG node to DFA node is straightforward. However, in the scenario where
an EFG node does contain resource-related Android API calls, the EFG node is divided into
multiple DFA nodes (depending on the number of Android API calls contained in the EFG

115



A B C D
App 

Starts

Execution

App 

Stops

Execution

ba c d

GUI States: A,B, C, D ; Entry State:  A ; Exit State:  D ; Events: a,b,c,d 

Resource Acquire: x  ; Resource Release: y  ; Resource Usage  : u

b
x yur r r

r r r

Acquired B_start B_!nishA_start A_!nish

Usage

C_start

C_!nishReleased D_startD_!nish

a x Є b Є

ЄdyЄ

c

u

r

rr

b

EFG

DFA

DFA States: A_start,A_!nish, B_start, B_!nish C_start, C_!nish, D_start, D_!nsih, Acquired, Usage, Released

Entry State:  A_start ; Exit State:  D_!nish

Transitions: a, b, c, d, x  ,u  ,y  ,Є (empty string)r r r

Figure 52: Event-flow graph (EFG) and deterministic finite automata (DFA) for the example-app of
section 7.2.1

node). Finally, the entry states and the exit states are copied from the EFG to the DFA. Figure
52 shows the DFA for the example-app of section 7.2.1.

(iii) Expression Generation: Post DFA construction, we extract the design expression (i.e.
the regular expression) representing the DFA. The conversion from DFA to expression is
done using the standard algorithm as proposed in [160]. Essentially, the algorithm proceeds
by removing the DFA states (and changing the transitions accordingly), until only initial
and final states are remaining. The resultant expression is subsequently minimized using
an off-the-shelf Python library [161]. For instance, the resultant design-expression for the
example-app of section 7.2.1 is axrb∗curdyr.

7.2.3 Guideline-based Re-factoring

The re-factoring component of our framework operates in two steps: detecting guideline
violating patterns and re-factoring. To detect guideline-violating patterns in an app’s design
expression, our framework first generates the defect-expression (for each guideline). A defect-
expression can be described as a design-expression representing the negation of a guideline. A
non-empty intersection between the (app’s) design-expression and defect-expression indicates
the presence of a guideline violating pattern. It is worthwhile to know such an analysis is
possible because the design expression and defect expression are constructed using the same
alphabet.

Consider the example-app from section 7.2.1 where early-resource binding (for location
updates) takes place. Assume that the guideline φ represents the fact that resource binding
should happen as late as possible, then ¬φ (defect expression) represents its negation i.e. the
scenario where early resource binding takes place. The information that there is potentially
long delay (on node B) between the acquire and usage of resource r, can be easily obtained
through our framework. In particular, for the example-app of section 7.2.1 design expression
and defect expression (¬φ) are shown in expressions 1 and 2, respectively. Here • implies all
feasible symbols and ¬ implies negation (of an symbol). Operators ∗ and + represents 0 or
more times and 1 or more times, respectively. A non-empty intersection between expression
43 and expression 44 (shown in expression 45), provides an evidence for guideline violation.

116



Design Expression : axrb∗curdyr (43)

Defect Expression : •∗xr[¬ur][¬ur]
+ur[¬yr]

+yr •∗ (44)

Intersection : axrb+curdyr (45)

Re-factored Expression : ab∗cxrurdyr (46)

In a scenario such as in this example, where guideline-violation is detected, the app’s design
expression is re-factored such that the resultant design-expression has an empty intersection
with the defect expression. The re-factoring method depends on the specific guideline that
has been violated (further described in section 7.3.2), however, following observations can be
stated for all re-factored design-expressions.

• Guideline Conforming: The intersection between the re-factored design expression and
the defect expression is empty. (For example, re-factored design expression shown in
expression 46 has an empty intersection with the defect expression shown in expression
44)

• Functionality Preserving: The re-factoring is such that the original functionality is
preserved. In particular, re-factoring affects the position of resource acquire and/or
release (symbols) in the design expression. However, the resource usage (symbols) are
left untouched. Additionally, the relative ordering between resource acquire, usage and
release (acquire⇒ usage⇒ release) is always ensured.

public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 btn1 = (Button) !ndViewById(R.id.btn1);

 surfaceView = (SurfaceView) !ndViewById(R.id.surfaceView);

 surfaceHolder = surfaceView.getHolder();

 surfaceHolder.addCallback(this);

 surfaceHolder.setType(SurfaceHolder.

     SURFACE_TYPE_PUSH_BUFFERS);

 camera = Camera.open();

 btn1.setOnClickListener(new OnClickListener() {

  @Override

  public void onClick(View v) {

   camera.startPreview();

  }

 });

}

@Override

public void surfaceCreated(SurfaceHolder holder) {

 try {

  camera.setPreviewDisplay(surfaceHolder);

 } catch (!nal Exception e) {

 }

}

@Override

public void surfaceDestroyed(SurfaceHolder holder) {

 camera.stopPreview();

 camera.release();

 camera = null;

}

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

22

23

24

25

26

27

28

29

30

31

onCreate part of Acitivity li!cyle

Called when user starts apps

Camera acquired

Invoked when user

 clicks Button 1

Camera usage started

captured video is shown on screen

Camera released

Preview stopped

Btn P layer1

Btn Pause

Btn  P layer2

Exit  Node

(onPause called)

Entry  Node

(onCreate called)

Where the wakelock 

is needed

Where the wakelock 

is acquired

.

(a) (b)
Figure 53: (a) A code fragment showing sub-optimal camera binding, (b) Sub-optimal Wakelock

acquisition in app ChessClock

7.2.4 Code Generation

Once the design expression has been re-factored and the changes approved by the app-
developer, we can map the changes back to the source-code. This is done in two steps:
identifying the re-factored location (source-code line numbers within event-handlers) and
implementing the changes to new location. As described in the previous section, re-factoring
initially happens at the level of design expression, where each symbol in the design-expression
corresponds to some event or acquire/usage/release of a resource in the app. It is worthwhile to

117



know that re-factoring only affects the position of resource acquire/release (relative to events)
in the design expression. Therefore, by comparing the original design-expression to the
re-factored one we can identify the event-handlers that need to be modified. More specifically,
two sets of event-handlers are modified: event-handlers where the resource acquire/release
Android API call used to be (in the original expression) and event-handlers where the resource
acquire/release Android API call need to be (obtained from the re-factored expression). For
instance, observe that the resource acquire symbol, xr, in expression 46 is moved after event
c suggesting that Android API call for resource acquire should be moved to the event-handler
for invocation of GUI state C (original location of Android API call represented by xr was
in GUI state A). It is worthwhile to know that we record the event-handler to source-code
mapping information during the EFG generation step. Therefore, we can easily identify the
event-handlers that need to be modified to implement the re-factoring. Additional (syntax-
level) information that may be needed to conduct the re-factoring (such as parameters to the
Android API call) are obtained through flow-analysis on the original source code.

Table 13: Configuring resources for different QoS and energy-efficiency

Location Updates Sensor Updates Wakelocks
(GPS/Network) (accelerometer,orientation, etc ) (Screen, CPU, Keypad)

High Power
gps_provider sensor_delay_fastest

full_wake_lock,
Consumption screen_bright_wake_lock

Moderate Power
network_provider sensor_delay_game screen_dim_wake_lock

Consumption
Low Power

passive_provider
sensor_delay_normal,

partial_wake_lock
Consumption sensor_delay_ui

locationManager.requestLocationUpdates(<provider>, <minTime>, <minDistance>, locationListener);

provides access to location 

based reqources

listens to location

updates

con!gure the provider

(gps/network/passive)

minimum time between

location updates

minimum distance between

location updates

Figure 54: Various parameter that affect QoS, energy-consumption for location updates

7.3 G U I D E L I N E -B A S E D R E -FAC TO R I N G

The basic premise on which these guidelines for energy-efficiency have been formulated is the
fact that minimizing usage of energy-intensive resources increases energy-efficiency of an app.
The resources in question being energy-intensive hardware components such as GPS, Camera,
Wifi, Bluetooth, Sensors, etc or power management utilities such as Android Wakelocks.
We shall first discuss the guidelines in section 7.3.1 and the algorithm for guideline-based
re-factoring in section 7.3.2.

7.3.1 Energy-efficiency Guidelines

The guidelines can be stated as follow:

1. Sub-optimal Bindings: Resources must be acquired as late as possible (during the
execution of the app) and released as early as possible.

118



2. Nested Usages: Nesting of resources (acquire-releases) should be avoided.

3. Trade-offs, QoS Vs Energy-efficiency: Certain information (such as location updates),
can be obtained through multiple resources, each varying in quality-of-service (QoS)
and energy consumption. If the application functionality permits, QoS can be traded-off
to improve energy-efficiency.

4. Resource Leaks: All resources acquired during the execution of app must be released
before the app exits.

Sub-optimal Bindings: Roughly translated, this guideline implies that resource acquire, usage
and release should be as close to each other as possible. However, due to the event-driven
nature of mobile-apps, source-code proximity may not necessarily imply closeness. Consider
the code fragment shown in Figure 53(a). This app has the basic functionality to capture
images through camera and display them on the screen when user clicks an on-screen button.
In this example, the camera is acquired (line 10) when the user starts the app (i.e. in function
onCreate). However, there might be a substantial delay between the resource being acquired
and resource being used (camera.startPreview() on line 14). This is because the preview
is only started when the user clicks the button, thereby triggering the event handler defined
on line 11. The period of time in between the app start and user event, is the time when the
camera is consuming energy needlessly and can be avoided. It is worthwhile to know that for
certain resources, such as Wakelocks, resource usages cannot be explicitly associated with
any API calls (i.e. such resources only have acquire and release API calls). For such cases,
developer help may be needed to identify the functionalities (event-handlers) that utilize the
resource. For instance, as shown in the Figure 53(b), the app ChessClock [162] requires the
Wakelock to be acquired when either of the two players are interacting with the app. However,
in the app, Wakelock is acquired for entire duration of app activity.

Defect Expression : •∗xr[¬ur][¬ur]
+ur[¬yr]

+yr•∗ (47)

To generate the defect expression (needed for detecting guideline-violation in design
expression), we identify (and use) the symbols associated with the resource acquire, usage
and release in the design expression. Expression 47 shows an example defect expression
representing sub-optimal binding for the example-app of Section 7.2.1. where acquire(r),
usage(r) and release(r) for resource r are denoted by symbols xr, ur and yr, respectively.
In the scenario, where the intersection between defect expression and design expression is
non-empty, the design expression is re-factored. The re-factoring is such that the (symbols
for) resource acquire/release are re-arranged to be as close to resource usage in the design
expression. However, during the re-factoring relative ordering, between the acquire, usage
and release is always maintained.

Nested Usages: As stated by guideline Sub-optimal Binding, resources must be in the acquired
state for the smallest period of time possible to achieve the app functionality. Complementary
to this guideline is Nested Usage guideline, which states that nesting of resources should be
avoided. In particular, this guideline applies to those resources which generate same (type of)
information. The utility of this guideline is that, if at any stage during re-factoring nesting
of resource usages is observed in the design expression, the expression can be simplified by
removing the nesting so as to reduce the duration of time for which the acquired resource is
active. For example, in the code fragment shown in Figure 55, from app Sensorium [163]
(commit hash:9d141b7), the API call requestLocationUpdates is invoked twice. However,
since both the invocations of API call provide location updates, these two invocations can be
merged into one, without loss of functionality.

119



public void enable() {

     locationListener = new LocationListener() {

 //.... 

    };

   locationManager = (LocationManager) context.getSystemService(Context.LOCATION_SERVICE);

   locationManager.requestLocationUpdates(LocationManager.NETWORK_PROVIDER, 0, 0,  locationListener);                                                                                                                                                  

   locationManager.requestLocationUpdates(LocationManager.GPS_PROVIDER, 0, 0, locationListener);                                                                                                                                                                             

   enabled = true;

}

1

2

3

4

5

6

7

8

9

Figure 55: Code-fragment from Sensorium showing nested resource usage

In expression 48 we show an example of defect expression generation for detecting the
presence of nested usage scenarios. Expression 48 is constructed in context of example-app
from Section 7.2.1, where acquire(r) and release(r) for resource r are denoted by symbols
xr and yr, respectively.

Defect Expression : •∗xr[¬yr]
∗xr•∗ (48)

Trade-offs, QoS Vs Energy-efficiency: Mobile app functionality is often based on sensor
information (such as acceleration, orientation, location, etc) collected from the physical envi-
ronment. To obtain this information an app must interact with the available I/O components.
Since mobile OSs, such as Android, were designed to run on energy-constrained device, they
provide a number of ways (API call configurations; cf Figure 54) to interact with the I/O de-
vices. For instance, in Android most of the power-hungry hardware components (GPS, sensor,
screen, etc), can be operated at various levels of power consumption and Quality-of-Service
(QoS). In this context, higher QoS implies more precise data, at higher update-frequency. In
general, higher QoS leads to higher power consumption.

Table 13 shows a list of a few such configurations that can be used in combination with
API calls to obtain desired QoS. For instance, column 1 of Table 13 lists three different
variations of location updates that can be used along with API call requestLocati onUpdates.
Both gps_provider and network_provider actively initiates a location fix, when invoked.
Whereas, passive_provider doesn’t initiate a location fix actively, but provides a location
fix by passively listening to location updates from other apps (on the device). As a result,
it has a significantly less impact on the energy-consumption of the device. However, since
the information generated by passive _provider can be stale, it is only suitable for apps
that require a rough estimation of user’s location (for e.g. news apps). Similarly, when
comparing between gps_provider and network_provider, the former provides more precise
location update (suitable for travel apps), whereas later is less-precise but relatively more
energy-efficient (suitable for continuous location based content generation). It would be
impractical to use one set of configuration for all apps, however, once the app-developer
provides the app-category (such as used in Play store [164]), appropriate energy-efficient
re-factoring can be suggested. In our framework, we look for such configuration in the app
source code, with the help of Apache Lucene [165] search libraries.

Resource Leaks: This is one of most commonly occurring and (energy) expensive defects
in mobile apps. Essentially, any resource acquired during the execution of the app must be
released before that app ceases to execute. However, since real-life apps have many potential
exit locations, ensuring resource releases at all such exit locations may be challenging
(specially for apps with many GUI screens). In the presence of such a defect, the device (more
specifically the unreleased resource) keeps consuming energy even after the defective app
ceases to execute.

120



It is possible to view the scenario of resource leaks as a very extreme case of sub-
optimal resource binding, where the acquired resources are released after infinite period of
time. However, we categorize them in two different categories so as to keep the analysis
straightforward. For an app to have a resource leak, there should be at least one path within
the app, triggered by a sequence of user events, that ends with an unreleased resource. For
instance, defect expression representing resource leaks for the example-app of Section 7.2.1
is shown in expression 49, where acquire(r) and release(r) for resource r are denoted by
symbols xr and yr, respectively.

Defect Expression : •∗xr[¬yr]
∗ (49)

7.3.2 Guideline Implementation

An important question that may arise at this point is how to enforce the energy-efficiency
guidelines as described in Section 7.3. The two approaches that we can think of for imple-
menting these guidelines would be to either embed them in the platform itself (by means of
OS manipulation, middlewares, etc) or to enforce them through energy-aware re-factoring
tools that assist the app-developer during the development process. It is worthwhile to know
that the middleware approach may be unsuitable for real-life apps as it may make the platform
inflexible. This is because the functionalities of real-life apps may vary widely and are usually
subjected to developer discretion. For instance, faster, energy-hungry sensor updates are
unsuitable for battery life (such as stated in QoS Vs energy-efficiency trade-offs guideline),
however, the app-developer may still want to use it. Similarly, all acquired resources should
be released before the (resource acquiring) app leaves the foreground (as stated in resource
leak guideline), but the app-developer may choose not to do so (say for instance the app
wants to log the user whereabouts throughout the day using location-updates). In contrast, our
re-factoring framework approach is much more flexible as it allows the developer to choose
which of the suggested re-factoring are to be applied to the source code. Additionally, since all
the changes are made only to the app and not to the platform, the finished app should behave
similarly across all devices (OS/middleware is usually customized by the device-vendor).
We use Algorithm 3 to implement the energy-efficiency guidelines described in Section 7.3.1.
Algorithm 3 takes in an app (source-code as well as GUI-layout files) and its category as
inputs and generates the re-factored design expression, Re fapp. It begins by generating the
design-expression (procedure GenerateDesign) as described in section 7.2.2. This design-
expression is then checked for guideline violations using procedure CheckViolation.
The procedure CheckViolation returns a tuple 〈v, r〉, where v ∈ V

⋃{NoDe f ect} and
V = { SubOptimalBinding, TradeO f f , NestedUsage, ResourceLeak.}, whereas, r is
the resource that participates in guideline violation v. If a guideline violation is detected
(i.e. v ∈ V), we proceed to re-factor the design-expression based on the type of guideline
violation. To being re-factoring, we first extract the symbols associated with acquire (Xr),
usage(Ur) and release(Yr) of resource r from the design-expression using the procedure
GetResSymbols. The procedure for re-factoring depends on the type of guideline violation.
In case of suboptimal resource binding guideline violation, the symbols in Xr are inserted (in
the re-factored expression) before symbols in Ur. This operation is done using the procedure
insertBefore. Similarly, procedure insertAfter is used to insert symbols in Yr after
symbols in Ur. In case of nested usage guideline violation, the symbols in Xr are merged into a
single symbol using the procedure merge. Similar merging is done for symbols in Yr. In case
of QoS/efficiency trade-off guideline violation, the design expression stays the same, however,
the API calls associated with symbols in Xr are re-configured based on provided app category
(AppCt). Finally, in case of resource leak guideline violation, the symbol for releasing

121



Table 14: Key results. For each app, we provide app-description, size metrics, observed defects and
energy-saving observed as result of applying the re-factoring suggested by our framework

Name(Version) App Description Apk Size
(KB) LoC Energy

Saving Re-factoring Description

Sensorium
(1.1.12)[166]

Collect sensor
data 1248 4001 21

Restricting use of sensors/GPS to
key functionality. Adding resource

release at exit.
UserHash
(1.1[167])

Location
reporting service 171 837 15 Adding GPS release at exit.

Aripuca
(1.3.4)[108] Tracking app 660 8093 15 Adding GPS release at exit.

ShareMyPosition
(1.0.11)[168]

Share your
location 25 474 3 Replacing Full Wakelock with

less-expensive counterparts.

DroidSat
(2.47)[169] Satellite Viewer 146 15007 4

Removing nesting of location
resources. Replacing GPS uses

with less-expensive counterparts.

iTLogger
(1.0.0)[170]

Speed/heading
information 553 4014 9

Replacing Full Wakelocks with
less-expensive counterpart. Adding

GPS, Sensor release at exit.

Heart Rate
(1.0)[171]

Heart rate
monitor 849 557 5

Replacing Screen Bright
Wakelocks with less-expensive

counterparts.

ChessClock
(1.2.0)[162]

Touchable chess
clock timer 336 725 14

Restricting use of Wakelock to key
functionality. Replacing Full

Wakelocks with less-expensive
counterpart.

0xBenchmark
(1.1.5)[172]

Mobile
benchmark suite 1020 9739 29

Restricting use of Wakelock to key
functionality. Adding resource

release at exit.
Ham

(1.5.7) [173]
Amateur radio

tools 43 2224 6 Replacing GPS uses with
less-expensive counterparts.

resource r is added after symbols in Ur. The final re-factored expression (Re fapp) can be
used to map the changes back to the source-code. It is worthwhile to know that Algorithm
3 can re-factor resource acquires/releases across event-handler (class/method) boundaries.
This increase the re-factoring opportunities drastically, however, this may also cause some
syntax-level inconsistencies (such as due to modifiers associated with variables). However,
since our re-factoring technique is made for design/development stages of app-development
such inconsistencies can be removed with developer assistance.

@Override

public void onResume() {

    //...

   long minTime = 6000;

   !oat minDistance = 10;

   locationManager.requestLocationUpdates(LocationManager.GPS_PROVIDER,

                                                                          minTime, minDistance, locationListener);

   //...

 

}

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

These lines are moved together,

if the requestLocationUpdates

needs to be re-factored to another

location

Figure 56: Re-factoring while maintaining flow-dependencies
It is worthwhile to know that in the original source code, resource related lines may

have flow dependencies. To discover and preserve these dependencies we perform flow
analysis using the tool Soot [174]. For instance, in the example shown in Figure 56, the
invocation of API call requestLocationUpdates (line 6) depends on the value of the long
variable minTime (line 4) and float variable minDistance (line 5). In such a scenario, if the
re-factoring requires moving the invocation of requestLocationUpdates to another location,
all related lines (i.e. lines 4 − 7) are also moved. To identify the re-factoring location
(class/method where re-factored lines will be moved/added), we check the position of the
resource-related symbols with respect to user-event related symbols,in the re-factored design
expression.

122



Algorithm 3 Re-factoring design expression
1: Input:
2: App: App source files
3: AppCt: Category such as Games, Travel, Books, etc
4: Output:
5: Re fapp: Re-factored design expression
6:
7: Desapp ← GenerateDesign(App)
8: 〈v, r〉 ← CheckViolation(Desapp, App, AppCt)
9: while v ∈ V do

10: 〈Xr, Ur, Yr〉 ← GetResSymbols(Desapp, r)
11: if (v = SubOptimalBinding) then
12: Re fapp ← insertBefore(Desapp, Ur,Xr)
13: Re fapp ← insertAfter(Re fapp, Ur,Yr)
14: end if
15: if (v = NestedUsage) then
16: Re fapp ←merge(Desapp, Xr)
17: Re fapp ←merge(Re fapp, Yr)
18: end if
19: if (v = TradeO f f ) then
20: Re fapp ← reconfigure(Desapp, AppCt, Xr)
21: end if
22: if (v = ResourceLeak) then
23: Re fapp ←
24: insertAfter(Desapp, Ur,{getRelSysCall(r)})
25: end if
26: 〈v, r〉 ← getDefect(Resapp, App, AppCt)
27: end while

7.4 E VA L UAT I O N

In this section we shall describe the experimental setup and the subject apps (in Section 7.4.1)
and key results of the evaluation (in Section 7.4.2). Finally, we will present a case study of
one of the subject apps, Sensorium, in Section 7.4.3.

7.4.1 Subject Apps and Experimental Setup

Primarily, we wish to evaluate the efficacy of our technique in detecting the presence of
inefficient design-patterns (cf. Definition 7.2.1) and in generating usable energy-efficient re-
factoring of the aforementioned patterns, in real-life apps. To achieve this objective, we create
a suite of subject-apps, consisting of ten, open-source application from the F-droid, open-
source Android app repository. These apps [108, 172, 162, 169, 173, 171, 170, 166, 168, 167]
are diverse in terms of functionality and size (cf. Table 14), thereby allowing us to evaluate
the different aspects of our framework. It is worthwhile to know that significant energy-
inefficiencies can manifest only in those apps where energy-intensive Android API calls have
been used (as discussed in Section 7.3), therefore, while creating the suite of subject apps
we only choose apps that have usage of atleast one energy-intensive component (such as
wakelock, GPS, Wifi, etc). In addition, we also try to make the suite of subject apps diverse
by including apps that use different kinds of energy-intensive resources (such as wakelock,
sensor, GPS, Wifi, etc). Our re-factoring framework and a power measurement utility, were
run on a Desktop PC. The Desktop-PC was equipped with an Intel i7 processor, 8 GB main
memory and Windows 7 OS.

123



Measuring energy consumption: To measure the energy consumption of the mobile device,
we created an experimental setup as shown in Figure 57(a). We used the Monsoon Power
Monitor [175] to supply the mobile device with a steady voltage of 4.2 Volts and to measure
its power consumption. The mobile device used in our experiments was Samsung S4, running
an Android KitKat OS (version 4.4.2). While the app was executed on the mobile device, we
continuously measure the power consumption of the mobile device using the Monsoon Power
Monitor which can sample at 5KHz. To maintain consistency in power measurements across
our experiments, we have followed a few timing restriction in providing test-inputs to the
app (as shown in Figure 57(b)). For instance, the interval between two input-events (such as
touches,taps,clicks) was 15 seconds. Additionally, an idle time (of 45 seconds), was observed
just after the app had started or stopped execution. Finally, the screen time-out duration of the
mobile device was set to 15 seconds. The inputs (to the app) were encoded as monkeyrunner
scripts and were invoked from the Desktop PC.

Mobile Device

Power

Meter
Power 

Consumption

Data

Supply Power

Measure Power

Consumption Start

Measurement
End

Measurement

Event 1; 

App Starts

Event n; 

App Starts

Event 2 Event (n-1) 

.

(a) (a)

Figure 57: (a) Measurement setup (b) Timing parameters

7.4.2 Key Results

Of the ten apps studied in the evaluation, we found sub-optimal resource bindings in three
apps, nested resource usage in one app, QoS trade-offs in six apps and resource leaks in
five apps. Even though these apps are of considerable size (for instance, app Sensorium has
4, 001 LoC, apk size is 1, 248 KB ), our framework was able to generate design expressions
in less than a minute’s time. This goes on to show that our technique can be scalably applied
to real-world apps. It is worthwhile to know that the design expression generation time
excludes the time required for EFG generation, which is done with the help of a third-party
tool Dynodroid. The EFG can be generated offline and needs to be updated only if the GUI
layout of the app is updated. Currently our framework can not only, produce the re-factored
expression but also generate file/class names and method names, as well as lines numbers,
where the re-factoring must be done. When we applied the re-factoring suggested by our
framework, we observed a reduction in energy-consumption between 3 % to 29 %( Table 14).

7.4.3 Case Study

Sensorium is a publicly available Android app which allows its user to collect sensor data such
as network signal strength, location information, battery status, etc. We specifically choose this
app out of the ten subject apps used in our evaluation because of its long and well maintained
repository at GitHub [176]. This project was active for a period of approximately two years,
in which duration it saw 214 commits. However, due to space restrictions, it would be
impractical to discuss the design (& its re-factorings) for all of these 214 commits. Therefore,
we choose only 6 important commits (here referred as commits a to f ), by observing a plot of
changes (both GUI, as well as, source code), as shown in Figure 58.

124



Original Expression : G1G2SE (50)

Re-factored Expression (i) : G1G2SG′1G′2 (51)

Re-factored Expression (ii) : G1SG′1 (52)

During the earlier stages of the project (cf. commits a− c), the code and layout are changed
heavily across consecutive commits (cf. Table 15) Whereas in the later commits (i.e. commits
d− f ), where the project is fairly mature and stable, the GUI layout and the design does
not change substantially. During the evolution of the project, a number of commits had one
or more re-factoring opportunities due to sub-optimal binding (due to sub-optimal sensor
acquisitions), nested usage (such as nested location updates in commit b) and resource leaks
(due to not releasing the sensor on app exit). These defects were successfully detected and
re-factorings suggested by our framework. For instance, commit b (design expression shown
in expression 50, constituent symbols described in Table 15), could be re-factored for resource
leaks, such as shown in expressions 51 and nested usage, such as shown in expression 52.

7.5 C O M PA R I S O N W I T H E X I S T I N G WO R K S

In this section we shall discuss some existing works, specifically related to (i) Understanding
energy-inefficient behaviour, (ii) Detecting energy-inefficient behaviour and (iii) Optimizing
energy-consumption behaviour.

Understanding energy-inefficient behaviour: The first step in resolving energy-inefficient
behaviour is to understand its characteristics. Recent works such as [177, 79, 3, 72, 73, 74,
178, 179, 180, 181, 182, 183, 184, 185, 186] have presented some interesting insights towards
understanding energy-inefficient behaviour in mobile apps. Profiling work such as [3] present
insights such as the fact that I/O components (such as GPS, Wifi) and power management
utilities (such as Android Wakelocks) are usually responsible for high energy consumption on
mobile apps. Works such [177, 73, 74] have presented frameworks that use energy-models to
estimate the energy consumption of an app, for a given workload. In particular, the works
of [74] and [73] present techniques to map the energy-profile of an app (for a given input),
to the app source-code. However, a key limitation of profiling-based techniques is that they
heavily depend on test-inputs to generate the energy-profile. Manually, obtaining suitable
test-inputs that can expose energy-inefficient behaviour is often non-trivial. In comparison,
in our framework we use design expressions (more specifically, intersection between design
expressions and defect expressions) to detect energy-inefficiencies in an app.

Detecting energy-inefficient behaviour: In recent years, a number of works [76, 77, 187, 83,
178, 188, 189, 190] have proposed dynamic, as well as static program analysis techniques for
detecting energy-inefficient behaviour in mobile apps. Dynamic program analysis techniques
such as [79], use symbolic execution to estimate the energy consumption for a given path
in a program. Other works [76, 77], have used static program analysis techniques to detect
the presence of resource leaks in apps. Test-generation techniques for mobile apps have
been mostly applied to functional properties. However, a few works, such as [187, 83], exist
that assist in energy-aware test-generation. Our recent work [191] presents a framework that
uses energy-inefficient design patterns to debug and localize field failures in mobile-apps. In
general, techniques described in this paragraph can assist in detecting energy-inefficiencies in
an app post-development, however, such techniques do not provide support for energy-aware
app re-factoring. In contrast, our technique is specifically designed to assist the app-developer
by suggesting energy-efficient re-factorings, during the app-development stage.

125



Table 15: Design expression and re-factorings for commits highlighted in Figure 58

Commit Code Layout Expression Re-factored Comments
Hash (#) Changes Expression Design Expression

73b0444 (a)
Initial commit.
Event handler not
attached to events.

SE SE n/a

9d141b7 (b)
Add more sensors
(location)

G1G2SE G1SG1
′E Resource Leaks;

Nested Usage

94c58c3 (c)
Changed layout, re-
moved files

G1G2(((SM)|SDD1)|
SCC1(G1G2|G′1G′2))E|
G1G2SDD1E|G1G2S
CC1(G1G2|G′1G′2)T

∗E

(((G1SG′1 M)|G1
SG′1G1DD1G′1)|G1
SG′1CC1)E|G1SG′1
G1DD1G′1E|G1
SG′1CC1T∗E

Sub-optimal re-
source binding;
Resource leaks;
Nested Usage

e2aebfe (d)
Change layout of
main screen

G1G2S1((((S|SM+)|
SM+CC1G1G2S1)|
SM+DD1)|SM+C1G′1
G′2S1

′CC1)E

((((G1S1SG′1S′1|
G1S1SG′1S′1 M+)|
G1S1SG′1S′1 M+

CC1)|G1S1SG′1S′1 M+

G1S1DD1G′1S′1)|G1
S1SG′1S′1 M+(CC1))E

Sub-optimal re-
source binding;
Resource leaks;
Nested Usage

fd643d7 (e)
Added more sensor
(pressure)

832aa14 (f)
Most recent
commit

E - Exit app G1 - Location acquire, first occurrence
T - Summary G2 - Location acquire, second occurrence

M - Menu button pressed S1 - Pressure sensor acquire, first occurrence
S - Main activity on screen G1

′ - Release of resource G1
D - Debug activity G2

′ - Release of resource G2
D1 - Debug activity, (sub event 1) S1

′ - Release of resource S1
C - Configuration activity C1 - Configuration activity, (sub event 1)

MenuButton

enable_sensor

disable_sensors

MenuButton

MenuButton

title

B ackBut t on

debug_out_button

MenuButton

B ackBut t on

sensor_con g_button

summary
MenuButton

checkbox

title

.  .  .

B ackBut t on

sensor_view_button

SensorValue

SensorUnit

MenuButton

settings debugAbout B ackB utto n. . .

sensorName

sensorPrivacyLevel

sensorTypes

sensorValues

sensorUnits

sensorName

sensorPrivacyLevel

sensorTypes

sensorValuessensorUnits

. . . . . .. . .

Commit a : First Commit

Commit b

Commit d

Commit c

Commit e

Commit f: Final Commit

L
a

yo
u

t 
C

h
a

n
g

e
s 

W
it

h
 T

im
e

C
o

d
e

 C
h

a
n

g
e

s 
W

it
h

 T
im

e

Commit History Event Flow Graph

*

*Not present in commit d

Figure 58: Some commit from the 214 commits of the project Sensorium

126



Optimizing energy-consumption behaviour: A number of orthogonal approaches [86, 84,
192, 193]have been presented over the recent year to optimize energy-efficiency of programs.
For instance, [86] proposes the use of a new energy-aware programming language. Such
languages, if used, can be instrumental in developing energy-efficient application, however,
so far, such languages have not witnessed widespread use. Another group of work [84,
192] focuses on using energy-aware optimization. [84] in particular proposes the use of
approximate implementations [84]. The key idea behind this work is to encode multiple,
approximate implementations of a given (time-consuming) computation, such as loops. Since
in mobile apps time-consuming computation may not necessarily imply energy intensive
computation (because CPU may have a lesser power consumption than I/O components [187]),
therefore, direct use of approximate implementation may not very beneficial for mobile-apps.
However, the underlying philosophy of trade-offs between QoS and energy-efficiency is useful
and therefore adapted to our technique as well. One of our previous articles [193], discusses
the potential for energy-aware programming, however, it does not provide a framework
necessary to conduct energy-aware re-factoring. Another preliminary work [194] proposes
a re-factoring technique that uses compiler optimization to improve energy-efficiency of
Observer and Decorator design patterns in object-oriented programs.

A different line of work leverages the power of genetic algorithm (GA) to search for energy-
efficient versions of a given program. The key idea in such works [195, 196] is to iteratively
search for mutated program versions that have the same functional behaviour as the original
program version (program behaviour compared using existing test-cases), but are more energy-
efficient. Mutated versions of a program can be obtained by applying mutation operators
such as copy, swap, delete, etc, on intermediate representation [195] of program or even
assemblies [196]. A key difference between our re-factoring technique and such GA based
energy-efficiency optimization techniques is that these (GA based) optimization techniques
are often well suited for post-development optimization phases, more so in scenarios where the
developer does not have necessary knowledge or intent of creating designs that are specifically
energy-efficient. On the contrary, our approach actively highlights design in-efficiencies to
the developer and produces re-factorings that may lead to significant changes in the design of
the program and is therefore more suitable for use in early stage of the software development
life-cycle.

7.6 T H R E AT S TO VA L I D I T Y

A threat to the validity of our framework may arise due to the incompleteness of the EFG
model. The dynamic exploration technique (to create EFG), in our approach may not able to
generate a complete UI model (EFG) for a given app. This may cause certain part of the app
code to be unmodeled and hence unanalysed by our framework. It is worthwhile to mention
alternative static analysis based techniques (such as [77]) that are based on parsing of XML-
based UI files, may also be unable to generate a complete UI model for a given app because
Android framework allows creation of dynamic UI screen programmatically. To the best our
knowledge no existing work provides a technique for complete EFG generation. However,
since the design expression generation part and the re-factoring part of our framework are
loosely coupled with the EFG generation part, if any complete EFG generation technique is
developed in future we can easily integrate it with our framework. Another threat to validity to
this work may arise due to the choice of subject programs. Since we needed open source apps
of our experiments we were restricted to Fdroid open-source app repository. Even though
Fdroid is the biggest app repository of its kind, it is still small as compared to Google Play
Store. This may have introduced some sampling bias [197] in our results.

127



7.7 C H A P T E R S U M M A RY

In this chapter, we present a technique to address the need for tools that can assist in energy-
aware app development. Our technique uses a set of energy-efficiency guidelines to re-factor
the design expression of an app. A design-expression is a regular-expression that represents
the ordering of energy-intensive, resource usages and invocation of key functionalities (event-
handlers) within the app. As a result of using design-expressions, our re-factored technique
is not limited by event-handler (class/method) boundaries. This not only increases the re-
factoring opportunities but also makes our technique scalable. To demonstrate the efficacy
of our technique we analysed a suite of open-source, apps with our technique. The resultant
re-factoring when applied, reduced the energy-consumption of these apps between 3 % to 29
%. We also present a case study for one of our subject apps that captures its design evolution
over a period of two-years and more than 200 commits. Our framework found re-factoring
opportunities in a number of commits, that could have been implemented earlier on in the
development stages, had the developer used an energy-aware re-factoring technique such as
the one presented in this work.

128



8
D E B U G G I N G E N E R G Y- E F F I C I E N C Y
R E L AT E D F I E L D - FA I L U R E S I N M O -
B I L E - A P P S

Debugging field failures can be a challenging task for app-developers. Insufficient or unreliable
information, improper assumptions and multitude of devices (smartphones) being used, are just some
of the many factors that may contribute to its challenges. In this work, we design and develop an
open-source framework that helps to communicate, localize and patch energy consumption related
field failures in Android apps. Our framework consists of two sets of automated tools: one for the
app-user to precisely record and report field failures observed in real-life apps, and the other assists
the developer by automatically localizing the reported defects and suggesting patch locations. More
specifically, the tools on the developer’s side consist of an Eclipse-plugin that detects specific patterns
of Android API calls, that are indicative of energy-inefficient behaviour. In our experiments with
real-life apps we observed that our framework can localize defects in a short amount of time (~3
seconds), even for apps with thousands of lines-of-code. Additionally, the energy savings generated as
a result of the patched defects are significant (observed energy savings of up to 29%). When comparing
the patch locations suggested by our framework to the changes in the patched code from real-life
app-repositories, we observed a significant correlation (changes suggested by our tool also appeared in
the source-code commits where the reported defects were marked as fixed).

8.1 I N T RO D U C T I O N

Debugging field failures, even for functionality related defects, can be a challenging process
for the developers [198, 199, 200, 201]. It can be even more challenging in the case of
non-functional defects (such as energy-inefficiencies) because such defects depend not only
on the failure-revealing inputs but also on the state of the hardware device on which the app
is executed. Online coding repositories often provide tools such as issue tracking systems,
discussion forums, etc, to alleviate this problem, however, in many scenarios such tools are
insufficient. Consider the example of Issue 520 (Battery drain when not in use) for the app
MyTracks [202] (more than 10 Million downloads on Google Play Store). Since the original
commenter had reported this issue, a total of 43 people (including project members) have
participated in the discussion over a period of 4 years to debug the issue. Participants of the
discussion have provided test-cases and device descriptions, and exchanged various versions
of app files, snapshots, log files, changed devices, etc. However, these ad-hoc methods have
done anything but to further confuse the involved parties. Here is an excerpt from their
conversation.

129



Comment 1
Jul 21, 2011

When I don’t use MyTracks, I don’t expect to see it at the top of the list of
applications draining the battery

Comment 3
Jul 23, 2011

I don’t really understand this issue. I checked the log but I did not see any
suspicious. . . .

Comment 5
Jul 27, 2011

Answer to comment 3: if you examine the log related to comment 2, you will
see that MyTracks has never been launched but the application still won the
third prize for power consumption.

Comment 35
Oct 3, 2012

. . . Using a battery monitor called "GSam Battery Monitor", it give more infor-
mation about what "My Tracks" is using: "Orientation", and it’s the only things
use by "My Tracks" when it does not track anything (no CPU, no wakelock ..)

Comment 40
Jul 13, 2013

In response to comment 35, we have removed the "Orientation" sensor in My
Tracks version 2.0.5

Comment 41
Jul 13, 2013

I need help to debug this further. . . . wondering . . . I can email you a few APKs
to try.

This example goes on to show how challenging it could be to communicate and debug
defects in real-world apps even when both the parties (the user who reports the defect and the
developer) were willing to cooperate. As highlighted in our previous work [159], a mobile app
may demonstrate energy-inefficient behaviour due to a number of reasons (cf Table 17). Some
of these defects may only manifest when complex sequence of interactions (or patterns) occur
during the execution of the app. For example, suboptimal resource binding (binding resource
too-early or unbinding too late) may make an app energy-inefficient. Another example could
be the scattered usage of network components that cause power loss due to Tail Energy[203].
To localise such energy-consumption related defects, the developer needs to track relevant
(energy/computation intensive) Android API calls in a context-sensitive manner (where, when,
and how within the activity life-cycle). However, such contextual debugging information is
much beyond user’s capability to collect for communication. As a result, often the information
exchanged between the two parties is insufficient, vague and sometimes even misleading.
What is needed to solve this problem is a framework that can provide a reliable yet succinct
means of communicating user-observed defects and an automated technique to use this
communicated information to localize and debug these defects on the developer side.

In this chapter we present a framework that can break the communication barriers between
users and developers on assisting in energy-aware debugging. Figure 59 presents an overview
of our framework, which contains two main parts: one for the user and the other for the
developer. The user side tools consist of an instrumentation utility, which can automatically
instrument a given apk file, followed by a customized logging utility, which records the
log messages and system states at runtime. To report a defect the user simply executes the
instrumented app, with the failure-revealing test inputs, on her mobile device, while the
logging utility is running. The log file recorded automatically thus contains all the information
that is needed to localize/patch the defect and can be sent to the developer.

The developer side tool consists of an Eclipse plugin, in which the debugging framework
has been embedded. Provided with the log file, the debugging framework generates a profile
call graph, which is subsequently analysed through a contextual analyzer to identify Android
API call patterns for energy-inefficiencies. The pattern-based fault-localization technique is
motivated by the fault-model presented in [159]. If such patterns are found, the framework
localizes the defect in the app source-code and also suggests potential patch locations. It also
provides a visual representation of observed defect. The framework on the developer side
works in an automated fashion and requires minimal configuration.

130



Instrumentation

UtilityApk

Instrumented 

Apk

Input

Mobile

Device

Logging

Utility

Log

Files

Graph

Generator

Log

Files

Pro!le Graph

Pattern-based Localization,

 

Patch Suggestion Patch Location

Location of defect

USER  

SIDE

DEVELOPER 

 SIDE

Figure 59: Overview of log-based, energy-inefficiency localization in mobile apps

8.2 D E TA I L E D M E T H O D O L O G Y

In this section we shall discuss the (i) Instrumentation & Logging, (ii) Profile Graph Genera-
tion, (iii) Pattern-based contextual analysis for energy-inefficient behaviour detection and (iv)
Defect localization and patch suggestion.

8.2.1 Instrumentation and Logging

Before the app can be executed to generate the log files, it has to be instrumented by our
tool. Table 16 lists some of the packages from which methods are instrumented by our tool.
These methods can be divided into two categories (i) event-handlers, that are invoked on
arrival of events and (ii) Android API call that may have significant impact on the energy
consumption. For example, the package android.app.activity (in the category event
handlers), houses the method that are called when an activity is created (onCreate) or when
an activity is paused (onPause), etc. Whereas, the package android.hardware.* (in the
category Android API calls), houses the methods that are used to access hardware components
such as Sensors and Cameras.

  public void onCreate(Bundle paramBundle)

  {

    Log.i(”EventHandler”,”PackageName\ActivityName\onCreate”+Process.myTid());

    //...

    Log.v("AndroidAPI", "Landroid/hardware/Camera;->open()");

    Camera localCamera = Camera.open();

    //...

    Log.i("Parameters", "Landroid/hardware/Camera$Parameters;->setFlashMode" + "o!");

    Log.v("AndroidAPI”, "Landroid/hardware/Camera$Parameters;->setFlashMode");

    parameters.setFlashMode("o!");

    Log.i("EventHandler", "Finished_onCreate");

 }

1

2

3

4

5

6

7

8

9

10

11

12

Figure 60: Example of code instrumentation

Figure 60 shows an example code after instrumentation. Observe that for the event-handler
onCreate both start and end have been instrumented (lines 3 and 11, respectively). Addi-
tionally, the log messages contain the thread id which helps in resolving ambiguity in presence
of multiple threads. All Android API calls which belong to packages described in Table

131



Table 16: Event-handlers and Android API calls that are instrumented

Category Type Package Name
Activity android.app.activity

Event Handlers Service android.app.service
Receiver android.content.BroadcastReceiver
Bluetooth android.bluetooth.*
Sensors android.hardware.*
Location android.location.*

Multimedia android.media.*
PowerManager android.os.PowerManager.*

Database android.content.SQLite.*
SMS android.telephony.SmsManager

Android API calls Telephony android.telephony.TelephonyManager
Network (A) android.net.*
Network (J) java.net.URL

IO java.io.*
Cipher javax.crypto.Cipher

Apache Http org.apache.http.*
Thread java.lang.thread

16 are instrumented in a similar manner (lines 5 and 6). For certain Android API call we
need to add an additional line of instrumentation to record their parameters. This because for
such Android API calls, their parameters may decide the resultant power consumption. For
instance, in Figure 60, the parameters to the API call setFlashMode decide the state of
flash (off, on, torch, etc) post invocation. Therefore, an additional line (cf. line 8) has been
instrumented.

It is worthwhile to know the instrumentation tool works on apk file (source files not
needed) and is very light weight, hence it can be run on any commodity machine on the user
side. Also it is relatively easy to use as it does not require any prior configuration. Once the
target apk files have been instrumented, the app-user (who wishes to report the defect) can
execute the instrumented app on her mobile device. This execution should be done while
our logging utility is monitoring over android debug bridge (adb). To do so, the user simply
needs to connect the mobile-device through a USB cable to the PC on which the logging
utility is running. The logging utility specifically monitors and records the log messages that
are instrumented by the logging utility. In addition, it also records information relevant to
device’s power consumption, such as status of wakelocks, frequency of GPS updates, etc.

8.2.2 Profile Graph Generation

The energy profile graph for an Android app is a dynamic call graph [204], that represents call
dependencies between various subroutines that are executed in a given execution of the app.
It primarily emphasizes on the method invocations related to energy consumption and app’s
GUI activity life-cycle. Call graph profiling [204, 205, 206, 207] has been an effective method
of program analysis and has been used in applications such as performance analysis and
compiler optimizations. For example, in context of performance analysis, call-graph profiling
has been used to monitor per-subroutine time consumption, based on which performance
bottlenecks can be identified. The energy profile graph is based on similar principles but it
is bit more sophisticated than the standard call-graph. Not only does it record the amount
of time spent within each application component, but also records the behaviour of energy-

132



12:31:22.471: DummyEvent: AndroidApp()

12:31:22.471: EventHandler(240049): com\totsp\crossword\shortyz\ShortyzApplication_onCreate()

 . . .

12:31:22.481: EventHandler(240049): Finished_onCreate

12:31:22.481: EventHandler(240049): com\totsp\crossword\BrowserActivity_<init>()

 . . .

12:31:22.486: EventHandler(240049): Finished_<init>

12:31:22.496: EventHandler(240049): com\totsp\crossword\BrowserActivity_onCreate()

 . . .

12:31:22.566: EventHandler(240049): Finished_onCreate

12:31:22.566: EventHandler(240049): com\totsp\crossword\BrowserActivity_onResume()

 . . .

12:31:22.571: EventHandler(240049): Finished_onResume

 . . .

12:31:56.136: EventHandler(240049): com\totsp\crossword\BrowserActivity$5_run()

12:31:56.136: EventHandler(240049): com\totsp\crossword\net\Downloaders_download()

12:31:56.161: EventHandler(240049): com\totsp\crossword\net\ThinksDownloader_download()

12:31:56.171: EventHandler(240049): java/net/URL;-><init>()

12:31:56.231: EventHandler(240049):org/apache/http/client/methods/HttpGet;-><init>()

12:31:59.626: EventHandler(240049): com\totsp\crossword\net\AbstractDownloader_copySream()

 . . .

12:31:59.966: EventHandler(240049): Finished_copyStream()

12:31:59.966: EventHandler(240049): Finished_download(Ljava/util/Date;)Ljava/io/File;

12:31:59.971: EventHandler(240049): com\totsp\crossword\net\Downloaders_processDownloadedPuzzle()

12:32:00.861: EventHandler(240049):  Finished_processDownloadedPuzzle

12:32:06.526: EventHandler(240049): Finished_download(Ljava/util/Date;Ljava/util/List;)V

 . . .

12:32:07.801: EventHandler(240049): Finished_run

 . . .

12:32:31.786: DummyEvent: Finished_AndroidApp 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Figure 61: Log-messages generated from Shortyz app

intensive resources (such as the GPS, Screen, Wifi, etc) and status of activity life-cycle within
a given application. It is worthwhile to note that such a call graph is possible because of
instrumentation as described in section 8.2.1.

The log (generated using the logging utility, cf. Figure 59) is a well-structured, hierarchical
text file. The entries in the log file are ordered by time-stamps. Figure 61 shows an example
of such a log file. Note that since an Android app is event-driven, it does not have an explicit
main method. Therefore, for the purpose of clarity we introduce a pair of dummy events,
labelled AndroidApp() and Finished_AndroidApp(), that represents the start and
end of execution of the app. Such a pair of entry-exit events forms the basis of the nested
hierarchical structure for the call graph, since for each event-handler e, all of its subroutines,
including method-invocations, are logged within the (entry-exit) pair of events for e. In
Figure 61, such an entry-exit pair can be found on lines 15 and 28, respectively, and examples
of method-invocation can be found on lines 18 and 19.

During the log-file parsing (to generate the profile call graph), we also create two axillary
data structures: AndroidActivityTable and ResourceActivityTable. As the name suggests, the
AndroidActivityTable keeps track of activity related nodes (such as onCreate, onResume)
in the profile call graph, and ResourceActivityTable keeps track of nodes related to energy-
intensive resources. The actual processing of the log-file happens in two passes:

First Pass: For each event-handler, entry-exit events are matched. Method-invocations that
are related to energy-intensive resources are recorded in the ResourceActivityTable. Activity
stages are recorded in AndroidActivityTable. Two implementation issues that may arise during
this pass are as follows:

133



Abnormal Exits Abnormal exits (from method calls) may happen due to runtime
exceptions. This may create unmatched method call (entry-exit)
pairs in the log file. To detect such issues, we maintain an environ-
ment stack. When an exit event does not match with the top entry
event in the environment stack, it implies that the method call
corresponding to the top entry event, may have had an abnormal
exit.

Multi-Threading Log messages from multiple simultaneously executing threads
(within the app) can also disrupt the balanced entry-exit pairs in
the log file. To counter this issue, our runtime logging utility
records the thread ID for each logged event. This allows us to do
the entry-exit pair matching for each thread.

Second Pass: Well-balanced, (entry-exit) paired events are used to construct a hierarchical
call-dependency graph, where each node contains the following fields supporting the first-
child/next-sibling representation:

class Node {
Node firstChild; // first subroutine child
Node nextSibling; // next sibling subroutine
Node parent; // parent caller
String className; // class for current method
String methodName; // current method name
long timeStamp; // logging timeStamp
long runtime; // runtime between entry-exit events
boolean MPCC; // if method contains Android API calls
... // of interest

}

Figure 62 shows a partial call graph for one of the analysed apps, where rectangular nodes are
used to represent event-handler nodes and round nodes are used to represent Android API
calls.

AndroidApp 45405

 true

ShortyzApplication

onCreate false

10 BrowseActivity 70

onCreate false

BrowseActivity 5

onResume false

BrowseActivity 11665

run true

BrowseActivity 15

onPause false

Downloaders 10390

download true

ThinksDownloader 3805

download true

U R L 30

init true

AbstractDownloader 380

copyStream false

Downloaders 890

processDownloadedPuzzle false

HttpGet 3395

init true

UclickDownloader 1675

download true

U R L 0

init true

UclickXMLIO 165

convertUclickPuzzle false

Downloaders 245

processDownloadedPuzzle false

HttpGet 1505

init true

AbstractDownloader 5

copyStream false

... ... ... ...

... ...

... ...

AndroidActivityTable

ResourceUsageTable

Contextual

 Subgraph

Figure 62: Partial profile call graph for Shortyz app

134



Table 17: List of energy-inefficiency related defects with defect pattern, patch suggestion, affected hardware
components and a real-world example with user comments.

Defect Type Affected Components Defect Pattern (P) Patch Suggestion Real-world example

Csipsimple "When I run Sipdroid, by the
Issue 81end of the day I have battery

Presource leak → ai Q Release ai after [208] indicator at about 50%. When

H
ar

dw
ar

e
R

es
ou

rc
es Resource Q→ Xī | Xī ui Q PL(Presource leak) I run CSipSimple instead, with

Leaks I/O Components Xī → ε | xī Xī all other activities basically the
i ∈ {Wifi, Sensor, same, by end of the day the

GPS, Camera } battery indicator is yellow or
even red (< 20% I think)."

Suboptimal Psuboptimal binding → ai Q ri Sofia Public "Disable GPS updating when
Resource Q→ Xī ui Xī | Xī ui Q Re-factor Xī Transport estimates dialogue
Binding Xī → ε | xī Xī Issue 38 is displayed . . . This will "

[209] reduce battery usage
Adw"This could lead to some

Sl
ee

p-
st

at
e

Tr
an

si
tio

n
H

eu
ri

st
ic

s Launcherbattery drain, or with our
Power Management Pwakelock bug → ap Q Xp̄ Add rp to match AndroidAMOLED screens - burn in.

Wakelock p ∈ {CPU, Screen, Q→ Xp̄ | ap Q rp | Q Q the reference Issue 202 I discovered this by acciden-
Bug Keypad} Xp̄ → ε | x p̄ Xp̄ count of ap [210] tally hitting the app drawer

button when setting my
c ∈ {CPU} phone on my desk, I assum-

ed it would turn it self off
but after 15 minutes never did."

Tail-energy Network Ptail energy → an Q rn GoogleFeature Suggestion: Optimize
Hotspot n ∈ { Wifi, 4G, Q→ Xc un Xc | Xc un Q Re-factor Xc VoiceData Usage . . . Totally agreed.

3G,2G } Xc → ε | xc Xc Location I’ve used this app on three
Issue 4different phones, and I’ve seen

[211]noticeable battery drainage
when it’s active."

Vacuous Pvacuous services → as Q Stop service Recycle- "Battery life is absolutely

B
ac

kg
ro

un
d

Se
rv

ic
es Services Background Q→ Xs̄ | Xs̄ us Q as after locator terrible . . .It appears to be due

Services Xs̄ → ε | xs̄ Xs̄ PL(Pvacuous services) Issue 33 to the GPS constantly searching
[149] for a signal."

Expensive s ∈ {GPS, Sensors, Pexpensive services → as us rs Osmdroid"MyLocationOverlay class
Services Wifi,4G,3G,2G } If configuration parameters of as Change configuration Issue 76uses 0 as default values for

do not follow energy-efficiency parameters for as [212] requesting location updates.
guidelines [213] 0 (fastest updates possible) is

maybe an overkill and drains
some battery" . . .

Immortality Pimmortality bug ≡ { Use patch suggestion Omnidroid"Battery Drain Concerns . . .
Bug LaunchonReboot ( PL (Presource leak)) for respective issue. Issue 98 I know it was omnidroid

∨ May re-factor [214]because I looked at the battery
LaunchonReboot( PL (Pwakelock bug)) PL(< pattern >) use graph and omnidroid was

∨ from methods that using 8 times more battery

D
ef

ec
tiv

e
Fu

nc
tio

na
lit

y LaunchonReboot( PL (Pvacuous services)) launch on reboot than the next highest app.
} It dwarfed everything else."

All of (app restarts itself on reboot)
Loop-energy the above K9Mail "I found today that when

Hotspot Issue 424my mail accounts were
Ploop hotspot ≡ { Use patch suggestion [215] temporarily unreachable due

InLoop( PL (Ptail energy)) for respective issue. to a server glitch . . . battery
∨ May re-factor drained *very* quickly while

InLoop( PL (Psuboptimal binding)) PL(< pattern >) the phone became noticeably
∨ out of loops warmer even though it was

InLoop( PL (Pexpensive services)) in standby mode with
} the screen display off. Also,

k9mail is AFAIK the only
third-party background
service that I have running"

a : Android API call to acquires a I/O component(h)/power management utility(p)1/services(s)2 PL : Pde f ectcategory → location
u : Android API call that uses a I/O component(h)/power management utility(p)/service(s) LaunchonReboot : location→ boolean
r : Android API call to release a I/O component(h)/power management utility(p)/service(s) InLoop : location→ boolean
x : any Android API call

1 : power management utilities can be reference counted
2 : of the many possible services, only the energy-intensive services, such as the once using sensors, are monitored

135



8.2.3 Patterns for Energy-inefficient Behaviour

Table 17 presents a list of energy-inefficiency related defects commonly observed in mobile
apps. For each defect category, we present the pattern of Android API calls that indicate
energy-inefficient behaviour, the set of affected components and a real-world example along
with user comments, where such a defect has been observed. These defect patterns are derived
from the energy-inefficiency fault-model presented in our previous work [159].

Most of the patterns (Pde f ectcategory) in Table 17 are represented using a context-free
grammar. The symbols acomponent, ucomponent and rcomponent are used to denote the Android
API calls for acquire, usage and release of a component. Whereas, the symbol xcomponent
is used to denote all Android API calls not associated with a component. The symbols
ε, a, u, r, x are used as terminals, whereas the symbols Q and X are used as variables. Rest of
symbols used in the patterns retain their conventional meaning.

The patterns for Pimmortality bug and Ploop hotspot require some additional explanation as they
use non-standard notations. Pimmortality bug, in particular, is a disjunction of three separate
scenarios. Specifically, if patterns consistent with Presource leaks, Pwakelock bugs or Pvacuous services
are detected and localized to a program location which is restarted every time the sys-
tem (mobile device) is rebooted, then our framework reports the presence of an immortal-
ity bug. For this defect category, we define two additional functions PL and Launchon-
Reboot. The function, PL : Pde f ectcategory → location, provides the program location
(〈class, method, lineno〉) for a given pattern (specifically the beginning of the pattern). The
function, LaunchOnReboot : location → boolean, is used to determine the feasibility of a
given program location to be launched at reboot. It is worthwhile to know that for Android
apps, it is possible to design such a function because the relevant information (which methods
will be launched on reboot) is provided statically by means of AndroidManifest.xml.
Specifically, the function LaunchOnReboot keeps a map of all Receivers or Activities
that have registered for the BOOT_COMPLETED broadcast intent.

Loop-energy hotspot (Ploop hotspot) represents the scenario where an energy hotspot, i.e.
Psuboptimal binding, Ptail energy or Pexpensive services, is localized to a loop in the app source code.
Being executed in a loop can magnify the impact of such defects and therefore may need
additional re-factoring effort. An additional function, InLoop : location→ boolean, is added
which can tell if a program location falls within the boundaries of a loop construct (i.e. for,
while, do-while). In the following paragraphs, we shall outline the overall algorithm
for pattern-detection. However, for the purposes of brevity we shall limit our discussion to
only two defect patterns (Presource leaks and Ptail energy).

8.2.4 Contextual Analysis for Energy-inefficient Pattern Detection

The fault-localization process begins by analysing the contextual dependency among Android
API calls, activity events, and other work loads, within the profile call graph. Our contextual
analysis focuses on the innermost activity cycle for each energy-related Android API call
to identify patterns that are associated with energy-inefficient behaviour. The main purpose
of our contextual analysis is to extract a contextual subgraph which contains the following
information:

WHEN the runtime scenario in which the foreground application activity lies, e.g.,
Activity.onResume() and Activity.onPause(). The when-context will
help developers to replay the scenario when energy bugs or hotspots happen.

136



HOW the sequence of Android API call showing how the related hardware resource is
acquired, used, and released, if any. The how-context is valuable to identifying
the faulty patterns and categorizing the type of bugs or hotspots.

WHERE for each Android API call involved in when and how-context, the method and
class details of Android API call, the caller details of Android API call (where
it was actually invoked), as well as the subsequent calls to that Android API
call are gathered. The subsequent calls are done to resolve ambiguity in case
its caller invokes that Android API call multiple times. The where-context is
critical to fault localization in source code.

Algorithm 4 Energy Defect Detection
1: Global: AT – an abbreviation for AndroidActivityTable
2: RT – an abbreviation for ResourceUsageTable
3: Input: resourcesInUse – resources used in the app
4: Output: a collection of energy defects, if any
5: function DEFECTDETECTION(resourceInUse)
6: ds← ∅
7: for (each h : resourceInUse) do
8: for (each de f ect : h.de f ectList) do
9: switch (de f ect) do

10: case “resource leaks”: . Algorithm 5
11: · · · · · ·
12: break
13: case “tail-energy hotspot”: . Algorithm 6
14: · · · · · ·
15: end switch
16: end for
17: end for
18: return ds
19: end function

Algorithm 4 shows the skeleton of the main procedure, named DEFECTDETECTION, on how to
detect all the relevant energy bugs or hotspots given a list of resources in use. For each resource
h in use, we prepare h.de f ectList, a list of possible bug or hotspot types associated with h.
Our defect detection procedure will perform contextual analysis to investigate the resource
usage in an energy profile subgraph to find out whether the runtime trace matches a defect
pattern from a list of possible resource-specific defects. Note that AT and RT are abbreviations
for AndroidActivityTa ble and ResourceUsageTable, respectively.

Detecting Presource leaks : Hardware components that are acquired by an app during its execution
must be released before exiting, or else, the resources continue to be in high-power state and
keep consuming energy. Typically, resources that are acquired during the setup stages of
an activity (such as onResume()) should be released during its tear-down stages (such as
onPause()). Failing to follow such protocols may lead to resource leaks. Such scenarios
are represented using defect pattern Presource leaks in Table 17. Algorithm 5 outlines the analysis
required to detect such a defect pattern within the contextual dependency subgraph. For each
Android API call for resource acquisition (line 2), we first capture its contextual dependency
subgraph by locating the foreground running activity while the resource h has been acquired.
To determine the temporal boundary of the contextual dependency subgraph, we use the
procedures FOREGROUNDBEGIN and FOREGROUNDEND (lines 3-4). These two procedures
can be implemented by searching the data-structure AndroidActivityTable for the innermost

137



Algorithm 5 Contextual Analysis for Resource Leak Bugs
1: for (i← 0 to RT.size() −1) do . each Android API call RT[i]
2: if (RT[i] ∈ ah) then . Android API call to acquire h
3: bTime← FOREGROUNDBEGIN(AT, i)
4: eTime← FOREGROUNDEND(AT, i)
5: j← i + 1
6: paired← false
7: while (not paired and j < RT.size() and
8: RT[j].timeStamp < eTime) do
9: if (RT[j] ∈ rh) then . Android API call to release h

10: paired← true
11: end if
12: j← j + 1
13: end while
14: if (not paired) then
15: de f ect.type← “resource leaks” . new a defect
16: de f ect.in f o ← {RT[i]}
17: ds← ds ∪ {de f ect}
18: end if
19: end if
20: end for

activity cycle just wrapping the Android API calls for resource acquisition. Subsequently,
our framework checks for a release Android API call for the resource that has been acquired
within the subgraph (7-13). Finally, if the release Android API call is not found a defect is
recorded (line 14). The data-structure defect.info (line 16) maintains a sufficient set of method
signatures related to when- and how-context so that the contextual subgraph can be easily
retrieved for fault-localization and defect-visualization.

Detecting Ptail energy: It is common for network components in a mobile device to linger in
a high power state, for a short-period of time, after the imposed workload has completed
[203]. Such heuristics can reduce the time it takes to transit the device from a low-power
(idle) state to an high power (active) state, when the subsequent (network) request arrives.
However, while network component waits in a higher-power state, no transmission takes
place but additional energy is consumed. The additional energy consumption is referred
to as Tail Energy and can be minimized to increase the energy-efficiency of an app. The
defect pattern (Ptail energy) from Table 17 represents such a scenario. Algorithm 6 shows the
contextual analysis required to identify the presence of such a defect pattern. Similar to
Algorithm 5, we begin by obtaining the contextual subgraph (lines 4-5). Subsequently, the
pattern Ptail energy is searched for in the subgraph (lines 7-14). More specifically, the procedure
PROFILEGRAPHBROWSE(RT[i], RT[j]) traverses the profile graph from the node RT[i]
to node RT[j], in a temporally-sequential order, (equivalent to pre-order traversal), while
collecting CPU intensive processes (Xc) between resource usage Android API calls.

8.2.5 Defect Localization and Patch Suggestion

Finding the presence of energy-inefficient patterns is only a part of the debugging effort. The
other part involves locating the defect, or rather the origin of defect, within the app-source code.
The contextual analyzer on a profile call graph returns a set of detected defects, each of which
contains a defect type and a sequence of evidential method signatures, ordered by time-stamps.
The sequence of evidential methods, depending on the defect type as outlined in Table 17, may
contain (a) when-context, the events related to foreground activity stages, (b) how-context,

138



Algorithm 6 Contextual Analysis for Tail-Energy Hotspot
1: i← 0
2: while (i < RT.size()) do
3: if (RT[i] ∈ uh) then . Android API call to use h
4: bTime← FOREGROUNDBEGIN(AT, i)
5: eTime← FOREGROUNDEND(AT, i)
6: j← i + 1 . to find the next resource usage index j
7: while (RT[j].timeStamp < eTime) do
8: if (RT[j] ∈ uh) then
9: de f ects.in f o ← de f ects.in f o ∪

10: PROFILEGRAPHBROWSE(RT[i],RT[j])
11: i← j
12: end if
13: j← j + 1
14: end while
15: if (de f ect is not empty) then
16: de f ect.type← “tail-energy” . new a defect
17: ds← ds ∪ {de f ect} . add a new defect
18: end if
19: i← j
20: else
21: i← i + 1
22: end if
23: end while

Android API calls where a hardware component is acquired, used, or released, or (c) other
Android API calls not associated with the involving hardware component, but with noticeable
computational time, e.g., greater than 5 milliseconds. Each evidential method α has detailed
signatures which include α’s prototype and its Class information, its caller’s prototype and
Class information, and the details of α’s subsequent calls in its caller method. The subsequent
calls are used to resolve the ambiguity in case that there are multiple occurrences of α in its
caller method. We assume that the app-developer has access to the app source-code while
debugging. To localize a defect, our framework simply highlights the defect type and displays
the defect scenario by illustrating the sequence of evidential methods, and further allows
users to select each of evidential method to reach the source code where it was invoked for
understanding the reported defect.

Our framework also gives concrete patch suggestions, as outlined in Table 17, for each
reported defect. For example, on the defect of resource-leaks where the acquisition Android
API call, ai, misses a corresponding release statement, it is suggested that a release Android
API call may be added in onPause. There may be multiple alternative locations (in the app-
source code), where the patch may be added. Specifically, in the case of energy bugs, where
the acquired services/resource/power management utilities can be released in several locations
in the program. Our framework takes a conservative approach in suggesting patch-location for
energy bugs, suggesting the onPause event handler as the patch location for the activity that
acquires the service/resource/utility, since for each activity that comes to the foreground, the
onPause event handler is called whenever it leaves the foreground. For another example, in
the scenario of tail-energy hotspot, where usages of network components un are scattered with
noticeable irrelevant methods Xc in-between, it is suggested that all un’s with a same network
component should be grouped together, if possible, and followed by the irrelevant methods
Xc’s. Similarly, for the loop-energy hotspot where tail-energy hotspot occurs within a loop
structure, it is suggested that the irrelevant methods Xc’s should be handled in a separated
subsequent loop, if possible, for energy saving.

139



App Start

Root UI

SearchAboutSettings

View

Map

View

Report

Add

Report

Home Back

OK

Popup

AndroidApp 35775

 true

AddIncident 160

onCreate true

AddIncident 10

initComponents false

UserLocationMap 10

setDeviceLocation true

AddIncident 15

onResume false

LocationManager 5

isProviderEnabled false

LocationManager 0

requestLocationUpdates true

LocationManager 0

requestLocationUpdates true

LocationManager 5

getLastKnownLocation false

AddIncident 15

onPause false

AddIncident 5

onResume false

AndroidActivityTable

ResourceUsageTable

...

... ... ... ...

...

(a) Some GUI Elements (b) Contextual Profile Sub-graph

(c) Snapshot showing defect localization, visualization and patch suggestion

Figure 63: Debugging Ushaihdi Android

8.3 TO O L WA L K -T H RO U G H

In this section, we shall demonstrate our developer’s debugging tool for defect detection and
patch suggestion. Our framework has been embedded into an Eclipse Plugin (EnergyDe-
bugger) that facilitates easy access for developers. As shown in Figure 64, the debugging
process begins when the developer selects an open project in EnergyDebugger perspective. At
this point, the selected project is parsed to obtain project metadata such as class description,
method signatures, method-to-line number mappings, loop-to-line number mappings, etc.
The framework also keeps track of Activities, Services and Listeners within the
app. The code for metadata collection is implemented using JDT core (org.eclipse.
jdt.core) libraries [216]. The debugging process then allows the developer to load a log
file which is pre-generated by user, using our instrumentation and logging tool. Following
automatic contextual analysis and defect localization, the debugging tool reports all found
defects and their associated patch suggestions; each defect can be selected by developers for
further visualization and understanding. We present a walk-through of our debugging tool for
two Android apps, namely Ushaihdi Android [217] and Shortyz [218].

140



Process 

Selected 

Project

Pattern 

Detection &

Localization

Patch

Suggestion &

Visualization

requires user input

Project

Metadata
Open Debugger 

Perspective

Select Project 

& Log File

Select Defect To 

Visualize

Log File

 Defect Visualization, 

Root-causeHighlighted

Patch-location Suggested

r 

To 

Figure 64: Working with the debugging tool in Eclipse

Ushaihdi Android is an open source app for crowd-sourcing crisis information over the
internet. In our experiments we use version v2.2 of the app, which had a known vacuous
background services defect (Issue 11). Figure 63(a) presents some of its GUI elements. The
test case obtained from the online issue report to generate the faulty behaviour is App Start
→ OK → Back → Add Report → Home. Figure 63(c) shows a partial screenshot of
our tool for debugging Ushaihdi Android. The screen shows the scenario when a defect of
vacuous background services is found and visualized. The editor view on the left displays
the source code UserLocationMap.java, where the setDeviceLocation method
is highlighted. The image view on the right visualizes the defect scenario, including the
when-context and the how-context, in a sequential order, and two service acquisition events
are highlighted in yellow. The user may click any of those nodes in the image to jump to
their respective invoked source code in the editor. The pop-up message, together with all the
highlights, gives users a clear clue for patching. For this app, the suggested patch involves
stopping the service in the onPause method of class UserLocationMap.java. Note
that the defect scenario is derived from its corresponding contextual profile subgraph, as shown
in Figure 63(b), via contextual analysis. Each evidential method node in the visualization
contains a detailed method signature, which can easily redirect each method node to its
invoked source location. In addition, our debugging tool provides different hierarchical
views (e.g., the contextual subgraph) for users to understand defects; for the sake of concise
presentation, we show a simple image view in Figure 63(c).

Our framework also performs an additional step of processing which could not be
highlighted in the previous example. This step checks if the detected defect patterns falls
within a loop (i.e. the scenario of loop-energy hotspot) or within a region of code that is
launched on reboot (i.e. the scenario of immortality bug). We describe this step by using
the Shortyz app. Shortyz is a crossword puzzle application that downloads, processes and
displays free crossword puzzles from a variety of internet locations. After obtaining the
log-files our framework generates the profile call graph (see Figure 62). To achieve its
functionality, this app launches puzzle download procedure repeatedly (method download
in class Downloaders.java). These procedures fetch puzzle data over the network (see
invocations of APIs, URL and HttpGet, in Figure 62). The interesting insight which our
framework provides is that a processing step (method processDownloadedPuzzle in
class Downloaders.java) is triggered in between two download procedures, leading to
occurrence of tail-energy hotspot in the app. Additionally, the download-processing iterations
happen multiple times in a loop, as a result this app has an instance of loop-energy hotspot.

141



Figure 65: Defect localization for the Shortyz app

Our framework precisely locates the defect location (see Figure 65, where line 205 indicates
the loop) and provides all these information (through highlighting, graphs and reports) to
assist the developer in fixing the defect.

8.4 E VA L UAT I O N

We evaluated our framework to address the following research questions: (i) Does the
log-based field failure localization approach, that has been used in our framework, works
for real-life apps? Is this approach scalable? (ii) How useful are the results of defect-
localization approach and the patch-suggestion approach? (iii) Is it possible to reduce the
energy-consumption of the affected apps by applying the patches suggested by our framework?

8.4.1 Experimental Setup

We used an off-the-shelf Samsung S4 smartphone to generate log-files for our experiments.
The specific device that was used in our experiments was equipped with a Quad-core 1.6
GHz CPU, 2 GB RAM and was running Android Kitkat OS (4.4.2). The instrumentation
and logging utility, debugging framework, as well as a power measurement utility were all
run on a PC with an Intel Core i7 processor, 8 GB RAM and Windows 7 OS. We used the
setup shown in Figure 57 to measure the energy consumption of an app on the mobile device.
In particular, we used a Monsoon Power Monitor [223] to supply the mobile device with a
steady voltage of 4.2 Volts and to measure its power consumption. During interactions with
the mobile device (when measuring energy-consumption) we have followed a few timing
protocols to maintain consistency across all measurements. For instance, the interval between
two successive events (touches/taps/clicks) in the test case was 15 seconds and an idle time of
45 seconds was observed just after the app had stopped execution. Also for all experiments
the screen time-out duration of the device was set to 15 seconds.

8.4.2 Subject Programs

We gathered two sets of open-source apps to be used in our experiments. We shall henceforth
refer to these sets as patched-apps and unpatched-apps. Patched-apps consist of apps for

142



Table 18: Open-source, Android apps that were used in the evaluation of our framework
App Name App Description LoC/Apk Event Handler Android API Energy-intensive

version/code Size (KB) Classes Calls Resources Used∗
Pa

tc
he

d
A

pp
s

DroidAR 1.0/1 [146] An augmented-reality app
for Android.

18177/398 6 224 n, l, c, s, d

Osmdroid 3.0.1/2[148] Provides replacement for
Android’s MapView

8107/276 10 544 n, l, s, d

Osmdroid 1.0.0/1[212] Provides replacement for
Android’s MapView

5308/225 9 413 n, l, d

Recycle-locator 1.0/1 [149] Area-specific restroom,
mailbox finding app.

717/116 3 61 n, l

SP Transport 1.08/9 [209] Android app that assists in
bus-travel

1437/142 3 23 n, l

SP Transport 1.17/18[150] Android app that assists in
bus-travel

1766/161 3 56 n, l

Ushaidi v2.2/13[151] App for Collection, visual-
ization for crisis data

10621/713 22 276 n, l, p, c, d

U
np

at
ch

ed
A

pp
s

Aripuca 1.3.4/24[108] Recording tracks and
saves waypoints.

8093/660 14 730 n, l, s, d

Benchmark 1.1.5/9[147] Comprehensive bench-
mark suite for Android
devices

9739/1020 23 71 n, p, d

Shortyz 3.1.0/30100[218] App to downloads and dis-
plays crossword puzzles

5638/175 12 568 n, d

iTLogger 1.0.0 / 2[219] An app for measuring road
quality using on-board sen-
sors

4014/553 7 205 l, s, b, c, p, d

Omnidroid 0.2.1/6[123] Automated event/action
manager for Android

12425/258 28 393 n, l, c, d

MobiPerf 2.5/1050[220] App for doing mobile net-
work measurements.

8009/401 12 340 n, l, p

Sensorium 1.1.8/11[163] Collects sensor data such
as 3G, GPS, battery
charge.

4001/1248 6 7840 n, l, b, s, d

StrobeLight 1.2/3[221] Strobe light apps using
camera-flash

210/22 1 21 c

Userhash 1.1/2[222] View location of friends
and family.

837/171 7 405 n, l, p

Zmanim 3.3.84.296/84[152] List of halachic/halakhic
times.

72977/842 4 1102 n, l

∗ Network(n), Location(l), Camera(c), Sensors(s), Storage(d), Power Management(p), Bluetooth(b)

which there exist known energy-related issues reported by the user (along with test-scenarios)
and patches that are applied by the developers to resolve the energy-related issue. Unpatched-
apps on the other hand consist of apps for which energy-related issues were known (from
previous works such as [159]) but there were no developer-provided patches to fix the issue.
Table 18 provides some key information for both sets of apps. These apps are diverse in size
and use of energy-intensive resources. The number of event-handler classes (i.e. related to
activities, services and receivers, details in Table 16) varied from 1 to 28, whereas the number
of Android API calls related to energy-intensive resources varied from 21 to 7, 840. The
energy-intensive resources used by each app are shown in the last column of Table 18. The
line-of-code (LoC) of these apps varied between 201 to 72, 977 (average LoC of 10, 122).
The links for source-code of subject apps are provided in [224].

8.4.3 Efficacy of Defect-detection

We conducted the first set of experiments with the patched-apps. These apps were specifically
useful in the initial stages of this work because they provided us with useful insights into how
users observed and reported energy-related issues, as well as, how developers analysed and
fixed these issues. A list of these issues can be found in column 2 of Table 19. We observed
that when these issues were brought to developer’s notice they were classified with medium

143



or high priorities. Also the developers usually fixed these defects within a fortnight. However,
in some cases issues remained open for a considerably long period of time, mostly due to
improper understanding of the defect. Consider the Issue 53 [148] in app Osmdroid, which
stayed open for 240 days during which time 559 versions were committed to the repository.
We present the timeline of the conversation related to Issue 53 in following.

May 25, 2010 Issue opened. Test case provided.
Oct 4, 2010 Priority increased from low to medium
Oct 8, 2010 User thinks defect is fixed
Jan 11, 2011 Project member suggests closing the issue
Jan 12, 2011 Project member claims the issue is not fixed
Jan 20, 2011 Project member fixes Issue. Provides commit number were issue has been fixed

Unlike the confusion which ensues as a result of ad-hoc communication, our framework
provides definitive answers as to whether there exists a defect for a given test case/scenario.
When we tested the log-files generated from the apps (including for Osmdroid Issue 53) our
framework was able to pinpoint exact locations of defects in the source-code (manually cross-
checked by going through user-comments, code-changes, etc). Also the defect visualization
provided by our framework further assists the developer in understanding the cause and effect
of the observed defect. Once confident about the efficacy of our framework (in detecting
defects), we conducted another set of experiments with the unpatched-apps for which our
framework was able to pinpoint locations of the defects in the source-code as well. Table 21
provides a list of defect-locations for this set of apps.

Table 19: Summary of defect localization and patch location suggestion for patched-apps
App Name Issue No, Defect Issue Commits Observed Changes Proposed Changes Energy

version Description, Open While Class (Method) Class (Method) Saved
/code Assigned Priority Days Open (%)

DroidAR Issue 27, Vacuous 3 2 Commit : 2e315c080974a56751e Setup.java (onPause)
1.0 / 1 background services EventManager.java(resumeEventListeners)

Priority-Medium Setup.java(onDestroy,onStop,onRestart 29
killCompleteApplicationProcess,onPause)
ArActivity.java(onResume),
GeoUtils.java(disableGPS)

Osmdroid Issue 53, Vacuous 240 559 Commit : r751 SampleMapActivity.java
3.0.1 / 2 background services SampleMapActivity.java(onResume, (onPause) 11

Priority-Medium onPause)
Osmdroid Issue 76, Expensive 11 4 Commit : f d2b17227ab183a5a16 MyLocationOverlay.java
1.0.0 / 1 background service MyLocationOverlay.java (enableMyLocation) 5

Priority-Medium (getLocationUpdateMinTime,
getLocationUpdateMinDistance,
enableMyLocation,
setLocationUpdateMinDistance)

Recycle Issue 33, Vacuous 0 0 Commit : f 19b7 f c5a7a0 Map.java (onPause)
Locator background services Map.java(onPause, 23
1.0 / 1 Priority-Medium createMap,locateUser)

SP Issue 38, Sub-optimal 2 9 Commit : 698a27e83900e42a6dd HtmlResult.java
Transport resource binding LocationView.java (showResult) 17
1.08 / 9 Priority-Medium (disableLocationUpdates,onResume,

enableLocationUpdates)
HtmlResult.java (showResult)

SP Issue 76, Vacuous 0 0 Commit : d2d f a786da728ae6975 LocationView.java
Transport background services LocationView.java (onPause) 12
1.17 / 18 Priority-High (onPause, onCreateDialog)
Ushaidi Issue 11, Vacuous 0 0 Commit : 561d6 f b10a5 f c600ab6 UserLocationMap.java
v2.2 / 13 background services UserLocationMap.java (onPause) 10

Priority-n/a (onPause, onDestroy)

144



8.4.4 Scalability of Defect-detection

The scalability of our technique is mostly dictated by the sizes of the log-files that are used for
profile generation. In general, programs with more event-handlers and Android API usages may
generate bigger log-files. The length of test-input sequence may also affect the size of log-files.
It is worthwhile to know that LoC may not be a good indicator of log-file size, as it may not
correspond to more event-handlers or API usages. For example, Shortyz has only 5, 538 LoC but
generated 50, 049 lines of log messages whereas Benchmark has 9, 739 LoC but generated only
356 lines of log messages (cf. Tables 20 and 21). In general, the analysis was relatively fast, with
the longest analysis time being 3.1 seconds for 112, 897 lines of log messages for DroidAR.

Table 20: Line of log messages and analysis time for all apps
App Name (version/code) Line of Log Messages Analysis Time (seconds)

Patched Apps

DroidAR (1.0 / 1) 112,897 3.1
Osmdroid (3.0.1 / 2) 3,504 0.1
Osmdroid (1.0.0 / 1) 1,526 0.1

Recycle-locator (1.0 / 1) 396 0.1
SP Transport (1.08 / 9) 543 0.1
SP Transport (1.17 / 18) 14,281 0.2

Ushaidi(v2.2 / 13) 876 0.1

Patched Apps

Aripuca (1.3.4 / 24) 3,838 0.5
Benchmark (1.1.5/ 9) 356 0.1

Shortyz (3.1.0 / 30100) 50,049 0.6
iTLogger (1.0.0 / 2) 2,967 0.1

Omnidroid (0.2.1 / 6) 2,284 0.2
MobiPerf (2.5 / 1050) 3,210 0.2
Sensorium (1.1.8/ 11) 11,347 0.5
StrobeLight (1.2 / 3) 87 0.1

Userhash (1.1 / 2) 226 0.1
Zmanim (3.3.84.296 / 84) 50,892 0.8

8.4.5 Effectiveness of the Patch-suggestion

The final set of experiments (with a power-measurement setup as described in Section 8.4.1) were
conducted to evaluate the effectiveness of the patch-suggestion. For the patched-apps this was
relatively straightforward as we could compare the patches suggested by our framework to the
patches applied by the developer for each defect. However, for unpatched-apps, since there was
no such information available, we compared energy consumption before and after patches were
applied, to evaluate the effectiveness of the patches. For the experiments with patched-apps, we
observed a significant correlation between the changes suggested by our framework and changes
added to the source-code commits where the defect was resolved (cf Table 19, columns 5 and 6).
Power measurement experiments with the unpatched-apps also returned positive results, with
energy-savings varying from 6% to 29%.

Table 21: Summary of results for unpatched apps
App Name version/code Defect Description Defect Location Energy Saved (%)

Aripuca 1.3.4/24 Vacuous services AppService.java(startLocationUpdates, 15
startSensorUpdates) 15

Benchmark 1.1.5/9 Wakelock Bug Benchmark(onCreate) 29
Shortyz 3.1.0/30100 Loop-energy Hotspot Downloaders.java(processDownloadedPuzzle, 11

download) + 3 more 11
iTLogger 1.0.0/2 Vacuous Services iTloggerActivity(onCreate) 9

Omnidroid 0.2.1/6 Immortality Bug LocationMonitor(init) 14
MobiPerf 2.5/1050 Wakelock Bug PoneUtils(acquireWakelock) 12
Sensorium 1.1.8/11 Vacuous Services GPSLocationSensor(_enable), 21

NetworkLocationSensor(_enable)
StrobeLight 1.2/3 Sub-optimal Binding StrobeRunner(run) 6

Userhash 1.1/2 Immortality Bug ViewActivity(onClick) 15
Zmanim 3.3.84.296/84 Resource Leak LogUtils(startSession) 21

145



8.5 C O M PA R I S O N W I T H E X I S T I N G WO R K S

Due to increasing popularity of smartphones and their limited battery power, energy con-
sumption models of mobile apps have been extensively studied [203, 225, 179, 180, 181, 182,
226, 192] for monitoring and optimizing their energy usage. These models, typically based
on monitoring device components’ measurable parameters and computing the approximate
battery drain caused by the component over time, provide an energy-aware quality of service
support for users.
Increasing attention has been drawn to the research connecting energy consumption mod-
els with various user or system activities in mobile applications. For examples, real user
activities [183, 184] were collected and studied to guide power consumptions for mobile ar-
chitectures. An accurate power model was constructed based on both the power management
and activity states of those power-intensive hardware components [225]. Eprof [185, 226]
is a fine-grained energy profiler for smartphone apps, mapping the power draw and energy
consumption to program entities via a Android API driven finite state machine [226]. Pow-
erScope [186] is an alternative tool for profiling the energy Usage of Mobile Applications.
However, those energy profiling tools still focus on answering the ultimate question, “Where
is the energy spent inside my app?”, to provide an energy-aware quality of service support.
Several automated tools [227, 189, 228] have been recently developed for detecting energy
anomalies and diagnosing energy inefficiency for mobile applications. The ADEL tool [227]
detects and isolates energy leaks resulting from unnecessary network communication via
data flow analysis. The Carat tool [189] detects and diagnose energy anomalies by using a
collaborative battery consumption and utilization measurements aggregated from multiple
clients. The GreenDroid tool [228] monitors sensor and wake lock operations to detect
two common causes of energy problems: missing deactivation of sensors or wake locks,
and cost-ineffective us of sensory data, and generate detailed reports to assist developers in
validating detected energy problems.
Debugging functionality-related defects, e.g., fault localization [199, 229] and patch genera-
tion [198, 200, 201], is difficult and time-consuming. Debugging energy-inefficiency defects
is even more challenging because the defects may depend on the running contextual sensitive
scenario, including the state of hardware device, a specific sequence of user interactions, and
program call dependencies. For locating energy-inefficiency issues, developers often seek
assistances from users through online coding repositories since no debugging tool is currently
available. Our framework provides both an effective communication channel from users to
developers and an automated energy-inefficiency debugging tool.

8.6 C H A P T E R S U M M A RY

We present a practical framework for localizing energy-efficiency related field failures in
mobile apps. Our framework provides a simple yet effective communication protocol to be
used between the users and developers. Not only does our developer-side debugging tool
detect and localize the presence of energy defects in the app source code, but also suggests
potential patch location for the reported defects. Evaluation with real-life apps have shown
that our tool can localize defects effectively and efficiently, even for apps with thousands of
lines-of-code. Additionally, the energy savings generated as a result of the patched defects
are significant (observed energy saving between 5% to 29%).

146



9 R E F L E C T I O N S

In this chapter we shall briefly discuss the key contributions of this thesis. We shall also discuss a few
potential directions for future work that can be done to address the challenges faced by contemporary
app-development companies. The information for the future work was gathered through interactions
with programmers and managers from commercial mobile app-development companies in Singapore.

D I S C U S S I O N

Systematic non-functional testing was a relatively less explored topic hitherto. However,
as we have discussed in previous chapters, testing of non-functional properties is equally
important as testing of functional properties, especially in the context of real-time systems
which may have to operate under a number of non-functional constraints. This work is
an effort to address this situation. Our work does not try to re-invent automated testing in
context of non-functional properties, instead it uses novel abstractions (such as the automated
instrumentation of assertions in Chapters 3 and 6) to capture the peculiarities commonly
associated with non-functional properties such as performance and energy-consumption.
These abstractions helps us to develop sound and precise frameworks based on well-accepted
systematic testing technique such as DART[5]. We have also discussed a number of practical
applications of the non-functional testing frameworks that were described in the previous
chapters. The most obvious application being the fact that programmers/testers can now
systematically generate non-functional property aware test-cases (for instance, performance
aware test-case generation in Chapter 3 and energy-consumption aware test-case generation in
Chapters 5 and 6). Before our techniques were developed, the only way a programmer/tester
could have done non-functionality aware testing was through profiling. However, as we have
discussed in Chapters 1, 2 and 4 that unlike test-generation techniques, profiling techniques
need to be provided with test-cases for them to generate the profile which can then be analysed
to study the non-functional behaviour of the program. This brings us to another important
observation; it is difficult to generate non-functional behaviour stressing test-cases manually.
So if a programmer/tester were trying to uncover suboptimal non-functional behaviour using
just profiling techniques, it would be a challenging and time-consuming task in the best of
scenarios and an impractical task in the worst of scenarios. This is not to say that profiling
techniques are not useful, on the contrary they can hugely benefit from a systematic test-
generation technique such as ours and further assist the programmer in understanding the
behaviour of a program. We have also explored some of the less-obvious applications of
non-functionality aware test-case generation in design space exploration and cache locking
in context of performance optimization for real-time embedded systems in Chapter 3 and in
energy-efficient repair generation for mobile-apps in Chapter 6. Specifically the works on
mobile-app testing (Chapters 4 - 6) have provided us with insights that have enabled us to
extend the support for energy-aware programming to development (energy-aware re-factoring
framework presented in Chapter 7) and debugging (energy-aware re-factoring framework
presented in Chapter 8) stages of the app development. Equipped with these new tools and
techniques for systematic non-functional testing we next seek to solve some of the testing
related problems faced by app-developers in commercial app-development companies.

147



C H A L L E N G E S I N M O B I L E -A P P T E S T I N G I N C O M M E R -
C I A L S E T T I N G S A N D F U T U R E WO R K

As of year 2015 the market size for mobile apps has reached a staggering 40 billion dollars
and due to the popularity of smartphone it is expected to keep growing to 76 billion dollars by
the year 2017 [230]. The research community has also been very active in the last few years
in generating tools and techniques that can facilitate in processes related to development,
testing, rating and recommendation of mobile apps. Research works presented in Chapter 4
can provide an idea about some of these works. Interestingly, the market for mobile app test
automation has been forecasted to grow from 200 million dollars in 2015 to approximately
800 million dollars by the year 2017 [231]. However, what we are interested to find out is (i)
how much of the research advancements in the academia have been successfully adopted in
the industry? (ii) what kind of testing automation services are available in the commercial
setting? and (iii) what testing-related problems are currently faced by app-developer in spite
of the available tools and techniques? In the following paragraphs we shall provide a short
summary of some of the interviews we have had with professionals from the app-development
industry in our pursuit to answer these questions.

Testing is often one of the ways by which developers/clients ascertain/judge the quality
of their apps. So to know if automated testing (or testing of any sort) had any importance
in the industry we had to first find out whether app-developers cared about the quality of
their apps. We found that app-developers do care about quality (and testing) but to varying
extent; the extent being decided based on the specific requirements imposed by the clients
(of the app-development companies). In general, small-medium scale enterprises (SMEs)
are more interested in the functional aspects of their app whereas the enterprise clients are
more stringent about functionality as well as quality, specially when the app functionality
involves using credit card information1. We use the term quality rather vaguely in this chapter,
however as it turns out the actual significance of the term quality is also vaguely defined in the
commercial setting and may depend on the context. For instance, higher quality may indicate
higher performance when it comes to gaming apps whereas higher energy-efficiency may
indicate higher quality for apps that run for long durations of time. However, certain aspects
of quality, such as app does not crashes for common UI inputs, was often agreed to be a part of
the bare minimum definition of quality. So for the rest of this chapter we shall restrict ourself
to this bare minimum (and still vague) definition of quality as a measure of how well an app
has been validated against crashes. Interestingly, even though the body of research work on
the topic of automated mobile app testing has been growing by leaps and bounds, not much
of the recent advancements have permeated to the commercial app testing setting. Much of
the testing work in the commercial setting is still done using non-mobile-specific frameworks
such as JUnit[233] and JMeter[234]. It is worthwhile to point out that these observation may
not represent the global, commercial app development community, but a characteristic of
the local app development community. We have also observed that one of the key challenge
faced by developers while using manual test-suite design techniques was in coming up with
appropriate test-suite. As is the case with most real-life software, manually crafting adequate
test-suite requires intimate knowledge of the software system as well as time. Both of which
may be expensive resources in the commercial setting. These challenges to adequate app
testing are increased by the fact that in a commercial setting often (mostly for SMEs) the
UI components may be changed, re-organized or re-designed a number of times during the
project. This may often require the test-suite to updated or re-created, further increasing the

1 Payment Card Industry Data Security Standard (PCI DSS) must be followed when cards such as Visa, MasterCard,
American Express are handled by the app [232]

148



costs associated with testing. Added to these challenges is the fact there are many smartphone
devices for both iOS and Android platforms, each of which may be running a different version
of OS and have different hardware (such as screen size). All these factors combined lead to a
situation where adequate app-testing is often uneconomical and therefore app-development
companies often have to rely on skilfully crafted client-company agreements to deliver their
products (apps) on time and within budget.

We also looked at the different products and services that are currently being provided for
mobile app testing. Table 22 provides a list of the leading mobile-app testing companies along
with the products/services that they provide and an estimated price for these products/services.
In particular, they provide one or more of the following services:

• Help in test-generation: Fully-automated testing is probably the most desirable feature
which the app-development companies would be looking for in commercial testing
based products. However, none of the companies that we have looked at offered
fully-automated testing based products. Instead, they provide different mechanisms to
assist the app-developers to manually craft test-cases. These mechanisms can be put in
following two categories:

– HTG-A: Developer provides test scenarios through an easy-to-use interface. These
manually generated test scenarios are then converted into test-cases

– HTG-B: Developer interacts with the app during which a system records the
execution trace to generate test-cases

• Cloud-based testing framework: testing products/services are provided as cloud-based
platforms such that app developer can access it from anywhere

• Testing on multiple devices: developer may want to test their app on multiple devices.
However, buying multiple devices (smartphone) can be uneconomical and testing the
app on these multiple device one-by-one is time consuming. Therefore, commercial app
testing companies often provides the app-developers access to many devices on which
to test their app on. Note that the testing is still done using the test-cases provided by
the app-developer using approach HTG-A/B.

• Crowd sourcing: These services provide a platform through which app developers
and app users can interact. New apps are uploaded through the service and app users
provide detailed reviews on the look and feel of the app. This form of testing is more
suitable for the later stages of the app development (say during beta testing).

Table 22: Products offered by mobile-app testing companies (data collected on 4th September 15)
Company Testing on Cloud Help in Price Range

Name Multiple Devices Testing Test Generation Basic - Enterprise
Keynote Yes Yes HTG-A 180 $ - 750 $ Month
Ranorex Yes No HTG-A/B 700 $ - 3,500 $ License

TestDroid Yes Yes HTG-B 49 $ - 3999 $ Month

Experitest developer setup on HTG-A 1000 $ Yearbuys device user facility
PerfectoMobile Yes Yes HTG-B 99$ - $299 Month

UserTesting Crowd sourcing n/a n/a 49$ - 99$ User Review
Xamarin Yes Yes HTG-B 1,000$ - 12,000$ Month

Interestingly, the approaches provided by the academia as well as by the industry both claim
to offer solution for test automation. So naturally the question arises as to which of the

149



automation approaches is better? Probably, an even more important question is which of
these two approaches better solves the challenges faced by app-developers in the commercial
setting? At this point it is worthwhile to point out that the description of test automation widely
varies from the academia (as in academic research papers) to that used in commercial testing
based products/services in the industry. In general, in the academic setting test automation
usually implies that given a program the testing-framework can explore the program and
generate failure-revealing test-cases, automatically (with little or no user effort). Hence,
the academic notion of test automation often involves creating abstract representation of
the program (to be tested) and ways to systematically explore this abstract representation
to generate failure-revealing test-cases, under the supervision of a failure-predicting oracle.
On other hand, the industrial (as in companies that provide app-testing services) notion of
test automation usually involves ornate mechanisms (see HTG-A/B described in previous
paragraph) through which the app-developer can specify the test-cases manually. Such a
notion of test automation requires the app-developer to be skilled in the art of testing and also
spend time in creating the test-cases. Even though the cloud-based testing services as well as
access to wide-range of testing devices are desirable features provided by existing app-testing
companies, without a more comprehensive test automation strategy existing commercial
mobile app testing services do not solve the challenges faced by the app-developer adequately.
While the academic notion of test automation can better address the challenges faced by
commercial app-development community, they are often less-accessible (no cloud-based
framework) and are often complicated to use. It would be interesting to see a solution
where the research advances in test automation are integrated with a cloud-based testing
framework such that app-developers can test their apps on many devices, with least amount
of configuration. Such a framework would be very useful to app developers as it will reduce
the costs associated with testing while generating comprehensive test results. We wish to
investigate development of such a framework in our future work.

150



B I B L I O G R A P H Y

[1] Abhijeet Banerjee, Sudipta Chattopadhyay, and Abhik Roychoudhury. Static analysis
driven cache performance testing. In Proceedings of the IEEE 34th Real-Time Systems
Symposium, RTSS 2013, Vancouver, BC, Canada, December 3-6, 2013, pages 319–329,
2013.

[2] Abhijeet Banerjee, Lee Kee Chong, Sudipta Chattopadhyay, and Abhik Roychoudhury.
Detecting energy bugs and hotspots in mobile apps. In Proceedings of the 22Nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, FSE
2014, pages 588–598, New York, NY, USA, 2014. ACM.

[3] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. Where is the energy spent inside my
app?: Fine grained energy accounting on smartphones with eprof. In Proceedings of
the 7th ACM European Conference on Computer Systems, EuroSys ’12, pages 29–42,
New York, NY, USA, 2012. ACM.

[4] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proceed-
ings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL ’77, pages 238–252, New York, NY, USA, 1977. ACM.

[5] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed automated random
testing. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’05, pages 213–223, New York, NY,
USA, 2005. ACM.

[6] Yun Liang and Tulika Mitra. Instruction cache locking using temporal reuse profile.
In Proceedings of the 47th Design Automation Conference, DAC ’10, pages 344–349,
New York, NY, USA, 2010. ACM.

[7] Jean-FranÃğois Deverge and Isabelle Puaut. Safe measurement-based wcet estimation,
2005.

[8] Guillem Bernat, Antoine Colin, and Stefan M. Petters. Wcet analysis of probabilistic
hard real-time systems. In Proceedings of the 23rd IEEE Real-Time Systems Symposium,
RTSS ’02, pages 279–, Washington, DC, USA, 2002. IEEE Computer Society.

[9] Dmitrijs Zaparanuks and Matthias Hauswirth. Algorithmic profiling. In Proceed-
ings of the 33rd ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’12, pages 67–76, New York, NY, USA, 2012. ACM.

[10] Emilio Coppa, Camil Demetrescu, and Irene Finocchi. Input-sensitive profiling. In
Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’12, pages 89–98, New York, NY, USA, 2012. ACM.

[11] Christopher Healy, Mikael SjÃűdin, Viresh Rustagi, David Whalley, and Robert Van
Engelen. Supporting timing analysis by automatic bounding of loop iterations. Journal
of Real-Time Systems, 18:121–148, 2000.

151



[12] Paul Lokuciejewski, Daniel Cordes, Heiko Falk, and Peter Marwedel. A fast and precise
static loop analysis based on abstract interpretation, program slicing and polytope
models. In Proceedings of the 7th Annual IEEE/ACM International Symposium on
Code Generation and Optimization, CGO ’09, pages 136–146, Washington, DC, USA,
2009. IEEE Computer Society.

[13] Vivy Suhendra, Tulika Mitra, Abhik Roychoudhury, and Ting Chen. Efficient detection
and exploitation of infeasible paths for software timing analysis. In Proceedings of
the 43rd Annual Design Automation Conference, DAC ’06, pages 358–363, New York,
NY, USA, 2006. ACM.

[14] Yau-Tsun Steven Li and Sharad Malik. Performance analysis of embedded software
using implicit path enumeration. In Proceedings of the 32Nd Annual ACM/IEEE
Design Automation Conference, DAC ’95, pages 456–461, New York, NY, USA, 1995.
ACM.

[15] Henrik Theiling, Christian Ferdinand, and Reinhard Wilhelm. Fast and precise wcet
prediction by separated cache andpath analyses. Real-Time Syst., 18(2/3):157–179,
May 2000.

[16] Y.-T. S. Li, S. Malik, and A. Wolfe. Cache modeling for real-time software: Beyond
direct mapped instruction caches. In Proceedings of the 17th IEEE Real-Time Systems
Symposium, RTSS ’96, pages 254–, Washington, DC, USA, 1996. IEEE Computer
Society.

[17] Damien Hardy and Isabelle Puaut. Wcet analysis of multi-level non-inclusive set-
associative instruction caches. In Proceedings of the 2008 Real-Time Systems Sym-
posium, RTSS ’08, pages 456–466, Washington, DC, USA, 2008. IEEE Computer
Society.

[18] Sudipta Chattopadhyay and Abhik Roychoudhury. Scalable and precise refinement
of cache timing analysis via model checking. In Proceedings of the 2011 IEEE 32Nd
Real-Time Systems Symposium, RTSS ’11, pages 193–203, Washington, DC, USA,
2011. IEEE Computer Society.

[19] Christian Ferdinand and Reinhard Wilhelm. On predicting data cache behavior for
real-time systems. In Proceedings of the ACM SIGPLAN Workshop on Languages,
Compilers, and Tools for Embedded Systems, LCTES ’98, pages 16–30, London, UK,
UK, 1998. Springer-Verlag.

[20] Rathijit Sen and Y. N. Srikant. Wcet estimation for executables in the presence of data
caches. In Proceedings of the 7th ACM &Amp; IEEE International Conference on
Embedded Software, EMSOFT ’07, pages 203–212, New York, NY, USA, 2007. ACM.

[21] S. Chattopadhyay and A. Roychoudhury. Unified cache modeling for wcet analysis
and layout optimizations. In Real-Time Systems Symposium, 2009, RTSS 2009. 30th
IEEE, pages 47–56, Dec 2009.

[22] Benjamin Lesage, Damien Hardy, and Isabelle Puaut. Wcet analysis of multi-level
set-associative data caches. In Workshop on WCET, 2009.

[23] Bach Khoa Huynh, Lei Ju, and Abhik Roychoudhury. Scope-aware data cache analysis
for wcet estimation. In Proceedings of the 2011 17th IEEE Real-Time and Embedded
Technology and Applications Symposium, RTAS ’11, pages 203–212, Washington, DC,
USA, 2011. IEEE Computer Society.

152



[24] Sung-Soo Lim, Young Hyun Bae, Gyu Tae Jang, Byung-Do Rhee, Sang Lyul Min,
Chang Yun Park, Heonshik Shin, Kunsoo Park, Soo-Mook Moon, and Chong Sang
Kim. An accurate worst case timing analysis for risc processors. IEEE Trans. Softw.
Eng., 21, 1995.

[25] S.-S. Lim, J. H. Han, J. Kim, and S. L. Min. A worst case timing analysis technique for
multiple-issue machines. In Proceedings of the IEEE Real-Time Systems Symposium,
RTSS ’98, 1998.

[26] C. A. Healy, D. B. Whalley, and M. G. Harmon. Integrating the timing analysis of
pipelining and instruction caching. In Proceedings of the 16th IEEE Real-Time Systems
Symposium, RTSS ’95, pages 288–297, 1995.

[27] Y.-T. S. Li, S. Malik, and A. Wolfe. Efficient microarchitecture modeling and path
analysis for real-time software. In Proceedings of the 16th IEEE Real-Time Systems
Symposium, RTSS ’95, pages 298–, Washington, DC, USA, 1995. IEEE Computer
Society.

[28] Jörn Schneider and Christian Ferdinand. Pipeline behavior prediction for superscalar
processors by abstract interpretation. In Proceedings of the ACM SIGPLAN 1999
Workshop on Languages, Compilers, and Tools for Embedded Systems, LCTES ’99,
pages 35–44, New York, NY, USA, 1999. ACM.

[29] Marc Langenbach, Stephan Thesing, and Reinhold Heckmann. Pipeline modeling for
timing analysis. In Proceedings of the 9th International Symposium on Static Analysis,
SAS ’02, pages 294–309, London, UK, UK, 2002. Springer-Verlag.

[30] Xianfeng Li, Abhik Roychoudhury, and Tulika Mitra. Modeling out-of-order processors
for wcet analysis. Journal of Real-Time Systems, 34:2006, 2005.

[31] J. Engblom. Analysis of the execution time unpredictability caused by dynamic branch
prediction. In Real-Time and Embedded Technology and Applications Symposium,
2003. Proceedings. The 9th IEEE, pages 152–159, May 2003.

[32] Antoine Colin and Isabelle Puaut. Worst case execution time analysis for a processor
withbranch prediction. Real-Time Syst., 18(2/3):249–274, May 2000.

[33] Xianfeng Li, Tulika Mitra, and Abhik Roychoudhury. Modeling control speculation
for timing analysis. Real-Time Systems, 29, 2005.

[34] Daniel Grund, Jan Reineke, and Gernot Gebhard. Branch target buffers: Wcet analysis
framework and timing predictability. J. Syst. Archit., 57, 2011.

[35] Y-T. S. Li, S. Malik, and A. Wolfe. Performance estimation of embedded software
with instruction cache modeling. ACM Trans. Des. Autom. Electron. Syst., 4(3), 1999.

[36] Francois Bodin and Isabelle Puaut. A wcet-oriented static branch prediction scheme
for real time systems. In Proceedings of the 17th Euromicro Conference on Real-Time
Systems, ECRTS ’05, 2005.

[37] Christopher A. Healy, Robert D. Arnold, Frank Mueller, David B. Whalley, and
Marion G. Harmon. Bounding pipeline and instruction cache performance. IEEE
Transactions on Computers, 48:53–70, 1999.

153



[38] Friedhelm Stappert, Andreas Ermedahl, and Jakob Engblom. Efficient longest exe-
cutable path search for programs with complex flows and pipeline effects. In Proceed-
ings of the 2001 international conference on Compilers, architecture, and synthesis for
embedded systems, CASES ’01, 2001.

[39] J. Engblom and A. Ermedahl. Modeling complex flows for worst-case execution time
analysis. In RTSS, 2000.

[40] Reinhard Wilhelm. Why AI + ILP is good for WCET, but MC is not, nor ILP alone.
In VMCAI, 2004.

[41] MINISAT satisfiability solver. http://minisat.se/.

[42] J. Gustafsson et al. Automatic derivation of loop bounds and infeasible paths for wcet
analysis using abstract execution. In RTSS, 2006.

[43] V. Suhendra and T. Mitra. Exploring locking & partitioning for predictable shared
caches on multi-cores. In DAC, 2008.

[44] Y. Li et al. Timing analysis of concurrent programs running on shared cache multi-cores.
In RTSS, 2009.

[45] D. Hardy and I. Puaut. WCET analysis of multi-level non-inclusive set-associative
instruction caches. In RTSS, 2008.

[46] X. Li et al. Chronos: A timing analyzer for embedded software. Science of
Computer Programming, 2007. http://www.comp.nus.edu.sg/~rpembed/
chronos.

[47] WCET benchmarks. http://www.mrtc.mdh.se/projects/wcet/
benchmarks.html.

[48] F. Nemer, H. Cassé, and P. Sainrat. Papabench: a free real-time benchmark. WCET
Workshop, 2006.

[49] Muhammad Yasir Qadri, Dorian Matichard, and Klaus D. McDonald Maier. Jetbench:
An open source real-time multiprocessor benchmark. In Proceedings of the 23rd
International Conference on Architecture of Computing Systems, ARCS’10, pages
211–221, Berlin, Heidelberg, 2010. Springer-Verlag.

[50] Rhapsody. http://www-01.ibm.com/software/awdtools/rhapsody/.

[51] CTAS case study overview, requirements. In SCSEM Case Study, 2003.

[52] E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. TACAS,
2004.

[53] Jacob Burnim, Sudeep Juvekar, and Koushik Sen. Wise: Automated test generation for
worst-case complexity. In in ICSE, 2009.

[54] Sudipta Chattopadhyay, Lee Kee Chong, and Abhik Roychoudhury. Program perfor-
mance spectrum. In Proceedings of the 14th ACM SIGPLAN/SIGBED Conference on
Languages, Compilers and Tools for Embedded Systems, LCTES ’13, pages 65–76,
New York, NY, USA, 2013. ACM.

154

http://minisat.se/
http://www.comp.nus.edu.sg/~rpembed/chronos
http://www.comp.nus.edu.sg/~rpembed/chronos
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www-01.ibm.com/software/awdtools/rhapsody/


[55] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In Proceedings of the
8th USENIX Conference on Operating Systems Design and Implementation, OSDI’08,
pages 209–224, Berkeley, CA, USA, 2008. USENIX Association.

[56] LLVM compiler infrastructure. http://llvm.org/.

[57] KLEE symbolic virtual machine. http://klee.llvm.org/.

[58] STP constraint solver. https://sites.google.com/site/
stpfastprover/.

[59] M. Harman, Y. Jia, and Y. Zhang. Achievements, open problems and challenges for
search based software testing. In Software Testing, Verification and Validation (ICST),
2015 IEEE 8th International Conference on, 2015.

[60] Thomas Ball and James R. Larus. Efficient path profiling. In Proceedings of the 29th
Annual ACM/IEEE International Symposium on Microarchitecture, MICRO 29, pages
46–57, Washington, DC, USA, 1996. IEEE Computer Society.

[61] James R. Larus. Whole program paths. In Proceedings of the ACM SIGPLAN 1999
Conference on Programming Language Design and Implementation, PLDI ’99, pages
259–269, New York, NY, USA, 1999. ACM.

[62] Vivek Tiwari, Sharad Malik, and Andrew Wolfe. Power analysis of embedded soft-
ware: A first step towards software power minimization. In Proceedings of the 1994
IEEE/ACM International Conference on Computer-aided Design, ICCAD ’94, pages
384–390, Los Alamitos, CA, USA, 1994. IEEE Computer Society Press.

[63] J.T. Russell and M.F. Jacome. Software power estimation and optimization for high
performance, 32-bit embedded processors. In Computer Design: VLSI in Computers
and Processors, 1998. ICCD ’98. Proceedings. International Conference on, 1998.

[64] W. Ye, N. Vijaykrishnan, and M. J. Irwin. The design and use of simplepower: A
cycle-accurate energy estimation tool. pages 340–345, 2000.

[65] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for architectural-level
power analysis and optimizations. In Computer Architecture, 2000. Proceedings of the
27th International Symposium on, 2000.

[66] Doug Burger and Todd M. Austin. The simplescalar tool set, version 2.0. SIGARCH
Comput. Archit. News, 1997.

[67] Johann Laurent, Eric Senn, Nathalie Julien, Eric Martin, and The Pennsylvania State
University CiteSeer Archives. High-level energy estimation for dsp systems. 2001.

[68] Eric Senn, Johann Laurent, Nathalie Julien, and Eric Martin. Softexplorer: estimating
and optimizing the power and energy consumption of a c program for dsp applications.
EURASIP J. Appl. Signal Process., 2005.

[69] H. Blume, M. Schneider, and T. G. Noll. Power estimation on functional level for
programmable processors. In Advances in Radio Science, 2004.

[70] Johann Laurent, Nathalie Julien, Eric Senn, and Eric Martin. Functional level power
analysis: An efficient approach for modeling the power consumption of complex
processors. In Proceedings of the Conference on Design, Automation and Test in

155

http://llvm.org/
http://klee.llvm.org/
https://sites.google.com/site/stpfastprover/
https://sites.google.com/site/stpfastprover/


Europe - Volume 1, DATE ’04, pages 10666–, Washington, DC, USA, 2004. IEEE
Computer Society.

[71] Nand Kumar, Srinivas Katkoori, Leo Rader, and Ranga Vemuri. Profile-driven behav-
ioral synthesis for low-power vlsi systems. IEEE Des. Test, 1995.

[72] Feng Qian, Zhaoguang Wang, Alexandre Gerber, Zhuoqing Mao, Subhabrata Sen, and
Oliver Spatscheck. Profiling resource usage for mobile applications: A cross-layer
approach. In Proceedings of the 9th International Conference on Mobile Systems,
Applications, and Services, MobiSys ’11, pages 321–334, New York, NY, USA, 2011.
ACM.

[73] Shuai Hao, Ding Li, William G. J. Halfond, and Ramesh Govindan. Estimating
mobile application energy consumption using program analysis. In Proceedings of
the 2013 International Conference on Software Engineering, ICSE ’13, pages 92–101,
Piscataway, NJ, USA, 2013. IEEE Press.

[74] Ding Li, Shuai Hao, William G. J. Halfond, and Ramesh Govindan. Calculating source
line level energy information for android applications. In Proceedings of the 2013
International Symposium on Software Testing and Analysis, ISSTA 2013, pages 78–89,
New York, NY, USA, 2013. ACM.

[75] Ramkumar Jayaseelan, Tulika Mitra, and Xianfeng Li. Estimating the worst-case
energy consumption of embedded software. In Proceedings of the 12th IEEE Real-
Time and Embedded Technology and Applications Symposium, RTAS ’06, pages 81–90,
Washington, DC, USA, 2006. IEEE Computer Society.

[76] Abhinav Pathak, Abhilash Jindal, Y. Charlie Hu, and Samuel P. Midkiff. What is
keeping my phone awake?: Characterizing and detecting no-sleep energy bugs in
smartphone apps. In Proceedings of the 10th International Conference on Mobile
Systems, Applications, and Services, MobiSys ’12, pages 267–280, New York, NY,
USA, 2012. ACM.

[77] Yepang Liu, Chang Xu, and Shing-Chi Cheung. Characterizing and detecting perfor-
mance bugs for smartphone applications. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, pages 1013–1024, New York, NY,
USA, 2014. ACM.

[78] Emina Torlak and Satish Chandra. Effective interprocedural resource leak detection. In
Proceedings of the 32Nd ACM/IEEE International Conference on Software Engineering
- Volume 1, ICSE ’10, pages 535–544, New York, NY, USA, 2010. ACM.

[79] Timo Hönig, Christopher Eibel, Rüdiger Kapitza, and Wolfgang Schröder-Preikschat.
Seep: Exploiting symbolic execution for energy-aware programming. In Proceedings
of the 4th Workshop on Power-Aware Computing and Systems, HotPower ’11, pages
4:1–4:5, New York, NY, USA, 2011. ACM.

[80] Dacong Yan, Shengqian Yang, and A. Rountev. Systematic testing for resource leaks
in android applications. In Software Reliability Engineering (ISSRE), 2013 IEEE 24th
International Symposium on, 2013.

[81] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. Dynodroid: An input generation
system for android apps. In Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2013, pages 224–234, New York, NY, USA, 2013.
ACM.

156



[82] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. Automated
concolic testing of smartphone apps. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering, FSE ’12, pages
59:1–59:11, New York, NY, USA, 2012. ACM.

[83] Yepang Liu, Chang Xu, S.C. Cheung, and Jian Lu. Greendroid: Automated diagnosis
of energy inefficiency for smartphone applications. Software Engineering, IEEE
Transactions on, 40(9):911–940, Sept 2014.

[84] Woongki Baek and Trishul M. Chilimbi. Green: A framework for supporting energy-
conscious programming using controlled approximation. In Proceedings of the 31st
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’10, pages 198–209, New York, NY, USA, 2010. ACM.

[85] Irene Manotas, Lori Pollock, and James Clause. Seeds: A software engineer’s energy-
optimization decision support framework. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, pages 503–514, New York, NY,
USA, 2014. ACM.

[86] Michael Cohen, Haitao Steve Zhu, Emgin Ezgi Senem, and Yu David Liu. Energy types.
In Proceedings of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’12, pages 831–850, New York, NY,
USA, 2012. ACM.

[87] Business insider: Smartphone and tablet penetra-
tion. http://www.businessinsider.com/
smartphone-and-tablet-penetration-2013-10?IR=T.

[88] A. Memon, I. Banerjee, and A. Nagarajan. Gui ripping: reverse engineering of
graphical user interfaces for testing. In Reverse Engineering, 2003. WCRE 2003.
Proceedings. 10th Working Conference on, pages 260–269, Nov 2003.

[89] Android develeoper website, wifimanager. http://developer.android.com/
reference/android/net/wifi/WifiManager.WifiLock.html.

[90] Android application coding guidelines -power save. http://dl-developer.
sonymobile.com/documentation/dw-300012-Android_Power_
Save.pdf.

[91] M. Gottschalk, M. Josefiok, J. Jelschen, and A. Winter. Removing energy code smells
with reengineering services. 2012.

[92] Android develeoper website, powermanager. http://developer.android.
com/reference/android/os/PowerManager.html.

[93] Niranjan Balasubramanian, Aruna Balasubramanian, and Arun Venkataramani. Energy
consumption in mobile phones: A measurement study and implications for network
applications. In Proceedings of the 9th ACM SIGCOMM Conference on Internet
Measurement Conference, IMC ’09, pages 280–293, New York, NY, USA, 2009.
ACM.

[94] Android develeoper website, sensormanager. http://developer.android.
com/reference/android/hardware/SensorManager.html.

157

http://www.businessinsider.com/smartphone-and-tablet-penetration-2013-10?IR=T
http://www.businessinsider.com/smartphone-and-tablet-penetration-2013-10?IR=T
http://developer.android.com/reference/android/net/wifi/WifiManager.WifiLock.html
http://developer.android.com/reference/android/net/wifi/WifiManager.WifiLock.html
http://dl-developer.sonymobile.com/documentation/dw-300012-Android_Power_Save.pdf
http://dl-developer.sonymobile.com/documentation/dw-300012-Android_Power_Save.pdf
http://dl-developer.sonymobile.com/documentation/dw-300012-Android_Power_Save.pdf
http://developer.android.com/reference/android/os/PowerManager.html
http://developer.android.com/reference/android/os/PowerManager.html
http://developer.android.com/reference/android/hardware/SensorManager.html
http://developer.android.com/reference/android/hardware/SensorManager.html


[95] Android-sensors. http://developer.android.com/guide/topics/
sensors/sensors_overview.html.

[96] Android develeoper website, location strategies. http://developer.android.
com/guide/topics/location/strategies.html.

[97] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. Bootstrapping energy debugging on
smartphones: A first look at energy bugs in mobile devices. In Proceedings of the 10th
ACM Workshop on Hot Topics in Networks, HotNets-X, pages 5:1–5:6, New York, NY,
USA, 2011. ACM.

[98] JMOTIF: a time series data-mining toolkit based on SAX and TFIDF statistics. http:
//code.google.com/p/jmotif/.

[99] Business insider: Number of smartphones world-
wide. http://www.businessinsider.com/
15-billion-smartphones-in-the-world-22013-2?IR=T.

[100] Android power profiles. http://source.android.com/devices/tech/
power.html.

[101] Hierarchy viewer. http://developer.android.com/tools/help/
hierarchy-viewer.html.

[102] Eamonn Keogh and Jessica Lin. Hot sax: Efficiently finding the most unusual time
series subsequence. In ICDM, pages 226–233, 2005.

[103] W. E. Winkler. String comparator metrics and enhanced decision rules in the fellegi-
sunter model of record linkage. In Proceedings of the Section on Survey Research,
1990.

[104] Yokogawa wt210 digital power meter. http://tmi.
yokogawa.com/us/products/digital-power-analyzers/
power-measurement-application-software/
wtviewer-for-wt210wt230/.

[105] A.S. Tanenbaum and M. van Steen. Distributed systems: principles and paradigms.
Pearson Prentice Hall, 2007.

[106] Android advanced geocachingtool. https://play.google.com/store/
apps/details?id=com.zoffcc.applications.aagtl.

[107] Android battery dog. https://play.google.com/store/apps/details?
id=net.sf.andbatdog.batterydog.

[108] Aripuca. https://f-droid.org/repository/browse/?fdid=com.
aripuca.tracker.

[109] Kitchen timer. https://play.google.com/store/apps/details?id=
com.leinardi.kitchentimer.

[110] Montreal transit. https://play.google.com/store/apps/details?
id=org.montrealtransit.android.

[111] Npr news. https://play.google.com/store/apps/details?id=org.
npr.android.news.

158

http://developer.android.com/guide/topics/sensors/sensors_overview.html
http://developer.android.com/guide/topics/sensors/sensors_overview.html
http://developer.android.com/guide/topics/location/strategies.html
http://developer.android.com/guide/topics/location/strategies.html
http://code.google.com/p/jmotif/
http://code.google.com/p/jmotif/
http://www.businessinsider.com/15-billion-smartphones-in-the-world-22013-2?IR=T
http://www.businessinsider.com/15-billion-smartphones-in-the-world-22013-2?IR=T
http://source.android.com/devices/tech/power.html
http://source.android.com/devices/tech/power.html
http://developer.android.com/ tools/help/hierarchy-viewer.html
http://developer.android.com/ tools/help/hierarchy-viewer.html
http://tmi.yokogawa.com/us/products/digital-power-analyzers/power-measurement-application-software/wtviewer-for-wt210wt230/
http://tmi.yokogawa.com/us/products/digital-power-analyzers/power-measurement-application-software/wtviewer-for-wt210wt230/
http://tmi.yokogawa.com/us/products/digital-power-analyzers/power-measurement-application-software/wtviewer-for-wt210wt230/
http://tmi.yokogawa.com/us/products/digital-power-analyzers/power-measurement-application-software/wtviewer-for-wt210wt230/
https://play.google.com/store/apps/details?id=com.zoffcc.applications.aagtl
https://play.google.com/store/apps/details?id=com.zoffcc.applications.aagtl
https://play.google.com/store/apps/details?id=net.sf.andbatdog.batterydog
https://play.google.com/store/apps/details?id=net.sf.andbatdog.batterydog
https://f-droid.org/repository/browse/?fdid=com.aripuca.tracker
https://f-droid.org/repository/browse/?fdid=com.aripuca.tracker
https://play.google.com/store/apps/details?id=com.leinardi.kitchentimer
https://play.google.com/store/apps/details?id=com.leinardi.kitchentimer
https://play.google.com/store/apps/details?id=org.montrealtransit.android
https://play.google.com/store/apps/details?id=org.montrealtransit.android
https://play.google.com/store/apps/details?id=org.npr.android.news
https://play.google.com/store/apps/details?id=org.npr.android.news


[112] Pedometer. https://play.google.com/store/apps/details?id=
name.bagi.levente.pedometer.

[113] Simple chess clock. https://play.google.com/store/apps/details?
id=com.chessclock.android.

[114] Wifi advanced config editor. https://play.google.com/store/apps/
details?id=org.marcus905.wifi.ace.

[115] World clock. https://play.google.com/store/apps/details?id=
com.irahul.worldclock.

[116] Sensor status. https://play.google.com/store/apps/details?id=
com.tpaln.snsst.

[117] Zoom camera. https://play.google.com/store/apps/details?id=
ar.com.moula.zoomcamera.

[118] Voice recorder. https://play.google.com/store/apps/details?id=
si.matejpikovnik.voice.pageindicator.

[119] Virtual recorder. https://play.google.com/store/apps/details?
id=ix.com.android.VirtualRecorder.

[120] Quick recorder. https://play.google.com/store/apps/details?id=
com.workspace.QuickRecorder.

[121] Speedometer. https://play.google.com/store/apps/details?id=
com.bjcreative.tachometer.

[122] Zmanim. https://play.google.com/store/apps/details?id=com.
gindin.zmanim.android.

[123] Omnidroid. https://f-droid.org/wiki/page/edu.nyu.cs.
omnidroid.app.

[124] Fox news. https://play.google.com/store/apps/details?id=com.
foxnews.android.

[125] Best unit converter. https://play.google.com/store/apps/details?
id=simple.a.

[126] Sensor tester. https://play.google.com/store/apps/details?id=
com.dicotomica.sensortester.

[127] Eponte. https://play.google.com/store/apps/details?id=com.
amoralabs.eponte&hl=en.

[128] Goodreads. https://play.google.com/store/apps/details?id=
com.goodreads.

[129] Food court. https://play.google.com/store/apps/details?id=
com.eksavant.fc.ui.

[130] Fire and blood. https://play.google.com/store/apps/details?id=
com.zeddev.plasma2.

159

https://play.google.com/store/apps/details?id=name.bagi.levente.pedometer
https://play.google.com/store/apps/details?id=name.bagi.levente.pedometer
https://play.google.com/store/apps/details?id=com.chessclock.android
https://play.google.com/store/apps/details?id=com.chessclock.android
https://play.google.com/store/apps/details?id=org.marcus905.wifi.ace
https://play.google.com/store/apps/details?id=org.marcus905.wifi.ace
https://play.google.com/store/apps/details?id=com.irahul.worldclock
https://play.google.com/store/apps/details?id=com.irahul.worldclock
https://play.google.com/store/apps/details?id=com.tpaln.snsst
https://play.google.com/store/apps/details?id=com.tpaln.snsst
https://play.google.com/store/apps/details?id=ar.com.moula.zoomcamera
https://play.google.com/store/apps/details?id=ar.com.moula.zoomcamera
https://play.google.com/store/apps/details?id=si.matejpikovnik.voice.pageindicator
https://play.google.com/store/apps/details?id=si.matejpikovnik.voice.pageindicator
https://play.google.com/store/apps/details?id=ix.com.android.VirtualRecorder
https://play.google.com/store/apps/details?id=ix.com.android.VirtualRecorder
https://play.google.com/store/apps/details?id=com.workspace.QuickRecorder
https://play.google.com/store/apps/details?id=com.workspace.QuickRecorder
https://play.google.com/store/apps/details?id=com.bjcreative.tachometer
https://play.google.com/store/apps/details?id=com.bjcreative.tachometer
https://play.google.com/store/apps/details?id=com.gindin.zmanim.android
https://play.google.com/store/apps/details?id=com.gindin.zmanim.android
https://f-droid.org/wiki/page/edu.nyu.cs.omnidroid.app
https://f-droid.org/wiki/page/edu.nyu.cs.omnidroid.app
https://play.google.com/store/apps/details?id=com.foxnews.android
https://play.google.com/store/apps/details?id=com.foxnews.android
https://play.google.com/store/apps/details?id=simple.a
https://play.google.com/store/apps/details?id=simple.a
https://play.google.com/store/apps/details?id=com.dicotomica.sensortester
https://play.google.com/store/apps/details?id=com.dicotomica.sensortester
https://play.google.com/store/apps/details?id=com.amoralabs.eponte&hl=en
https://play.google.com/store/apps/details?id=com.amoralabs.eponte&hl=en
https://play.google.com/store/apps/details?id=com.goodreads
https://play.google.com/store/apps/details?id=com.goodreads
https://play.google.com/store/apps/details?id=com.eksavant.fc.ui
https://play.google.com/store/apps/details?id=com.eksavant.fc.ui
https://play.google.com/store/apps/details?id=com.zeddev.plasma2
https://play.google.com/store/apps/details?id=com.zeddev.plasma2


[131] 760 kfmb am. https://play.google.com/store/apps/details?id=
com.airkast.KFMBAM.

[132] Math workout. https://play.google.com/store/apps/details?id=
com.akbur.mathsworkout.

[133] Vanilla music. https://play.google.com/store/apps/details?id=
ch.blinkenlights.android.vanilla.

[134] Vimeo. https://play.google.com/store/apps/details?id=com.
vimeo.android.videoapp.

[135] Baby solid food. https://play.google.com/store/apps/details?
id=com.bytecontrol.diversification.

[136] GSM Arena. http://www.gsmarena.com/lg_optimus_l3_e400-4461.
php.

[137] EnergyPatch. https://bitbucket.org/abhijeet_code/energypatch.

[138] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL, 1977.

[139] Saswat Anand, Corina S. Păsăreanu, and Willem Visser. JPF-SE: A symbolic execution
extension to java pathfinder. In TACAS, 2007.

[140] Bsd-3-clause license. http://opensource.org/licenses/
BSD-3-Clause.

[141] Asm, java bytecode manipulation and analysis framework. http://asm.ow2.
org/.

[142] K. Havelund and T. Pressburger. Model checking java programs using java pathfinder.
International Journal on Software Tools for Technology Transfer, 2000.

[143] S. Anand, C S Păsăreanu, and W. Visser. JPF-SE: A symbolic execution extension to
java pathfinder. In Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 2007.

[144] Heila van der Merwe, Brink van der Merwe, and Willem Visser. Verifying android
applications using java pathfinder. ACM SIGSOFT Software Engineering Notes, 2012.

[145] Bablesink. https://github.com/hatstand/babblesink/.

[146] Droidar, issue 27. https://code.google.com/p/droidar/issues/
detail?id=27.

[147] 0xbenchmark. https://f-droid.org/wiki/page/org.zeroxlab.
zeroxbenchmark.

[148] Osmdroid, issue 53. https://code.google.com/p/osmdroid/issues/
detail?id=53.

[149] Recycle-locator, issue 33. https://code.google.com/p/
recycle-locator/issues/detail?id=33.

160

https://play.google.com/store/apps/details?id=com.airkast.KFMBAM
https://play.google.com/store/apps/details?id=com.airkast.KFMBAM
https://play.google.com/store/apps/details?id=com.akbur.mathsworkout
https://play.google.com/store/apps/details?id=com.akbur.mathsworkout
https://play.google.com/store/apps/details?id=ch.blinkenlights.android.vanilla
https://play.google.com/store/apps/details?id=ch.blinkenlights.android.vanilla
https://play.google.com/store/apps/details?id=com.vimeo.android.videoapp
https://play.google.com/store/apps/details?id=com.vimeo.android.videoapp
https://play.google.com/store/apps/details?id=com.bytecontrol.diversification
https://play.google.com/store/apps/details?id=com.bytecontrol.diversification
http://www.gsmarena.com/lg_optimus_l3_e400-4461.php
http://www.gsmarena.com/lg_optimus_l3_e400-4461.php
https://bitbucket.org/abhijeet_code/energypatch
http://opensource.org/licenses/BSD-3-Clause
http://opensource.org/licenses/BSD-3-Clause
http://asm.ow2.org/
http://asm.ow2.org/
https://github.com/hatstand/babblesink/
https://code.google.com/p/droidar/issues/detail?id=27
https://code.google.com/p/droidar/issues/detail?id=27
https://f-droid.org/wiki/page/org.zeroxlab.zeroxbenchmark
https://f-droid.org/wiki/page/org.zeroxlab.zeroxbenchmark
https://code.google.com/p/osmdroid/issues/detail?id=53
https://code.google.com/p/osmdroid/issues/detail?id=53
https://code.google.com/p/recycle-locator/issues/detail?id=33
https://code.google.com/p/recycle-locator/issues/detail?id=33


[150] Sofia public trasport, issue 76. https://github.com/ptanov/
sofia-public-transport-navigator/issues/76.

[151] Ushahidi, issue 11. https://github.com/ushahidi/Ushahidi_
Android/pull/11.

[152] Halachic prayer times. https://f-droid.org/wiki/page/net.sf.
times.

[153] Sensor Tester. https://play.google.com/store/apps/details?id=
com.dicotomica.sensortester.

[154] Omnidroid. https://f-droid.org/repository/browse/?fdid=edu.
nyu.cs.omnidroid.app.

[155] Eclipse adt plugin. http://developer.android.com/tools/sdk/
eclipse-adt.html.

[156] Get started with publishing. http://developer.android.com/
distribute/googleplay/start.html.

[157] Statista. http://www.statista.com/statistics/266210/
number-of-available-applications-in-the-google-play-store/.

[158] Monkeyrunner tool. http://developer.android.com/tools/help/
MonkeyRunner.html.

[159] Abhijeet Banerjee, Lee Kee Chong, Sudipta Chattopadhyay, and Abhik Roychoudhury.
Detecting energy bugs and hotspots in mobile apps. In Proceedings of the 22Nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, FSE
2014, 2014.

[160] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing
Co., Inc., 2006.

[161] Greenery. https://github.com/ferno/greenery.

[162] Chessclock. https://f-droid.org/repository/browse/?fdfilter=
chessclock.

[163] Sensorium. https://f-droid.org/wiki/page/at.univie.
sensorium.

[164] App category. https://play.google.com/store/apps/category/
APPLICATION?hl=en.

[165] Apache lucene core. https://lucene.apache.org/core/.

[166] Sensorium. https://play.google.com/store/apps/details?id=at.
univie.sensorium&hl=en.

[167] Userhash. https://f-droid.org/repository/browse/?fdfilter=
Userhash&fdid=com.threedlite.userhash.location.

[168] Sharemylocation. https://f-droid.org/repository/
browse/?fdfilter=sharemyposition&fdid=net.sylvek.
sharemyposition.

161

https://github.com/ptanov/sofia-public-transport-navigator/issues/76
https://github.com/ptanov/sofia-public-transport-navigator/issues/76
https://github.com/ushahidi/Ushahidi_Android/pull/11
https://github.com/ushahidi/Ushahidi_Android/pull/11
https://f-droid.org/wiki/page/net.sf.times
https://f-droid.org/wiki/page/net.sf.times
https://play.google.com/store/apps/details? id=com.dicotomica.sensortester.
https://play.google.com/store/apps/details? id=com.dicotomica.sensortester.
https://f-droid.org/repository/browse/?fdid=edu.nyu.cs.omnidroid.app
https://f-droid.org/repository/browse/?fdid=edu.nyu.cs.omnidroid.app
http://developer.android.com/tools/sdk/eclipse-adt.html
http://developer.android.com/tools/sdk/eclipse-adt.html
http://developer.android.com/distribute/googleplay/start.html
http://developer.android.com/distribute/googleplay/start.html
http://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
http://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
http://developer.android.com/tools/help/MonkeyRunner.html
http://developer.android.com/tools/help/MonkeyRunner.html
https://github.com/ferno/greenery
https://f-droid.org/repository/browse/?fdfilter=chessclock
https://f-droid.org/repository/browse/?fdfilter=chessclock
https://f-droid.org/wiki/page/at.univie.sensorium
https://f-droid.org/wiki/page/at.univie.sensorium
https://play.google.com/store/apps/category/APPLICATION?hl=en
https://play.google.com/store/apps/category/APPLICATION?hl=en
https://lucene.apache.org/core/
https://play.google.com/store/apps/details?id=at.univie.sensorium&hl=en
https://play.google.com/store/apps/details?id=at.univie.sensorium&hl=en
https://f-droid.org/repository/browse/?fdfilter=Userhash&fdid=com.threedlite.userhash.location
https://f-droid.org/repository/browse/?fdfilter=Userhash&fdid=com.threedlite.userhash.location
https://f-droid.org/repository/browse/?fdfilter=sharemyposition&fdid=net.sylvek.sharemyposition
https://f-droid.org/repository/browse/?fdfilter=sharemyposition&fdid=net.sylvek.sharemyposition
https://f-droid.org/repository/browse/?fdfilter=sharemyposition&fdid=net.sylvek.sharemyposition


[169] Droidsat. https://f-droid.org/repository/browse/?fdfilter=
droidsat&fdid=com.mkf.droidsat.

[170] Itlogger. https://f-droid.org/repository/browse/?fdfilter=
itlogger&fdid=de.tui.itlogger.

[171] Heart rate monitor. https://f-droid.org/repository/browse/
?fdfilter=heartrate&fdid=com.vanderbie.heart_rate_
monitor.

[172] 0xbenchmark. https://f-droid.org/repository/browse/?fdid=
org.zeroxlab.zeroxbenchmark.

[173] Ham. https://f-droid.org/repository/browse/?fdfilter=
Ham&fdid=com.smerty.ham.

[174] Soot. http://sable.github.io/soot/.

[175] Monsoon power monitor. https://www.msoon.com/LabEquipment/
PowerMonitor/.

[176] Sensorium repository - github. https://github.com/fmetzger/
android-sensorium.

[177] Lide Zhang, B. Tiwana, R.P. Dick, Zhiyun Qian, Z.M. Mao, Zhaoguang Wang, and
Lei Yang. Accurate online power estimation and automatic battery behavior based
power model generation for smartphones. In Hardware/Software Codesign and System
Synthesis (CODES+ISSS), 2010 IEEE/ACM/IFIP International Conference on, 2010.

[178] Yepang Liu, Chang Xu, and Shing-Chi Cheung. Characterizing and detecting perfor-
mance bugs for smartphone applications. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, 2014.

[179] Aaron Carroll and Gernot Heiser. An analysis of power consumption in a smart-
phone. In Proceedings of the 2010 USENIX Conference on USENIX Annual Technical
Conference, USENIXATC’10, 2010.

[180] Marius Marcu and Dacian Tudor. Energy consumption model for mobile wireless
communication. In Proceedings of the 9th ACM International Symposium on Mobility
Management and Wireless Access, MobiWac ’11, 2011.

[181] Mian Dong and Lin Zhong. Self-constructive high-rate system energy modeling for
battery-powered mobile systems. In Proceedings of the 9th International Conference
on Mobile Systems, Applications, and Services, MobiSys ’11, pages 335–348, 2011.

[182] Radhika Mittal, Aman Kansal, and Ranveer Chandra. Empowering developers to
estimate app energy consumption. In Proceedings of the 18th Annual International
Conference on Mobile Computing and Networking, Mobicom ’12, pages 317–328,
2012.

[183] Alex Shye, Benjamin Scholbrock, and Gokhan Memik. Into the wild: Studying real
user activity patterns to guide power optimizations for mobile architectures. In Proceed-
ings of the 42Nd Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO 42, 2009.

162

https://f-droid.org/repository/browse/?fdfilter=droidsat&fdid=com.mkf.droidsat
https://f-droid.org/repository/browse/?fdfilter=droidsat&fdid=com.mkf.droidsat
https://f-droid.org/repository/browse/?fdfilter=itlogger&fdid=de.tui.itlogger
https://f-droid.org/repository/browse/?fdfilter=itlogger&fdid=de.tui.itlogger
https://f-droid.org/repository/browse/?fdfilter=heartrate&fdid=com.vanderbie.heart_rate_monitor
https://f-droid.org/repository/browse/?fdfilter=heartrate&fdid=com.vanderbie.heart_rate_monitor
https://f-droid.org/repository/browse/?fdfilter=heartrate&fdid=com.vanderbie.heart_rate_monitor
https://f-droid.org/repository/browse/?fdid=org.zeroxlab.zeroxbenchmark
https://f-droid.org/repository/browse/?fdid=org.zeroxlab.zeroxbenchmark
https://f-droid.org/repository/browse/?fdfilter=Ham&fdid=com.smerty.ham
https://f-droid.org/repository/browse/?fdfilter=Ham&fdid=com.smerty.ham
http://sable.github.io/soot/
https://www.msoon.com/LabEquipment/PowerMonitor/
https://www.msoon.com/LabEquipment/PowerMonitor/
https://github.com/fmetzger/android-sensorium
https://github.com/fmetzger/android-sensorium


[184] Denzil Ferreira, AnindK. Dey, and Vassilis Kostakos. Understanding human-
smartphone concerns: A study of battery life. In Pervasive Computing, volume
6696, pages 19–33. Springer Berlin Heidelberg, 2011.

[185] Abhinav Pathak, Y. Charlie Hu, Ming Zhang, Paramvir Bahl, and Yi-Min Wang. Fine-
grained power modeling for smartphones using system call tracing. In Proceedings of
the Sixth Conference on Computer Systems, EuroSys ’11, 2011.

[186] Jason Flinn and M. Satyanarayanan. Powerscope: A tool for profiling the energy
usage of mobile applications. In Proceedings of the Second IEEE Workshop on Mobile
Computer Systems and Applications, WMCSA ’99, pages 2–, 1999.

[187] A. Banerjee, L.K. Chong, S. Chattopadhyay, and A. Roychoudhury. Detecting energy
bugs and hotspots in mobile apps. In FSE, 2014.

[188] Yepang Liu, Chang Xu, and S.C. Cheung. Where has my battery gone? finding sensor
related energy black holes in smartphone applications. In Pervasive Computing and
Communications (PerCom), 2013 IEEE International Conference on, 2013.

[189] Adam J. Oliner, Anand P. Iyer, Ion Stoica, Eemil Lagerspetz, and Sasu Tarkoma. Carat:
Collaborative energy diagnosis for mobile devices. In Proceedings of the 11th ACM
Conference on Embedded Networked Sensor Systems, SenSys ’13, pages 10:1–10:14.

[190] Lide Zhang, Mark S. Gordon, Robert P. Dick, Z. Morley Mao, Peter Dinda, and Lei
Yang. Adel: An automatic detector of energy leaks for smartphone applications. In
Proceedings of the Eighth IEEE/ACM/IFIP International Conference on Hardware/-
Software Codesign and System Synthesis, CODES+ISSS ’12, 2012.

[191] Abhijeet Banerjee, Hai-Feng Guo, and Abhik Roychoudhury. Debugging energy-
efficiency related field failures in mobile apps. In IEEE/ACM International Conference
on Mobile Software Engineering and Systems, MOBILESoft, 16, 2016.

[192] Irene Manotas, Lori Pollock, and James Clause. Seeds: A software engineer’s energy-
optimization decision support framework. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, 2014.

[193] A. Banerjee and A. Roychoudhury. Energy-aware design patterns for mobile application
development (invited talk). In Proceedings of the 2Nd International Workshop on
Software Development Lifecycle for Mobile, DeMobile 2014, 2014.

[194] Adel Noureddine and Ajitha Rajan. Optimising energy consumption of design patterns.
In Proceedings of the 37th International Conference on Software Engineering - Volume
2, ICSE ’15, 2015.

[195] B. R. Bruce, J. Petke, and M. Harman. Reducing energy consumption using ge-
netic improvement. In Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation, GECCO ’15, 2015.

[196] E. Schulte, J. Dorn, S. Harding, S. Forrest, and W. Weimer. Post-compiler software op-
timization for reducing energy. In Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS
’14, 2014.

[197] William Martin, Mark Harman, Yue Jia, Federica Sarro, and Yuanyuan Zhang. The
app sampling problem for app store mining. In Proceedings of the 12th Working
Conference on Mining Software Repositories, MSR ’15, 2015.

163



[198] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. Au-
tomatically finding patches using genetic programming. In Proceedings of the 31st
International Conference on Software Engineering, ICSE ’09, pages 364–374, 2009.

[199] W. Eric Wong and Vidroha Debroy. Software fault localization. In Encyclopedia of
Software Engineering, pages 1147–1156. 2010.

[200] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer. A
systematic study of automated program repair: Fixing 55 out of 105 bugs for $8 each.
In Proceedings of the 34th International Conference on Software Engineering, ICSE
’12, pages 3–13, 2012.

[201] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. Automatic patch gen-
eration learned from human-written patches. In Proceedings of the 2013 International
Conference on Software Engineering, ICSE ’13, pages 802–811, 2013.

[202] Mytracks, issue 520. https://code.google.com/p/mytracks/issues/
detail?id=520.

[203] Niranjan Balasubramanian, Aruna Balasubramanian, and Arun Venkataramani. Energy
consumption in mobile phones: A measurement study and implications for network
applications. In Proceedings of the 9th ACM SIGCOMM Conference on Internet
Measurement Conference, IMC ’09, 2009.

[204] Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. Gprof: A call graph
execution profiler. In Proceedings of the 1982 SIGPLAN Symposium on Compiler
Construction, SIGPLAN ’82, 1982.

[205] Gail C. Murphy, David Notkin, William G. Griswold, and Erica S. Lan. An empirical
study of static call graph extractors. ACM Trans. Softw. Eng. Methodol., 7(2), April
1998.

[206] J. M. Spivey. Fast, accurate call graph profiling. Softw. Pract. Exper., 2004.

[207] Mikhail Dmitriev. Profiling java applications using code hotswapping and dynamic
call graph revelation. In Proceedings of the 4th International Workshop on Software
and Performance, WOSP ’04, 2004.

[208] Csipsimple, issue 81. https://code.google.com/p/csipsimple/
issues/detail?id=81.

[209] Sofia public transport, issue 38. https://github.com/ptanov/
sofia-public-transport-navigator/issues/38.

[210] Adw-launcher-android, issue 202. https://code.google.com/p/
adw-launcher-android/issues/detail?id=202.

[211] Google-voice-locaton, issue 4. https://code.google.com/p/
android-google-voice-locations/issues/detail?id=4.

[212] Osmdroid isuue, 76. https://code.google.com/p/osmdroid/issues/
detail?id=76.

[213] The Android Open Source Project. Adjusting the model to save battery and data
exchange. http://developer.android.com/guide/topics/location/strategies.html.

164

https://code.google.com/p/mytracks/issues/detail?id=520
https://code.google.com/p/mytracks/issues/detail?id=520
https://code.google.com/p/csipsimple/issues/detail?id=81
https://code.google.com/p/csipsimple/issues/detail?id=81
https://github.com/ptanov/sofia-public-transport-navigator/issues/38
https://github.com/ptanov/sofia-public-transport-navigator/issues/38
https://code.google.com/p/adw-launcher-android/issues/detail?id=202
https://code.google.com/p/adw-launcher-android/issues/detail?id=202
https://code.google.com/p/android-google-voice-locations/issues/detail?id=4
https://code.google.com/p/android-google-voice-locations/issues/detail?id=4
https://code.google.com/p/osmdroid/issues/detail?id=76
https://code.google.com/p/osmdroid/issues/detail?id=76


[214] Omnidroid issue, 98. https://code.google.com/p/omnidroid/issues/
detail?id=98.

[215] K9mail issue, 424. https://code.google.com/p/k9mail/issues/
detail?id=424.

[216] Jdtcore. http://www.eclipse.org/jdt/core/.

[217] Ushahidi. https://www.ushahidi.com/.

[218] Shortyz. https://f-droid.org/wiki/page/com.totsp.crossword.
shortyz.

[219] itlogger. https://f-droid.org/wiki/page/de.tui.itlogger.

[220] Mobiperf. https://f-droid.org/wiki/page/com.mobiperf.

[221] Strobe light. https://f-droid.org/wiki/page/com.stwalkerster.
android.apps.strobelight.

[222] Userhash. https://f-droid.org/wiki/page/com.threedlite.
userhash.location.

[223] Monsoon power monitor. https://www.msoon.com/LabEquipment/
PowerMonitor/.

[224] Link to subject apps. http://www.comp.nus.edu.sg/~rpembed/
energydebugger/subjectapps.xlsx.

[225] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert P. Dick, Zhuo-
qing Morley Mao, and Lei Yang. Accurate online power estimation and automatic
battery behavior based power model generation for smartphones. In Proceedings of
the Eighth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign
and System Synthesis, CODES/ISSS ’10, 2010.

[226] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. Where is the energy spent inside my
app?: Fine grained energy accounting on smartphones with eprof. In Proceedings of
the 7th ACM European Conference on Computer Systems, EuroSys ’12, 2012.

[227] Lide Zhang, Mark S. Gordon, Robert P. Dick, Z. Morley Mao, Peter Dinda, and Lei
Yang. Adel: An automatic detector of energy leaks for smartphone applications. In
Proceedings of the Eighth IEEE/ACM/IFIP International Conference on Hardware/-
Software Codesign and System Synthesis, CODES+ISSS ’12, pages 363–372, 2012.

[228] Yepang Liu, Chang Xu, S.C. Cheung, and Jian Lu. Greendroid: Automated diagnosis
of energy inefficiency for smartphone applications. Software Engineering, IEEE
Transactions on, 40(9):911–940, 2014.

[229] Chris Parnin and Alessandro Orso. Are automated debugging techniques actually
helping programmers? In Proceedings of the 2011 International Symposium on
Software Testing and Analysis, ISSTA ’11, pages 199–209, 2011.

[230] App Revenue Statistics 2015. http://www.businessofapps.com/
app-revenue-statistics/.

165

https://code.google.com/p/omnidroid/issues/detail?id=98
https://code.google.com/p/omnidroid/issues/detail?id=98
https://code.google.com/p/k9mail/issues/detail?id=424
https://code.google.com/p/k9mail/issues/detail?id=424
https://f-droid.org/wiki/page/com.totsp.crossword.shortyz
https://f-droid.org/wiki/page/com.totsp.crossword.shortyz
https://f-droid.org/wiki/page/de.tui.itlogger
https://f-droid.org/wiki/page/com.mobiperf
https://f-droid.org/wiki/page/com.stwalkerster.android.apps.strobelight
https://f-droid.org/wiki/page/com.stwalkerster.android.apps.strobelight
https://f-droid.org/wiki/page/com.threedlite.userhash.location
https://f-droid.org/wiki/page/com.threedlite.userhash.location
https://www.msoon.com/LabEquipment/PowerMonitor/
https://www.msoon.com/LabEquipment/PowerMonitor/
http://www.comp.nus.edu.sg/~rpembed/energydebugger/subjectapps.xlsx
http://www.comp.nus.edu.sg/~rpembed/energydebugger/subjectapps.xlsx
http://www.businessofapps.com/app-revenue-statistics/
http://www.businessofapps.com/app-revenue-statistics/


[231] Mobile Application Testing Market Boosted by Growing Demand
for Automation. https://www.abiresearch.com/press/
200-million-mobile-application-testing-market-boos/.

[232] PCI Security Standards Control. https://www.pcisecuritystandards.
org/.

[233] JUnit. http://junit.org/.

[234] JMeter. http://jmeter.apache.org/.

166

https://www.abiresearch.com/press/200-million-mobile-application-testing-market-boos/
https://www.abiresearch.com/press/200-million-mobile-application-testing-market-boos/
https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/
http://junit.org/
http://jmeter.apache.org/

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	1.1 Challenges in Testing Non-functional Properties
	1.2 Are Testing And Profiling The Same Thing?
	1.3 Static Analysis Driven Testing of Performance and Energy-consumption Properties of Software: An Overview
	1.3.1 Suboptimal Behaviour Identification
	1.3.2 Static Analysis
	1.3.3 Representing Non-functional Properties
	1.3.4 Test-generation Through Dynamic Exploration

	1.4 Key Contributions
	1.5 Organization of Chapters

	2 Performance Analysis: Background & Literature Review
	2.1 Real-time Embedded Systems
	2.2 Overview of Performance Analysis Tools 
	2.3 Approaches Used for Performance Testing/ Estimation
	2.4 Performance Profiling Techniques
	2.5 Performance Estimation Techniques
	2.5.1 Program Flow Analysis
	2.5.2 Micro-architectural Analysis
	2.5.3 Estimate Calculation

	2.6 Precise Micro-architectural Modeling for WCET Analysis via AI+SAT
	2.6.1 Overview
	2.6.2 General Framework
	2.6.3 Augmenting Abstract Interpretation
	2.6.4 Instruction Cache Analysis via AI+SAT
	2.6.5 Data Cache Analysis
	2.6.6 Branch Target Buffer Analysis
	2.6.7 Shared Instruction Cache Analysis
	2.6.8 Experimental Evaluation

	2.7 Performance-aware Test Generation Techniques
	2.8 Chapter Summary

	3 Static Analysis Driven Cache Performance Testing
	3.1 Need for Performance Testing
	3.2 Static Analysis Driven Cache Performance Testing: An Overview
	3.3 Test Generation Methodologies
	3.3.1 Generating Assertions
	3.3.2 Dynamic Test Generation
	3.3.3 Salient Features of Generated Test Suites

	3.4 Evaluation
	3.4.1 Experimental Set-up
	3.4.2 Experimental Results

	3.5 Applications in Design Space Exploration
	3.6 Applications in Performance Optimization
	3.7 Comparison with Existing Techniques
	3.8 Chapter Summary

	4 Energy-consumption Analysis: Background & Literature Review 
	4.1 Energy Constrained Embedded Systems
	4.2 Approaches Used for Energy Testing/Estimation
	4.3 Estimating Average-case Energy-consumption
	4.3.1 Architecture-based Energy Analysis
	4.3.2 Profiling-based Techniques

	4.4 Estimating Worst-case Energy Consumption
	4.5 Detecting Energy-inefficiency
	4.6 Energy Aware Programming
	4.7 Chapter Summary

	5 Detecting Energy Bugs and Hotspots in Mobile Apps
	5.1 Need for Automated Energy-aware Test Generation
	5.2 General Background
	5.3 Detecting Energy Bugs and Hotspots in Mobile Apps: An Overview
	5.4 Detailed Methodology
	5.4.1 Preprocessing the Application
	5.4.2 Test Generation

	5.5 Experimental Evaluation
	5.5.1 Experimental Setup
	5.5.2 Choice of Subject Programs
	5.5.3 Results

	5.6 Comparison With Existing Techniques
	5.7 Chapter Summary

	6 Repairing Resource Leaks to Improve Energy-efficiency of Mobile Apps
	6.1 Introduction
	6.2 Android Background
	6.2.1 Execution Model in Android
	6.2.2 Inputs to an Android App
	6.2.3 Energy Consumption of Android API calls
	6.2.4 Energy Bug, Cause and Effect
	6.2.5 Differences Between Present and Previous Work

	6.3 Overview by Example
	6.3.1 Detection Using Abstract Interpretation
	6.3.2 Test Generation Using Symbolic Execution

	6.4 Detection
	6.4.1 Java Object Tracking
	6.4.2 Resource Tracking
	6.4.3 Detecting Potential Energy Bugs, Instrumenting Assertions

	6.5 Validation
	6.5.1 Search Space Reduction
	6.5.2 Test Input Generation

	6.6 Automated Repair
	6.7 Eclipse Plugin EnergyPatch
	6.8 Experimental Evaluation
	6.8.1 Experimental Setup
	6.8.2 Efficacy of Our Framework 
	6.8.3 Importance of Detection Phase in the Framework
	6.8.4 Effectiveness of Automated Repair
	6.8.5 Comparison with Existing Works

	6.9 Threats to Validity
	6.10 Chapter Summary

	7 Automated Re-factoring of Android Apps to Enhance Energy-efficiency
	7.1 Introduction
	7.2 Overview
	7.2.1 Example App
	7.2.2 Design Extraction
	7.2.3 Guideline-based Re-factoring
	7.2.4 Code Generation

	7.3 Guideline-based Re-factoring
	7.3.1 Energy-efficiency Guidelines
	7.3.2 Guideline Implementation

	7.4 Evaluation
	7.4.1 Subject Apps and Experimental Setup
	7.4.2 Key Results
	7.4.3 Case Study

	7.5 Comparison With Existing Works
	7.6 Threats to Validity
	7.7 Chapter Summary

	8 Debugging Energy-efficiency Related Field-failures in Mobile-apps
	8.1 Introduction
	8.2 Detailed Methodology
	8.2.1 Instrumentation and Logging
	8.2.2 Profile Graph Generation
	8.2.3 Patterns for Energy-inefficient Behaviour
	8.2.4 Contextual Analysis for Energy-inefficient Pattern Detection
	8.2.5 Defect Localization and Patch Suggestion

	8.3 Tool Walk-through
	8.4 Evaluation
	8.4.1 Experimental Setup
	8.4.2 Subject Programs
	8.4.3 Efficacy of Defect-detection
	8.4.4 Scalability of Defect-detection
	8.4.5 Effectiveness of the Patch-suggestion

	8.5 Comparison with Existing Works
	8.6 Chapter Summary

	9 Reflections

