NATIONAL UNIVERSITY OF SINGAPORE

DOCTORAL THESIS

Static Analysis Driven Testing of Performance
and Energy-consumption Properties of Software

Submitted by:
ABHIJEET BANERJEE

Supervisor:
Professor Abhik Roychoudhury

Department of Computer Science
School of Computing
National University of Singapore

March 2016

% National University
of Singapore

Static Analysis Driven Testing of Performance
and Energy-consumption Properties of Software

Abhijeet Banerjee
B.E.(Hons), IIEST, Shibpur

A THESIS SUBMITTED
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY,
DEPARTMENT OF COMPUTER SCIENCE, SCHOOL OF COMPUTING
NATIONAL UNIVERSITY OF SINGAPORE

2016

DECLARATION

I hereby declare that this thesis is my original work and it has been written by me in its
entirety. I have duly acknowledged all the sources of information which have been used in the
thesis. This thesis has also not been submitted for any degree in any university previously.

Abhijeet Banerjee
23" Mar 2016

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks to my supervisor Prof. Abhik
Roychoudhury for his continuous guidance and support throughout my graduate studies. I
respect the commitment he has towards all his students. His timely feedback and continuous
support were instrumental in advancing my research, as well as in writing this thesis.

I would like to thank Prof. Wong Weng Fai and Prof. Joxan Jaffar for their invaluable
comments during my thesis proposal. Their encouragement has motivated to me further
develop my research into meaningful solutions for real-life problems.

I would like to thank all my colleagues from System and Network Research Lab 1, System
and Network Research Lab 2 and the TSUNAMI Lab. It has been a pleasure working with
Dr. Sudipta Chattopadhyay, Lee Kee Chong, Dr. Clément Ballabriga and Dr. Hai-Feng Guo.
In particular, I am very glad to have known Dr. Sudipta Chattopadhyay, who has been a
colleague, a mentor and a good friend to me.

The journey from the qualifying examinations (QEs) to thesis submission can be a long one.
But I am glad that I had the company of many good friends along the way. In particular, I am
glad to have known Dr. Bablu Mukherjee, Dr. Marcel Bohme, Dr. Dawei Qi, Dr. Konstantin
Rubinov and Dr Jooyong Yi. I will always cherish the deep discussions we had on all the
topics scientific and otherwise. As for my soon to be Dr. friends, Sumanaruban Rajadurai,
Nimantha Thushan Baranasuriya, Girisha Durrel De Silva and Lahiru Thilina Samarakoon,
thanks for being there and making this long journey a memorable journey.

I wish to express my deepest gratitude towards my family for supporting me throughout
my studies. Any of this would not have been possible without their support.

I would to like thank the National University of Singapore for giving me the opportunity
to come and study at this wonderful institution. The facilities that we were provided for
everything from education to sports and recreation were marvellous. In particular, the facilities
at Central Library are exceptional. I have spent many happy hours browsing and reading the
vast array of books there. I would like to extend my thanks to the Central Library staff for
their dedication and effort.

Finally, I would like to thank A*Star and MoE for the "Scalable Timing Analysis Meth-
ods for Embedded Software" grant (Project Number 1121202007) and "Energy-aware Pro-
gramming" grant (MOE2013-T2-1-115) , respectively. These grants where instrumental in
conducting my research.

CONTENTS

LIST OF TABLES ix

LIST OF FIGURES X

1

INTRODUCTION 1
1.1 Challenges in Testing Non-functional Properties 2
1.2 Are Testing And Profiling The Same Thing? 3
1.3 Static Analysis Driven Testing of Performance and Energy-consumption
Properties of Software: An Overview 3
1.3.1 Suboptimal Behaviour Identification 4
1.3.2 Static Analysis 5
1.3.3 Representing Non-functional Properties 5
1.3.4 Test-generation Through Dynamic Exploration 6
1.4 Key Contributions 7
1.5 Organization of Chapters 8
PERFORMANCE ANALYSIS: BACKGROUND & LITERATURE REVIEW
2.1 Real-time Embedded Systems 9
2.2 Overview of Performance Analysis Tools 10
2.3 Approaches Used for Performance Testing/ Estimation 11
2.4 Performance Profiling Techniques 12
2.5 Performance Estimation Techniques 13
2.5.1 Program Flow Analysis 13
2.5.2 Micro-architectural Analysis 14
2.5.3 Estimate Calculation 18
2.6 Precise Micro-architectural Modeling for WCET Analysis via AI+SAT 20
2.6.1 Overview 21
2.6.2 General Framework 24
2.6.3 Augmenting Abstract Interpretation 24
2.6.4 Instruction Cache Analysis via AI+SAT 26
2.6.5 Data Cache Analysis 29
2.6.6 Branch Target Buffer Analysis 30
2.6.7 Shared Instruction Cache Analysis 30
2.6.8 Experimental Evaluation 31
2.7 Performance-aware Test Generation Techniques 34

2.8 Chapter Summary 34

STATIC ANALYSIS DRIVEN CACHE PERFORMANCE TESTING 36
3.1 Need for Performance Testing 36
3.2 Static Analysis Driven Cache Performance Testing: An Overview 39
3.3 Test Generation Methodologies 42

3.3.1 Generating Assertions 42

3.3.2 Dynamic Test Generation 45

3.3.3 Salient Features of Generated Test Suites 48
3.4 Evaluation 48

3.4.1 Experimental Set-up 48

3.4.2 Experimental Results 51
3.5 Applications in Design Space Exploration 52
3.6 Applications in Performance Optimization 53
3.7 Comparison with Existing Techniques 54
3.8 Chapter Summary 55

ENERGY-CONSUMPTION ANALYSIS: BACKGROUND & LITERATURE RE-

VIEW 56

4.1 Energy Constrained Embedded Systems 56

4.2 Approaches Used for Energy Testing/Estimation 56

4.3 Estimating Average-case Energy-consumption 57
4.3.1 Architecture-based Energy Analysis 57
4.3.2 Profiling-based Techniques 60

4.4 Estimating Worst-case Energy Consumption 60

4.5 Detecting Energy-inefficiency 62

4.6 Energy Aware Programming 64

4.7 Chapter Summary 64

DETECTING ENERGY BUGS AND HOTSPOTS IN MOBILE APPS 65
5.1 Need for Automated Energy-aware Test Generation 65
5.2 General Background 68
5.3 Detecting Energy Bugs and Hotspots in Mobile Apps: An Overview 71
5.4 Detailed Methodology 73
5.4.1 Preprocessing the Application 73
5.4.2 Test Generation 75
5.5 Experimental Evaluation 80
5.5.1 Experimental Setup 80
5.5.2 Choice of Subject Programs 81
5.5.3 Results 81
5.6 Comparison With Existing Techniques 85
5.7 Chapter Summary 86

REPAIRING RESOURCE LEAKS TO IMPROVE ENERGY-EFFICIENCY OF
MOBILE APPS 87
6.1 Introduction 87
6.2 Android Background 89
6.2.1 Execution Model in Android 89
6.2.2 Inputs to an Android App 90
6.2.3 Energy Consumption of Android API calls 91
6.2.4 Energy Bug, Cause and Effect 92
6.2.5 Differences Between Present and Previous Work 92
6.3 Overview by Example 93
6.3.1 Detection Using Abstract Interpretation 93
6.3.2 Test Generation Using Symbolic Execution 94
6.4 Detection 94
6.4.1 Java Object Tracking 96
6.4.2 Resource Tracking 97
6.4.3 Detecting Potential Energy Bugs, Instrumenting Assertions 97
6.5 Validation 98
6.5.1 Search Space Reduction 98
6.5.2 Test Input Generation 99

6.6 Automated Repair 102
6.7 Eclipse Plugin EnergyPatch 103
6.8 Experimental Evaluation 104
6.8.1 Experimental Setup 104
6.8.2 Efficacy of Our Framework 106
6.8.3 Importance of Detection Phase in the Framework 107
6.8.4 Effectiveness of Automated Repair 108
6.8.5 Comparison with Existing Works 109
6.9 Threats to Validity 110
6.10 Chapter Summary 110

7 AUTOMATED RE-FACTORING OF ANDROID APPS TO ENHANCE EN-
ERGY-EFFICIENCY 111
7.1 Introduction 111
7.2 Overview 113
7.2.1 Example App 113
7.2.2 Design Extraction 113
7.2.3 Guideline-based Re-factoring 116
7.2.4 Code Generation 117
7.3 Guideline-based Re-factoring 118
7.3.1 Energy-efficiency Guidelines 118
7.3.2 Guideline Implementation 121
7.4 Evaluation 123
7.4.1 Subject Apps and Experimental Setup 123
7.4.2 Key Results 124
7.4.3 Case Study 124
7.5 Comparison With Existing Works 125
7.6 Threats to Validity 127
7.7 Chapter Summary 128

8 DEBUGGING ENERGY-EFFICIENCY RELATED FIELD-FAILURES IN MO-
BILE-APPS 129
8.1 Introduction 129
8.2 Detailed Methodology 131
8.2.1 Instrumentation and Logging 131
8.2.2 Profile Graph Generation 132
8.2.3 Patterns for Energy-inefficient Behaviour 136
8.2.4 Contextual Analysis for Energy-inefficient Pattern Detection 136
8.2.5 Defect Localization and Patch Suggestion 138
8.3 Tool Walk-through 140
8.4 Evaluation 142
8.4.1 Experimental Setup 142
8.4.2 Subject Programs 142
8.4.3 Efficacy of Defect-detection 143
8.4.4 Scalability of Defect-detection 145
8.4.5 Effectiveness of the Patch-suggestion 145
8.5 Comparison with Existing Works 146
8.6 Chapter Summary 146

9 REFLECTIONS 147

Vi

ABSTRACT

Software testing is the process of evaluating the properties of a software. Properties of
a software can be divided into two categories: functional properties and non-functional
properties. Properties that influence the input-output behaviour of the software can be
categorized as functional properties. On the other hand, properties that do not influence
the input-output behaviour of the software directly can be categorized as non-functional
properties. In context of real-time system software, testing functional as well as non functional
properties is equally important. Over the years considerable amount of research effort has
been dedicated in developing tools and techniques that systematically test various functional
properties of a software. However, the same cannot be said about testing non-functional
properties. Systematic testing of non-functional properties is often much more challenging
than testing functional properties. This is because non-functional properties not only depends
on the inputs to the program but also on the underlying hardware. Additionally, unlike the
functional properties, non-functional properties are seldom annotated in the software itself.
Such challenges provide the objectives for this work. The primary objective of this work
is to explore and address the major challenges in testing non-functional properties of a
software. To attain this objective, we have designed a technique that can be summarized into
four key steps (i) identifying scenarios for suboptimal non-functional behaviour (ii) static
analysis to identify potential program points that may lead to such suboptimal non-functional
behaviour (iii) representing sub-optimal non-functional behaviour by means of assertions, at
appropriate program points and finally, (iv) dynamic exploration of these assertions, guided
by a well-defined coverage metric, in order to generate sub-optimal non-functional behaviour
revealing test-cases. It is worthwhile to note that in our technique generation of assertions (in
step three) is done in an automated fashion. In this work, we have presented instantiations of
our technique for specific applications such as performance-stressing test-input generation
for caches and energy-inefficiency revealing test-input generation for mobile apps. We also
present a couple of follow-up works on energy-aware code re-factoring and energy-aware
debugging to extend the support for energy-aware programming for mobile apps.

Vi

RELATED PUBLICATIONS

Abhijeet Banerjee. Static analysis driven performance and energy testing. In proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering,
FSE 2014, Hong Kong, China, November, 2014

Abhijeet Banerjee, Lee Kee Chong, Sudipta Chattopadhyay and Abhik Roychoudhury. De-
tecting energy bugs and hotspots in mobile apps. In proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE 2014, Hong Kong,
China, November, 2014

Abhijeet Banerjee, Sudipta Chattopadhyay and Abhik Roychoudhury. Static Analysis Driven
Cache Performance Testing. In proceedings of the IEEE 34th Real-Time Systems Symposium,
RTSS 2013, Vancouver, BC, Canada, December, 2013

Abhijeet Banerjee, Sudipta Chattopadhyay, Abhik Roychoudhury. On Testing Embedded
Software, In Advances in Computers, Elsevier, 2016, Volume 101, Pages 121-153, ISSN
0065-2458, ISBN 9780128051580

Abhijeet Banerjee, Hai-feng Guo and Abhik Roychoudhury. Debugging Energy-efficiency
Related Field-failures in Mobile-apps In proceeding of the IEEE/ACM 3rd International
Conference on Mobile Software Engineering and Systems, MOBILESoft 2016, Austin, Texas,
USA, May 2016

Abhijeet Banerjee and Abhik Roychoudhury. Automated Re-factoring of Android Apps to
Enhance Energy-efficiency In proceeding of the IEEE/ACM 3rd International Conference on
Mobile Software Engineering and Systems, MOBILESoft 2016, Austin, Texas, USA, May
2016

Abhijeet Banerjee, Sudipta Chattopadhyay and Abhik Roychoudhury. Precise micro-architectural
modeling for WCET analysis via AI+SAT. In 19th IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium, RTAS 2013, Philadelphia, PA, USA, April, 2013

Abhijeet Banerjee and Abhik Roychoudhury. Energy-aware design patterns for mobile
application development (Invited Talk), In proceedings of the 2nd International Workshop on
Software Development Lifecycle for Mobile, DeMobile 2014, Hong Kong, China, November,
2014

viii

LIST OF TABLES

Table 1 Key aspects of different performance analysis methodologies 11

Table 2 Program Set I 31

Table 3 Program Set II 33

Table 4 Programs used for cache performance study 49

Table 5 Classification of Energy Bugs and Energy Hotspots 67

Table 6 Categorization of Android API calls 74

Table 7 Statistics for all the Energy Hotspots/Bugs found in tested applica-
tions (out of the 30 applications that we analyzed) 79

Table 8 Coverage statistics from all open-source apps used in our experi-
ments 85

Table 9 Some of the Android API calls that have major influence on energy
consumption 91

Table 10 Subject apps for which energy bugs have been reported through
bug-reports and/or previous publications 105

Table 11 Results of Detection/Validation phase for app listed in Table 18 106

Table 12 Improvement in energy consumption of all apps with validated
energy bugs after the automatic repair 109

Table 13 Configuring resources for different QoS and energy-efficiency 118

Table 14 Key results. For each app, we provide app-description, size metrics,

observed defects and energy-saving observed as result of applying
the re-factoring suggested by our framework 122

Table 15 Design expression and re-factorings for commits highlighted in
Figure 58 126

Table 16 Event-handlers and Android API calls that are instrumented 132

Table 17 List of energy-inefficiency related defects with defect pattern, patch

suggestion, affected hardware components and a real-world example
with user comments. 135

Table 18 Open-source, Android apps that were used in the evaluation of our
framework 143

Table 19 Summary of defect localization and patch location suggestion for
patched-apps 144

Table 20 Line of log messages and analysis time for all apps 145

Table 21 Summary of results for unpatched apps 145

Table 22 Products offered by mobile-app testing companies (data collected

on 4th September 15) 149

LIST OF FIGURES

Figure 1 Estimating execution time in presence of micro-architectural com-
ponents 2

Figure 2 Key differences between profiling and systematic testing techniques

Figure 3 Key steps in our test generation technique 4

Figure 4 An abstract illustration of a timing analysis framework 13

Figure 5 Flow constraints to be used in ILP formulation 19

Figure 6 A typical WCET analysis framework 21

Figure 7 Illustrative example (a) control flow graph with accessed memory
blocks shown inside each basic block. (b) original must cache anal-
ysis, (c) must cache analysis instantiated by our framework 22

Figure 8 Program point (a) inside a basic block, (b) at a branch location 25

Figure 9 A schematic representation of the join, T, and merge (II) used in
our proposed analysis framework 26

Figure 10 Improvement in the WCET accuracy via AI+SAT approach, analysis
time (in seconds) is shown above each bar 32

Figure 11 Test generation framework 37

Figure 12 Overview of test generation (a) Control flow graph showing accessed
memory blocks (b) instrumented program (c) violation of assertion
showing cache thrashing scenario 38

Figure 13 Overview of our test generation framework 40

Figure 14 Control Dependence Graph, for Figure 12(a) 41

Figure 15 Instrumented code with assertions 42

Figure 16 Instrumentation scenarios for data caches 45

Figure 17 Key phases in the framework 49

Figure 18 Assertion Coverage and Thrashing Potential for different cache
configurations 50

Figure 19 Number of cache thrashing scenarios discovered for papabench for
various cache configurations 52

Figure 20 Illustration of conditional cache locking (a) Program with uncondi-

tional cache locking (lock instructions are preceded by #) (b) Input
partitions (c) Conditional cache locking 53

Figure 21 Life-cycle of an Android activity 68

Figure 22 Code with a potential energy bug 69

Figure 23 (a) Code with energy hotspot due to disaggregated communication (b)
Code without energy hotspot 70

Figure 24 Power profile for LG Optimus 1.3 E400 smartphone 70

Figure 25 Overview of the test generation framework 72

Figure 26 (a) An example EFG (b) EFG after pressing "ejectbutton” 74

Figure 27 An example of energy-consumption to utilization (E/U) trace with
no hotspot/bug, with an energy bug and with an energy hotspot 76

Figure 28 Flow chart for our test-generation framework 78

Figure 29 Our experimental setup 80

Figure 30 Categories of the 30 Android applications used in our experiments 81

Figure 31 Energy trace of the event trace for Aripuca GPS Tracker 83

Figure 32 Energy trace of the event trace for Montreal Transit 84

Figure 33
Figure 34
Figure 35
Figure 36
Figure 37

Figure 38

Figure 39
Figure 40

Figure 41

Figure 42
Figure 43
Figure 44
Figure 45
Figure 46
Figure 47

Figure 48
Figure 49
Figure 50
Figure 51
Figure 52

Figure 53
Figure 54
Figure 55

Figure 56
Figure 57
Figure 58
Figure 59

Figure 60
Figure 61
Figure 62
Figure 63
Figure 64
Figure 65

System overview 88
Over-simplified representation of execution in Android apps 89
An example showing how inputs are provided to Android apps 90

Inputs to an Android app 91

Energy trace for Aripuca GPS Tracker (a) with an energy bug (b)
repaired energy bug. The additional energy consumption can be
observed in the recovery (REC) and the post (POST) stages 92
Overview by example (a) example code with a potential resource
leak (b) CFG othe example code (c) static analysis of the code. Input
and output abstract states are shown for each node in the graph (d)
assertion added to the exit node of the graph (e) symbolic exploration
and test case generation (f) limitation while using bounded symbolic
execution 95

Overview of the validation process 98

Example of transitive closure computation. EFG node E3 is resource
acquire location. Transitive closure computation gives the list of
nodes shown in shaded in (b) 99

An example showing how our slicing algorithm (Algorithm 2)
works. 100

An example for driver code generation 101

Test case generated for app Tachometer 101

An example scenario 102

Work flow for automated repair in our framework 102

Work flow inside EnergyPatch 103

Screenshot of EnergyPatch (a) shows how developer can manually
augment EFG (b) visualization inside tool showing information such
as the structure of the EFG, buggy nodes, etc 104

Repair expression for app Tachometer 108

An overview of the re-factoring framework 112

An example app 113

Event-flow graph (EFG) generation 115

Event-flow graph (EFG) and deterministic finite automata (DFA) for
the example-app of section 7.2.1 116

(a) A code fragment showing sub-optimal camera binding, (b) Sub-
optimal Wakelock acquisition in app ChessClock 117

Various parameter that affect QoS, energy-consumption for location
updates 118

Code-fragment from Sensorium showing nested resource usage
120

Re-factoring while maintaining flow-dependencies 122

(a) Measurement setup (b) Timing parameters 124

Some commit from the 214 commits of the project Sensorium 126
Overview of log-based, energy-inefficiency localization in mobile
apps 131

Example of code instrumentation 131

Log-messages generated from Shortyz app 133

Partial profile call graph for Shortyz app 134

Debugging Ushaihdi Android 140

Working with the debugging tool in Eclipse 141

Defect localization for the Shortyz app 142

Xi

1 INTRODUCTION

Embedded systems are ubiquitous in the modern world. Such systems can be found in wide-variety
of applications, ranging from mission-critical applications (such as pacemakers, Anti-lock Braking
Systems), to casual applications (such as MP3 players and smartphones). Depending on the application
domain, such systems may have to operate under one or more types of non-functional constraints. Two
of the commonly observed non-functional constraints in such systems are performance constraints
(due to the real-time nature of such systems) and energy constraints (due to the limited on-board
battery capacity). Testing and validation of non-functional properties is an important aspect of quality
assurance for such systems. However, until recently not many systematic techniques existed for
automated testing of non-functional properties. Our work is an effort to address this need. In this
chapter, we first introduce the reader to the key challenges in testing non-functional properties of a
program. Subsequently, we shall present an overview of our framework that can be used for automated
testing of non-functional properties in a program.

Software testing is an important part of the software development life-cycle. It is by
conducting rigorous testing, one can be assured that the developed software meets the re-
quirements and specifications of its user. However, due to the ever-increasing complexity of
software systems, it is increasingly becoming impractical to adequately test software systems
manually. The only practical way to alleviate this challenge is to devise tools and techniques
that can automate software testing. Over the years, software engineering researchers have
proposed tools and techniques that address different challenges associated with automating
software testing. Our work is an effort to address one particular aspect of this challenge i.e.
automating software testing for non-functional properties.

Software properties can broadly be divided into two categories: functional and non-
functional properties. Properties that directly influence the input-output behaviour of the
software are referred to as functional properties, whereas properties that do not influence the
input-output relationship of the software are referred to as non-functional properties. Suitable
example of non-functional properties are performance or energy-consumption of the system.
In general, testing and validation of non-functional properties is very crucial for embedded
systems. This is because such systems are usually resource-constrained (e.g. limited battery
life such as in smartphones) and often have real-time constraints (e.g. timing deadlines such
as in Anti-lock Braking System). Therefore, such systems must be tested for functional as
well as non-functional properties. Over the years, researchers have developed a number of
tools and techniques for systematically testing the functional properties of software, however
the same cannot be said about non-functional properties. Systematic testing of non-functional
properties is often much more challenging than testing functional properties. The following
section describes some of the key challenges in testing and validation of non-functional
properties.

1.1 CHALLENGES IN TESTING NON-FUNCTIONAL PROP-
ERTIES

Testing non-functional properties is often more complicated than testing functional properties.
This is primarily due to the fact that non-functional properties are not only influenced by the
inputs to the program but also by the underlying hardware. As a result naive test-generation
strategies, such as exhaustive testing, may be insufficient to provide appropriate information
for the given non-functional property. Consider for example the scenario shown in Figure 1.
This figures shows a simple program, with a single i f condition (at line 3) within a while loop
(at line 2). The true branch (at line 3) and the false branch (at line 5) are taken in alternate
iterations. Assume that memory block m is accessed whenever the true branch is executed,
whereas memory block 1 is accessed on the false branch. Also assume that both memory
blocks 17 and m; map to the same cache set (say cache set 1). In such a scenario, if the
program is executed on a system with a direct mapped cache, memory blocks #17 and m; will
evict each other in alternate iterations, i.e. they would participate in cache thrashing. Such
cache thrashing may significantly increase the execution time of the program. It is worthwhile
to note that had the same program been executed on a system with 2-way, set associative cache
there would have been no cache-thrashing. This example goes on to show that when testing
non-functional properties it is important to account for the underlying hardware, on which
the software would be executed. Modern embedded systems are equipped with a wide-range
of hardware components. Research works that are targeted at the analysis and modeling of
such hardware components (for the purposes of analysing non-functional properties), are
commonly referred to as the micro-architecture analysis and are further described in this
work.

int i=0; direct mapped cache
While(i<100){ |:|
i (i%2==0){//true set 1
//access ml cache thrashing

else{//false
} { 2-way set associate cache

//access m2
} \setl mi | m2
i++; -
cache hit,
after first iteration

LooNOOTUVDE WNER

Figure 1: Estimating execution time in presence of micro-architectural components

Another challenge while testing non-functional properties arises due to the absence of
appropriate coverage metric for a given non-functional property. Typically systematic testing
frameworks would require a coverage metric to determine the completeness of the test-suite
(with respect to the given property). However, due to absence of explicit annotation of
non-functional properties in the program source-code, crafting such a coverage metric is often
non-trivial.

1.2 ARE TESTING AND PROFILING THE SAME THING?

Often a common source of confusion is the interchangeable use of the terms testing and
profiling. Profiling, in general, is the process of generating and recording the runtime program
behaviour (for a given property of interest), for a given test-suite. The test-suite used to
generate the runtime program behaviour, or the profile, is assumed to be representative of
the entire input space of the program. However, manually generating such representative
test-suite, even to uncover functional defects in a real-life program is often non-trivial. In the
case of non-functional properties manually generating such a test-suite is almost impractical
for most real-life program. This is because, as explained in the previous section, non-
functional properties of a program depend on the inputs to the program as well as on hardware
configurations of the system on which the program is executed. Systematic testing, on the
other hand, can be used to explore the entire inputs space of the program and to generate
test-inputs that highlight the property of interest (i.e. when the property of interest has been
defined in an appropriate manner). Unlike profiling techniques, systematic testing techniques
require a model of the system (software + hardware), at the required level of abstraction (e.g.
control dependence graph, event flow graph). Figures 2 further illustrates the key difference
between the two techniques. In short, testing as in test-generation is not the same as profiling.

Test Profiling Information Related
Program + ; .
Suite Techniques To Property of Interest
Systematic Information Related Test

_) . H
Program Testing To Property of Interest Suite

Figure 2: Key differences between profiling and systematic testing techniques

1.3 STATIC ANALYSIS DRIVEN TESTING OF PERFOR-
MANCE AND ENERGY-CONSUMPTION PROPERTIES
OF SOFTWARE: AN OVERVIEW

Existing software testing techniques can broadly be classified into two categories: techniques
based on static analysis and techniques based on dynamic analysis. Techniques in both these
categories have advantages and disadvantages of their own. For instance, techniques based
on static analysis rely on various kinds of abstraction mechanisms so as to reduce the search
space of the program, as a result of which such techniques tend to be scalable. This scalability,
however, does not come free of cost. Often, static analysis based methods produce sound but
imprecise results. Dynamic analysis techniques, on the other hand, can be much more precise
but these methods often suffer from the problem of state space explosion (when the search
space of the program is very large/infinite and the techniques takes impractical amount of
time to explore it). Our test-generation framework uses both the static as well as dynamic
analysis techniques at different stages of the analysis. This gives it the benefit of scalability as
well as precision. The non-functional properties for which we instantiate our framework are
performance and energy efficiency. In the following, we shall describe our framework around
the following three topics:

i. Representing non-functional properties in a manner such that existing techniques from
functional testing domain can be adapted for non-functional testing
ii. Identifying appropriate metrics to assist in exploration of non-functional properties

iii. Developing techniques for automated detection of inefficiencies related to non-functional
properties

. N Static Analysis to Dynamic Exploration
Identify Suboptimal —_— Identify Potential —_— Represent Property — Guided by
Behaviour Program Points Using Assertions Coverage Metric

Step 1 Step 2 Step 3 Step 4

Reduces Search for
ications il Exploration Generates Feasible
i Perf rl;]p:hcagor(\isr::z tion P + Reduces Non-functional Test Cases
Benifits erformal Cem P atio Provides garuntees for Property to a Functional (no spurious test
Energy Efficiency Abscence of Suboptimal Property cases are reported)
Behaviour, if None Exsits

Figure 3: Key steps in our test generation technique

Our objective is to develop a technique that can be used for testing non-functional properties,
specifically performance and energy-consumption. To obtain this objective we design a
technique that can be divided into four key steps (Figure 3) (i) Identifying scenario for
suboptimal non-functional behaviour (ii) Static analysis to identify potential program points
that may lead to suboptimal non-functional behaviour (iii) Representation of non-functional
properties as assertions, at appropriate program points and (iv) Dynamic exploration of
assertions guided by a well-defined coverage metric. We discuss these steps in the following
subsections.

1.3.1 Suboptimal Behaviour Identification

As with the development of any test-generation technique, we must first identify what consti-
tutes as a suboptimal (or undesirable) behaviour. In particular, we shall identify suboptimal
behaviour with respect to performance and energy consumption.

Performance (and execution time) of a program is dependent on the inputs to the program as
well as on the states of underlying micro-architectural components(such as caches, pipelines,
etc). Therefore, suboptimal performance of a program can be attributed to suboptimal
performance of one or more of the underlying micro-architectural components. In one of
our previous studies [1], we choose to focus on suboptimal performance due to caches. In
particular, we focus on the scenario of cache thrashing. Cache thrashing can be described as a
scenario when a frequently used cache line (or memory block) is replaced by other frequently
used cache lines thereby causing a large number of cache misses (as a result suboptimal
performance).

Identifying factors for energy-inefficiency in smartphone applications is important because
such applications usually run on mobile devices that have limited amount of battery power.
Additionally, such devices are equipped with a wide range of auxiliary hardware components,
many of which may have an energy consumption higher than that of the CPU itself. Therefore,
it is important to develop energy-aware programming and testing techniques for smartphone
applications. However, until recently smartphone application development has been performed
in an energy-oblivious fashion. Primarily because the major reasons for energy-inefficiencies
in smartphone applications were not well understood. Therefore, in one of our works [2] we
study (and categorise) the main reason for energy-inefficiencies in smartphone applications.
Subsequently, we shall use the results of this study to identify scenarios of suboptimal energy

behaviour in smartphone applications. Existing studies, such as [3], have pointed out that
I/0 components (such sensor, GPS, Wifi, etc) play a substantial role in power consumption
in smartphone applications. Another factor that affects the energy efficiency of smartphone
applications is the misuse of power management utilities (such as Wakelocks in Android).
Since I/0 components as well as power management utilities can only be accessed through a
set of API calls provided by the operating system, therefore presence of such API calls in an
application could be an appropriate indicator for high energy consumption. However, high
energy consumption does not necessarily imply the presence of energy inefficiency. Consider
a scenario where the energy consumption is high due to high computation demand. Therefore,
to detect energy-inefficiencies one must look for scenarios where energy consumption is
high but utilization (of device’s components) is low. Based on this intuition, we devised
a API-call coverage guided test generation framework to explore energy-inefficiencies in
Android applications [2]. The framework automatically explores a given application while
simultaneously analysing the energy consumption to utilization ratio of the device. Based on
the experiments conducted with our framework, we classified the prime reasons for energy
inefficiencies into two categories: energy inefficiencies due to energy hotspots and energy
inefficiencies due to energy bugs. An energy hotspot can be described as a scenario where
executing an application causes the device to consume abnormally high amount of battery
power even though the utilization of its hardware resources is low. In contrast, an energy bug
can be described as a scenario where a malfunctioning application prevents the smartphone
from becoming idle even after it has completed execution and there is no user activity. As a
result of which the ratio of energy consumption vs utilization stays high, long after the user
has navigated away from the application. Energy bugs are much more serious inefficiencies
that energy hotspots because they cause a sustained energy loss from the device.

1.3.2 Static Analysis

Once we have identified the scenarios for suboptimal behaviour, we wish to generate test
inputs that leads to such scenarios. Since non-functional behaviour depends on the program
inputs as well as the underlying hardware states, the search space that needs to be explored
to generate such test-inputs may be huge. Therefore, exhaustive exploration may often be
impractical for such purposes. To overcome this challenge we first statically analyse the
program using techniques based on the theory of abstract interpretation [4]. Such (abstract
interpretation based) techniques analyse the abstract semantics of the program to estimate the
property of interest. For instance, one example of property of interest could be presence (or
absence) of a memory block in the cache, at a given program point. Abstract Interpretation
based techniques are often very scalable because they analyse the abstract semantics of the
program instead of its concrete semantics Also due to fact that the abstract semantics is
superset of all possible concrete semantics of the program, therefore the results obtained are
always sound. However, due to the use of abstraction the results obtained from such methods
may be imprecise (overestimated). In our approach, we devise an abstract interpretation based
technique to find out the potential program points that may lead to cache thrashing (when
testing for performance) and energy bugs (when testing for energy consumption).

1.3.3 Representing Non-functional Properties

After we have obtained the potential program points that may have suboptimal behaviour
we systematically generate assertions at all such locations. Each assertion is crafted such
that its violation captures a scenario of suboptimal non-functional behaviour. For instance,
when testing for suboptimal cache performance the violations of assertion captures a unique

cache thrashing scenarios. Similarly, when testing of energy inefficiency, violation of an
assertion indicates the presence of an energy bug. Note that these assertions can be generated
automatically from the results of the previous (static analysis based) step. It is worthwhile to
know that by representing the non-functional properties, (such as presence of cache thrashing
or energy bugs) as assertions, we reduce the problem of non-functional testing to an equivalent
functionality testing problem.

One of the most important part of our technique is the formulation of the assertion. The
exact formulation of the assertions depends on the non-functional behaviour being tested as
well as the underlying hardware. For instance, when formulating the assertions for cache
thrashing one has to account for the cache associativity as well as the cache replacement
policy. Cache associativity can be used to estimate the number of memory blocks conflicting
in the cache and cache replacement policy is necessary to find out the exact order in which
the memory blocks would be evicted from the cache. In essence, all information that can
influence the non-functional behaviour of the hardware component (in this example cache)
must be known a priori.

1.3.4 Test-generation Through Dynamic Exploration

Existing dynamic exploration techniques, such as Directed Automated Random Testing
(DART) [5] can be used to explore (and test functional properties of) a program without the
need for writing specific test-cases. DART uses a combination of concrete and symbolic
program executions to generate path-constraints for a given program execution. The con-
straints thus generated are systematically modified and solved to generate test-inputs that can
be used to direct the execution along some previously unexplored path in the program. It
is worthwhile to know that exploration techniques such as DART in their original form are
only suited for checking the validity of functional properties. This is because the program
source-code (or binary) alone may be insufficient for testing non-functional behaviour, such
as performance. However, this is no longer a problem because with the addition of assertions
(in the previous step) we have augmented the functional properties with the set of assertions
capturing the non-functional properties as well. The instrumentation step therefore plays
a crucial role in our test-generation framework. There is however another issue that needs
to be addressed before we can start using functional testing technique such as DART for
non-functional testing. It is worthwhile to know that a DART like exploration strategy starts
from a random path in a program and keep exploring new paths until all feasible program
paths have been explored. The exploration strategy in a DART like approach is completely
oblivious to the presence of assertions (instrumented by us) in the program (i.e it does not
take into account the presence or absence of assertions while making the exploration choices).
Since we are primarily interested in checking the validity of assertions, hence such assertion-
oblivious exploration strategy would be suboptimal for our purpose. Therefore, for our
technique we devise an assertion-aware exploration strategy. Our technique computes a metric
called assertion-coverage, that indicates the likely hood of finding unchecked assertions on a
given program path. The algorithm then guides the exploration process towards a path that
maximizes assertion-coverage. The intuition behind such an strategy is simple. Exploring
paths that increase the net assertion-coverage, leads to maximum number of assertions being
checked and therefore provides a greater likely hood of uncovering scenarios that lead to
suboptimal behaviour. As a result of the assertion-aware exploration strategy our technique
can explore maximum number of unique assertions within a given amount of time. Every
time an assertions is encountered, its validity is checked. If an assertion is violated during
the exploration, a suboptimal performance/energy consumption issue is recorded along with
a symbolic formula capturing the set of inputs that leads to the violation of that assertion.

It is worthwhile to know that the unlike the static analysis phase, the dynamic exploration
phase of our framework is path-sensitive, due to which all test cases generated by the dynamic
exploration phase are real scenarios of suboptimal non-functional behaviour. The test cases
generated by our framework can be used to optimize non-functional behaviour of a program.
More specifically, for improving performance, the results from our framework can be used for
design space exploration and for developing input-sensitive cache locking techniques which
can provide better performance gains as compared to traditional cache locking techniques
such as [6]. For improving energy efficiency, the results from our framework can be used for
developing automated techniques for energy-efficient repair code generation .

1.4 KEY CONTRIBUTIONS

The primary objective of this work is to explore and address the major challenges in testing
non-functional properties of a software. In particular, we focus on the non-functional proper-
ties of performance and energy-consumption. Systematic testing of non-functional properties
is often much more challenging than testing functional properties because non-functional
properties not only depends on the inputs to the program but also on the underlying hard-
ware. Additionally, unlike the functional properties, non-functional properties are seldom
annotated in the software itself. Such challenges provide the objectives for this work. The key
contributions of this work can be summarized as follows:

1. Performance

a. We propose a test-generation framework that exposes the cache performance
issues of an embedded software to the developer. One appealing nature of test
suite generated by this framework is that it does not include any spurious test cases
(i.e. a test-case that does not capture a cache performance issue in any feasible
execution). Our test-generation framework is guided by a well-defined coverage
metric that assists in uncovering cache-thrashing scenarios in a systematic fashion.

b. We demonstrate the use of an assertion-based approach by which non-functional
behaviour (such as cache thrashing), that is not explicitly encoded in the program
source code, can be represented as functional properties and thereby enabling
the use of variety of functionality testing tools for the purposes of non-functional
testing as well. It is worthwhile to know that in our test-generation technique the
assertions, that are used to represent the non-functional property of interest, are
generated and instrumented into the program in an automated fashion.

c. We further show the utility of our performance-stressing test-generation frame-
work in applications such as design space exploration and performance optimiza-
tion.

2. Energy-consumption

a. We present one of the first systematic definition for energy-inefficient behaviour
. EnergyConsumption
in mobile apps. We also introduce a new metric of E/U ratio (—{fmation)

that can be used to measure energy-inefficiency of a given app. The intuition

behind the metric of E/U ratio is that higher utilization (of system resources) for

a given energy consumption is more energy-efficient than lower utilization (of

system resources) for the same amount of energy consumption. In essence, a

higher E/U ratio signifies more inefficiency.

b. We introduce a fault-model for energy-inefficient behaviour in mobile apps. In
particular, we categorize energy-inefficiency in mobile apps into two categories:
energy hotspots and energy bugs. An anomalously high E/U ratio exhibited by
the mobile device during the execution of an app indicates presence of an energy
hotspot whereas the scenario where the mobile device exhibits a high E/U ratio
even after an app has completed execution, indicates presence of an energy bug.
We also provide real-life examples for each type of energy hotspot and energy
bug in our work.

c. Based on our understanding of different types of energy-inefficiencies in mobile
apps, we were able to develop various tools and techniques that can assist a
programmer to do energy-aware programming. In particular, we provide tools
and techniques for systematic energy-aware testing, energy-aware re-factoring
and energy-aware debugging (of field-failures), in mobile apps.

1.5 ORGANIZATION OF CHAPTERS

This work targets at different aspects of non-functional testing. Depending on the nature and
application of an embedded system, different non-functional properties may be of interest.
However in this work, we specifically focus on two non-functional properties: performance
(crucial for real-time systems) and energy-consumption (important for battery-constrained,
mobile devices). We start by describing some of the key concepts and existing works on
performance analysis in Chapter 2. We also describe some our efforts to improve the state-of-
art in performance analysis in Chapter 2. Subsequently, Chapter 3 presents one of our works
that uses a combination of static and dynamic analysis to automatically generate test cases that
lead to inferior cache performance. It is worthwhile to know that this was one of the first works
to propose a systematic technique for non-functional test generation. Chapter 4 introduces
the reader to basic concepts and existing research work on the topic of energy-consumption
analysis. Chapter 5 presents a grey-box testing approach for automatically exploring and
detecting energy-inefficiencies in mobile apps. More importantly the work presented in
Chapter 5 describes what it means to exhibit bad energy consumption behaviour, for mobile
apps. This understanding is further used to define a fault-model for energy-inefficiency is
mobile apps. This fault-model provides the ground work for the framework presented in
Chapter 6, which presents a white-box testing approach to automatically detect, validate and
repair energy bugs in mobile apps. Chapter 6 also introduces the tool EnergyPatch which can
be used by app developers to test and repair their apps before deployment. We also present a
couple of follow-up works in Chapters 7 and 8 on energy-aware re-factoring and energy-aware
debugging in the context of mobile apps. Finally, we conclude this thesis in Chapter 9 with a
brief discussion on the contributions of this thesis and a potential future work direction.

2 PERFORMANCE ANALYSIS: BACK-
GROUND & LITERATURE REVIEW

This chapter introduces the reader to some of the key concepts in performance analysis. It briefly
describes the various commercial tools (such as ARM Streamline Performance Analyzer, Intel VTune
Amplifier, etc), available for the purposes of performance analysis. It is also describes some of the
existing research works related to performance analysis. In particular, the works on performance anal-
ysis are described in three different parts (i) works on performance profiling (ii) works on performance
estimation and finally (iii) works on performance testing. We also present a new micro-architectural
modeling framework that uses abstract interpretation and satisfiability checking to generate worst-case
execution time (WCET) estimates for a given program. This framework can be used to substantially
improve the accuracy of WCET analysis in the presence of many infeasible paths in the program.

2.1 REAL-TIME EMBEDDED SYSTEMS

Embedded systems represent the class of computer systems that are designed for a specific
application. Often such application involves the controller (or the computer) controlling a
custom piece of hardware (usually an electro-mechanical component). Embedded systems
come in variety of designs and complexities. They can be simple systems used for controlling
common, household appliances such as washing machines and dishwashers or they can be
complex, mission-critical medical equipment such as a pacemaker. Depending on the applica-
tion domain of such systems, they may have performance or timing constraints. These timing
constraints are often real-time in nature, hence referred to as real-time constraints. Having
a real-time constraints means that such systems should not only be capable of processing
the correct output for a given input, but it should do so within a given deadline. Inability to
complete a task within the deadline may cause a degradation in the Quality-of-Service or
even catastrophic consequences, in certain applications. Depending on the seriousness of the
real-time constraint, such systems are further classified into two categories: hard real-time
systems and soft real-time systems.

Hard real-time systems are computer systems which can not afford to miss even a single
timing deadline. Missing a deadlines in such systems can lead to catastrophic consequences.
For example, if a pacemaker fails to provide the right amount of electrical impulse, at the
right time, the patient’s heart may stop functioning, leading to fatal consequences.

Soft-real time systems in contrast, can afford to miss a few timing deadlines and may still
keep functioning. However, meeting all timing deadlines is highly desirable as missing a
deadline may lead to degraded Quality-of-Service. An example of such system would be
a live video playback system (video encoder/decoder). Such systems are used widely for
showing live feed from sports events. It is highly desirable, to have an un-interrupt video
stream of the sports event but occasionally missing a few video frames should not cause any
catastrophic consequences.

2.2 OVERVIEW OF PERFORMANCE ANALYSIS TOOLS

Computer programmers and designers often use a number of profiling tools to understand
and optimize the system behaviour. Many commercially available profilers present today, use
sampling or instrumentation based techniques to profile performance or power consumption
of a system. In this section, we briefly describe some of the commercially available profilers,
which include ARM Streamline Performance Analyzer, ARM yVision4 IDE, Intel VIune
Amplifier, AMD CodeAnalyst, and Valgrind. The above mentioned profilers are targeted at
different platforms and provide wide range of features, however the common feature amongst
these tools is that they all perform dynamic program analysis. Recall that dynamic program
analysis, unlike static program analysis, comprises of executing programs on the target system.

Streamline Performance Analyzer, is a part of the ARM DS-5 toolchain. This is a GUI-based
tool and it is primarily targeted at the Cortex-A series and Cortex-R series of ARM processors.
It uses various performance counters and sampling-based techniques to capture profiling data.
The tool supports two modes of sampling, which are timer-based sampling and event-based
sampling. Quantitative properties such as cache-misses or cache-hits can be statistically
assigned to particular process or a thread in a program. Additionally, the streamline analyzer,
together with the ARM energy probe, can be used to capture power consumption of a program.
The ARM energy probe is essentially a USB device which can sample voltage, current and
power. The sampled data is then synchronized with the software execution trace and various
performance metrics, to give the developer an idea about the energy hotspots in the program.
This tool also has features to support profiling on symmetric multiprocessor (SMP) platforms.
It also displays the observed thread activity on a specific cores. This gives the programmers
an intuition of how their code is distributed across different cores.

uVision4 IDE is another GUI-based, embedded applications tool marketed by ARM Hold-
ings plc. This tool is targeted at the Cortex-M, Cortex-R4, ARM7 and ARM9 processor-based
devices. The performance analyzer in the yVision4 IDE is capable of recording the time
spent for executing a particular function in a program. Additionally, this tool can generate
the execution trace related information, for a given program. However, unlike the Streamline
Performance Analyzer, uVision4 IDE has no support for multi-core processors or power
consumption profiling.

VTune Amplifier, is a performance profiler developed and marketed by Intel Corporation.
This tool is primarily targeted at the systems with Intel processors, although some of the basic
features of this tool can be used for profiling other systems as well. The tool used event-based
sampling, performance counters and call-graph profiling to generate the profiling data. The
profiling results can be visualized through a GUI, on a per-process level, per-thread level or a
per-module level, with the resolution of a single instruction. For power analysis, the tool has
two built in modes, CPU sleep state and CPU frequency scaling. The amount of time spent
by the CPU in sleep-state and the frequency at which the CPU operates are key factors (but
not the only factors) for determining average power consumption. Therefore, profiling data
generated from these two modes can give a rough-estimate of the average power consumption,
while executing a program (or a module).

AMD CodeAnalyst, is a GUI-based performance profiler targeted at x86 and x86-64 based
systems. Additionally, the features provided by this tool support multi-core and non-uniform
memory access (NUMA) systems. CodeAnalyst is based on statistical profiling tool OProfile.
It uses various hardware based profiling techniques as well some generic timer-based profiling

10

techniques, to capture the profiling data. However, some of the hardware based profiling
techniques are specific to AMD processors and therefore applicable to systems with AMD
processors only. The profiling data can be examined on a per-function level or per-thread-level,
with an instruction-level resolution.

Valgrind Tool Suite is a set of debugging and profiling tools, targeted at a large number
of processors (such as x86, x86-64 and PowerPC, ARMv7) and is avialable under the GPL
license. The tools in Valgrind generates debugging/profiling related information using runtime
instrumentation. In particular, the Cachegrind and the Callgrind tools from the Valgrind Tool
Suite, are useful for performance analysis. Cachegrind is essentially a cache profiler, which
performs detailed simulation of caches to highlight source of cache misses in the program. It is
capable of generating summary for the memory references, cache misses and the instructions
executed for each line of source code. The results can be examined at per-function level,
per-module level or for the entire program. Callgrind is an extension to Cachegrind tool
and it provides additional information related to call-graphs. KCachegrind, is the GUI-based
version of the tool Callgrind and it is also available under the GPL license.

2.3 APPROACHES USED FOR PERFORMANCE TESTING/
ESTIMATION

There can be a number of reasons to analyse the performance of a given system. For instance,
in the case of hard-real time systems knowing the upper bound on execution time is very
important. For such systems, techniques for worst case execution time (WCET) analysis
can be very useful. For other systems, performance may directly correlate to the quality-
of-service and hence the developer may want to fine-tune the system performance. In such
scenarios, the developer can use a performance-aware test generation technique to find out
the test inputs that degrade performance and subsequently, either change the program or
the hardware configuration to optimize the system performance. It is also possible that the
developer/tester wishes to compare the performance of a program on two different platforms
(hardware configurations). For such scenarios, profiling techniques can be useful. Profiling
techniques can be also used to approximate the performance trend for a given program. Table
1 shows some of the key aspects of the different performance analysis methodologies.

Table 1: Key aspects of different performance analysis methodologies

Profiling | Test Generation | Estimation
Estlmates'upp'er, lower bound No No Yes
on execution time
Test]
est inputs needeq to conduct Yes No No
performance analysis
ind tf:st inputs for suboptimal No Yes No
behaviour
Dynamic Dynamic Static
Underlying framework Analysis + Static Analysis
Analysis

11

2.4 PERFORMANCE PROFILING TECHNIQUES

Profiling can be described as a dynamic analysis techniques where a program is executed for a
set of representative inputs to observe the program behaviour. Such profiling techniques often
work on full or compressed execution traces to extract useful information about the program
behaviour. It is assumed that the representative inputs for obtaining the execution traces
are known beforehand. Many commercially available profilers (such as ARM Streamline
Performance Analyzer, Intel VTune Amplifier and AMD CodeAnalyst), use sampling or
instrumentation based techniques to profile performance or energy consumption of a program.
However, for the purpose of brevity, in this section we shall restrict our discussion only to
existing research techniques based on profiling.

Profiling based techniques, in general, do not perform micro-architectural modeling (sys-
tematic analysis of underlying hardware components). As a result they are less complex
and light-weight. However, since they do not model (or take into account) the underlying
hardware, they cannot provide any guarantees on the upper or lower bounds on the execution
time of a program. Hence they are not very useful for analysis of hard real-time systems
(which require strict timing guarantees). Another challenge while using profiling based
techniques is completeness. For instance completeness in terms of program-paths would
mean that all program-paths have been executed at least once. However, in practice a com-
plete path coverage is seldom achieved because the number of paths in a program increases
exponentially with the number of decision variables. (A program with # decision variable
can have 2" paths.) Most profiling based techniques execute the (analysed) program only
for a subset of program-paths. Despite these limitations, profiling based techniques have
been extensively used for a number of practical purposes. In particular, systems (such as
soft, real-time systems), which do not require strict guarantees on performance, can benefit
from the use of profiling based techniques. In the following paragraphs, we shall see to two
extensions of the profiling based works; extending profiling to estimate WCET and extending
profiling techniques to estimate program cost.

As mentioned in previous paragraphs, inherent limitations of profiling make it almost
impractical for bounding the execution times (i.e. WCET). However, a number of works
[71,[8] have explored ways to overcome the aforementioned limitations. The work of [7] in
particular measures the execution times of small program segments and subsequently stitches
them together to estimate the overall execution time of the program. It is worthwhile to note
that the technique of [7] does not model the underlying hardware while profiling. This raise
some concerns over the correctness of generated results through this approach. To address
these concerns, [7] tries to use compiler-level techniques to reduce variability throughout
different executions. Another work [8], introduces a technique for WCET estimation for
probabilistic, hard, real-time systems. [8] suggests that a hard, real-time system must meet
the deadlines with a high probability. It proposes a framework, where execution profiles of
smaller program units are probabilistically combined to estimate the worst case execution
time of the entire program. Although, their method might generate better WCET estimates
than the conventional end-to-end measurement based techniques, but it should not be used to
determine the WCET of a hard real-time system, because by definition hard real-time systems
must meet all the deadlines, under all conditions.

Recent advances in profiling [9, 10] have extended on the traditional profiling techniques to
compute the performance behaviour of a program by means of an approximate cost function.
The cost function relates program inputs with the overall cost of the program execution. It
is worthwhile to know that such cost functions are approximations and do not necessarily
capture the actual cost of executing the program for a given input.

12

2.5 PERFORMANCE ESTIMATION TECHNIQUES

Static analysis methods refers to the set of timing analysis techniques, which estimate a bounds
on the execution time of the program, without actually executing it on the real hardware.
Many quantitative properties of real-time software such as worst-case execution time (WCET)
and best-case Execution Time (BCET) are often undecidable. But a sound knowledge of such
properties for real-time software is essential. Therefore, static methods are used to generate
sound but an over-approximated estimates for such properties of a program. The process of
estimating static timing analysis can be divides into following three phases : Control Flow
Analysis, Micro-architectural Analysis, Estimate Calculation (see Figure 4).

Program Executables

User Annotations

CFG Generator

Program Flow
Analysis

Estimate Calculation

!

Timing Estimates

Figure 4: An abstract illustration of a timing analysis framework

2.5.1 Program Flow Analysis

Program Flow Analysis is a term often used to represent the set of techniques, which are used
to derive constraints on the paths of a program’s control flow graph (CFG). Flow analysis take
in the program CFG as an input and analyses it to generate various flow related information,
such as loop bounds and infeasible paths in the CFG. In general, it is difficult to precisely
calculate the program flows statically. Therefore, a safe-over approximation of the flow
related information is estimated. For example, in order to calculate the WCET of a program
containing loop, an upper-bound on the number of loop iteration must be known.

Previous research work such as [11], [12] propose techniques for automatic loop bound
detection. Infeasible path detection is also an important part of flow analysis. Unlike loop
bound detection, infeasible path detection is not a necessity for WCET estimation. But it is
highly desirable, because in the presence of infeasible paths, the WCET can be over-estimated.
For instance, consider a program CFG which has an infeasible path Ip. Also suppose Ip has
the longest execution time over the whole CFG, (say Tjp). In absence of any infeasible path
related flow information, the WCET analyser would report the WCET to be Tj,. Clearly,
since Ip is never executed in any concrete execution of the program, WCET of the program is
over-estimated. Additionally, in the presence of infeasible paths, micro-architectural analysis
can be imprecise, which can also lead to an over-estimated WCET. Methods such as the one
proposed in [13] can be used for automatic infeasible path detection. Flow information such as
loop bound and infeasible paths can also be added manually, as annotations or user-provided
constraints.

13

2.5.2 Micro-architectural Analysis

Most modern processors uses a number of performance enhancing features such as caches,
pipeline and branch predictors. These features are very useful for increasing performance, but
they also make the task of timing analysis complicated. Worst case execution time (WCET) of
a program is directly influenced by the various micro-architectural components. So, in order
to produce a safe and precise estimate of a program’s WCET, micro-architectural analysis
must be performed. The following paragraphs describe some of the existing research work
for analysing various micro-architectural components such as caches, pipelines and branch
predictors.

Caches are fast memory used in modern computer systems, to hide the latency of slower
memory access. The presence or absence of accessed memory blocks in the cache can
influence the execution time of a program. But for most programs it is statically undecidable
to accurately calculate the contents of the cache, at a given program point. Fortunately, static
analysis based methods can be used to estimate an over-approximation of cache contents, at a
given program point in the CFG.

The work in [14], proposes one of the first method to model the behaviour of instruction
caches. In their method they construct a cache conflict graph to model the inter-instruction
conflicts. This graph is used to generate constraints representing the cache behaviour. They
also suggest a method to represent the structural and functional properties of the program as
linear constraints. Structural constraints are derived from the flow analysis of the program
CFG. For example, the information that the execution count of a basic block is equal to the
number to time control flow edges enters the basic block can be represented by a structural
constraint. On the other hand, information such as the upper bound on number of iterations of
a loop are represented by functional constraints. Their approach provides an elegant way to
represent all the flow related information as well as micro-architectural behaviour as a system
of linear equations. An integer linear programming (ILP) solver can then be used to obtain
the worst case execution cycles of the program. A major limitation with their approach is that
as the associativity of the caches increase, the ILP problem increasingly gets more complex
and therefore takes a long time to solve.

One of first scalable approaches for performing cache analysis was proposed in [15]. They
presented an abstraction interpretation based approach to categorize the memory blocks in
the cache. The abstract semantics used in their framework consisted of an abstract domain of
caches states and a set of abstract functions. The abstract domain of cache states represents
an approximation of the set of all concrete cache states at a given program point, whereas, the
set of abstract function consists of an abstract Join function (used to merge multiple abstract
cache states into a single abstract cache states) and a abstract Update function (reflects the
side-effects of a cache reference on the abstract cache state). The authors use three different
approaches to perform cache analysis, they are Must, May, Persistence analysis. Must analysis
can be used to identify the always-hit (AH) memory block in the cache. Access to AH memory
blocks always results in a cache hit. Likewise, May analysis can be used to identify always-
miss memory blocks in the cache. Access to AM memory blocks always results in a cache
miss. Persistence analysis can be used to identify memory blocks, access to which will
always results in a cache-hit, except for the first access for which it would be a cache miss.
To get a more precise cache classification, their cache analysis framework employs VIVU
(virtual inlinning virtual unrolling). This is especially beneficial for program having loops
and recursive procedure calls as it helps in isolating the first iteration of a loop (or recursive
call) from the renaming iterations (or recursive calls). Due to the use of abstract interpretation
for micro-architectural analysis, this approach is much simpler than the approach suggested
by [16], especially for set-associative caches.

14

The work of [17], extends the framework proposed in [15], to multilevel, non-inclusive,
set-associative caches. In order to model the cache behaviour for multi-level caches, a cache
access classification (or CAC) has been suggested in this paper. A CAC is utilized to safely
estimate whether an access to a memory block occurs at cache level L. The CAC classification
for a memory block can be Always Accessed, Never Accessed or Uncertain. CAC for a
cache level L depends directly on the CAC and the cache-hit-miss-classification (CHMC)
classification of the cache level L-1. If a memory block is classified as AH in cache level L-1,
that memory block would not be referenced in the cache level L and therefore it is classified
as Always Accessed. Likewise, Never Accessed memory block can also be identified. All
memory blocks which can not be safely classified as Always Accessed or Never Accessed
have a CAC of Uncertain. All blocks access the cache at level 1, therefore all blocks have a
CAC of Always Accessed CAC for cache level 1. CHMC for level 1 cache is calculated using
the technique proposed in [15]. For other cache levels, after the CAC has been calculated,
CHMC can be calculated in a similar manner.

Abstract interpretation based micro-architectural analysis method are fast and scalable, but
the result of analysis (WCET estimates) can be imprecise. Since abstract interpretation is
inherently path in-sensitive, it cannot distinguish between feasible and infeasible paths. In
the presence of infeasible paths, abstract interpretation based cache analysis might lead to
infeasible cache states. Although, the presence of such infeasible cache states does not affect
the correctness of the analysis but the WCET of the program might be overestimated. The
work of [18], proposes a method to improve the precision of abstract interpretation based
instruction cache analysis, with the help of model checking. First the cache analysis proposed
in [15] is used to obtain the CHMC for the memory blocks. After obtaining the CHMC for the
memory blocks, repeated runs of model checking are applied to efficiently refine the WCET
estimate. Given a potentially conflicting pair of blocks, a model checker (CBMC) is used
to verify if the pair actually conflict in any execution. If the conflict was indeed spurious
(possibly due to infeasible path in the program), the classification of the memory block is
adjusted. An advantage of this approach is that the refinement of cache categorization can be
stopped at any time and still the obtained WCET estimate would be sound.

Similar to instruction cache analysis, data cache analysis is also an important part of micro-
architectural analysis. But the process of analysing data caches is much more challenging
than analysing instruction caches. This is because, unlike instruction cache analysis, for
any memory access, multiple memory blocks might be accessed at different instances of the
access. Many of previous research work, overcome this challenge by using techniques such as
Address Analysis. Address Analysis generates an over-approximation of the set of addresses
that can be accessed by a specific load/store instruction, in a program.

The study by [19] extends the abstract interpretation based framework (by [15]), for data
caches. In particular, they suggest an approach to apply Persistence Analysis for data caches,
although neither details of address analysis nor any experimental results were presented in
this paper. [20] presents a technique for address analysis and they use the results of address
analysis to perform Must analysis on data caches. The original must analysis described in [15]
can not be directly applied to data caches because the each program point might be associated
with a range of memory blocks. They also unroll the loop partially to improve the precision
of their framework, but this makes their analysis more expensive. [21] present an approach to
apply May analysis for data caches. Their work also presents one of the first frameworks to
model unified caches. Unified caches are used to store data as well as instructions. Unified
caches have been used in commercial processors such as Intel Itanium 2, Intel Core i7 and
AMD Phenom II.

[22] extended the persistence analysis to multi-level, set-associative data caches. A Cache
access classification (CAC) is used to find out the memory references for a particular cache

15

level. The CAC for multi-level, data cache analysis is similar to the CAC define for multi-
level, instruction caches analysis proposed by [17] A recent work by [23], has shown that the
persistence analysis for data caches as proposed by [19], is not safe for WCET estimation.
The original persistence analysis has a flaw in the abstract Update function, due to which it
could underestimate the WCET. This flaw can be corrected by keeping track of Younger Set
for each memory block. A Younger Set for a memory block m, denotes the set of memory
blocks which may be younger, than m along any execution path. Additionally, [23] proposes a
scope-aware, persistence analysis for data caches. Scope-aware, persistence analysis exploits
the temporal scopes of the memory blocks to reduce the pessimism in the data cache analysis.
A temporal scope of a memory block m, captures the loop iterations of the program, where
m can be accessed. In particular, if two memory blocks 11 and 1, map to the same cache
set, but have different temporal scopes, they would not conflict in the cache. Essentially, the
original persistence analysis for data cache estimates the global persistence of a memory
block whereas the scope based persistence analysis only estimates the persistence of memory
block within its temporal scope. Therefore, scope-aware persistence analysis can lead to more
precise WCET estimate.

Pipeline Analysis : Advanced feature such as pipeline are a boost to performance but at
same time it makes the process of WCET estimation very challenging. In pipelined processors
the execution time of instructions might overlap, due which a execution time of a basic block
cannot be obtained by simply adding up the execution time of constituent instructions of
the basic block. In order to obtain a safe WCET estimate, the micro-architectural analysis
must analyse the effects of pipeline along with other components such as caches and branch-
predictors. Previous research work has presented techniques to model the pipeline behaviour,
for various processor architectures. Some of those works would be discussed in the following
paragraphs.

The work in [24], proposes a framework for WCET estimation in presence of pipelines
and caches. The target processor for their study was MIPS R3000, which has a simple
five-stage pipeline. The effect of pipeline is modeled by using a reservation tables of resources
for each instruction. The reservation table is used to analyse timing interaction between
instructions inside and across the basic block. A bottom-up algorithm is used to find worst
case execution time estimates for a path. WCET for the whole program can be estimated using
concatenation of paths. Every time a instruction is added to a path, a new reservation table is
computed. Reservation tables are compacted whenever possible by keeping information only
from the beginning and the end of a path. This framework of [24] is later extended in [25],
for multiple-issue architectures.

The micro-architectural analysis proposed in [26] also focuses on pipelines and instruction
caches. The target processor for their experiments was MicroSPARC 1, which has a very
simple, in-order pipeline. The analysis proceeds by first determining the cache-hit-miss
categorization (CHMC) using static, cache simulation. Each instruction is associated with the
set of registers which it can access. Additional information, such as the maximum number of
cycles per pipeline stage and the first and last pipeline stage, from which forwarding can take
place is stored for each instruction. The earliest and latest usage time for register files is also
tracked in order to avoid data hazards. Program path analysis is done by concatenation of
instruction on a path. Loops are analysed using a bottom up approach, beginning with the
inner-most loop All the paths through the loop are merged and this information is used to the
analyse the outer loops in an iterative manner.

[27] present an integrated, integer linear programming (ILP) based approach for analysing
the cache and pipeline behaviour. The processor model used for their experiments was Intel
1960KB, which has a very simple pipeline. The simple architecture of the pipeline allowed

16

the authors to restrict the model to look for structural hazards only. Therefore, their approach
would be much difficult to apply for superscalar, out-of-order processors.

The work of [28] presents an abstract interpretation based approach for modeling pipelines,
for in-order, superscalar processors. This key challenges while modeling pipeline in super-
scalar processors is that in such architectures resource allocation to the instruction occurs
dynamically. Due to this reason a static reservation table based approach as proposed in earlier
works would be inadequate to model superscalar processor pipelines. The target processor for
this study was Sun SuperSPARC 1. The modeling abstracts the pipeline by representing the
set of all pipeline states, at a program point, by a single abstract pipeline state. Although the
abstract semantics proposed in this paper was described only for in-order pipelines but they
can be extended to out-of-order pipelines as well.

The work in [29], proposed an abstract interpretation based analysis, for an architecture
with an in-order pipeline, caches and branch prediction. The target processor for their study
was Motorola ColdFire 5307. Their approach decomposes the pipeline into several smaller
and simpler units. These units (of the pipeline model), may represent single or a combination
of actual pipeline state. Additionally, these units can communicate with each other and the
memory by using signals. In their model, an abstract pipeline state represents a set of concrete
pipeline states. The abstracted model of pipeline groups together those states which have
similar timing behaviour. But such assumption has its own limitations, consider a scenario,
where the execution time of an instruction is not known statically (some instructions execution
time depends on the operands). In such a scenario, in their model, a pipeline state can have
several successor pipeline states, to account for the variable execution time. This feature is
the prime limitation of their model because it can cause state space explosion problem.

The work in [30], presents a ILP based approach to model an out-of-order, superscalar
processors with pipelines. To estimate the WCET of basic block, first it is analysed in
isolation (assuming an empty pipeline at the beginning of the execution). In absence of
instructions from any other basic block, a basic block will take maximum time to execute
when there is maximum resource contention amongst the instructions within the basic block.
Based upon this observation, a rough estimate for earliest starting time and latest finish times
for a instruction is estimated, in the presence of maximum possible delay. Note that some
contention (and possible delays), can be ruled out due to data dependencies. As a result of
ruling out some contentions, the earliest start times and latest finish times can be refined. The
process of refinement continues, iteratively, until a fixed point has been achieved. This gives
an estimate on WCET of a basic block when executing on an empty pipeline. But usually
some instruction would be executing before and after a basic block (termed as prologue and
epilogue of an basic block in the paper). The delay caused to due to possible contention
between instructions in prologue and epilogue is estimated conservatively. The basic block
estimates are then used in the ILP formulation to obtain the WCET of the whole program.

Branch Prediction Analysis : Another micro-architectural component which can affect
the execution time of a program is a branch predictor. Most superscalar processors use some
variation of branch prediction mechanism, to predict the result of a branch instruction. Such a
component is required because superscalar microprocessor pre-fetch instruction to keep the
pipeline busy. As long the instructions are in sequential order, pre-fetching is straightforward.
But when a branch instruction is encountered pre-fetching (and hence the pipeline) is stalled,
until the target address of the branch instruction is calculated in the later stages of the pipeline.
In order to prevent the pipelines stall, a branch predictor is used to speculate the outcome of
the branch instruction.

Due to the unpredictability introduced by branch prediction many processors targeted for
embedded application, employ some trivial form of branch prediction or no branch prediction
at all. [31] presents a brief overview of various branch predictions mechanisms for some of

17

the commonly used processors. Although this study does not present any new techniques
to statically estimate the WCET of program in presence of branch prediction, but it does
gives some idea about the impact of various branch prediction mechanisms on processor
performance. [31] compares the branch prediction mechanism of Intel Pentium III, Intel
Pentium 4 ,AMD Athlon, Sun UltraSparc II, Sun UltraSparc III, NEC V850 and ARM7. The
NEC V850 and ARM7 microprocessor are primarily designed for use in embedded application
and their branch prediction mechanism is very regular. As a result static analysis of programs,
for these processor architecture is very straightforward. The cost of high predictability
in such processors is paid by sacrificing performance. Since embedded application are
increasingly becoming more performance intensive, processors with better performance and
more aggressive branch prediction mechanisms must be used. Existing research work such as
[32], [33], [34] suggest methods for timing analysis of programs on processor architectures
with branch prediction. [32] suggest an abstract interpretation based micro-architectural
framework to analyse set-associative, Branch Target Buffers (BTB), for Pentium architecture.
[33] extends the ILP based framework proposed by [35], to integrate various global branch
prediction schemes. They also suggest one of first approaches to model instruction caches
in presence of speculative execution. Speculative execution can lead to a behaviour called
wrong-path cache effect. This behaviour can be described as pre-fetching of cache instructions
due branch mis-prediction. Although, this study proposes an elegant method for representing
constraints generated by program flow analysis, cache modelling and branch-prediction
modelling, but the framework has been applied only to direct mapped caches. Another work
[34] proposes an abstract interpretation based framework to model branch target instruction
caches (BTIC). They also present an instantiation of their framework for the Motorola
PowerPC 56x which has a fully-associative, 8-way, tgt-BTIC. However, since the framework
proposed in [34] is modular it might be possible to adapt the framework for analysing other
kinds of branch target buffer as well.

The methods mentioned in the above paragraphs describe some of the exiting frameworks
to model dynamic branch predictors. Another line of work exists, which presents an approach
to model static branch predictors. Recall that static branch prediction mechanisms, have a
regular prediction pattern, irrespective of the code (for example BTFN). This property can be
exploited by compilers to the benefit of static analysis. One such approach is proposed by
[36], which suggests the use of compiler optimizations, to increase the predictability of static
branch prediction techniques. Their algorithm for WCET estimation is composed of two key
steps. In the first step, all conditional branches which have not been statically predicted are
assumed to be mis-predicted and the worst case execution path and the WCET is computed.
In the second step, all conditional branches which are still unpredicted, are statically predicted.
The algorithm iterates over these two steps until the WCET is stabilized.

2.5.3 Estimate Calculation

The output of the program flow analysis phases and the micro-architectural analysis phases
are used as inputs to this phase. The purpose of this phase is to calculate the longest, feasible,
path in the program CFG. As a result of the analysis performed in this phase, an upper bound
on the execution time of a program can be estimated. Most of the existing methods for bound
calculation can be classified into following three categories

e Path based methods
e Tree based methods

e Implicit Path Enumeration based methods

18

Path Based Methods primarily search for the program path with longest execution time, in
the control flow graph of a program. Interestingly, the longest structural path in the program
CFG does not always have the longest execution time. In the paths based methods, the task
of finding the longest path is achieved by enumerating all the program paths in the CFG,
explicitly. Although, most of the path based methods can generate precise results but they are
not very scalable, since most of the real-life program have a huge number of paths. In-fact,
the number of paths in a program can be exponentially large, even for programs which are
guaranteed to terminate. For instance, a program with 7 branches can have a total of 2" paths.
For a large value of n, the task of determining the longest path can be very complex and
time-consuming. But it is possible that a fair share of these 2" paths, are infeasible in any
concrete execution. Therefore, the search space for find the longest path can be reduced with
the help of efficient heuristics. Example of path based WCET calculation can be found in
[37] and [38].

Tree-based Based Methods , estimate the WCET of a program by performing a bottom-up
traversal of the program parse tree. The study by [32], [24] are good examples of tree based
method. In most of the tree based methods rules are defined for each type of compound
statement in the program parse tree. The WCET of a program is calculated by combining the
WCET of each compound statements in the parse tree. Although tree based methods are easy
to perform but they have some serious limitation due which they haven’t been used widely.
On such limitation is the inability to handle flow related information, such as the one proposed
by [39]. This implies that the computation can not handle dependencies across different
statements. Another limitation with this class of methods is that rules are context-independent
making the results of the analysis imprecise.

Implicit Path Enumeration Based Methods , based methods do not enumerate all the
program paths explicitly. The approach of IPET based performance estimation was first
proposed by [14]. In an IPET based approach, program flow information, as well functional
constraints are encoded are linear constraints. The basic idea behind the IPET approach can
be described as follows. Each basic block in the program CFG is associated with an execution
count variable and cost variable. An execution count variable (x;), represents the number of
times the basic block i has been executed. A constant (c;), represents the execution time of
that basic block. ¢; can obtained by various static or measurement based methods. The total
execution time of the program can be calculated as

N
Total Execution Time = }_ ¢;.x;
i=1

N denotes the total number of basic blocks in the CFG. Since a basic block can be executed
only an integral number of times therefore the variable x; can only have integer values.

¢do1

X Block 1
! Cc,=5
d12 d13
x1 =do1 =dip +di3 (1)
| oo 6 | ok n=dp=dy Q)
N A xs=diz=dsy (3)
24 34
[Bocka X4 = dog + dzy 4
— dor =1 ®)

Figure 5: Flow constraints to be used in ILP formulation

19

Figure 5 shows an example control flow graph for a simple if-else program. The edges
between the basic blocks Block; and Block; are denoted by d;; and the cost of executing a
basic block Block; is denoted by ¢; Once all the constraints of the program are specified
as linear constraints, an integer linear program (ILP) solver such as CPLEX, can be used
for the solving it. In order to obtain the WCET of the program, total execution time of the
program has to be maximized, subjected to all structural and functional constraints. For
instance, in the example of Figure 5 x; = 1,xp = 1,x3 = 0 and x4 = 1 maximizes the
execution time. The advantage of using IPET based methods for estimate calculation is
that, all information such as loop bounds, infeasible paths and user provided constraints can
be easily encoded as linear constraints. A limitation of using IPET based methods comes
from the fact that ILP problems are usually NP-hard to solve. Therefore finding a solution
for a large ILP problem can be very time consuming or even infeasible. Such behaviour
can be observed in the experiments by [16], where they perform cache analysis using IPET
based method. In the experiment, when associativity of caches is increased, the analysis time
increases dramatically. Nevertheless, IPET based approach is an elegant way to represent all
program related information in a homogeneous way. Subsequent research works such as that
of [15] (for instruction caches) have used scalable approaches such as abstract interpretation
for micro-architectural modelling and ILP based approach for bound calculation. Another
limitation with the IPET based methods is that, unlike the path based methods it does not
output the path which causes the worst case execution time, instead, it just generates the worst
case execution time of the program.

2.6 PRECISE MICRO-ARCHITECTURAL MODELING FOR
WCET ANALYSIS VIA Al+SAT

Micro-architectural modeling systematically considers the timing effects of underlying hard-
ware platform (e.g. pipeline, caches, branch predictors) and it produces the WCET of each
basic block in the program control flow graph (CFG). On the other hand, program flow analy-
sis usually involves finding infeasible program paths in the CFG. Such infeasible program
paths are ignored during WCET calculation phase to produce a tighter WCET estimate. This
WCET analysis process is shown in Figure 6. A crucial observation from Figure 6 is that
the micro-architectural modeling and program flow analysis are performed independently.
As aresult, the information computed by program flow analysis is typically not used by the
micro-architectural modeling. In the absence of program flow information, micro-architectural
modeling involves considering many infeasible micro-architectural states, which may lead to
the imprecision in WCET estimate for each basic block. A typical example of such infeasible
micro-architectural state would be the set of memory blocks inserted into the cache along
some infeasible program path. With the help of some program flow information (which is
already computed during the program flow analysis), such infeasible micro-architectural
states can be ignored, which in turn will lead to a tighter WCET of each basic block after the
micro-architectural modeling. As a result, the integration of program flow information into
micro-architectural modeling may lead to a tighter WCET estimate of the overall program.
This is the key idea in this work. The main novelty of our work lies in the consideration
of infeasible program paths (computed by program flow analysis) into micro-architectural
modeling. Therefore, our work establishes this missing link (in Figure 6) between program
flow analysis and micro-architectural modeling.

However, considering program flow information into micro-architectural modeling leads
to several technical challenges. A naive strategy is to employ fully path sensitive micro-
architectural modeling. Such an approach will be infeasible in practice due to the classic

20

Program flow Infeasible path,
analysis loop bound
calculation

Micro-architectural WCET of
modeling .
basic block
(caches, pipeline)

Figure 6: A typical WCET analysis framework

state-space explosion problem [40]. Therefore, micro-architectural modeling for real-time
systems is usually accomplished by abstract interpretation. Abstract interpretation is usually
efficient but often imprecise. This happens due to the “join” of several micro-architectural
states at control flow merge points, which may eventually lead to several infeasible micro-
architectural states (e.g. infeasible cache contents for cache analysis). However, due to this
“join” operation, abstract interpretation is path insensitive, which in turn leads to its scalability.
In this section, we propose a generic extension to abstract interpretation (Al) based analysis
framework using satisfiability (SAT) checking. Our baseline analysis is abstract interpre-
tation. At any program point, our proposed framework tracks a partial path with each
micro-architectural state p. This partial path captures a subset of all the control flow edges
along which the micro-architectural state 3 has been propagated. We define the partial path
as a propositional logic formula ¢ over the propositions associated with each control flow
edge. At each control flow branch (i.e. conditional statements), this partial path formula ¢ is
sent to an oracle. The oracle, in turn, is generated after program flow analysis and checks
the infeasibility of the partial path (defined by ¢). Such a checking can be accomplished by
making an on-the-fly call to a satisfiability solver (e.g. using Minisat [41]). If the partial path
was infeasible, its associated micro-architectural state can be ignored for further consideration.
Due to a significant progress in SAT solver technologies for the past few decades, such calls to
SAT solvers can be processed very efficiently. The set of micro-architectural states generated
by our framework is always tractable. To control the number of micro-architectural states, we
employ strategies to merge different micro-architectural states at appropriate program points.
The growth in the number of micro-architectural states (compared to the original abstract
interpretation based framework) is always bounded by a magnitude equal to the incoming de-
gree of a control flow node, typically a small number. Therefore, we provide a comprehensive
and tractable strategy to integrate program flow analysis into micro-architectural modeling.

2.6.1 Overview

In this section, we shall illustrate the central idea behind our approach through a simple
example. Through the example, we shall show how the precision of cache analysis can be
improved using our proposed framework.

Figure 7(a) shows the control flow graph (CFG) of a program. The label inside each
basic block captures the memory blocks accessed by the same basic block. The branch
condition is shown beside each conditional branches. For the sake of illustration, let us
assume that variable x (used in the conditional branches) is not modified anywhere in the
CFG. Additionally, we assume a 2-way set associative cache, where the memory blocks in
the CFG are mapped to different cache sets as follows: m1 — S, m2 — S1, m3 — Sy,

21

SmLZ. el ,ed
{m1,1, {e2, ed})
; merge

(m1,2,¢)

Since el and e3
cannot coexist,
(m1,2,el) is
eliminated along e3

x > 6,
(m1,1,{e2,e3})
(m1,)

(m1,2, {e2, e3})

(m1,2, {e2,e3})

Join (m1,2,¢)

merge (ml,2,¢)

(a) (©

Figure 7: Illustrative example (a) control flow graph with accessed memory blocks shown inside each
basic block. (b) original must cache analysis, (c) must cache analysis instantiated by our
framework

m4 — Sy, m5 +— Sz, m6 — Sy and m7 — Sy. S; captures the different cache sets.
Therefore, in our example, only the memory blocks m1, m2 and m3 conflict in the cache.

Figure 7(b) shows the state-of-the-art must cache analysis [15] for LRU replacement policy.
Each element in the cache state is represented as (11, a), where m is the memory block with
LRU age a. Let us see the propagation of abstract cache states associated with memory
block m1. Since m2 conflicts with m1, the join operation at the first control flow merge
point computes (m1,2) (by taking the must join of (m1,2) and (m1,1)). Since m3 also
conflicts with m1, the control flow after accessing m3 will evict m1 from the abstract cache
state (captured by the element (m1, c0) in Figure 7(b)). As a result, the join operation at the
second control flow merge computes (11, 00). Therefore, must analysis cannot conclude any
subsequent accesses to m1 as cache hits. However, careful examination reveals that x < 0
and x > 6 cannot be satisfied for any execution (recall that we assume x is not modified
anywhere in the CFG). The must cache analysis was unaware of this infeasible execution. As
a result, the traditional must cache analysis assumes two cache conflicts to 1 (from m2 and
m3), whereas at most one cache conflict is possible for any feasible execution. To summarize,
in the absence of any program flow information, abstract interpretation based cache analysis
cannot determine that accesses to memory block m1 are cache hits (excluding the cold cache
miss).

To resolve the gap between program flow analysis and micro-architectural modeling, we
propose to extend the abstract domain of the micro-architectural state with partial path
information. The instantiation of our proposed framework for cache analysis is shown in
Figure 7(c). We first label the control flow edges (as shown by €1, €2, ¢3 and e4 in Figure 7(c))
and define a predicate associated with each such labelling. Let us assume pred, captures the
predicate associated with label e. pred, is true if and only if control flow edge e is executed.
Program flow analysis can produce infeasible branch pairs in a program (e.g. using [42, 43]).
For our example, the infeasible branch pairs (i.e. x < 0 and x > 6) are captured by the
following formula:

Ying = —preda V —predes (6)

22

With the augmented abstract domain, our analysis now labels the cache states with control

flow information. Such a labeling enables us to distinguish the control flow along which a
single cache state is propagated. As an example, in the beginning, (m1,1,e1) and (m1,1, e2)
are propagated along control flow edges el and e2, respectively.

The join operation at first control flow merge point keeps both the elements ({m1,2,e1)
and (m1,1,e2)) in the abstract cache state since they come along different control flows el
and e2. The crucial difference is, however, made at the branch point x > 6. Let us assume
that we want to propagate the cache state produced after the first join operation along the
control flow labelled e3. While propagating a cache state along a branch edge, our framework
checks the feasibility of the cache state along the same branch. Therefore, when we try to
propagate (m1,2,el) along 3, we check the feasibility of the state along €3 by consulting
the information generated by program flow analysis (i.e. ¥;,,r). We make a call to the SAT
solver to check the feasibility of the following formula:

@ = Yins A prede N pred,s
= (—prede; V —predg) A predy A predes)

This is due to the fact that the propagation of (m1,2,e1) along e3 must execute both the
control flow edges el and e3, which in turn means that pred,; A pred.3 must be true. Since the
formula in Equation 7 is unsatisfiable, we do not propagate the cache state (11,2, e1) along
€3. On the other hand, since ¥;, A predex A pred,s is satisfiable, (m1,1,e2) is propagated
along 3. Additionally, such a propagation of cache state (m1,1,e2) along e3 updates the
control flow information of the cache state from €2 to {e2,e3} (as shown by the element
(m1,1,{e2,e3}) in Figure 7(c)). (m1,1,{e2,e3}) now captures that the original cache state
(m1,1) has been propagated through control flow edges {2, e3}.

Now let us consider the branch edge labelled e4. We found that both the formula ¥, ¢ A
prede A predes and ¥, ¢ A predey A predey are satisfiable. Therefore, both the cache states
(m1,2,el) and (m1,1,e2) are propagated along e4 and the control flow information of
(m1,2,el) and (m1,1,e2) are updated to {el,e4} and {e2,e4}, respectively (as shown by
(m1,2,{el,e4}) and (m1,1, {e2,e4}) in Figure 7(c)). To control the number of cache states
containing m1, we perform a merge operation at control flow edge e4. The merge operation
for must cache analysis takes the maximum age of a memory block and loses the entire control
flow information. As a result, after merging (m1,2, {el,e4}) and (m1,1, {e2,e4}) for must
cache analysis, we get (m1,2,¢). Due to this merge operation, we can always control the
number of micro-architectural states in our framework.

It is worthwhile to note the difference between merge and join operation in our framework.
For the time being assume that we had performed the merge operation between (m1,2, {el})
and (m1,1, {e2}) at the first control flow join point (i.e. at J1). As a result, we had obtained
a cache state (m1,2, ¢) after the first control flow join. If we try to propagate the cache state
(m1,2,¢) along €3, we check the satisfiability of a formula ¥;, A pred.s, which is clearly
satisfiable. Consequently, we had not eliminated any cache state along e3 and all subsequent
accesses to m1 would not be classified as cache hits. Continuing in a similar sequence of join
and merge operation, we obtain the cache state (m1,2, ¢) propagated along the backedge. As
a result, all subsequent accesses of m1 can be categorized as cache hits. Note that the key
difference in our framework was made by removing the infeasible cache state (m1,2) (in the
traditional must cache analysis framework) along control flow edge 3. This infeasible cache
state was detected using the infeasible path information computed by program flow analysis
(i.e. ¥iyr) and augmenting the abstract interpretation framework.

23

2.6.2 General Framework

In this section, we shall introduce the general idea behind our analysis framework. We shall
show how an abstract interpretation based analysis framework can be augmented with the
help of a satisfiability solver to generate more precise analysis outcome.

PROGRAM FLOW ANALYSIS Our proposed framework uses program flow analysis to
rule out certain infeasible micro-architectural states. For program flow analysis, we currently
look at finding the infeasible branch pairs. Assume two branch conditions x < 0 and
x > 2 in a program. If x is not modified, both x < 0 and x > 2 cannot be frue for any
execution. As a result, the control flow edges associated with the true evaluations of x < 0
and x > 2 constitute an infeasible branch pair. Such infeasible branch pairs can be computed
automatically (such as using [42], [43]) or they can be provided manually by the user.

In the past few decades, satisfiability (SAT) solver technology has made significant progress.
An interesting feature about infeasible branch pairs is that they can easily be encoded as
propositional logic formula. Let us introduce an atomic proposition pred, associated with
each control flow edge e in the program. pred, captures the execution of control flow edge e.
pred, is true if control flow edge e is executed and false otherwise. Therefore, an infeasible
branch pair (b;, b]-> can be encoded as the following propositional formula:

¢ = —predy, V —predy, (8)

At the end of program flow analysis, therefore, we have a set of clauses (as shown in
Equation 8) in conjunctive normal form (CNF). Let us assume ¥, represents this CNF
formula. Therefore, ¥, captures certain infeasible path patterns (specifically infeasible
branch pairs) in a program.

Given the information computed by program flow analysis (i.e. ¥, f), we define an oracle
© on any propositional formula # as follows:

o) — {true, if ‘I’inf./\ 7 is satisfiable; o)
false, otherwise

Note that any satisfiability solver (such as Minisat [41]) can be used as the oracle ©. @ will
be used to eliminate infeasible micro-architectural states.

2.6.3 Augmenting Abstract Interpretation

The key idea behind our analysis framework is to inject the notion of path sensitivity inside
abstract interpretation. A fully path sensitive approach is definitely not scalable, as it leads
to a path explosion. Therefore, we augment the abstract interpretation in a fashion such that
path explosion never occur and the state space of the analysis can always be controlled. In the
following, we shall briefly describe the key components of the analysis.

CHANGING THE ABSTRACT DOMAIN Assume an abstract interpretation based anal-
ysis framework with abstract domain ID. To handle partial path sensitivity, our proposed
analysis framework augments this abstract domain ID as follows:

D’ : D x P(E) (10

In the above equation, [E captures the set of all control flow edges in the program and P (IE)
represents the set of all subsets of IE. Therefore, at any specific program point p, an element

24

Basic block

Basic block .

sre(p) src(p) src(p’)
AN N o program
dest(p) . program N P (poim p’
> N pOII‘ItE . A

St TNinstt dest(p’)
N S 2

N A dest(p) AN \\mstl’/
Ninst2 N

| ,// .

1 > N - i

1 \\ N y e

| R L

v: ihs{z
program point p

(a) (b)

Figure 8: Program point (a) inside a basic block, (b) at a branch location

from the changed abstract domain ID’ is of the form (d, {e1, €2, ...,ex}) where d € D and
{e1,ez,...,ex} captures the set of control flow edges along which d has been propagated to

p.

TRANSFER AND JOIN FUNCTION Before going into the details of transfer and join
function, we first briefly describe the notion of program points in our analysis framework. We
define the program point as the control flow between two instructions. We distinguish the two
different types of program points in our framework as shown in Figure 8. Figure 8(a) captures
the control flow inside a basic block of the program CFG. On the other hand, Figure 8(b)
captures the control flow between two different basic blocks. For a specific program point p,
we shall use src(p) to denote the source of the control flow captured by p, whereas dest(p)
will be used to denote the destination of the control flow captured by p.

Transfer function of our proposed analysis framework is applied at each program point.
However, our proposed transfer function has two key components, depending on the location
of the program point. More precisely, our proposed transfer function has the following
semantics (I? denotes the set of all program points):

T:D'xP — D

Ty ® Tin(d', p), if src(p) is at the end
(d,p) = of a basic block; (11)
Tin(d',p), otherwise.

e denotes the function composition. In Equation 11, 13, captures the transfer function used
at the control flow across basic blocks (Figure 8(b)) and T;,, captures the transfer function
used at the control flow inside a basic block (Figure 8(a)). The computation of T;, largely
depends on the type of analysis, as it requires updating the abstract state by considering each
instruction. Ty, on the other hand, is the key to our proposed framework and it is used to
eliminate the spurious (i.e. infeasible) abstract states. Assume that e, captures the control
flow edge associated with program point p when src(p) is at the end of a basic block. Further
assume d’ € ID" and d' = (d, E) (where E C [E and E is the set of all control flow edges).
We define 13, (d’, p) as follows:

¢, if O(Accp prede N prede,) is false

12
(d,EU{ep}), otherwise. (12)

Tpr (dl/ p) = {

Recall that pred, denotes the atomic proposition which evaluates to true if and only if control
flow edge e is executed. © is the oracle (as described in Equation 9) used to check the
feasibility of control flow E U {e,}. Equation 12 serves two purposes: first, to eliminate

25

D along different control flow \

(Prunes infeasible abstract states) m / \

\
(Merges abstract states to control O
state explosion)

1
1
1
I
Multiple elements from original abstract domain \ | Basic block
I
|
I
1
\

Figure 9: A schematic representation of the join, 75, and merge (IT) used in our proposed analysis
framework

spurious abstract states (captured by the first case in Equation 12) and secondly, to associate
the notion of path sensitivity with abstract states (captured by the second case in Equation 12).

Join operation with our augmented abstract domain D’ operates in a similar fashion as with
the join operation with original abstract domain ID, with one crucial difference. After the join
operation is performed with ID’, a single element from the original abstract domain ID may
have multiple instances in the joined abstract state. These multiple instances may appear due
to the propagation of a single element in ID along different control flow paths. As a result, a
single element from the original abstract domain ID might be associated with different subsets
of control flow edges, leading to different elements in the augmented abstract domain ID’ in
the joined abstract state.

CONTROLLING THE NUMBER OF ABSTRACT STATES The join operation in our
proposed framework may enlarge the number of abstract states compared to the original
abstract interpretation based framework. As a result, performing the join operation in an
uncontrolled fashion may lead to state explosion. Therefore, our proposed framework controls
the number of elements in the abstract state at each control flow edges (i.e. after performing
the Ty, operation). This is done by pruning the number of tractable elements with a special
operation IT. If there is a pair of elements d},d; € ID’ such that d} = (d,E;) and d, =
(d, E7), they are merged to a single element (d, ¢) using the operation IT. In an abstract state,
IT is applied until there is at most one element in the abstract state (€ ID’) for each element in
the original abstract domain ID.

Figure 9 shows a schematic view of our overall framework. The join operation used by our
framework may increase the number of elements in the abstract state, due to the presence of
different control flows. T3, operation at a branch location may prune some of the infeasible
elements in an abstract state as also shown in Figure 9. Finally, after merge operation (IT), the
size of the abstract state is controlled, which in turn lead to a tractable analysis framework.
Note that we apply the merge operation at each control flow edge. Therefore, the expansion
in the number of elements after the join operation is bounded by a magnitude equal to the
incoming degree of any basic block, typically a small number.

2.6.4 Instruction Cache Analysis via Al+SAT

In this section, we shall instantiate our proposed framework for instruction cache analysis.
Abstract interpretation based instruction cache analysis was initiated in [15]. Each instruction
is categorized as all-hit (AH), all-miss (AM) or not-classified (NC). An instruction is cate-
gorized as AH, if it is found in the cache whenever it is accessed, whereas an instruction is

26

categorized AM, if it is never in the cache whenever it is accessed. If an instruction cannot
be categorized as either AH or AM, it remains not-classified (NC). For such a categorization
of different instructions, usually two different analyses are employed: must and may. Must
cache analysis is used for statically predicting a sound under-estimation of cache content at
each program point. As a result, must cache analysis can be used for AH categorization of
different instructions. On the other hand, may cache analysis is used for statically predicting a
sound over-estimation of cache content at each program point. Consequently, we can use may
cache analysis for AM categorization of instructions.

MODIFYING ABSTRACT DOMAIN The abstract domain of the original instruction
cache analysis can be defined as a cross product of two different abstract domains as follows:

D:P(Mx A) (13)

with
A={1,...,K}U/{co) (14)

where M denotes the set of all memory blocks and A denotes the set of all possible ages
of a memory block inside a K-way set-associative cache. A tuple of the form (m, c0) € D
captures that m does not reside in the cache.

In our proposed framework we augment the original abstract domain ID to ID’ as follows:

D :P(Mx A x P(E)) (15)

where E is the set of all control flow edges. Therefore, an entity in the abstract domain ID’ is
a triplet (m,a, E).

MODIFYING TRANSFER AND JOIN FUNCTION The modified transfer function can

now be described as follows: , ,
7T:D'xP—=D

Ty ® Tin((m, a, E), p), if src(p) is at the end
t((m,a,E),p) = of a basic block; (16)
Tin((m,a, E), p), otherwise

e denotes the function composition and the transfer function T now has two different controls
depending on the location of program point p. If we assume that 1, denotes the memory
block accessed at src(p), Ti, can be defined as follows:

- ((m.a _ (Urepr((m, a), p), ¢)
EM//HM—{ : A E

, if m, =m
<Z/{repl(<m/ >, P), >, otherwise

17

In Equation 17, U, captures the instruction cache update operation (in the original abstract
domain D) for a particular cache replacement policy repl. Note that our framework is not
restricted to a particular replacement policy employed by the instruction cache.

Ty 1s applied at a branch point. Some of the triplets present in the input abstract cache state
may not be feasible along some branches. Therefore, while performing the transfer operation
along a control flow edge, only the feasible triplets are transferred to the output abstract cache
state. Assume that e;, captures the control flow edge associated with program point p. We
define 13, for instruction cache analysis as follows:

@,if O(N,cg prede A predep) is false

18
(m,a, EU {e,}), otherwise (1%

Tbr(<ml a, E>/ P) = {

27

Recall that @ is the oracle (as described in Equation 9) used to check the feasibility of
control flow E U {e,, }. While performing a Join operation, a memory block 7, may appear
along different control flows. Moreover, m might have different ages in the cache along
different control flows. In our proposed framework, we do not lose the information about
the different ages of the same memory block along different control flows. Therefore, in our
proposed framework, we define the must and may join operations as follows:

l].|]:D'xD - D (19)
Must May

|| (D1,D2) =

Must
{(m,al,E1> € Dy | das, E : <m,€lz,E2> € Dz} U

{(m,az, E2> €D, ’ daq, Eq : <m,u1,E1> € Dl} (20)
| | (D1,D2) =Dy UD, (21)
May

May join operation simply takes the union of two abstract cache states, on the other hand,
must join operation takes also the union operation, but restricted to the memory blocks which
are present in both the abstract cache states (D7 and D;). It is important to note that the
different ages (€ A) of a memory block (along different control flows) will be retained after
Equations 20-21. Changes in the age of a memory block in a cache set are handled in merge
operation (discussed next).

MERGING ABSTRACT STATES We shall now show how we control the number of
abstract cache states at each control flow edges. Note that the join operation in our proposed
framework leads to more elements in the abstract cache state as compared to the original
analysis proposed in [15]. However, since we prune the number of abstract cache states at
each control flow edges, the expansion in the number of abstract cache states is still bounded.

Assume that we obtain an abstract cache state D € ID’ after performing T, at a branch
location. The output of merge operation depends on the type of cache analysis (i.e. must or
may cache analysis). Assume that IT,,,s¢ (IT;4,) denotes the merge operation applied for
must (may) cache analysis. The main purpose of the merge operation is to control the number
of cache states and therefore, after each merge operation, we ensure that the resulting abstract
cache state contain at most one element for each memory block. Consider two elements
(m, a1, Eq), (m,az, Ez) € D. The output of IT,,s and IT,,,, will be as follows:

ILust({(m, a1, E1), (m, a2, Ex)) = (m, max(ay,az),) (22)
Hmay(<m1 ai, E1>/ <ml az, E2>) = <ml min(a]_/ HZ)/ 4)> (23)

Therefore, after performing 1,5, we retain the maximum age of each memory block m.
On the other hand, after performing I1,,y, we retain the minimum age of each memory block
m. Since the merge operation is performed at each control flow edge, we can now state the
following property for our proposed framework:

Property 2.6.1 Let us assume B denotes the set of all basic blocks and deg;, (B) denotes the

incoming degree of a basic block B in the CFG. For a K-way set-associative cache, there

could be at most |K| x max degin(B) number of elements for any memory block in any
€

abstract cache state.

28

Since both deg;, (B) and K are typically small, we can easily control the number of abstract
cache states.

It is worthwhile to mention that the necessary pruning of abstract cache states has already
been performed during the computation of 7, (Equation 18). Therefore, by merging the cache
states using I 1,5+ and 11,5y we are not entirely losing the partial path sensitivity used by our
framework. On the other hand, merging of abstract cache states leads our computation to be
tractable in practice.

Since our proposed framework is built up on the basic abstract interpretation (Al) approach,
it is guaranteed to give at least as precise cache analysis as the basic Al approach [15]. The
main purpose of our proposed framework is to integrate the program flow information into
cache analysis. With little or absence of any program flow information, our framework will
give exactly same result as in [15].

2.6.5 Data Cache Analysis

In this section, we describe the extension of our framework for data cache analysis. We
use the scope-aware persistent (SCP) analysis [23] as the baseline analysis for data caches.
SCP analysis was selected because the WCET estimates generated by this method are safe
and more accurate than other existing methods. In SCP analysis, each memory block m
is associated with a temporal scope. For a particular memory block m, its temporal scope
denotes the set of loop iterations where m might be accessed. If two different memory blocks
map to the same cache set but they have disjoint temporal scopes, they cannot conflict in
the cache. SCP analysis categorizes data blocks as persistent or non-persistent, on the basis
of their temporal scopes. Although the SCP analysis is more accurate than other abstract
interpretation based methods, the WCET estimated by the method can still be over-estimated.
This might happen due to the presence of infeasible paths in the program CFG. By extending
the SCP analysis using our framework, we can remove such over-estimation and thereby
produce a more accurate WCET. Since the SCP analysis is based on temporal scopes, the
transfer functions (i.e. data cache update operations) are defined with respect to each program
loop. For a given loop level L, the transfer function of our proposed framework is similar to
Equation 16 and it can be described as follows:

Tbi’ L Tin(<mr a/ E>/ p/ L)/

src(p) is at the end of a basic block;

t({(m,a,E),p,L) = (24)

Tin((m,a,E), p, L), otherwise

Note that e denotes function composition. T3, for the extended SCP analysis operates in a
similar fashion as in the instruction cache analysis (see Equation 18). However, T;,, for the
SCP analysis is slightly different from the T;;, described in Equation 17. This is due to the fact
that SCP analysis is scope-sensitive (unlike the instruction cache analysis). Let us assume
M, denotes the set of memory blocks accessed at a program point p. For a given loop level
L, T;, can be defined as follows: 7;,((m,a,E),p,L) =

(m,a,E), if Ym; € M. (¢(m;) Np(m) = ¢ V
() # 7e(m))
(UD((m,a),p,L),E), if Im; € M. (¢
/\7r(ml) =
(UD((m,a),p,L),¢), otherwise

(mi) Np(m) # ¢ (25)
(m))Amgnv[,,

29

{(m) denotes the set of iterations in loop L where m might be accessed (i.e. temporal scope
of m) and 7t(m) captures the cache set in which memory block m is mapped. The first case
(in Equation 25) captures the scenario when none of the memory blocks in IM, conflict with
m in the data cache (either due to disjoint temporal scopes or due to the mapping in disjoint
cache sets). If some memory block in M, conflicts with 72 in the data cache, the scope-aware
data cache update operation D (used in [23]) is used to update the data cache state. Since
data cache replacement policy may only change /D in Equation 25, our proposed framework
remains unchanged for different data cache replacement policies. The SCP join function as
defined in [23], can be modified in the same fashion as we do for the join operation in the
instruction cache analysis (see Equations 20-21).

2.6.6 Branch Target Buffer Analysis

Branch Target Buffer (BTB) is used to predict the target address of a branch instruction, before
the target address is actually computed. Since the computation of a target address has some
associated penalty, correct prediction of a target address from BTB may greatly improve the
program execution time. As a result, an improved BTB analysis may lead to a more accurate
WCET prediction. Previous study (e.g. [32]) has shown the importance of BTB analysis for
static WCET prediction. The work of [32] uses an abstract interpretation based framework for
statically analyzing the BTB content and categorizing the branch instructions on the basis of
BTB states. As with any other abstract interpretation based approach, the analysis proposed
in [32] is also path in-sensitive and it suffers due to the estimation of infeasible BTB states.
We extend the framework for BTB analysis as proposed in [32] with our approach. The new
domain of the BTB analysis can be formulated as follows:

D' : P(BR x A x P(E)) (26)

where BIR is the set of all branch instructions. All other parameters in the equation have the
same interpretation as in equation (15). The join and the transfer functions can be modified
in exactly the same fashion as they were modified for the instruction cache analysis (see
Equations 16-21).

2.6.7 Shared Instruction Cache Analysis

Finally we show how our framework can be extended for analyzing multi-core systems with
shared instruction caches. We use our previous work [44] as a baseline for the augmented
abstract interpretation framework. Let us assume a multi-core system where each core has
a private L1 cache and all the cores share an L2 cache. The work in [44] first analyses
both the L1 and L2 cache using [15, 45] ignoring the inter-core cache conflicts and finally,
it recategorizes the memory blocks in L2 cache by taking into account the shared cache
conflicts.

Assume a program P; running on Core 1 and assume that P; accesses a memory block
my1. Further assume 1 is categorized as AH in the shared L2 cache without considering
inter-core cache conflicts. After inter-core cache conflict analysis, the AH categorization
of memory block 1, is changed to NC if and only if the following condition holds: k —
agesinglecore(Mp1) < X, where k is the associativity of the shared L2 cache, agesingiecore (1)
captures the age of memory block 7,1 in the shared L2 cache set before inter-core conflict
analysis and X is the amount of shared cache conflicts generated by cores other than Core 1.

If we use augmented abstract interpretation instead of basic abstract interpretation, we
can get a precise cache hit-miss categorization for L1 cache. A precise cache hit-miss

30

categorization of memory blocks in L1 cache leads to a lesser number of memory blocks
accessing the shared L2 cache. As a result, the amount of shared cache conflicts (i.e. X)
may reduce. Moreover, since our proposed framework may generate a better must cache
analysis (see Section 2.6.4), it may also reduce the quantity agesygiecore(p1). Both of
these developments in turn reduce the number of memory blocks of P; which need to be
re-categorized to NC in the shared L2 cache. As a result, we may increase the accuracy of
WCET estimates even in the presence of shared caches.

2.6.8 Experimental Evaluation

EXPERIMENTAL SET-UP The experiments were performed using the timing analyser
Chronos [46]. It uses a 5-stage pipeline with in-order execution, when generating the WCET
estimates for our experiments. Chronos uses the abstract interpretation based framework
proposed in [15], to analyze instruction caches. This serves as the baseline for our instruction
cache analysis. The baseline for our data cache analysis framework was published in [23]. The
BTB analysis is implemented into Chronos using the abstract interpretation based framework
proposed in [32]. The framework proposed in [44] serves as a baseline analysis for the
multi-core, shared instruction cache analysis. To check the satisfiability of a given partial path
@, we use the open-source SAT solver Minisat [41].

Subject Programs Description Code size
Bytes' | LOC

nsichneu Simulates an extended Petri Net. Auto- | 63720 | 4253
generated code with many if-statements [47]

Papabench Auto-navigation utility from an Unmanned | 16920 | 1097
Aerial Vehicles (UAV) controller [48]

Jetbench Single-thread getThermo utility from a real- | 6984 | 315
time jet engine performance calculator [49]

Communication Auto-generated code from the Rhapsody [50] | 4248 | 273

manager model of CTAS weather manager [51]

Table 2: Program Set |

Table 4 shows the subject programs for our experiments. Note that the prime motivation
behind our work is to reduce the over-approximation in WCET estimation, due to the presence
of infeasible paths. Infeasible paths can often be found in the programs, auto-generated
from high level modeling languages. Although, it is not uncommon to have a few infeasible
paths in manually written programs as well. Therefore, we choose a combination of auto-
generated and manually written programs for our experiments. All of our experiments were
performed on a machine having an Intel Core-i5 processor with 4 GB RAM and running
Ubuntu 9.04 OS. For all our experimental results, we measure the WCET improvement as

WCETyu5.—WCET, : .
b”S;VCETb augmented - 100%, where WCET ugmentea captures the WCET obtained using
ase

our approach and WCETy,,, captures the WCET obtained using the baseline approach.

INSTRUCTION CACHE RESULT Figure 10a shows the results of Instruction cache
analysis using the augmented abstract interpretation (AI+SAT) approach. We perform the
analysis for all programs in Table I, for a block size of 64 Bytes, on a 4-way set-associative L1
cache. For a fair comparison, we chose the cache size approximately equal to the program size
(closest power of two), for each subject program. We assume that there is no L2 cache for this
experiment and the latency for memory access is 36 cycles. We also compare our approach

1 code size in bytes = ending instruction address - starting instruction address

31

% improvement

% improvement

Al + SAT === Al+CBMC =X Al + SAT === Al +CBMC &===x1

30 T T 30
25 . ¢
2s
20 - 142s 1o 1 % 20
15 + i 3 15} 575 1s
10 | 2s 1 g 1} .
8 575 s
5r 142 s 1 5r ﬂi% i 1s 15
0 2 /e [« ° 2 2 /8 o
‘?/c'/, 6,0 S, o, S, P, Sz, o,
b, N, 7 b, 2 2
6,70/7 (7 A ,,7%&0 ey, @/70/7 'ch 076/769
'Sy)
(a) Instruction cache analysis (b) Shared instruction cache analysis
10 20 T
8 1 § 15} 45
6 2s | 5 a1s
99s © 10
4 1s 1 g
2 D 1 s 5r 125
0 Sil Vo /€ C ° s L 1/5’ [
St s, St n, Sty g, b, n,
/7”6’0 ée,,% "1y,) g, /7/;@0 be,,% Nk, m, y,
WVe, e,
(c) Data cache analysis (d) Branch target buffer analysis

Figure 10: Improvement in the WCET accuracy via AI+SAT approach, analysis time (in seconds) is
shown above each bar

with the work in [18] (say AI+CBMC). The framework proposed in [18] first generates the

cache hit-miss categorization of a program using basic abstract interpretation. It then uses

CBMC [52] to refine the set of NC categorized memory blocks. As a result of this refinement,

the WCET estimate might improve.

We compare the improvements in WCET estimation achieved by the AI+SAT approach,
with that of AI+CBMC approach. We observe that the estimates generated by the AI+SAT
approach are more accurate than that of the AI+CBMC approach, when both the analysis
are run for a comparable amount of time. We observed a maximum improvement in WCET
estimates of up to 25% for this set of experiments. This improvement can be attributed to
the fact that all the programs in Table I have multiple program paths inside loops. Some of
these program paths are infeasible and hence cause some over-estimation in the base analysis.
By applying the AI+SAT approach, we were able to remove some of the over-estimation
caused due to such infeasible paths. However, it is worthwhile to mention that AI+CBMC
is a verification based method. As a result, it might be able to produce better estimates, if
run for sufficiently long. This introduces a trade-off between WCET accuracy and analysis
time for using AI+SAT over AI+CBMC. In our experiments, we found that AI+SAT could
produce a 17% more accurate WCET estimate for nsichneu compared to the baseline
analysis in approximately 142 seconds, whereas AI+CBMC approach produced a maximum
improvement of 30% in approximately 1756 seconds.

DATA CACHE RESULT Figure 10c shows the results of data cache analysis using the
AI+SAT approach. Note that the baseline analysis for data cache is scope-aware persistence
analysis [23]. We assume that L1 cache hit latency is 1 cycle whereas the memory access
latency is 36 cycles. Although all the programs in Table I have very little data accesses on
their infeasible paths, we still get a noticeable improvement for most of the programs via
AI+SAT approach. The improvements shown in Figure 10c are the maximum improvement
for programs in Table I, for any given cache size. The maximum time taken for all the
experiments under this section was under 2 minutes. As Figure 10c shows, all the subject
programs other than nsichneu have noticeable improvement in their WCET estimates. This
is because nsichneu has a very small data set and it has very little data accesses across its

32

infeasible paths. However, this should not be considered as a limitation of our approach, as
the AI+SAT based framework will give reasonable improvement for programs with many
conflicting data accesses along infeasible paths. Another factor which might be affecting
the efficacy of our method can be the underlying address analysis. Address analysis usually
generates an over-approximation of the memory ranges which can be accessed for a given data
access. Due to this over-approximation, additional memory blocks might lose their control
flow information over the merge operations. This leads to an imprecision in the abstract cache
states and overall WCET. Therefore, using a better address analysis will directly improve the
WCET accuracy via our approach.

BRANCH TARGET BUFFER RESULT Figure 10d shows the results of branch target
buffer (BTB) analysis, using the AI+SAT approach. All the experiments for this set of analysis
took less than a minute to complete. We used a 2-way set associative BTB with 256 entries.
Also we took the branch misprediction penalty as 15 cycles. The maximum improvement in
WCET estimation was observed for Papabench (approximately 14%). We did not observe
any considerable improvement for Jetbench. This can be due to fact that Jetbench has
very less branch instructions along the infeasible program paths. For the other two subject
programs we observed a moderate improvement in the WCET estimation.

SHARED CACHE RESULT Finally, we present the results for the shared instruction
cache analysis. For this set of experiments, we assume a multi-core system with two cores.
Moreover, we assume that each core has a private L1 instruction cache and the L2 instruction
cache is shared by both the cores. We ran a program from Table I on Core; and a program
from Table II (Table II programs are taken from [47]) on Cores.

Subject programs Description Codle Mze
Bytes® | LOC
jfdcint Discrete cosine transform on 8x8 block | 5512 375
edn Signal processing application 3160 285
ndes Complex embedded code 3816 231
adpcm ADPCM coder 12568 | 879

Table 3: Program Set 11

We used a direct mapped L1 cache with a cache size of 256 Bytes and a block size of
32 bytes. We choose a small L1 cache to generate sufficient number of conflicts in the L2
cache. The size of the shared L2 cache is chosen depending upon the code size of the program
running on Core;. L2 cache hit latency is taken as 6 cycles and memory access latency is
taken as 30 cycles. We perform the shared cache analysis using the AI+SAT approach and
measure the improvement in WCET estimation for the programs running on Corep. We then
compare the improvements achieved by our approach, with the improvements achieved by
using the AI+CBMC [18] approach (using the same cache configurations). AI+CBMC was
run for the same amount of time as AI+SAT.

Figure 10b shows the geometric mean of improvements in WCET estimation, for all
the programs running on Core,. All of the results reported in Figure 10b were completed
under 2 minutes. We observed a noticeable improvement in the WCET estimates for all
the programs running on Core,, produced by the AI+SAT approach. We also observed that
the improvements achieved by the AI+SAT were significantly better than the improvement
achieved by the AI+CBMC, in the same amount of time. By applying AI+SAT to the programs
running on Corej, we were able to reduce a reasonable number of conflicts in the shared
cache. This leads to more accurate WCET estimates, for programs running on Core;. Using
AI+SAT, the maximum improvement was observed for ndes (while running nsichneu

33

on the other core), which was around 41% in 50 seconds, whereas for the same experiment,
maximum improvement using AI+CBMC was observed to be around 42% in 85 seconds.

2.7 PERFORMANCE-AWARE TEST GENERATION TECH-
NIQUES

There have been few works that address the need for techniques that can automatically explore
programs and generate test-inputs that witness suboptimal performance behaviour. One of
our works proposes a technique to address this need and is further described in Chapter 3.
However, in the following paragraphs, we shall discuss only two works ([53] and [54]) that
are related to this topic.

Computational complexity is one of the factors that affects the execution time of a program.
The work of [53] proposes a technique to automatically find test inputs for which the program
exhibits worst-case computational complexity. The technique in [53] uses symbolic execution
to explore all feasible program paths for a small (the definition of small is ambiguous)
input size. While exploring the program for a small inputs size, the technique analyses the
executions to create a branch policy generator. The generator is constructed such that it
contains information pertaining to the worst-case path, in the observed executions. After
the generator has been crafted, it is used to guide the symbolic exploration for larger input
sizes. It is worthwhile to know that the technique in [53] does not takes the underlying
micro-architecture in to account. Therefore, even though this techniques can provide some
idea about the influence of an input on the program behaviour but it cannot be used to identify
test-inputs that lead to bad performance due to specific micro-architectural components.

The work of [54] presents a technique more relevant to generating test-inputs that highlight
suboptimal performance in micro-architectural components. It proposes a technique that uses
constraint-based test generation [5, 55] to partition the input domain of a program with respect
to cache performance. Once all the partitions are computed, some manual interventions
is needed to locate the set of program locations that may exhibit issues related to cache
performance. It proposes a way to compute the cache performance range for each such
partition. The cache performance range in [54] is computed via static invariant generation
methods. As a result, the computed cache-performance range may be over-approximated,
leading to false positives.

2.8 CHAPTER SUMMARY

In this chapter we presented a number of methods that can be used for performance analysis.
Specifically, the methods discussed included methods on performance profiling, performance
estimation and performance testing. It is worthwhile to know that no one class of method may
be suitable for all performance analysis needs. In the scenario which requires the estimation of
upper bound on executing times, such as for hard real-time systems, performance estimation
methods are more suitable. Performance estimation techniques are often assisted by program
flow analysis techniques and micro-architectural analysis. Program flow analysis is used to
analyse and represent the path constraints within a program while micro-architectural analysis
is used to analyse the underlying micro-architecture. We also presented a general micro-
architectural modeling framework using abstract interpretation and satisfiability checking.
This framework can be used to substantially improve the accuracy of WCET analysis in the
presence of many infeasible paths in a program.

34

Unlike performance estimation techniques which uses static analysis, profiling relies
on dynamic analysis techniques. Profiling techniques do not model the underlying micro-
architecture, as a result they can be light-weight. However, no guarantees about the com-
pleteness of the results (generated through profiling) can provided. Additionally, profiling
techniques require test-inputs to generate the profile. Manually obtaining test-inputs that can
represent the entire input-space or highlight suboptimal behaviour is non-trivial. Hence, there
is a need for performance-aware test-generation techniques, that can automatically explore
the program’s input space and generate test-inputs that lead suboptimal behaviour. One of our
works address this need and is described in the following chapter.

35

STATIC ANALYSIS DRIVEN CACHE
PERFORMANCE TESTING

Real-time, embedded software are constrained by several non-functional requirements, such as timing.
With the ever increasing performance gap between the processor and the main memory, the performance
of memory subsystems often pose a significant bottleneck in achieving the desired performance for
a real-time, embedded software. Cache memory plays a key role in reducing the performance gap
between a processor and main memory. Therefore, analysing the cache behaviour of a program is
critical for validating the performance of an embedded software. In this chapter, we propose a novel
approach to automatically generate test inputs that expose the cache performance issues to the developer.
Each such test scenario points to the specific parts of a program that exhibit anomalous cache behaviour
along with a set of test inputs that lead to such undesirable cache behaviour. We build a framework
that leverages the concepts of both static cache analysis and dynamic test generation to systematically
compute the cache-performance stressing test inputs. Our framework computes a test-suite which does
not contain any false positives. This means that each element in the test-suite points to a real cache
performance issue. Moreover, our test generation framework provides an assurance of the test coverage
via a well-formed coverage metric. We have implemented our entire framework using Chronos worst
case execution time (WCET) analyzer and LLVM compiler infrastructure. Several experiments suggest
that our test generation framework quickly converges towards generating cache-performance stressing
test cases. We also show the application of our generated test-suite in design space exploration and
cache performance optimization.

3.1 NEED FOR PERFORMANCE TESTING

Real-time embedded systems are required to satisfy several non-functional properties, such
as timing. Therefore, performance validation marks a crucial stage before certifying such
time-critical software. In the absence of appropriate performance-validation techniques, the
deployed software may suffer from severe performance problems, such as missing deadlines.
For example, in the context of an anti lock braking systems (ABS), missing a deadline may
lead to serious accidents, potentially costing human lives.

Due to the inherent gap between processor and memory performances, memory subsystems
may significantly affect the performance of an embedded software. To reduce such effect, a
fast cache memory is often employed between a processor and main memory. In a modern
embedded processor cache memories are several magnitudes faster than the main memory.
Therefore, at any point in execution, the content of the cache memory significantly impacts
the performance of the underlying embedded software. The content of a cache is managed at
runtime and such content depends on the accessed memory block sequence. Since different
inputs to the same application may follow different execution paths, the sequence of accessed
memory blocks in an execution critically depends on the input provided to the application.
As a consequence, the performance of caches (and hence the performance of an application)
critically depends on the input provided to the underlying embedded software.

In this chapter, we propose a novel approach to automatically generate test inputs that
expose performance problems due to memory subsystems. In particular, we generate test
inputs to automatically detect performance stressing memory access sequences. Such poor
memory access sequences are undesirable, as they may lead to critical cache performance
issues, specifically cache thrashing at runtime. We propose a test generation framework that

36

_ Program locations Inst .
Program Static cache that may exhibit ns r“t’_“e“
analysis cache thrashing assertions

Test input witnessing Dynamic assertion
cache thrashing checker

i |

Violation

Figure 11: Test generation framework

aims to report cache thrashing scenarios that exist in some program execution. Each element
in our report contains a unique cache thrashing scenario and a symbolic formula capturing the
set of inputs that expose the issue in a program execution.

However, the generation of cache-performance stressing test inputs requires solving several
technical challenges. This is primarily due to the fact that cache performance issues cannot
be detected solely by monitoring the program execution (unlike most of the problems in
functionality testing). To overcome this problem, we employ novel strategies to instrument the
original program with a set of assertions at appropriate locations. Such an instrumentation is
entirely automatic. The violation of any assertion captures a unique cache thrashing scenario
in the original program (and not in the program instrumented with assertions). Thus, such
assertion violations can be reported to the developer for investigation. We first carry out static
cache analysis on the program to decide the set of program points that may exhibit cache
thrashing. Subsequently, we systematically generate assertions at such places to expose cache
thrashing in the program itself. In a broader view, therefore, we reduce the problem of testing
cache performance to an equivalent functionality testing problem. The required functionality
of the software is augmented with the set of assertions introduced by us.

To check the validity of different assertions, we build a dynamic path exploration strategy
that directs the path searching process towards the set of instrumented assertions. Each time
an assertion is encountered during execution, its validity is checked on-the-fly. If an assertion
is not satisfied during program execution, a cache-performance issue is recorded along with
the respective input state (i.e. the set of inputs that leads to the violation of the assertion,
cf. Figure 11). Primary objective of the path exploration strategy is to check maximum
number of unique assertions, in a given amount of time. Therefore, to improve the search
efficiency of path exploration, we direct the search process towards a control flow that has
maximum number of unchecked assertions control dependent on it. Such a directed search
is accomplished by consulting the control dependency graph of the instrumented program.
Finally, since we dynamically explore the set of assertions, our computed test-suite does
not contain any false positives. Precisely, any test case included in the computed test-suite
captures a cache performance issue (specifically, a cache thrashing scenario) in some feasible
execution of the software.

37

Memory blocks
outside loop
are not considered

Test Input
x=4,y=0
symbolic input condition
X>3Ax>1Ay<10

f1(C_in3,C_m4)

Test Input
x=3,y=0
symbolic input condition
x<32x21"y<10

f(C_m1,C_m2)
1

assert (C_m1<0VC_m2s<0) assert (C_m3<0VC_m4<0)

1
f(C_m1,C_m2) f(C_m1,C_m2)
1 1

assert (C_m1s0VC_m2<0) assert (C_m1<0VC_m2s<0)
f(C_m1,C_m2) {Increment cm2} f(C_m3,C_m4)
1

assert (C_m1s0VC_m2<0) assert (C_m3<0VC_m4<0)

pmmmmm——— N
f(C_m1,C_m2) VIncrement C_m1 N f(C_m1,C_m2)
| | N . !
Violation
assert (C_m1s0VC_m2<0) (Cache thrashing asse(rrt“()(;_sr;\;r‘si:nvv&_lzizoi)o)

between m1 and m2)

(©

Figure 12: Overview of test generation (a) Control flow graph showing accessed memory blocks (b)
instrumented program (c) violation of assertion showing cache thrashing scenario

38

3.2 STATIC ANALYSIS DRIVEN CACHE PERFORMANCE
TESTING: AN OVERVIEW

In this section, we shall give an outline of our test generation process that stresses the cache
performance of a program. We shall walk through a simple example as shown in Figure
12. For the sake of illustration, let us assume a direct-mapped cache where memory blocks
{mq, my, m3, my, m, ms, mg, my} in the control flow graph are mapped to different cache sets
{81,82, 83,54, 35,86} as follows: ml — Sl, m2 — 81, m3 — 82, m4 — 82, m +— 83,
ms +— Sy, Mg — Ss and my +— Sg. Therefore, m1 and m2, as well as m3 and m4 conflict
in the cache.

Figure 13 presents an overview of our test generation framework. Broadly, our approach
contains two separate steps: (i) static cache analysis and (ii) dynamic test generation to expose
different cache thrashing scenarios in the program. The static cache analysis directs the
dynamic test generation process to explore only the relevant portions of a program. Such
relevant portions capture designated program points that are more likely to expose cache
thrashing behaviour.

Static cache analysis is performed via abstract interpretation [15]. Memory blocks are
categorized as AH (always cache hit), AM (always cache miss) and PS (persistent or never
evicted from the cache). If a memory block cannot be categorized as AH, AM or PS, it is
categorized as NC (not classified). As an AH/PS categorized memory block can face only
cold cache misses, we conclude that AH/PS categorized memory blocks can never be involved
in a cache thrashing scenario. Therefore, only AM or NC categorized memory blocks exhibit
potential sources of cache thrashing. If we employ abstract interpretation based cache analysis
in the example program of Figure 12(a), we observe that memory blocks m, ms, mg and my
are categorized as PS (note that m, ms5 and m4 do not face any cache conflict within the loop).
On the contrary, memory blocks m1, m2, m3 and m4 are categorized as NC (as m1 conflicts
with m2 and m3 conflicts with m4 in the cache).

The key to our test generation approach is to create an interface between static cache
analysis and dynamic test generation. Such an interface is developed via systematically
generating assertions. The set of assertions has an one-to-one correspondence with the set of
cache thrashing scenarios. The violation of any assertion exposes a unique cache thrashing
scenario. Therefore, in a broader perspective, our performance testing framework can be
viewed as a reduction of the cache performance problem to an equivalent functionality testing
problem. Figure 12(b) demonstrates the schematic of the interface. The interface mainly
consists of two parts: (i) instrumented code to count cache conflicts, and (ii) set of assertions
to be checked. It is worthwhile to note that the instrumented program (i.e. Figure 12(b))
may have a different cache behaviour compared to the original program. This is due to
the presence of additional instrumented code in Figure 12(b). However, the instrumented
code (i.e. functions f1 and f») as well as the assertions (cf. Figure 12(b)) take input from
memory blocks in the original program (i.e. memory blocks m1,m2,m3 and m4 in Figure
12(a)). Therefore, violation of any assertion captures a cache thrashing scenario in the original
program shown in Figure 12(a) (and not in the instrumented program shown in Figure 12(b)).

Let us first consider the set of memory blocks {m1, m2} in Figure 12(b). C_m1 (C_m?2)
captures the amount of cache conflicts generated to memory block m1 (m2). Specifically,
for least recently used (LRU) cache replacement policy, C_m1 (C_m?2) captures the number
of unique cache conflicts (i.e. number of unique memory blocks mapping to the same cache
set) between two consecutive accesses of memory block m1 (m2). Therefore, if C_m1 > 0
(recall that we assumed a direct-mapped cache) before accessing memory block m1, accessing
m1 will result in a cache miss. The instrumented code essentially manipulates the set of
variables {C_m1,C_m2,C_m3,C_m4} through some additional code fragments. At this

39

Instrumentation
automatically adds
assertions to the program

Cache analysis by CHMC
Abstract —>
Interpretation (Cache hit-miss Instrumented

Program classification) Program
: |
| Explore a |

i Report path
Timeout / o N .

DS EASF 1

All assertions || assertions ior
violated 7| (symbolic |
| execution) |
I_ ————————— -

Figure 13: Overview of our test generation framework

point, without going into the details of instrumentation, we represent the instrumentation as
functions to show the specific variables they manipulate. As shown in Figure 12(b), a function
f1(C_m1,C_m2) only manipulates C_m1 and C_m2 (and neither C_m3 nor C_m4). In
general, a cache miss does not necessarily capture a cache thrashing scenario. For the set
of memory blocks {m1,m2}, we informally say that a cache thrashing happens when both
m1 and m2 are evicted from the cache at least once. Therefore, the cache thrashing scenario
involving memory blocks m1 and m2 is captured by the following formula:

@12 =Cml>0ANC_m2>0

The placed assertion checks the formula ~®1, = C_m1 < 0V C_m2 < 0 during dynamic
test generation process. As a result, any violation of the assertion (formula —®,) captures a
cache thrashing scenario in a real execution. The cache thrashing scenario involving memory
blocks {m3, m4} can be captured in a similar fashion using the formula 3, = C_m3 >
0 A C_m4 > 0. Therefore, the violation of =P34 during the dynamic test generation process
will capture a real cache thrashing scenario involving memory blocks m3 & mA4.

Let us now investigate our dynamic test generation process. The primary goal of the
dynamic test generation module is to stress the execution towards the set of instrumented
assertions. The idea of our dynamic test generation has been inspired by recent advances
in satisfiability modulo theory (SMT) and constraint-based test generation [5]. Our test
generation module first executes the instrumented program with a random input, records
the set of violated assertions (i.e. the set of real cache thrashing scenarios) and collects the
constraints along the executed path. We assume x and y are inputs to the program. Figure
12(c) captures the execution trace for an input x = 3,y = 0. Due to the increment of
both C_m1 and C_m?2 (by the instrumented code f1(C_m1, C_m2) and f,(C_m1,C_m?2),
respectively), the assertion assert(C_m1 < 0V C_m2 < 0) is violated (as shown in Figure
12(c). Such an assertion violation captures the cache thrashing scenario involving memory
blocks m1 and m2. To drive the execution towards other assertions, we first collect the
constraints along the current execution trace. For an input x = 3,y = 0, such constraints can
be expressed by the formula x < 3 A x > 1 Ay < 10. To execute a different path, one of the
branch conditions (i.e. x < 3, x > 1 or y < 10) must be negated [5]. Our test generation
employs strategies to systematically negate the branches, so that the execution may lead to
maximum number of unchecked assertions.

To check maximum number of assertions, we consult the control dependency graph (CDG)
of a program. CDG captures the set of control conditions that are necessary to execute a
certain statement. Figure 14 shows the CDG of Figure 12(b). The two assertion from the 12(b)

40

A1:assert (C_m1<0VC_m2<0)
A2:assert (C_m3<0VC_m4<0)
UA : Unchecked Assertions

UA2=2[[Bo | UAs=2

[B1(Aa1) [B2(A2)| [B4(A2)| [B5(A7)]

Figure 14: Control Dependence Graph, for Figure 12(a)

as shown as literals A1 and A2 in the CDG. The value against each control dependency nodes
denotes the maximum number of unchecked assertion (LI A) reachable from that node. In the
example shown in Figure 12(b) three control conditions x < 3, x > 1 and y < 10 correspond
to blocks B0, B3 and B7 respectively. As can be observed from Figure 14, negating the
control condition at B7 (i.e. y < 10) will not lead to any unchecked assertions. Therefore,
we must negate the control conditions at BO (i.e. x < 3) or B3 (i.e. x > 1). In general, our
method employs a greedy strategy to pick a control condition, which can lead to maximum
number of unchecked assertions. Assume that branch x < 3 is chosen for negation and we
obtain a test input x = 4,y = 0 for the symbolic condition x > 3. Executing the program
for x = 4,y = 0 never violates any assertions. Note that the formula x > 3 A x < 1 must
be satisfied to execute both f;(C_m3,C_m4) and f»(C_m3, C_m4). However, the formula
x > 3 A x < 1lisclearly unsatisfiable. Therefore, x > 3 A x < 1 captures an infeasible path
in Figure 12(a) and f1(C_m3, C_m4) and f,(C_m3,C_m4) cannot appear in any execution
trace together. As a result, the assertion assert(C_mB <0VvC_mi< 0) is always validated.
In the end, for the example shown in Figure 12, our framework finds exactly one cache
thrashing scenario (that involves memory blocks m1 and m2) and a test input capturing the
same thrashing scenario (i.e. x = 3 for a symbolic formula x < 3 A x > 1). Our framework
guarantees to cover all the assertions at the end of the test generation method. Note that
due to the inherent limitations imposed by constraint solvers the test generation process may
go on forever. However, our test generation has the anytime property, meaning that the test
generation process can be terminated anytime if the time budget is violated. After such a
premature termination, the computed test-suite exposes a subset of thrashing scenarios that
exist in the program. In fact, due to our directed search via CDG, our experimental results
suggest that we can find most thrashing scenarios very early in the test generation process.

SYSTEM AND APPLICATION MODEL In this work, we shall assume the traditional
configuration of WCET analysis. Therefore, we consider only uninterrupted executions of a
program and the computed thrashing scenarios appear solely due to the intra-task variant of
cache conflicts. However, given a set of preemption points, our technique can be extended
to capture thrashing scenarios that may appear only in the presence of preemptions. Such
an extension will need to instrument the preempting tasks to compute the inter-task cache
conflicts and it will require to shift the execution across tasks during test generation. Moreover,
for the sake of simplicity, our framework is shown for separated instruction and data caches.
To consider unified caches, the computation of cache conflicts can be combined during
instrumentation (i.e. the computation of variables {C_m1,...,C_m4} in Figure 12).

41

3.3 TEST GENERATION METHODOLOGIES

In this section, we shall describe our test generation methodologies in detail. Broadly, our test
generation methodology contains two substeps: (i) systematically generating assertions to
expose cache thrashing behaviour and (ii) a dynamic test generation to check the validity of
the generated assertions. We shall elaborate these two steps in the following sections. For the
sake of simplicity, we shall describe the core methodologies for instruction caches and we
shall mention the minor changes required in the instrumentation to handle data caches.

3.3.1 Generating Assertions

Code Instrumentation

Figure 15 shows the instrumented code for our example program in Figure 12. We assume
that memory blocks m1 and m2 conflict in a direct-mapped cache. Therefore, after the
static cache analysis, both m1 and m2 are categorized as unclassified (NC). Informally, the
instrumented code manipulates the cache conflict faced by a particular memory block. Such
an instrumentation depends on the underlying cache replacement policy. For the sake of
illustration, we shall use least recently used (LRU) cache replacement policy. However, such
an instrumentation can easily be changed for other cache replacement policies (e.g. FIFO) in
a similar fashion as in the work of [18].

Instrumented code Original code Instrumented code
! <
[x=3 | cold_m2 == |_
cold_m1== : | ,
! x >3 Y N
N Y : m
I

cold_m2=1

assert (C_ml <0V Cm2<0))
Assertion

m6

Figure 15: Instrumented code with assertions

The heart of the instrumentation shown in Figure 15 lies in manipulating the two variables
C_m1 and C_m2. For LRU cache replacement policy and a particular memory block m, C_m
captures the number of unique cache conflicts between two consecutive accesses of memory
block m '. While counting such cache conflicts, we do not count the conflicts generated
merely due to cold misses. Let us consider the instrumented code before memory block m1

1 For FIFO cache replacement policy, C_m captures the number of unique cache conflicts faced by m since it is last
reloaded into the cache [18]

42

(as shown in Figure 15). Since memory block m1 creates conflicts to only memory block
m2, such cache conflicts are captured by the increment of variable C_m2. Variable flag_m1
is used to count only unique cache conflicts (i.e. the number of unique memory blocks
conflicting with memory block m1). Besides, variable cold_m1 is used to discard the cold
cache miss for accessing memory block m1. The instrumented code introduced for memory
block m2 is entirely symmetric to the one introduced for block m1.

Formulation of assertions

The crucial step of the instrumentation is to systematically inserting assertions to expose cache
thrashing. Cache thrashing behaviour only happens inside program loops. Therefore, for rest
of the discussion, we shall only consider memory blocks inside program loops. Moreover,
without loss of generality, we shall consider memory blocks mapped to a single cache set. For
set-associative caches, the process is identically applied for each cache set.

The formulation of an assertion depends on the definition of cache thrashing. Therefore,
we first formally define the notion of cache thrashing used in this work.

Definition 3.3.1 Consider a K-way set associative cache. A set of memory blocks M :=
{M1, My, ..., Mi.1} is said to have cache thrashing if and only if, for all i € [1, K + 1],
access to M; suffers at least one non-cold miss and all the cache conflicts for this non-cold
miss are generated by the set of memory blocks M \ {M;}.

In the preceding definition of cache thrashing, the number of non-cold misses (say X') is a
tunable parameter. In our work, we assume X = 1. However, in the following, we show that
our technique can be generalized for different values of X'

The instrumented code in Figure 15 takes the accessed memory blocks in the original pro-
gram (i.e. the set of memory blocks {m1, m2, m3, m4} in Figure 12(a)) as input. Therefore,
it is worthwhile to note that the instrumented code manipulates cache conflicts in the original
program (i.e. Figure 12(a)) and not the instrumented program shown in Figure 15. Since
the validity of inserted assertions are based on this instrumented code, any violation of an
assertion essentially captures a cache thrashing scenario in the original program (i.e. the
program shown in Figure 12(a)).

To describe the generation of assertions, we shall begin with a few notations and definitions.
Let us assume M; = {My, My, ..., My} is the set of memory blocks accessed inside some
program loop. We define a thrashing set as a subset of M that may be potentially involved
in cache thrashing. Formally, a thrashing set 7 S; is defined as follows

TS = {m|me M; N\CHMC(m) # PS A CHMC(m) # AH} 27)

In Equation 27, CHMC captures the cache hit-miss classification obtained via static cache
analysis [15]. Note that AH (all-hit) and PS (persistent) categorized memory blocks can
never be evicted from the cache (due to the inherent guarantee provided by static analysis).
Therefore, we do not include such memory blocks as the potential cause of cache thrashing.

From a thrashing set, we define a number of thrashing scenarios. Informally, a cache
thrashing scenario contains just enough memory blocks from a thrashing set to create a
potential cache thrashing. If we assume that the associativity of the cache is C, the minimum
number of memory blocks to create a cache thrashing is C + 1. Therefore, a thrashing
scenario for a thrashing set 7S is defined as any K + 1 combination of the thrashing set
T'S;. The set of all cache thrashing scenarios (); can be defined as follows.

O ={SCTS||S|=K+1} (28)

|78

Note that a thrashing set 7°S; has a total of (7}

) different cache thrashing scenarios.

43

Finally, we generate exactly one assertion for each cache thrashing scenario. Let us assume
one such cache thrashing scenario ® € (); and its respective assertion Ag. Informally, the
assertion Ag captures the property that thrashing scenario @ never happens in any program
execution. As a result, any violation of the assertion Ag during dynamic test generation
captures a realization of the thrashing scenario ®@. Formally, thrashing scenario @ is captured
by the following property.

Do = A (Cu>K) (29)
meo
In Equation 29, C,, captures the amount of unique cache conflicts faced by two consecutive
accesses of memory block . Since the assertion checks the negation of thrashing scenario, it
can be formalized as follows.
Ag = assert(—Pg) (30)

The assertion Ag is placed before each memory block involved in the thrashing set ©.
For example, in Fig. 15, the set {m1, m2} captures a thrashing scenario and the assertion
assert(C_m1 < 0V C_m2 < 0) was placed before accessing memory blocks m1 and m?2.

The purpose of the preceding assertion (Eq. 30) is to validate that at least one of the
memory block from the thrashing set is never evicted from the cache. Therefore, if all of
the memory blocks in a thrashing set are evicted at least once, an assertion violation will
be triggered and a cache performance issue will be reported. The assertion Ag is checked
dynamically before accessing each memory block involved in the thrashing scenario ©.

It is worthwhile to mention that our formalization to capture cache thrashing (i.e. Definition
3.3.1 and Equation 29) is independent of cache replacement policy. Therefore, such a formal-
ization can be applied to a wide variety of cache architectures. However, the instrumentation
which is carried out to transform the program code depends on cache replacement policy. For
instance, in the Least Recently Used replacement policy, a cache hit causes the cache state to
be updated such that the age of the most recently accessed memory block is 0 however in the
First In First Out cache replacement the cache state is not changed after a cache hit. These
difference are reflected in the computation of the variable C_m (cf. Section 3.3.1). Finally, we
can also generalize the notion of reporting a cache thrashing scenario at runtime. Specifically,
a cache thrashing scenario can be reported for X number of violations of an assertion (and
thereby X number of evictions for each memory block in the respective thrashing set) instead
of only one violation. Such a generalization also corresponds to the reconfiguration of the
number of non-cold misses, as described in Definition 3.3.1.

Handling data caches

For data caches, the memory block classification is obtained using the scope-aware persistent
(SCP) analysis [23]. SCP analysis can be used to classify data memory blocks as persistent
or non-persistent. Unlike the instruction cache analysis, determining the set of data memory
blocks accessed at a program point, can be challenging. Existing address analysis techniques
such as the one used in [23] can be used to obtain the set of memory blocks, which may be
accessed at a given program point. Once the SCP analysis has been performed on the set of
memory blocks generated by address analysis, the assertions can be generated as described in
preceding paragraphs.

The basic structure for instrumentation is similar to what was described for instruction
caches. However, unlike an instruction access, a data access may correspond to multiple
memory blocks. For example, in Figure 16, access to Array_X might result in fetching of
memory block m1 or m2, depending upon the loop iteration. Likewise, access to Array_Y
might result in fetching of memory block m3 or m4.

44

for (i=0; i<10; i++) for (1=0; 1<10; 14+)

{

{ if(i >= 0 &8 i < 5)

sum += fz:r);_X[YI][i]' assert(C_m1=0VC_m3<0)

y_Tib if(i >= 5 && i < 10)

IArray_X points to m1, m2 assert(C_m2<0VC_m4=0)
//Array_Y points to m3, m4
//Im1, m3 are accessed for0 <=i<5 sum += Array_X[i]
/Im2, m4 are accessed for 5<=i <10 + Array_YTil;

(a) Original Code (b) Instrumented Code

Figure 16: Instrumentation scenarios for data caches

Assume that the address analysis has reported that the memory blocks m1 and m3 are
accessed for loop iterations i € [0..4] and memory blocks m2 and m4 are accessed for loop
iterations i € [5..9]. Also assume that the only sets of memory blocks which conflict in
the cache are {m1,m3} and {m2,m4}. Under these assumptions, memory block m1 and
m3 can participate in a thrashing scenario, only during loop iterations [0..4]. Therefore,
the instrumented code for m1 and m3 needs to be proceeded by conditional checks on the
iteration number (I >= 0 && i < 5). Conditional checks for memory block 2 and m4 can
be placed in a similar fashion. Figure 16(b) shows the instrumented code for the example
program shown in Figure 16(a).

3.3.2 Dynamic Test Generation

Dynamic test generation tries to find violations of the instrumented assertions (cf. Section
3.3.1). Our dynamic test generation process is inspired by recent advances in constraint
solving and concolic testing [5]. As an output of the dynamic test generation process, we
obtain a pair (®;, ¥;) for each cache thrashing scenario ©;. In the output pair, ¥; captures a
symbolic formula on the input variables, such that any input satisfying the formula leads to
the cache thrashing scenario @;. In our example (cf. Figure 12), one such output would be
({m1,m2},x <3 Ax > 1). This implies that any input value of x € [1,3], would lead to a
thrashing scenario, involving memory blocks 117 and 5.

Algorithm I: The primary goal of Algorithm 1 is to check the validity of instrumented
assertions (cf. Section 3.3.1). It takes the instrumented program P 4 and the set of instru-
mented assertions A as inputs and generates a set of test cases 7. Each element in 7 realizes
a unique cache thrashing scenario. To begin with, Algorithm 1 executes the instrumented
program P 4 with a random input Z and collects the execution trace X. The exploration of
different assertions is performed by systematically manipulating the path condition of this
execution trace. Formally, path condition is defined as follows.

Definition 3.3.2 For a particular execution trace X, path condition is a quantifier free first
order logic formula that captures exactly the set of inputs which drives the program execution
through the execution trace X.

45

Algorithm 1 Dynamic exploration of instrumented assertions

DO = = = e e e s e e
@9 X TN RN 2

21:
22:

23

24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:

53

R e AR

Input:
‘P 4: instrumented program with assertions
A: set of instrumented assertions
Output:
T a set of test cases, each of which realizes a unique cache thrashing scenario
AllPathConditions = unchecked = T = empty
/*build the control dependency graph (CDG) of P4 */
CDGp, + BuildCDG(Py)
select a random input Z
ExecuteAndReport(Py,A, Z,CDGp,)
: while unchecked # empty A A # NULL do
[*pick a partial path with maximum number
of reachable and non-violated assertions */
select (@, F,) € unchecked with maximum F,
unchecked := unchecked \ {{¢@, Fy)}
16t§0<—1[]1/\l/)2/\.../\1,[7;f71/\1,0r
/* execute an unexplored path */
if ¢ is satisfiable then
Ty <— some concrete inputs satisfying ¢
ExecuteAndReport(Py, A, 7,,CDGp))
end if
end while
: procedure EXECUTEANDREPORT(P 4,A4,7,CDGp,)
execute P4 on input T
let X be the execution trace on input T
let = 1 Ao A ... APy be the path condition
let {Ap,, Ag,, ..., Ag, } be the set of violated
assertions, on input T
A=A\ {Ag, Ao, ..., Ao }
let 7 be the shortest path-prefix along the execution
trace X that captures at least one violation of each
assertion in the set {Ag,, Ag,, ..., Ap, }
let ¢ captures the partial path condition corresponding
to the path-prefix T
/* augment the test suite with witnesses for cache
thrashing scenarios */
TU= ({61, 0), (62,9),... (61, 9))}
[*build all partial path conditions */
fori < 1,k do
let(pi P API AN Pi_1 A Yy
if ¢; ¢ AllPathConditions then
AllPathConditions) = ¢;
let b,,,; be the control dependency edge in
CDGp, w.r.t. the branch condition —¢;
/* compute the number of non-violated
assertions (€ A) reachable from b,,,; */
Fg; = GuidanceFunction(bey)
if 7, # 0 then
unchecked U = { (i, Fy,)}
end if
end if
end for
: end procedure

For example, in Figure 12(c), the symbolic formula x < 3 A x > 1 A y < 10 captures the
path condition for the execution trace on input values x = 3 and y = 0.

The variable unchecked represents the set of unexplored partial path conditions in the
instrumented program P 4. Each partial path condition ¢; is associated with a metric F,.
This metric measures the maximum number of non-violated assertions reachable from ¢;. We
employ a greedy strategy based on the value of F, to continue exploration. More precisely,
we generate a test input Ty from an unexplored, partial path condition ¢; that has the maximum
value for F,,. Subsequently, we invoke the procedure ExecuteAndReport with input .

Procedure ExecuteAndReport executes the instrumented program P 4 for an input T to
obtain the execution trace X. For a particular execution, assume that ¢ = 1 A P A
... A\ Pr_1 A Py captures the path condition for the execution trace X. Further assume that
{Ap,, Ag,, ..., Ag,} is the set of violated assertions and 77 is the shortest path-prefix in the X
which captures at least one violation of each assertion in the set {Ag,, Ag,, . .., Ag, }. There-
fore, an assertion, if violated beyond path-prefix 7z, must belong to the set {.Ag, , Aq,, ..., Ag, }.
If ¢ is the respective path condition, say ¢ be the prefix of the path condition corresponding to
path-prefix 7. Note that ¢ F ¢, however, ¢ is a compact yet lossless formula to manifest the
set of thrashing scenarios (i.e. the set of thrashing scenarios exposed by violations of the set
of assertions {Aal, .Agz, Co., Agr}). Therefore, for each thrashing scenario 6;, we construct a
test pair (@, ;) and add such test pairs to the existing test suite 7. To avoid any redundant
computation, we manipulate ¢ on-the-fly during the execution.

To continue exploration, we must deviate from the present path. Such a deviation is
performed by negating a branch conditions along the execution trace X. Assume that we pick
a partial path condition ¢; = 1 Ao A ... Api_1 A —1p;. Let us also assume that b, is the
control dependency edge in the CDG (of the instrumented program) that captures the negated
branch condition —1p;. We rank each partial path condition ¢; with a metric F, and add it to
the set of unchecked partial path conditions. JF, captures the maximum number of assertions
in A that are reachable, if the program is executed with a test input satisfying ¢;.

GuidanceFunction captures the computation of F,. Formally, F, is defined as follows.

F(Pi:‘{AQGA‘bendeGH 3D

Where b,,; ~ Ag captures that the assertion Ay is reachable from the control dependency
edge b, (i.e. the control dependency edge corresponding to the negated branch condition
;). Therefore, F,, accounts for all the assertions in A that are reachable from b,,,4. It is
worthwhile to note that the definition of F, (in Equation 31) can be changed very easily
depending on the criticality of different assertions. In Equation 31, we have only considered
the reachability of assertions, giving each assertion equal priority. However, the definition
F; can be easily changed to incorporate other priorities (e.g. assertions in an innermost loop
can be given higher priorities than assertions in an outermost loop).

TERMINATION Algorithm 1 terminates as soon as we obtain a witness (i.e. test case)
for each cache thrashing scenario (captured by the condition A # NULL in the outermost
loop of Algorithm 1). However, some thrashing scenarios might not be manifested due to the
presence of infeasible paths in a program (e.g. the assertion assert(C_m3 < 0V C_m4 < 0)
in Figure 12(c)). In such cases, the test generation process may go on forever in the presence
of unbounded (e.g. input-dependent) loop iterations and due to the inherent incompleteness
of any constraint solver. However, one appealing nature of our test generation process is
that it can be terminated anytime. The resulting test-suite might be incomplete, but it can
still be used for investigating cache performance issues in the program. Our experiments
suggest that we can find most of the cache performance stressing test inputs in very early

47

phase of Algorithm 1. This is primarily due to the directed search strategy along the control
dependency chain (via the CDGQG) to reach the set of instrumented assertions.

3.3.3 Salient Features of Generated Test Suites

Our generated suite has several important properties. In the following description, we shall
formally capture the properties of the generated test suite.

Property 3.3.1 At any point in time during the execution of Algorithm 1, for any cache
thrashing scenario @;, if no path witnessing ®; has been explored - no test case containing
©; appears in the test-suite 7 computed so far. Otherwise, the entry (©;, ¥;) appears in the
test-suite 7 where ¥; captures the set of all inputs which witness ®;, and whose paths have
been explored already by Algorithm 1.

Property 3.3.2 If Algorithm 1 terminates, we can guarantee to find all feasible cache thrash-
ing scenarios in any uninterrupted execution, that is, all cache thrashing scenarios witnessed
by at least one program input. Each such feasible cache thrashing scenario will appear as an
entry (®;,'¥;) in the generated test suite 7 reported at the end of Algorithm 1. Any solution
for the formula ¥; is a test input witnessing cache thrashing scenario ©;.

3.4 EVALUATION

3.4.1 Experimental Set-up

Figure 17 shows an outline of our implementation framework. To generate cache hit-miss
classifications (CHMC), we use the abstract interpretation (Al) based cache analyses (using
[15] for instruction caches and using [23] for data caches) implemented in Chronos [46].
Outcomes of Al-based cache analyses are used by the instrumentation engine to compute
thrashing sets and to insert assertions at appropriate program points (as explained in Section
3.3.1). This instrumented program is passed to the dynamic test generation process.

Dynamic test generation process is implemented on top of LLVM compiler infrastructure
[56]. The instrumented program is compiled into LLVM bitcode format and its control flow
graph (CFQG) is extracted from the LLVM bitcode. We also implement a module inside
LLVM to compute the control dependency graph (CDG) of a given program. This CDG is
used to guide our test generation, as explained in Algorithm 1. To generate path conditions
for different execution traces, we use KLEE symbolic execution engine [57]. To solve and
manipulate path conditions along an execution trace, we use the STP constraint solver [58].
We have performed all the experiments on a machine having an Intel Core-i5 processor, with
4 GB RAM and running Ubuntu 9.04 OS.

SUBJECT PROGRAMS Table 4 shows the subject programs, used in our experiments.
Nsichneu[47] is an automatically generated code, which simulates an extended Petri Net. It
was taken from the Milardalen WCET benchmarks suite. It has a code size much larger than
other programs used in our experiments. Also it contains a large amount of if-statements.
Papabench[48] is an Unmanned Aerial Vehicle (UAV) control application. In our experiments,
we used the auto-navigation utility from papabench. The auto-navigation utility contains a
lot of input dependent paths, therefore it can potentially show different thrashing scenarios
for different symbolic input formulas. Jetbench[49] is a real-time, Jet engine performance
calculator. It uses Jet engine parameters and thermodynamic equations from the NASA’s

48

EngineSim program to perform real-time thermodynamic calculations. We use a single-
threaded version of Jetbench for our experiments.

Table 4: Programs used for cache performance study

S.No | Test Program Program Description Lines of Code
Automatically generated code.
1 Nsichneu [47] Simulates extended Petri Net 4253

Contains large number of if-else statements

Part of a Unmanned Aerial Vehicle
2 Papabench [48] controller application. Only 1097
auto-navigation utility is used

Real-time, Jet-engine performance
3 Jetbench [49] | calculator. User parameter and thermodynamic 770
equations from NASA’s EngineSim program

r — — /7 r_— — 1
| | | LLVM |
CHRONOS
P | | P’ | | :
5 5 > stp > Thrashl.ng
| | | | Scenarios
INSTRUMENTATION
| ENGINE | | KLEE |
Test Instrumented
Progam L __ __ __ 1 TestProgram L __ __ __
Phase I Phase II
Tools Used:-

Chronos [46]: Static analysis based timing analysis tool
LLVM [56]: Compiler infrastructure

STP [58]: Constraint solver

KLEE[57]: Symbolic execution engine

Figure 17: Key phases in the framework

49

suoneIn3yuod AYOBD JUAISYIP J0J [E1IUI0J SUIYSEIY], PUB 95BIOA0D) UONIASSY QT dINJI]

(syoe) vieq) Youoqiaf (3)

(spuodas) awiy

(ayoe) e1eQ) youoqeded (3)

(spuodas) awi|

(ayoe) eIR(]) NAUYDISU (P)

(spuodas) awi)

ozl 0oL 08 09 oy 0z sL oL S or 13 o€ [14 0z st oL s
T T T T T T T T T T T
o o
2 2
L 2 2L
by by
L & &L
8 8
¥ 00L - DGO GOT O OO O EN Y- PO T
L (@)1 dydeD) [ennualod bulyseiyy (81 dydeD) [enual0d buiysesy L ()1 ayoeD) [enuaiod buiysesy)
- (@)1 ayseD) abeiano) uonuassy (g)1 ayoeD) abeiano) uonIassy (g)1 ayoeD) abeiano) uoniassy
- (8215 3yaeD) [enuaiod buiyseiyL (815 3yde) [PNUIOG Bulyseiy L (8215 3yae) [PNUI0G Butyseiy L
r - (971§ dydeD) abeIano) uonassy (gz LS ayoeD) abeiano) uonuassy B (gz1S ayoeD) abeiano) uoniassy
I n L L L I L L L L L L h L L L L
(ayoe) uononnsuy) youaqial (9) (ayoe) uononnsuy) youoqeded (q) (eyoe) uonoNISUY) NAUYIISU (B)
(Spuodas) awil| (spuodas) awi| (Spuodas) awi|
00€ 0sz 00z ost 0oL 00€ 0sZ 00z oSt oot 05

00€ 0S¢ 00¢ oSl 0oL

ool

- (gz 3y2eD) 96eISA0D UOILIASSY
I L i

abejuadiagd

T T T T

o

09

(@ 3y2eD) [enualod Burysesy)
(@) 2yoeD) 9beISA0) UOILBSSY
(8XZ 3y2eD) [enualod Burysey)
(g)Z 3YoeD) 9beIaA0D UOIIBSSY
I L I

08

0ol

abejuadiag

v v g L

@91 2YdeD) [e1U)04 bulyseiy|
(@)91 aydeD) 96eISA0D) UOIIBSSY
)8 3YoeD) [ennua1od buiyseiy
- (g)8 ayoeD) abelano) uonuassy

1 1 1

abejuadiag

abejuadiagd

50

3.4.2 Experimental Results

In following paragraphs, we shall describe some of the experiments which were performed to
measure the efficacy of our framework. Also we shall discuss the applications of our frame-
work for answering some of the issues related to design space exploration and performance
optimization.

EFFICACY OF OUR FRAMEWORK, IN EXPOSING CACHE PERFORMANCE ISSUES We
performed experiments with the three real-time programs listed in Table 4. The results of
which are discussed subsequently. But first we shall describe a few metrics which are used to
present the experimental results.

Assertion Coverage : Our framework aims to find all thrashing scenarios due to intra-task
cache conflicts. However, our test generation framework may not terminate (in general, this
problem is undecidable [5]). Therefore, we define a metric named Assertion coverage which
measures the percentage of unique assertion checked, within a given amount of time.

unique assertion checked

Assertion Coverage = 100

unique assertion instrumented

A 100% assertion coverage implies that all unique assertions have been checked at least once.

Thrashing Potential : It is not necessary that all the checked assertion will be violated.
However, the number of unique assertions violated, tells us about the potential for cache
thrashing, for a program, on a given cache-configuration. Therefore, we define Thrashing
Potential as follows

unique assertion violated

Thrashing Potential = 100

unique assertion instrumented

Through our experiments we investigated the assertion coverage and the thrashing potential
for all the program listed in Table 4, for various cache-configurations. Some of the results
from our experiments are shown in Figure 18. The plots in Figure 18 show the assertion
coverage (and thrashing potential) on the y-axis and the exploration time on the x-axis. Since
our framework looks for all possible thrashing scenarios due to intra-task cache conflicts,
it is possible that the test generation will not terminate (refer to section 3.3.2). Therefore,
we tested the subject programs, with an exploration budget of 5 minutes. We performed the
experiments for instruction caches as well as data caches. Overall, we observed an assertion
coverage ranging from 53% to 100% for different experimental set-ups (within a exploration
budget of 5 minutes). Essentially, programs which had lesser number of input dependent paths
(such as nsichneu) were explored much faster than program which had more number of input
dependent paths (such as papabench). We also observed that for most of the experiments with
instruction caches, only a small fraction of instrumented assertion were actually violated.

The figures presented in the first row (Fig. 18 (a), (b) and (c)) show the results, for
instruction caches. On one hand, our chosen cache sizes are sufficient to avoid capacity
misses. On the other hand, cache sizes are also small enough to generate conflict misses. Since
nsichneu has a large code within a loop, we choose a relatively bigger cache for nsichneu,
compared to the other two subject programs. Figure 18(a) shows the percentage coverage
for nsichneu, on a 2-way, set-associative, LRU, instruction cache. The results reported here
are for cache configuration of 8 KB and 16 KB. For both the configuration, the framework
achieved a 100% assertion coverage, in less than 5 minutes. The thrashing potential for
nsichneu, was observed to be less than 31% for both the experiments. Note that since the
framework achieved a 100% assertion coverage for nsichneu, therefore the recorded thrashing
potential is accurate. We performed experiments with papabench and Jetbench on a 2 KB
and 4 KB for 2-way, set-associative, LRU cache. Neither of these experiments, resulted in a

51

100% assertion coverage, within the exploration budget of 5 minutes. However, this doesn’t
imply that the greedy exploration strategy is inefficient. This observation is supported by the
fact that most of the explored assertions in Figure 18 were discovered early in the exploration.
Additionally, some of the instrumented assertions may be present along infeasible paths (such
as x = 0 A x = 1), therefore they might not be checked throughout the exploration.

Figure 18 (d), (e) and (f) show the analysis results for data caches. For all the experimental
results reported in this paragraph we used a direct-mapped, data caches of size of 1KB and
512B. We used small caches for this set of experiments, so as to create sufficient number of
thrashing scenarios. For nsichneu and Jetbench we observed an assertion coverage of almost
100%. In fact, for nsichneu only one cache thrashing scenario was reported for both the cache
configurations, which was covered (and violated) during exploration. Also, for Jetbench (see
Figure 18(f)) most of the checked assertions were violated during exploration. However, for
papabench (see Figure 18(e)), we observed an assertion coverage of 80% and a thrashing
potential of less than 40%, for both the cache-configurations.

3.5 APPLICATIONS IN DESIGN SPACE EXPLORATION

The process of embedded system design can be quite challenging due to sheer size of the
design space that needs to be explored. While choosing a design for an embedded application,
the designer has to consider various constraints such as timing and energy consumption.
For instance, while choosing a cache-configuration, a designer can choose from a large,
highly-associative cache or smaller, less-associative cache. A large, highly-associative cache
might have lesser number of cache-thrashing scenarios however it will consume more power
and possibly slower than the smaller cache. Therefore, determining the ideal cache size for a
given application might be tricky. Our framework can provide a suitable way to choose the
appropriate cache configuration for an application.

500 T T T T T

400 - i

300 - 1
200 1
100 - H 1
0 ,_‘ | I |
<

¥

Thrasing Scenarios Uncovered

Figure 19: Number of cache thrashing scenarios discovered for papabench for various cache configu-
rations

Essentially, our framework can be used to compare the number of thrashing scenarios for
different cache configurations, for a given application. For example Figure 19 shows the
number of thrashing scenarios discovered for different cache configurations, for papabench.
It is worthwhile to note that our framework pinpoints the real thrashing scenarios, witnessed
by a feasible execution. Existing techniques, which are purely based on static analysis (e.g.
[15, 23]) may include false thrashing scenarios that never appear in any execution (cf. Figure
18). As a result, one can choose a more appropriate cache configuration using our framework,
compared to the techniques based purely on static analysis. There exists a number of works
[59] which can be used to determine the appropriate cache for a given system requirement.

52

In Figure 19, it might be interesting to know that a 2KB, 1-way (direct-mapped) cache has
lesser number of cache thrashing scenarios then a 2KB, 2-way set-associative cache. Also,
the experiments suggest that the number of cache thrashing scenarios for a 8KB, 2-way set-
associative cache and a 8KB, 4-way set-associative cache are the same. So for this program, a
8KB, 2-way set-associative cache will be sufficient, to avoid cache-thrashing.

3.6 APPLICATIONS IN PERFORMANCE OPTIMIZATION

In this section, we shall discuss the application of our framework for input sensitive opti-
mization, specifically for cache locking. The main intuition is explained via Figure 20(a).
Assume a direct-mapped cache and memory blocks m1, m2, m3 and m4 all map to the
same cache set. Clearly, this would result in a cache-thrashing scenario (for thrashing sets
{m1,m2} and {m3, m4}) and our test generation framework computes the following test
cases: ({ml,m2},z <5) and ({m3,m4},z > 5). In a way, therefore, our dynamic test
generation framework can also be viewed as partitioning the input domain, where all inputs
constituting a partition realizes the same set of cache thrashing scenarios. In our example,
there are two such partitions - A1 and A; (cf. Fig.20(b)).

// input z)) //.input z
_Lock(m1) : ! #if (z < 5) _Lock (m1)
while(iteration < 100){ i zs5:2z>5 i #else _Lock (m3)
if(z<5) { i I;~ \Partitiona,] i while(iteration < 100){
Il access m1 e I, P ifzs5){
Il access m2 N e Y Il access m1
}else { i | Partition Ay ° i Il access m2
Il access m3 }else{
Il access m4 : : Il access m3
I access m4
} }

(a) (b) (c)

Figure 20: Illustration of conditional cache locking (a) Program with unconditional cache locking
(lock instructions are preceded by #) (b) Input partitions (c) Conditional cache locking

Assume that we want to selectively lock memory blocks so that such memory blocks are
never evicted from the cache. Traditional cache locking techniques, such as [6] can be used
for such purposes. The work in [6] requires a memory trace (sequence of memory blocks) to
determine the set of memory blocks that should be locked in the cache. However, a program
might have different memory traces for different sets of inputs. If we use a memory trace
generated for an input I € A1, either m1 or m2 will be locked in the cache (as shown in Fig
20(a)). However, it can be observed that when the program is executed for any input I € A,
locking m1 or m2 (as shown in 20(a)) will not improve the cache performance. This is due to
the fact that m3 and m4 will encounter cache thrashing.

Based on the discussion in the preceding paragraph, we argue the potential of performance
optimization (e.g. cache locking) techniques that is sensitive to inputs. In particular, for cache
locking optimization in Figure 20, we could lock m1 (or m2) for all inputs satisfying z < 5
and lock m3 (or m4) for all inputs satisfying z > 5. Such a conditional cache locking (as
shown in Figure 20(c)), will improve the program performance for both the input partitions
A and A (cf. Figure 20(b)).

To validate our argument, we have studied the feasibility of conditional cache locking
technique on the subject program nsichneu. For baseline cache locking optimization, we
use [6], that locks a set of memory blocks from a given memory trace. We conduct several
experiments for two arbitrary inputs Iy and I,; where I; is used to generate a memory trace

53

based on which we decide which memory blocks to lock in the cache, using the technique of
[6], and I is used to run nsichneu after the cache locking optimization is performed for
the memory trace on input I;. We have made the following crucial observations.

e If [; and I, belong to the same input partition produced by our framework, the perfor-
mance improvement from cache locking observed in nsichneu is significantly greater
than the situation where I; and I, belong to different input partitions. These results
seem to motivate the use of conditional locking instructions.

e For the situation where I; and I, belong to the same partition, we also observed the
performance improvement from locking varies across input partitions. On average, we
observed a variation from ~ 10% to 20% in performance improvement across different
input partitions in nsichneu. Note that inputs from different partitions have different
memory traces and so, they lead to different set of locked memory blocks using [6].

The preceding observations motivate the need for conditional cache locking, which can be
studied at length in the future. Specifically, our observations conclude that memory blocks
should be locked differently across different input partitions computed by our framework.

3.7 COMPARISON WITH EXISTING TECHNIQUES

Over the past two decades, a significant research effort has been put forward for the perfor-
mance validation of embedded software. Such efforts include abstract interpretation (Al)
based method, such as [15], which was proposed to analyze the cache behaviour of a program.
The work of [18] improves the precision of such Al-based cache analyses via a gradual and
controlled use of model checking. These works [15, 18] analyse the cache behaviour of a
program irrespective of its inputs. On the contrary, our primary goal is to build a connection
between the set of inputs and anomalous cache behaviours (e.g. cache thrashing). Our test
generation methodology is inspired by the recent advances in constraint solving and concolic
testing [5, 55]. These works aim to detect software functionality bugs. In contrast, we aim to
detect software performance problems due to memory subsystems.

Different techniques used for program profiling [60, 61] also aim to find performance
problems in a program. Such profiling techniques work on full or compressed execution
traces to derive useful information about program performance. It is assumed that the relevant
inputs for obtaining an execution trace are known a priori. Our approach is complementary
to these profiling techniques, as our aim is to systematically find test inputs that lead to poor
cache performance. Once such test inputs are found, they can be fed back to a traditional
profiler for further analysis.

Recent advances in profiling [9, 10] have extended the traditional profiling technique to
compute a performance trend of a program. Such a performance trend is captured by an
approximate cost function. The cost function relates program inputs with the overall cost of
the program. However, such cost functions are approximations and they do not necessarily
capture the actual cost. Besides, these works do not introduce any notion of test coverage.
On the contrary, any cache thrashing scenario reported by our framework is indeed a cache
thrashing scenario, witnessed by a concrete input. Besides, our framework also reports the
coverage of cache thrashing scenarios via the set of dynamically checked assertions.

The work proposed in [53] automatically finds test inputs for the worst-case computational
complexity. Our work differs from [53] on several aspects: first, our notion of performance
is based on the execution time rather than computational complexity. Secondly, the primary
goal of our work is to compute test inputs for possible anomalous cache behaviour in a single
program.

54

A recent work [54] uses constraint-based test generation [5, 55] to partition the input
domain of a program with respect to cache performance. Once all the partitions are computed,
some manual interventions are required to locate the set of program locations that may exhibit
issues related to cache performance. Besides, the work proposed in [54] computes a cache
performance range for each partition. The cache performance range in [54] is computed via
static invariant generation methods. As a result, the computed cache-performance range
might be over-approximated, leading to false positives. Our approach, on the contrary, directly
relates a cache thrashing scenario with the set of inputs (without any manual intervention).
Moreover, since we generate test inputs based on dynamic analysis, our generated test-suite
does not contain any false positives.

3.8 CHAPTER SUMMARY

In this chapter, we described a test generation framework that stresses the cache performance
of a program. The key novelty in this technique is a systematic combination of static cache
analysis and dynamic test generation via a set of instrumented assertions. Violation of any
such assertion exposes a unique cache performance issue, specifically, a cache thrashing
scenario in the program. As an output, our framework reports a test-suite where each test case
in the test-suite points to a unique cache thrashing scenario along with a set of program inputs
that leads to the same. Due to the use of dynamic test generation, our generated test-suite
does not contain any spurious test cases. We have shown the application of our test generation
framework in design space exploration and in cache performance optimization via cache
locking.

55

ENERGY-CONSUMPTION ANALY-
SIS: BACKGROUND & LITERATURE
REVIEW

This chapter introduces the reader to some the of key research directions on the topic of energy
consumption analysis. In certain application scenarios, embedded systems are required to work in
a mobile environment. Often such devices are powered by an on-board power-source with a finite
capacity, such as a battery pack. To prolong the functional period of such energy-constrained devices,
the programs running on such devices must be energy-efficient. This requirement of energy-efficiency
creates a new set of challenges in the development and testing of programs intended for such systems.
Existing research work have proposed a number of approaches to address these challenges. The
research works which we shall discuss in this chapter are divided into four categories i.e. (i) techniques
for average-case energy estimation, (ii) techniques for worst-case energy estimation, (iii) techniques
for energy-aware testing and (iv) techniques for energy-aware programming.

4.1 ENERGY CONSTRAINED EMBEDDED SYSTEMS

Embedded systems are often used in applications that have real-time constraints. However, in
certain application scenarios often energy constraints are the primary concern. For examples, a
battery-powered sensor node deployed in a remote, inaccessible environment, that is required
to collect and report data for weather monitoring purposes or the more ubiquitously used
mobile devices such as smartphones, the usage for which is dictated by operational time
between re-charges. Even though energy-efficiency is desired in all application scenarios, but
it is specially crucial in the case of embedded devices that have limited amount of on-board
battery power. There can be a number of approaches to ensure energy-efficiency in such
systems. Some of the existing research works have presented techniques that assist in energy-
aware design and development, while others propose the use of energy-aware testing and
verification techniques. The choice of energy-consumption targeted technique however may
depend on the application scenario itself. For instance, in the case sensor nodes, programs
targeted at such systems must be analysed for the worst-case as well as average-case energy
consumption, so as to make sure that the on-board battery is sufficient for the operational
needs. Whereas, in the case of smartphones, using energy-aware development and testing
techniques may suffice. In the following we shall discuss some of the existing research works
on this topic.

4.2 APPROACHES USED FOR ENERGY TESTING/ESTI-
MATION

In the following sections, we shall discuss some of existing techniques that have been proposed
on the topic of energy-consumption analysis. Most of the existing methods for energy analysis
can be divided into the following four categories:

e Estimating average-case energy consumption: Some of the earliest works on energy-
aware testing were proposed in this category. Such methods can be used to obtain

56

an estimate or an average-case, energy-consumption for a given program, on a given
hardware, for a given input. Such methods can be further divided into two categories:

— Architecture-based Energy Analysis: Techniques discussed in this category model
the energy consumption of underlying hardware (such as processor, pipelines,
etc) at varying levels of abstraction. An energy cost is associated with each
operation that is conducted on a given hardware unit. Net energy consumption of a
program is estimated as (approximately) the sum of energy-cost of all constituents
instructions. Cycle-accurate simulators also fall under this category. These works
are described in section 4.3.1.

— Profiling-based Energy Analysis (section 4.3.2): These works, in general take
the system (consisting of the hardware and software) as a black box and execute
the given program for given set of inputs. The behaviour obtained as a result of
execution (i.e. profile) is analysed for extracting appropriate information.

o Estimating worst-case energy consumption: As is the case with estimating worst-case
execution time, worst-case energy-consumption analysis requires, static analysis based
program flow analysis and micro-architectural modelling techniques. These works are
described in section 4.4

o Technique for detecting energy-inefficiencies: These set of technique are mostly targeted
at detecting suboptimal energy consumption behaviour in program. Techniques in
this category may use static or/and dynamic analysis techniques. Energy-aware test
generation techniques can also be found in category. These techniques are described in
section 4.5.

e Energy-aware programming: Techniques in this category are primarily targeted at
assisting the developer in developing energy-efficient programs rather that testing or
validating them for energy efficiency. Such technique propose the use of energy-aware
programming languages and energy-efficient programming constructs. These works
are described in section 4.6.

4.3 ESTIMATING AVERAGE-CASE ENERGY-CONSUMP-
TION

Technique in this category can provide the approximate energy-consumption of a program, on
a given hardware, (for a given test-input). In general. such techniques by themselves cannot
be used to detect scenarios of sub-optimal energy-consumption behaviour or to estimate
the worst-case energy consumption of a program (for a given hardware). In this section,
such techniques are discussed in two parts: (i) Architecture-based energy analysis and (ii)
Profiling-based energy analysis.

4.3.1 Architecture-based Energy Analysis

Techniques discussed in this category model the underlying hardware (such as processor,
pipelines, etc) at varying levels of abstraction. An energy cost is associated with each
operation that is conducted on a given hardware unit. Net energy consumption of a program
is estimated as (approximately) the sum of energy-cost of all constituents instructions. These
techniques can be further sub-divided into following three categories:

o Instruction Level Energy Analysis

57

e Cycle-accurate Simulators Based Energy Estimation

e Functional-block Level Energy Analysis

INSTRUCTION LEVEL ENERGY ANALYSIS Traditionally, estimation of energy con-
sumption for processors, was performed at a very low level, which depended on detailed
physical specification of the processor involved. Since this process is very cumbersome, the
authors of [62] propose a instruction level modelling framework which can be applied to
any off-the-shelf processor. The motivation behind their approach is that, given a instruction
level power model for a processor and the program binaries (or assembly code), one should
be able to determine the power consumption of the program on that processor. In order to
obtain an instruction specific power model, they associated each instruction with a base energy
consumption cost. To estimate the base cost of a particular instruction (say I), a program
consisting of only instruction I is executed on the processor and resultant average energy
consumption for I is measured. Although, this is a very simple way to estimate the base cost
of an instruction but this approach might not be accurate. Inaccuracy might arise due to the
fact that most modern processors have complex performance enhancing features (such as
pipelines). Also note that the base cost for the same instruction may vary depending upon
its operands. The authors argue that since the variation in the measured values is very small,
average case values (for the base cost) can be used for most practical purposes. To compute
the base energy consumption for the entire program, one needs to add-up the base energy
costs of all the instructions in the program. The base energy consumption of a program is not
equal to the actual energy consumption of the program, because a number of inter-instructions
effects also influence the net energy consumption. Example of inter-instructions effects are
the energy consumption due to the circuit state and energy consumed due to the hit or miss in
the cache. The authors also found through their experiments, that the cost of executing a pair
of instructions is always greater than the sum of the base cost of the instructions-pair. Authors
term this cost as the circuit state overhead. Note that circuit state overhead can be potential
source inaccuracy with their method. Another limitation and potential source of inaccuracy in
their methods is the in-ability to model resource contention while executing instructions and
other micro-architectural behaviour such as cache misses and branch mis-prediction.

Another such technique suggested by [63], uses a method of instruction level energy
profiling for high performance RISC, embedded processors. Their techniques also assigns
fixed, average-case energy value to each instruction, for all the instructions in the ISA of
the architecture. But unlike the methods suggested by [62], they suggest that the average-
case energy consumption for an instruction can be estimated by measuring the time it takes
to execute that instruction (since energy = power X time). Through their experiments they
observed that on an average, energy estimation by their method could lead to error of up to 8%.
Also note that their methods does not take into account the variation in power consumption
due to the inter-instruction effects which were mentioned in the above paragraph.

CYCLE-ACCURATE SIMULATORS This subcategory of energy analysis methods calcu-
late the total energy consumption while executing a program, by performing a cycle-accurate
simulation. SimplePower ([64]) and Wattch ([65]) are two such tools, which are based on
methods for cycle-accurate power simulation.

SimplePower takes in a program (executables) as input and simulates it to generate a cycle-
by-cycle energy estimate for that program. It also provides statistics for switch capacitance
of the processor datapath, memory and on-chip buses using analytical energy models. The
instruction set used in SimplePower is a subset of Simplescalar architecture ([66]) . The
underlying architecture for SimplePower consist of a five stage pipeline, consisting of fetch,
decode, execution, memory access and write back stages. The simulation method is very

58

straightforward, for each clock cycle, the tool simulates the execution of all active instruction
and estimates the power for each active functional unit for that cycle. This simulation
continues until the halt instruction is fetched, after which all the instructions in the pipeline
are executed and the simulation stops. The tool uses a cache power simulator to simulates
both the instruction as well as data caches. The tool also has bus simulator, which records the
number of transitions on the bus. The bus statistics is combined with an interconnect power
model to obtain the switch capacitance of the on-chip buses. A table for switch capacitance is
maintained, which maps each input transition to a switch-capacitance. Note that the switch-
capacitance table is architecture dependent. The table creation for this approach, is a tedious
process because the size of table can grow exponentially with the number of input transitions.
For complex modules such as memory, the tool uses an analytical, transition-independent
model for energy estimation.

Wattch is another Simplescalar based tool for cycle-accurate performance estimation. It
also provides cycle-accurate information for datapath elements, memory, control logic, and
the clock distribution network. It is less expensive than the SimplePower, because it does
not looks-up the switch-capacitance for each cycle. Instead, it keeps track of the number
of access to a particular functional unit and scales it by average base-power dissipation
for that functional unit, in order to calculate the total power consumption. Base power
consumption for each functional unit is calculated before the analysis begins. The power
estimates computed by Wattch may be less accurate than SimplePower, but Wattch has a very
less computation overhead therefore it is more scalable for obtaining average-case energy
consumption estimates of a program. However, it should be noted that neither Wattch not
SimpleScalar, provide any mechanisms to estimate an upper bound on the energy consumption
for a program execution.

FUNCTIONAL-BLOCK LEVEL ENERGY ANALYSIS A number of previous research
works have demonstrated that the energy analysis of a program, can be performed at a much
higher level of abstraction. Unlike the energy analysis methods mentioned in the previous
categories, the methods of this category rely on functional decomposition of a systems,
for power estimation. The key advantage of functional decomposition analysis is that, it
very loosely coupled to processor architecture. For example, in order to estimate the power
consumption of a program on a DSP, these methods would perform a functional analysis of
the target DSP. Functional analysis of a DSP will include analysis with components such as
control unit, memory management unit, etc.

One the first approaches for functional level energy analysis for embedded systems was
proposed in [67]. In their approach, the power consumption of a functional unit is computed
on the basis of a library of consumption rules. To build the library, a functional analysis of
the targeted architecture is performed. All the components of the architecture which consume
negligible power (for example, control registers for the DMA), are discarded. Some of the
major high level components which are considered for functional decomposition are the
control unit, memory management unit, instruction management unit and the processing
unit. (Note that in the experiments the above mentioned functional units were sub-divided
into smaller units) In order to induce the power consumption in a functional block, specially
crafted code are executed on the DSP and the results are plotted on a set of charts. These
charts are then used to identify parameters which influence the power consumption in a
functional unit and finally, the library of consumption rules are created on the basis of these
charts and parameters. The methods proposed in [68], [69], [70] have a similar approach.

59

4.3.2 Profiling-based Techniques

Techniques under this approach essential revolved around executing the program for set of
input that generates the desired behaviour. While execution, power consumption can be
estimated in a number of ways, each with different level of abstraction. One of the most
straightforward ways would be measure the power consumption accrues the entire system.
However, such a method may not provide enough information to deduce which components
of the system cause the power consumption. Another approach is to measure the frequency
of access to a given component during the execution and use these (frequency) number to
estimate power consumption. (this is assuming that the power model for underlying hardware
components are already available). [71] present one such work. In this work, the framework
inserts probes or counters at appropriate program locations. These counters essentially
measure the invocation of certain datapaths. Data obtained from these counters are then
plugged in a library of existing empirical power model to obtain the net power consumption.

In recent times, due to the prevalent use of smartphone devices, topics related to functional
and non-functional testing of smartphone applications have attracted the attention of software
engineering research community. Recent works on energy-aware profiling [3, 72] have shown
poor energy behaviour of several smartphone applications. In particular, the work in [3]
present a energy-profiling technique for mobile apps. It also presented a few cases studies
where it discusses the possibility of energy-inefficiency in a number popular mobile app (such
as Angry Bird and Facebook). Another category of work [73] extends the idea of instruction
level energy modeling to mobile devices. The key idea in [73], as well as earlier works
such as [62], is to obtain a per-instruction, energy model for a given hardware system. The
energy model associates each instruction with an energy consumption cost. One obvious
complexity with such techniques is that the energy model is hardware-specific, therefore it
must be recomputed every time the hardware changes. Additional complexities may arise (in
creating the energy model), due to program-specific behaviour such as cache misses, branch
mis-predictions, etc. Another recent work [74] has proposed a technique to relate power
measurements with source lines of applications. Essentially the technique in [74] tries to map
the power measurement data (obtain from the power-profile) to lines in the app source-code.
To do so, it monitors the paths that are being executed while the profile is being recorded.
Subsequently, it employs regression based techniques to map the path to estimated energy
consumption, while accounting for high-level events such as thread-switches.

Since it is not possible to execute (or profile) an program for all possible inputs/configura-
tions, it is not piratical to use profiling techniques such as the ones described in this section
to estimate worst-case energy consumption of a program. We discuss the techniques for
worst-cases energy consumption in the following section.

4.4 ESTIMATING WORST-CASE ENERGY CONSUMPTION

Most of the previous work on energy analysis, which was mentioned in the above few
paragraphs (such as [62],[65],[67]), focusses on estimating the average-case energy con-
sumption for a program. In particular, instruction level analysis methods are not capable of
modeling the micro-architectural behaviour of architecture and may suffer from potential
under-estimations. Therefore, such methods are unsuitable candidates for worst-case energy
consumption (WCEC) analysis. Architectural level frameworks do not offer a good solution
either, when it comes to worst-case energy consumption analysis. Because in order to obtain
WCEC, such methods would be required to simulate the program, on it’s entire input space,
which is clearly infeasible. For similar reasons, functional level frameworks, also do not offer

60

a good solution for obtaining the WCEC for real-time, embedded systems. In the following
subsection, we will describe some of the static analysis based methods which have been used
for estimating the WCEC of a program.

One of methods described in section 2.4 ([63]), uses average-case execution time of an
instruction to estimate the average-case execution energy of that instruction. So with the
same intuition, one might wonder, if the worst case execution time of a program can used
to estimated the worst case energy consumption of that program. Interestingly, experiments
by [75] revealed that the worst case energy path for a program does not necessarily coincide
with the worst case execution time path. They suggested that such un-intuitive behaviour, is
observed because the switching activity in the processor circuit, may not be directly related to
the execution time of the program. Based on this observation they proposed one of the first
techniques for WCEC estimation of a program. They split the WCEC analysis into two parts:
time dependent and time independent analysis. The authors classify the instruction specific
energy analysis as a time-independent component whereas the time-dependent analysis
consists of component such as pipeline specific energy analysis. The reason for such a
classification, they explain, is that the energy spent on various hardware components such
as switch-off power, clocking circuit, leakage power can not be attributed to any particular
instruction and it is roughly proportional to the execution time. Therefore, the energy of basic
block (Energyy), can calculated as

Energy, = Dynamicy, + SwitchOf f, + Leakage, + Clock,

where the Dynamicy, represents the instruction specific energy consumed of the basic
block and SwitchOf fy, Leakage,, Clock;, represents the switch-off power, leakage power
and clock circuit power respectively, during the execution time of the basic block b. Leakage
power is the term used to denote the unintended power loss in the processor. The rate of
leakage power depends on the processor technology but it is usually a constant for a given
architecture.

Most modern processor employ some mechanism to switch-off the unused portions of the
circuit, when they are not in use. Ideally, a component should draw peak power when it is
in use and no power when it is not used. But the observed behaviour is somewhat different,
even when an unit is switched-off it dissipates some power. The power consumed by a
component in switched-off state is termed as switch-off power. Some approaches assume
that a (multi-ported/single-ported) component (such as a register file) would consume a peak
power even if there is a single access to the unit (this approach is also known as simple clock
gating mechanism). Other approaches, such as realistic clock gating mechanism assume
that, even in the switched-off state components can consume up to 10% of their peak power
consumption. The techniques presented by [75], uses a combination of these approaches. It
assumes that the peak power is consumed by a component ¢, while executing a basic block
b, for min(accessy(c), weety) cycles. Here wcety, refers to the worst case execution time of
basic block b. For the switch-off power estimation, it assumes that 10% of the peak power is
consumed by a component in the switch-off state. So the switch-off power for a component c,
while execution of basic block b, can be written as

Accessy(c)

SwitchOf fy(c) = AWCET, - —5 .~

} X PeakEnergyConsumption, x10%

The processor model used for this work is similar to the Simplescalar and has a five-stage
pipeline (Fetch-Decode & Dispatch-Execute-Write Back-Commit). Instruction are executed
in an out-of-order fashion, but they are fetched, decoded and committed in program order.

61

In the above equation for energy calculation of a basic block, the Dynamic;, component
represents the sum of energy spent by all the instructions in a basic block. The Dynamic,
for a basic block is affected by a number of factors such as, energy consumption for register
access, energy consumed in the circuit-selection logic and the energy consumed in the wake-
up ! logic. The authors assume that the energy consumed in the register files is proportional
to the number of registers used in the basic block. The wakeup logic energy consumption
is assumed to be proportional to the number of output variables produced in the basic block.
The selection logic is assumed to be accessed in every cycle. To estimate the WCEC of the
entire program, the constraints are represented as ILP problem, as done by [35]. The ILP
formulation is also used to capture the effects of cache and branch prediction behaviour, along
with the program flow analysis. The objective function represents the total energy consumed
by the program. So the WCEC can be estimating by maximizing the objective function.

4.5 DETECTING ENERGY-INEFFICIENCY

Techniques based on static analysis: Existing works have proposed program analysis based
techniques to uncover energy inefficiencies in mobile apps. Recent works such as [76, 77]
propose static analysis based techniques for detecting resource leaks in Android apps. Static
analysis based resource leak detection techniques have been proposed for Java programs
as well [78]. Such works, in general, try to verify that resources that are acquired during
the execution of the program are released along all paths leading to exit(s). The idea being
that the certain resources are energy-intensive, therefore, should be released by the program,
before it ceases to execute. [76] in particular, formulates the resource leak detection problem
as a reaching definition problem. It essentially analyses all program-paths where an energy-
intensive resource is acquired or released in the program, using data-flow analysis. However,
the technique describe in [76] may be limited in finding resource leaks due to the representation
(of mobile apps) it uses. One of the key challenges in analysing mobile apps arises due to
the fact that they are event-driven applications. What this implies is that such programs do
not have an explicit main method, instead, what is present is a set of event-handler, each one
programmed to process pre-defined set of events. Since the ordering of arrival of events is
unknown (events come from the environment) apriori, actual execution of event handlers
is also unknown. The work of [76] does not address this important challenge, instead it
constructs aggregate CFG, consisting of several smaller CFGs (from event handlers). How
the ordering of these event-handlers is obtained, is not explained. However, one possible
source for obtaining such information could be profiling. [76] also mentions the possible use
of developer-assistance to bypass this challenge. The work of [77] uses a similar approach
based on static analysis, for resource leak detection. However, it does tries to address the
challenge of analysing event-driven applications, such as mobile apps. Essentially, it uses a
data-structure which associates events to respective event-handlers, for a given activity. As a
result, knowing the ordering between event-handlers beforehand, may not be necessary. One
common drawback with static analysis based approaches, such as the ones mentioned in this
paragraph, is that they may generate false positive (as observed in [77]). This may be due to
the presence of infeasible program-paths within the app source code.

Techniques based on dynamic analysis: A number of works , such as [79, 80], have
proposed techniques based on dynamic program analysis to estimate the energy consumption
of a program. For instance, the work of [79] uses symbolic execution along with platform
specific energy profiles to generate estimated energy-consumption along a given (explored)

1 The energy required to re-start dependent instructions, when all of their dependencies are fulfilled

62

program-path. The energy-profiles essentially contain the energy-consumption profiles of
each basic-block in the program. To compute the energy consumption for a given path, the
energy consumption for a given block is multiplied by the counter for each basic block,
on a given path. The counter essentially counts the number of times a given basic block
is executed for a given execution. Such an approach can be considered preliminary in the
sense that it only considers the CPU power consumption. In contrast, power consumption
to access memory subsystems, network card and other I/O components were not considered.
In smartphone devices, I/O components consume the most power, hence this technique may
not be very suitable for analysing mobile apps. The work of [80] is more suitable for testing
the energy-consumption behaviour of mobile-apps. It dynamically explore the graphical
user interface model of the subject app to detect the presence of resource leaks. A common
limitation to the dynamic analysis method as described in preceding paragraphs is that these
method need to explore all program paths in the program in order to produce complete results.
This however, may be impractical for many program which may have explicit loops(for,
while, do — while) or implicit loops (due to cycles in GUI model). This issue (commonly
referred to as state-space-explosion problem) may also lead to scalability issues while testing
real-life programs.

Test generation for mobile apps: Works related to test generation in mobile apps have
mostly been confined to the domain of functional testing. Works such as [81, 82] have
proposed techniques to test the functional properties of mobile apps. [81] in particular uses a
biased-random testing technique to explore the various GUI states of an app, whereas [82]
uses symbolic execution to achieve the same goal.

As of this writing, there were two different approaches, [2] and [83], targeted at detecting
energy-inefficiencies in mobile apps. One of the approaches is our previous work [2] which
uses a hardware-software hybrid approach to systematically generate test inputs that leads
to energy-inefficient scenarios. On a high-level, the technique of [2] can be described as a
grey-box testing approach where real-time measurements from the device are used to detect
energy-inefficiencies in app, that is being executed on the device. Due to the use of real-power
measurements, the technique of [2] of can skip the expensive, model-generation stage. Also
using real measurements instead of power model further reduces the number of false-positives
in final results.

Another approach for generating energy-consumption related test cases was proposed in a
recent work of [83]. The technique in [83], unlike the technique of [2], can be described as a
white-box testing based approach, which uses bounded symbolic execution to detect resource
leaks in mobile apps. Bounded symbolic execution is an attempt to bypass the problem of
state-space-explosion. As explained in the previous paragraph, any technique which relies
on exploring all program path within a program may have scalability issues. This is because
in the presence of unbounded exploration there may be infinite number of feasible program
paths to explore. Using bounded symbolic execution alleviates this issue but may introduce
new limitations. For instance, bounded symbolic execution may be unable to detect feasible
resource leaks, if the bounds (for the bounded exploration) are set too cautiously.

To provide a complete solution to the requirement of detecting, validating (generating test
cases) and repairing resource leaks in mobile apps, we have developed a framework which
is described in Chapter 6. This technique differs from the existing two directions of works
(as described in previous paragraphs) in three aspects (i) the way energy inefficiencies are
detected (power measurement vs static analysis) (ii) the way test-cases are generated (search
heuristics vs guided symbolic execution) and (iii.) automatic repair expressions generation
(other test-generation technique such as [2] and [83] may require manual effort).

63

4.6 ENERGY AWARE PROGRAMMING

A different line of work aims to produce energy-efficient applications from different imple-
mentations of the same functionality [84, 85]. Specifically, in application scenarios where fast
but approximate answer is acceptable, such approaches could be quite useful. For example,
while compressing files, there is always a trade-off between the achieved compression rate
and time required for compression. Likewise, many applications scenarios, can benefit by
using approximate, energy efficient computing. The decision to choose an implementation
is influenced by monitoring the power consumption for a given test-suite. For instance,
the work in [84] dynamically chooses approximate implementations of an energy-intensive
functionality (such as long-running loops), to reduce the power consumption. The framework
can dynamically approximate the resource expensive loops and functions depending upon the
requirements, while maintaining a pre-defined, minimum quality of service(QoS). Through
their framework, a programmer can provide a minimum required QoS, along with multiple
approximate versions of the same function, for function approximation. Likewise loops
approximation can be achieved by running the loop for a fewer number of iterations. The
framework can calculate the loss in QoS, to determine the best approximation to be used for a
particular scenario. Along the same lines, a recent work [85] monitors the power consumption
of different API implementations and computes the potentially best implementation in terms
of energy-efficiency. Specifically, given a program that uses Java Collection Framework, the
technique of [85] automatically generates several alternative versions of the same program by
replacing a Java-collection object by another object of similar behaviour. Subsequently, it
executes this alternate versions to find the most energy-efficient alternative.

A complimentary approach to energy-aware programming has been proposed by [86]. The
work of [86] proposes a new language consisting of novel type system, Energy Types. In
general, non-functional properties, such as energy-consumption, are not specifically encoded
in the program source-code. As result of which testing and verification of energy-constraints
is challenging. With this kind of type system, not only the task of energy-aware testing and
verification is much easier, but it also enables the programmer to encoded their assumption and
expectation about energy-consumption of the program within itself. For instance, exploiting
the information provided by the programmer, energy saving mechanisms such as dynamic
voltage and frequency scaling can be used aggressively.

4.7 CHAPTER SUMMARY

In this chapter we discussed four important direction of work on the topic of energy-
consumption analysis, which are, (i) techniques for average-case energy consumption, (ii) tech-
niques for worst-case energy consumption, (iii) techniques for detecting energy-efficiencies
and (iv) techniques for energy-aware programming. In general, average-case energy consump-
tion techniques can be light-weight and fast (such as profiling techniques) or accurate and
slow (such as cycle-accurate simulators). However, these techniques cannot be employed for
estimating worst-case estimation. Techniques for detecting energy-inefficiencies in program
comes in may flavours. There exists static analysis based techniques which verify the absence
of energy-intensive resource leaks in programs and there exists symbolic execution based
techniques that can give per-path energy consumption cost for a given program. Finally,
we looked at some of the existing works on energy-aware programming and optimization.
Such works either provide novel programming constructs for energy-aware programming or
provide technique to automatically optimize the energy-consumption of a given program for
the given input space.

64

—_—

DETECTING ENERGY BUGS AND
HOTSPOTS IN MOBILE APPS

Over the recent years, the popularity of smartphones has increased dramatically. This has lead to a
widespread availability of smartphone applications. Since smartphones operate on a limited amount of
battery power, it is important to develop tools and techniques that aid in energy-efficient application
development. Energy inefficiencies in smartphone applications can broadly be categorized into energy
hotspots and energy bugs. An energy hotspot can be described as a scenario where executing an
application causes the smartphone to consume abnormally high amount of battery power, even though
the utilization of its hardware resources is low. In contrast, an energy bug can be described as a
scenario where a malfunctioning application prevents the smartphone from becoming idle, even after
it has completed execution and there is no user activity. In this chapter, we present an automated
test generation framework that detects energy hotspots/bugs in Android applications. Our framework
systematically generates test inputs that are likely to capture energy hotspots/bugs. Each test input
captures a sequence of user interactions (e.g. touches or taps on the smartphone screen) that leads to
an energy hotspot/bug in the application. Evaluation with 30 freely-available Android applications
from Google Play/F-Droid shows the efficacy of our framework in finding hotspots/bugs. Manual
validation of the experimental results shows that our framework reports reasonably low number of
false positives. Finally, we show the usage of the generated results by improving the energy-efficiency
of some Android applications.

5.1 NEED FOR AUTOMATED ENERGY-AWARE TEST GEN-
ERATION

Global penetration of smartphones has increased from 5% to 22% over the last five years.
As of 2014, more than 1.4 billion smartphones are being used worldwide [87]. Over the
recent years, smartphones have improved exponentially in terms of processing speed and
memory capacity. This improvement has allowed application developers to create increasingly
complex applications for such devices. Additionally, modern smartphones are equipped with
a wide range of sensors and I/O components, such as GPS, WiFi, camera, and so on. These
I/O components allow developers to create a diverse set of applications. In spite of such high
computation power and developer flexibility, the usage of smartphones has been severely
impeded by their limited battery capacity. In terms of computation capacity, most of the
current-generation smartphones are two or even three orders of magnitudes better than their
decade-old counterparts. However, the battery-life of these modern smartphones has improved
only two or three times'. High computational power coupled with small battery capacity and
the application development in an energy-oblivious fashion can only lead to one situation:
short battery life and an unsatisfied user base.

Energy inefficiencies in smartphone applications can broadly be categorized into energy
hotspots and energy bugs. An energy hotspot can be described as a scenario where executing
an application causes the smartphone to consume abnormally high amount of battery power
even though the utilization of its hardware resources is low. In contrast, an energy bug can be

For instance, if we compare Nokia 9000 Communicator (released in 1996) to Samsung S3
(released in 2012), we can observe that the processing power has increased from 24MHz to 1. 4GHz,
whereas the battery capacity has only increased from 800mAH to 21 00mAH

65

described as a scenario where a malfunctioning application prevents the smartphone from
becoming idle even after it has completed execution and there is no user activity. Table 5
lists the different types of energy bugs and energy hotspots that can be found in Android
applications. It is also worthwhile to know that most contemporary smartphone devices
are designed to operate at different power states and prolong the battery life. However, as
listed in Table 5, malfunctioning applications may lead to inappropriate power states, such as
energy hungry GPS/sensor updates, non-idle power state in the absence of user activity and
so on. Moreover, most of these energy inefficiencies appear when the application does not
access the device resources in an appropriate fashion (e.g. not releasing WiFi/GPS/Wakelocks
or expensive sensor updates), eventually hampering the battery life. Therefore, to build
energy-efficient applications, it is crucial for the developer to know these energy inefficiencies
in the application code. Presence of such energy inefficiencies in the application code can be
highlighted to the developer via our proposed methodology.

In this chapter, we present an automated test generation framework to detect energy
hotspots/bugs in Android applications. Specifically, our framework systematically generates
test inputs which are likely to capture energy hotspots/bugs. Each test case in our generated
test suite captures a user interaction scenario that leads to an energy hotspot/bug in the
respective application. We argue that the systematic generation of such user interaction
scenarios is challenging. This is primarily due to the absence of any non-functional property
(e.g. energy consumption) annotations in the application code. As a result, any naive test-
generation strategy may either be infeasible in practice (e.g. exhaustive testing) or it may lead
to an extremely poor coverage of the potential energy hotspots/bugs. This also brings us to
the difficulty of defining an appropriate coverage metric for any test generation framework
that aims to uncover energy hotspots/bugs. In our framework, we address these challenges by
developing a directed search strategy for test generation.

To design a directed search strategy, it is critically important to know the potential sources
of undesirable energy consumption. Table 5 lists such sources of energy consumption in
Android applications. Moreover, existing works such as [3] have shown that I/O components
are primary sources of energy consumption in a smartphone. One crucial observation is that
I/O components are usually accessed in application code via API calls.

Besides, the power management functionality (e.g. Wakelocks), background services and
other hardware resources (cf. Table 5) of a device can only be accessed through a set of API
calls. In summary, most of the classified energy hotspots/bugs (cf. Table 5) are exposed via
the invocation of API call(s). Therefore, the general intuition behind our directed search
strategy is to systematically generate user interaction scenarios which potentially invoke such
API calls.

Our search strategy revolves around systematically traversing an event flow graph (EFG)
[88]. EFG is an abstraction to capture a set of possible user interaction sequences. Each node
in an EFG captures a specific user interaction (e.g. touching a button on smartphone screen),
whereas an edge in the EFG captures a possible transition between two user interactions.
Therefore, each trace in an EFG captures a possible sequence of user interactions. Since ex-
haustive enumeration of EFG traces is potentially infeasible, our directed search methodology
generates appropriate EFG traces which are likely to lead to undesirable energy consumption.
To accomplish this, we primarily employ two strategies. Based on our observation from
Table 5, we execute selected EFG traces and these selected EFG traces invoke API calls that
might be responsible for irregular power consumption . Besides, if an energy hotspot/bug is
detected after executing an EFG trace, we record the sequence of API calls responsible for
such irregular energy behaviour. Subsequently, we prioritize unexplored EFG traces that may
invoke a similar sequence of API calls. Such a guidance heuristic primarily aims to uncover
as many energy hotspots/bugs as possible in a limited time budget.

66

[L6] 19AI0S 9[qeyOoRAIUN SB ONS SUOS
a1 0) anp A[pareadal paInoaxa 9q Aew 9pod UISO[JIomlou
Sururejuod dooy e ‘aouessut 10 *doof & ur paInoaxa A[pajead
-a1 are apod uonedrdde jo suoniod :jodsjopy £St1aug-dooy

[L6] AS19U9 QuINSuOd
0] Sumunuod AQaIay) ‘1asn 9y} £q Paso[d Uq aArY Ad])
uoym umeds-a1 Aews suonedridde A33ng :3ng Qvriounuy

Ajjeuonouny
QAN

[96] SAD 2 pue LIA Y3 ypoq Sutsn st uonesrjdde
ue JI ‘sojepdn uoneOO] pouILIZ-9sI80d Paseq-IIAN ‘QArsuad
-xaur Aq paoer[dai oq ued pue aarsuajul Jomod A1oA A[fensn
aIe D UO paseq sojepdn UONBIO] PAUTRIZ-oUY ‘A[IR[IWIIS
[S6] "poploAE 9q pInoys 210521y} pue sjodsioy A3Ious asned
Aew 9ye1 Surpdwres Y3y Apressaosuun) ‘sojel Surjdwes jua
-IQJJIp Ik 9Jerado 03 pamn3yuod 9q ued sajepdn Josuas se
[ons SOIAIIS PUNOIZNORY (52014195 PUNOLSHODY dA1SUadxXT

[6] 11 speau uoneordde ou
y3noy) uaad eyep 3untodar uo doay 901AIaS oY) ‘FUNIXS 210J
-9q ApPIo1dXa 90TAIS) SOAOWAI 3, USAOP Inq sepdn IOSUIS
10 s9jepdn uoneoo] Sk Yons AJIAISS B sajeniur uoneosrdde
UB 9I0UM OLIBUIS) U] 52014495 PUNOLSYODEY SHONIDA

SQOIAIRS
punoidyoeqg

A31oug-Tre],
0 anp ssof Jamod sasearour apod uonedrdde ayj noysnoiy)
sjuouoduwod J10m3au Jo o3esn paroyeds jusuoduwiod ay
Aq Iom [njasn Aue 01 9JnQLIIUOD JOU S0P AFIAU [1B) JBY)
0N ‘[€6] AS10U7 [rR], SB 01 palId)aI ST 9je)s-dag[s o 03
S9UONMS JuauOodwod JY) PuB PAYSIUY ST PRO}IOM I} UAYM
awr Jo pouxd Y} uoamloq jusuodwod Ay Aq powInsuod
A310u0 9y, ‘pajodwod sey wayl uo pasodwil peoIom
U} 19)Je dwrl Jo pourdd-110ys € 10J ks romod Y3y e ur
193ur] 03 pua) syuauodwiod JIoMIdN :jodsioy LS4aug-nnf

[cel
3ng Yoo[ayeA\ B SB 0) PALIQJRI ST UONBN)IS SIY], "UONNIAXD
paystuy sey uonesrjdde ay3 I91je UaA 9je)s Jamod-y3iy e
Ul Jon3s g 0) AJTAP Y} SN UBD SYIO[AA\ JO a5esn
Iodoxdwr ‘IoAdmOH oeme AB)S 0] SPaU AIIAJP Y} JBy)
J1eorpul ued suonedrdde yorym y3noay proIpuy ur wsiu
-eyoowW Judwoageuew Jomod e ST O0[aNeA\ Sng ¥o01ayDM

SonsLNAY
uonIsuen
91e1s-doals

[16] ‘{061 peimbair ueyy 103U0[SelS

[68] are1s
Jomod-y31y ® ur oq 01 anunUOd A9y} 9S[9 J0 JuNIXa AI0Joq

Jomod-ysIy ur 9q 03 WAy} sasned)e[00} WY} SUISBI[AI IO | PIseI[I 2q Isnw uonnodaxa suump uonedrdde ue £q pannb S90INOSNY
A11ed 001 $901n0sax SuIpulq :Suipulg 204n0say punidogng | -oe a1e 183 (IJIA\ Y} SB YONS) SAOINOSAY :YDIT 2I4N0SIY arempIey
10ds)oH A31uy gng ASuy £103318)

s10dsjoH A31oug pue s3ng A31oug JO UONBIYISSEL) S qRL

67

Besides the challenges encountered in generating energy stressing test inputs, it is also non-
trivial to automatically detect a potential energy hotspot/bug in a given trace. To detect energy
hotspots/ bugs, our framework executes a test input (i.e. a user interaction scenario) on a
off-the-shelf smartphone, while simultaneously measuring the power consumption via a power
meter. To detect an energy bug in a specific trace, we measure the statistical dissimilarities in
power-consumption trace of the device, specifically, before and after executing the respective
application. As the power consumption of an idle device should be similar, a statistical
dissimilarity indicates an energy bug. To detect an energy hotspot, we employ an anomaly
detection technique [98] to locate anomalous power consumption patterns. Once we finish
the process of detecting hotspots/ bugs in a power-consumption trace, we generate a different
user interaction scenario (using the directed search strategy in the EFG) to investigate. The
test generation process continues till the time budget permits or all event traces invoking
API calls have been explored. As the API calls are the potential locations to cause irregular
energy behaviour, the quality of our test suite is provided via the coverage of API calls in the
application.

5.2 GENERAL BACKGROUND

Android is an open-source operating system (OS) designed for mobile devices such as
smartphones. We choose Android as our target platform primarily due to its relevance in the
real world (globally 57% of all smartphones/tablets are Android based [99]). Additionally,
a wide variety of tools are publicly available for Android application developers. This
includes, among others, tools to monitor the state of an application in real-time (e.g. logcat),
to communicate with the device (e.g. android debug bridge) and to facilitate application
development and testing (e.g. emulator).

Activity Activity
Launch Shutdown
............... »onCreate onDestroy

activity finished
or destoryed

onStart «— onRestart onStop

activity not
visible to user

ONResUME “————————————— ONPAUSE s
user returns

to activity
another activity
comes to foreground

Activity
Running
user navigates activity with higher
to activity / Activity \, priority needs memory
\ Killed J

Figure 21: Life-cycle of an Android activity

The user interaction interface of an Android application is referred to as an Activity. Figure
21 shows the life-cycle of an Android activity. An activity can be in one of the seven stages
during its life-cycle. Usually, all the set-up tasks (such as acquiring resources and starting
background services) take place in four stages of the activity, namely onCreate, onStart,
onResume and onRestart. Similarly, all the tear-down tasks (such as releasing resources
and stopping background services) take place in three stages, namely onPause, onStop and

68

onDestroy. However, some real-life applications do not follow the ideal set-up and tear-down
scenarios as explained via Figure 21. Such applications may contain energy bugs. This
situation is made worse by the fact that most real-life applications have a huge number of
feasible user interaction scenarios (due to complex GUIs). As a result, it can be impossible
for a developer to test an application for all possible scenarios.

1 LocationManager locationManager;

2 long Min_Update_Time = 10, Min_Distance = 1000 * 60 * 1;
3

4 @Override

5 public void onCreate(Bundle savedInstanceState){

6 super.onCreate(savedInstanceState);

7 setContentView(R.layout.main);

8 locationManager = (LocationManager)getSystemService
9 (LOCATION_SERVICE);
10 locationManager.requestLocationUpdates

12 (LocationManager.GPS_PROVIDER,Min_Update_Time,

13 Min_Distance, this);

14 someOtherFunctionality();

15 }

16

17 @Override
18 public void onPause(){

19 super.onPause();

20 try{

21 functionMayThrowsException(); S
22 locationManager.removeUpdates(this);

23 }catch(Exception ex){

24 Log.v(”test”,”exception occured”);

25 }

26 }

Figure 22: Code with a potential energy bug

Figure 22 shows a snippet of application code that has a potential energy bug. The application
code is supposed to start a location-update background service (Line 10) in the onCreate
method. Subsequently, it performs some operation with list data (Line 12). When the user
stops the application, the location-update service is removed (Line 19) in the onStop method.
However, if there is an exception before Line 19 (for instance, due to Line 18), the location
update service is never stopped, resulting in an energy bug. The example in Figure 22 shows
one possible scenario (cf. Table 5 #c: Vacuous Background Services) which can lead to an
energy bug. Next, we shall show an example that can lead to an energy hotspot.

The code snippet in Figure 23(a) shows an example with energy hotspots due to disaggre-
gated network activities (cf. Table 5 #b: Tail-Energy Hotspot). Observe that in Figure 23(a),
network related code (Line 6) is interleaved with CPU-intensive code (Line 8) within the same
loop. Such an interleaving causes energy-inefficiencies due to Tail-Energy (see Table 5 #b:
Tail-Energy Hotspot). Tail-Energy behaviour has been observed for network components
such as 3G, GSM and WiFi [93]. Other works [3] have observed Tail-Energy in components
such as storage disks and GPS as well. In order to reduce energy-loss due to Tail-Energy, the
network related code in Figure 23(a) can be aggregated as shown in Figure 23(b).

Finally, we shall explain the method used for obtaining the power consumption ratings of
the hardware components in our smartphone. One approach to obtain the power consumption
ratings would be to perform empirical experiments based on the guidelines provided on

69

ONOUTA WN R

11
12
13

Figure 23: (a) Code with energy hotspot due to disaggregated communication (b) Code without energy

the Android developer web page [100]. However, there is a more elegant way to obtain
the power consumption ratings. Most Android smartphones are shipped with a XML file
(usually named as power_profile.xml) containing the average power consumption ratings for
the hardware components in the device. The data contained in this XML file is provided by
the device manufacturer and therefore it is reliable. Moreover, the Android framework uses
this data to show battery related statistics. However, note that the data in this XML file is
an indicator of average power consumption of the hardware components of the device and
does not correspond to any particular application being run on the device. The data from

public Object[] nonAggregatedComm()

{

Object[] objectArray =
new Object[10];
for(int i=0; i<10; i++){
Object temp = downloadObject(i);
objectArray[i] =
processObject(temp);
}

return objectArray;

(a)

hotspot

public Object[] aggregatedComm()
{
Object[] tempArray = new Object[10];
for(int i=0; i<10; i++){
tempArray[i] = downloadObject(i);
}
Object[] objectArray = new Object[10];
for(int i=0; i<10; i++){
objectArray[i] =
processObject(tempArray[i]);
}

return objectArray;

(b)

power_profile.xml for our smartphone .G L3 E400, is shown in Figure 24.

350

Screen Full

N w
%] o
o o

N
o
o

Screen On

150 -

100

Power Consumption (mW)

1%
o
L

Bluetooth Active

0 T T

Radio (2G/3G) Active
CPU 320 MHz
CPU 480 MHz
CPU 600 MHz
CPU 800 MHz

Wifi Active

GPS

Screen Bluetooth

GPS Wifi Radio CPU

Figure 24: Power profile for LG Optimus L3 E400 smartphone

70

5.3 DETECTING ENERGY BUGS AND HOTSPOTS IN MO-
BILE APPS: AN OVERVIEW

An overview of our test-generation framework is shown in Figure 25. Our framework has
two essential components: (i) guided exploration of selected event traces that are more likely
to uncover energy hotspots/bugs, and (ii) detection of hotspots/bugs in a given event trace
for an application. The information provided by the hotspot/bug detection component is
also utilized by the guidance component to select subsequent event-traces. The process of
selection, execution and detection continues until the given time-budget has expired or all
event-traces invoking API calls have been explored. Finally, event traces that lead to energy
hotspots/bugs are reported to the developer for further investigation.

To detect a hotspot/bug, we measure the power consumption of the application for a given
event-trace. However, it is impossible to detect a hotspot/bug in an application solely by
analyzing its power consumption trace. For instance, consider a scenario where two programs
P and P, have similar power consumption traces. However, program P; has a much higher
utilization of system resources (such as CPU) compared to P;. In such a scenario, program P;
is more energy-efficient than program P,. Therefore, to accurately detect energy inefficiencies,
it is important to define an appropriate metric for system-resource utilization.

For a hardware component x, the Load, represents the average amount of computational
work performed by the hardware component x over a given period of time. Load, has a range
from O to 1. For example, Loadcpy; represents the fraction of time CPU is in use and therefore
Loadcpy; can be a number between 0 and 1. For other hardware components (i.e. WiFi,
screen, Radio and GPS), Load,, captures whether the respective components are in use. For
instance, Loady;; is set to 1 if the WiFi is transmitting data and it is set to O otherwise. For
any hardware component x, we measure Load, directly from the device, while the application
under test is being executed. It is important to note that a higher Load, in a high-power
consuming component x would result in a higher power consumption for the device. Based
on this information we define a new metric of utilization that will be subsequently used in
energy hotspots/bugs detection.

Definition 5.3.1 Utilization (U) can be defined as the weighted sum of utilization rates of all
major power consuming hardware components in a device, over a given period of time.

Based on the power profile for our device (c¢f. Figure 24), major power consuming components
in our mobile device are the screen, WiFi, Radio, GPS and CPU. Therefore, for a given time
interval, the utilization of system resources can be computed by Equation 32.

Utilization = Uscreen + Ucpu + Uwiri + URadio + Ucps (32)
WC PUspy * Loadc pPuU, if CPU is operating at 320MHz
chu480 . LOEldcpu, if CPU is operating at 480MHz
Ucpu = o
We PlUgoo * LO(ZdC puU, if CPU is operating at 600MHz
WCPUSOO . LO(Ildcpu, if CPU is operating at 800MHz
. WScreenON . Loadsmen, if screen on
Uscreen =) .
WScreenFULL . Loadscreen, if at full brightness

U, = Wy - Loady, x € {WiFi, Radio, GPS}

In Equation 32, U, represents the utilization of hardware component x. Utilization of a
component x is directly proportional to its Load,. For any component x, the value of W is
computed from the power profile (Figure 24). Specifically, the value of W, is normalized

71

Application

- — I B 2 - /7
| | |
- o0 EFG Extraction
Power Meter
‘ Event Flow Graph ‘
é . Smartphone ‘ ‘ EventTrace ‘
nergy Consumption Event Trace
‘ frace Utilization ‘ ‘ Generation ‘
|] |
‘ Hotspot / Bug Energy ‘ ‘ ‘
Detection Hotspots/Bugs Guidance «—— Database
‘ ‘ ‘ Module N—] ‘
|] |
|~ HOTSPOT/BUG DETECTION COMPONENT | jUIDﬂICEEMPﬂENL o

Time Budget Expired

Test Suite

Figure 25: Overview of the test generation framework

such that W, for the most power consuming component is 1 (in our case Screenry; as
shown in Figure 24). Note that in our case Equation 32 does not include Bluetooth. This
is because in our target device Bluetooth has a very low power consumption compared to
other components. However, if required, we can easily extend Equation 32 to accommodate
Bluetooth as well. Using the new metric of utilization (U), we can now compute the magnitude
of energy-inefficiency as follows.

Definition 5.3.2 Energy-consumption to Utilization (E/U) ratio is the measure of energy-
inefficiency of an application for a given time period.

If E/ U ratio of an application is high, it implies that the energy-consumption is high, while
utilization is low. Therefore, a high E/U ratio indicates that the application is energy-
inefficient. Recall that we discuss two categories of energy issues that can make an application
energy-inefficient i.e. energy hotspots and energy bugs. They can be defined as follows: A
high E/U ratio during the execution of an application indicates the presence of an energy
hotspot. A persistently high E /U ratio even after the application has completed execution
indicates the presence an energy bug.

Now we shall briefly discuss the exploration of event traces to reveal hotspots/bugs. In our
framework, guided exploration of selected event traces is based on event flow graph (EFG)
[88]. EFG of an application can be defined as follows.

Definition 5.3.3 An Event Flow Graph (EFG) is a directed graph, capturing all possible
user event sequences that might be executed via the graphical user interface (GUI). Nodes of
an EFG represent GUI events. A directed edge between two EFG nodes X and Y represents
that GUI event Y follows GUI event X.

In our experiments, we use a modified version of the Dynodroid tool [81] to generate the
EFG. Subsequently, our framework generates event sequences up to maximum length k and

72

stores them in a database. After the event traces have been generated, our framework initiates
a guided exploration of those traces. The crucial factor during the exploration is to identify
the event traces that may lead to hotspots or bugs. Our framework accomplishes this by
selecting event traces based on the number of invoked API calls and guidance heuristic. The
guidance heuristic gathers information from previously detected hotspots/bugs, specifically
the sequence of API calls which are likely to lead to energy inefficiencies. Subsequently, the
selection process is biased towards event traces invoking a similar sequence of such API calls.
This process of selection, execution and detection continues until the time-budget has expired
or all event-traces invoking API calls have been explored. Finally, event traces that lead to
energy hotspots/bugs are reported to the developer for further investigation.

5.4 DETAILED METHODOLOGY

In the following sections, we shall describe our test generation methodology in detail. Broadly,
our framework contains two substeps; (i) preprocessing the application under test to build a
database of possible event traces, and (ii) test generation using event traces generated in the
first step.

5.4.1 Preprocessing the Application

Preprocessing of application can be divided into three steps: (i) EFG extraction (ii) Event
trace generation (iii) Extraction of API calls sequence for each event trace. Note that this
preprocessing step is performed only once for each application. The generated EFG and
database are stored for later use and need to be updated only if the application’s user interface
changes. Since this preprocessing is done offline, a developer can rerun the test generation
step (detailed in Section 5.4.2) without repeating preprocessing step.

(i) Event Flow Graph Extraction : We build the Event Flow Graph (EFG) based on the
UI model proposed in [88]. For the purpose of EFG construction we use two third-party tools
Hierarchy Viewer[101] and Dynodroid[81]. Hierarchy Viewer provides information about the
UI elements of the application under execution and Dynodroid is used to explore these event
sequence automatically. Note that Dynodroid does not generate the EFG by itself, therefore
we modified the Dynodroid source code to build the EFG. The EFG was constructed gradually
each time Dynodroid interacts with the application. Figure 26 shows how our EFG is being
gradually built as Dynodroid performs the exploration of event sequences. It is worthwhile to
note that Dynodroid does not guarantee to reach all GUI states during exploration. Therefore,
our constructed EFG is in fact a partial EFG of the entire application. However, in our
experiments, we observed that the generated EFGs cover most of the GUI elements for the
tested applications.

(ii) Event Trace Generation : EFG is primarily used to generate a set of event traces. Note
that each application has a start GUI screen. This GUI screen is presented to the user when
an application is launched. We refer to this GUI screen as the root screen. Therefore, for a
sequence of user interactions performed in an application, the first action corresponds to an
event present in the root screen. Using this notion, we define an event trace as follows.

Definition 5.4.1 An event trace is defined as a path of arbitrary length in the EFG. Such a
path must start from an event in the root screen of the respective application.

73

Based on our EFG, we generate a complete set of event traces upto length k. These event
traces are stored in a database for further analysis during test generation. Figure 26(b)
shows the partial EFG of an application. The node containing the event playbutton captures
the root screen of the same application. An example event trace of length 3 would be
playbutton — stopbutton — playbutton or skipbutton — ejectbutton — BackButton. Note that

events playbutton and skipbutton correspond to different events in the root screen of the
application.

playbutton

playbutton
stopbutton stopbutton

skipbuttoD skipbuttoD

/N /N

rewindbutton pausebutton ejectbutton rewindbutton pausebutton ejectbutton
BackButton @
(a) (b)

Figure 26: (a) An example EFG (b) EFG after pressing "ejectbutton”

(iii) Extraction of API Calls : Existing literature [3] has shown that I/O components are
one of the major sources of energy consumption in smartphones. On observing the power
profile of our smartphone (see Figure 24) we find this argument to be consistent. In general,
for modern smartphones the major power consuming components are the screen, CPU, WiFi,
Radio, GPS, SDCard, Camera and Audio hardware. We observed that these components
(except for the CPU) can only be accessed via a set of API calls provided by the Android SDK
framework. Therefore, we create a pool of such API calls. Table 6 shows a categorization of
these API calls based on their functionalities. Since our target device (LG L3 E400) uses
Android 2.3 (Gingerbread), therefore we only consider API calls available in Android 2.3. It

is worthwhile to note that such a pool is constructed only once and it needs to be updated only
if the Android SDK framework changes.

Table 6: Categorization of Android API calls

Functionality 1;1;1 Xlll)le;r Example
Power Management 3135 WakeLock.acquire()
Local Area . .
Wireless Networks 2116 WifiLock.acquire()
Telecomm Networks 1691 SmsManager.sendTextMessage()
Haptic Feedback 783 Vibrator.vibrate()
GPS 146 LocationManager.requestLocationUpdates()
Audio/Video 94 Camera.startPreview()
Storage 66 DownloadManager.enqueue()
Others 25 SensorManager.getAltitude()

74

We instrument the application code locations which invoke any API calls from our con-
structed pool. This instrumented code runs in an emulator on our desktop PC. The sole
intention of this instrumentation is to collect the API call traces during the execution of an
event trace. We execute the instrumented code on the emulator and record the API calls
invoked for each event trace. These API calls are annotated with the EFG node corresponding
to the triggered event. Thus, for each event trace generated from the EFG, we can gener-
ate the respective API call trace. It is important to note that the event traces are executed
on the smartphone, as well as in the emulator. The instrumented application runs on the
emulator whereas the instrumentation-free application run on smartphone. Therefore, the
instrumentation does not influence the energy consumption behaviour of the application.

5.4.2 Test Generation

In this subsection, we shall describe (i) technique for hotspot/bug detection (ii) guidance
heuristic for the framework and (iii) algorithm for test-generation

(1) Technique of Hotspot/Bug Detection: As described in section 5.3, energy hotspots/bugs
are those regions of code that lead to high E /U ratio (¢f. Def 5.3.2). To detect energy hotspots
during an event trace T, we must first obtain the E /U ratio trace (E / Ur), during the execution
of T. E/Ury is divided into four different stages: pre-execution stage (PRE), execution stage
(EXC), recovery stage (REC) and post execution stage (POST) (see Figure 27). The rationale
for dividing E /Uy trace into four stages is as follows: in the PRE stage the execution of
event trace T has not started yet. Therefore, PRE stage records the idle-behaviour (low-power
state) of the device. Similarly, in the POST stage, the devices has completed execution of
T and so in an ideal scenario the device would have gone back to its idle-behaviour during
POST stage. The execution stage, as the name suggests, is when T is actually executing on
the device. After the execution of T, the device takes a brief period of time (referred to as
screen-time-out duration) to return to its idle-behaviour. In our framework this time period
between the EXC and POST stage is referred to as REC stage .

To detect the presence (or absence) of an energy bug we compare the E /Ut values in PRE
and POST stages using statistical methods. If the dissimilarity between E /U7 values in PRE
and POST stage is more than a predefined threshold (in our experiments the threshold was
set to 50%), an energy bug is flagged (i.e execution of T changed the idle-behaviour of the
device).

Compared to detection of bugs, detection of hotspots is much trickier. Hotspots may appear
only during the execution of an event trace (i.e. EXC stage) or just after the execution of an
event trace (i.e. REC stage) stage. Note that E /Ut values obtained in EXC stage and REC
stage may substantially vary for different event traces. Besides, different executions of the
same event trace may show different E /U values in EXC stage or REC stage, due to different
hardware states. Therefore, we first need a clear definition of energy hotspots to detect them
automatically. We believe that abnormally high energy wastage during the execution of
an event trace is a suitable indicator of energy hotspots. To detect such unusual energy
behaviours, we draw connections from the data mining and classification techniques. We
observe that the problem of detecting unusual energy behaviours is similar to detect unusual
subsequences in time-series data. We use an anomaly detection technique that computes
discords [102] in a time-series data. Discords are subsequences in a time-series data, that

In all our experiments, REC stage was much larger than the screen-time-out duration. This allowed the device to return back
to its idle behaviour by the POST stage after a bug-free event trace has completed execution.

75

PRE EXC REC POST

D, !\\ .
‘ D
~7 _ "\\ ’ — With Hotspot

— | e TS
8
-
g 4
= With Bug
S~
w

MNO Hotspot/Bug

Time

Figure 27: An example of energy-consumption to utilization (E/U) trace with no hotspot/bug, with
an energy bug and with an energy hotspot

are maximally different from the rest of the time-series. We employ the discord detector on
the E/Ur values from the EXC and REC stage. As a result, the discord detector highlights
subsequences in E/Uf that are abnormally different from the rest of the subsequences in
the EXC and REC stage. Additionally, the anomaly detector also points out the magnitude
of each computed discord. For instance, in Figure 27, discord D; has a higher anomaly
magnitude than the discord D,. These magnitudes are extremely helpful. This is because
the computed energy hotspots can be ranked based on their magnitude, before reporting to
the developers. As the anomaly detector, we integrate JMot if [98] into our framework.
JMot1f is an off-the-shelf data mining library and it includes the implementation of finding
discords in a time-series data, as proposed in [102].

(i1) Guidance Heuristics for Test Generation: The primary objective of the guidance
heuristics is to select an unexplored event trace that has a substantial likelihood of leading
to a hotspot or a bug. The guidance function uses three parameters to rank the unexplored
event traces: (a) number of API calls in the event trace (b) similarity to previously explored,
hotspot/bug revealing event traces (c) starvation of event traces due to unexplored API calls.
The rationale for using these parameters is explained subsequently.

We have described in an earlier section (4.1:(ii7) Extraction of API calls) that the major
power consuming component in smartphones can be accessed through a set of API calls.
Therefore, the presence of API calls that activate (or deactivate) such hardware components
can be used for guiding our test generation. At the beginning of test generation process,
all event traces are ranked according to the number of such API calls they can invoke. In
subsequent iterations, the guidance module becomes more intelligent by learning specific API
call sub-sequences that are more likely to generate energy hotspots/bugs, which is where the
guidance by similarity (or exploration history) comes into play. While selecting an unexplored
event trace, the guidance heuristics compares an unexplored trace to all previously explored
event traces that had uncovered an energy hotspot or a bug. Comparison between two event
traces is performed in terms of the sequence of API calls they can invoke. Note that such
a comparison is perfectly feasible, as we extracted the API call trace for each event trace
during the preprocessing stage. Similarity between two API call traces is compared using Jaro
Winkler Distance algorithm [103]. Finally, our third parameter, guidance by starvation, aims
to cover as many API calls as possible during exploration. Since the first two parameters are

76

based on the number of API calls and the exploration history it is possible that the guidance
heuristics may ignore several unexplored API calls. This leads to starvation, where a set of
API calls will never be explored by the test generation process. Such starvation is undesirable,
as unexplored API calls may potentially expose new energy hotspots/bugs. Therefore, to
ensure a fair coverage of all the API calls invoked by an application, we add a guidance
parameter to deal with the problem of starvation. Essentially, guidance by starvation ranks all
unexplored event traces by the ratio of number of unexplored API calls in an event trace to
the total number of API calls in all event traces.

(iii) Algorithm for Test-Generation: The algorithm for our test-generation framework is
shown using a flow chart (see Figure 28). The primary objective of our framework is to uncover
as many energy hotspots/bugs as possible in an application, within a given time budget. Input
to our framework is an Android application from which the database of the application’s event
traces is generated. Recall that generation of event traces from the EFG of an applications
was explained in section 5.4.1. Our framework systematically executes the event traces from
the database on the smartphone. Each execution is monitored for presence of hotspots/bugs.
The exploration continues until the allocated time budget has expired. On completion, the
framework reports a set of event traces, each of which leads to an energy hotspot/bug when
executed on the device. The two most important components of our framework, that are
Guidance heuristics for test generation and Technique of hotspot/bug detection, have been
discussed in preceding paragraphs. There is however, one more component of the framework
that must be explained. Notice that in the flow chart (Figure 28), the first block indicates
Refine Guidance Parameters, , 3, y. Essentially, this indicates the step in our framework
where the reliance (or the weight) of the various guidance parameters are refined. Recall
that our guidance heuristics is based on three parameters, guidance by number of API calls
(corresponding weight would be «), guidance by exploration history (corresponding weight
would be) and guidance by starvation of API calls (corresponding weight would be).
Assume that, for a given event trace E, guidance by number of API calls assigns a rank Gy,
similarly guidance by exploration history assigns a rank Gy, and guidance by starvation assigns
arank G;. To obtain a single score Sg for an unexplored event trace E, we use equation 33.

SE=aXGy+BxXGy+7xGs (33)

where a + 8 + v = 1. In equation 33, «, § and <y are three tunable factors which drive the
priorities of different guidance parameters. In the beginning, we do not have any knowledge
about likely hotspots/bugs. Therefore, « is initialized to 1 and both 8 and -y are initialized to 0.
In each iteration, the value of «, B and -y are refined to uncover likely energy hotspots/bugs, as
well as to get a fair coverage of invoked API calls. Specifically, in each iteration, we decrease
the value of a by a fixed amount A (0 < A < 1). If an energy hotspot was found in the
previous iteration, we increase the value of B to f 4 A. The intuition behind this refinement
is to find energy hotspots/bugs that had similar API call sub-sequences as previously found
hotspots/bugs. We continue increasing the value of 8 as long as we find hotspots/bugs or the
value of B reaches 1. If we are unable to find any hotspots/bugs in some iteration, we hope to
reach previously unexplored API calls and therefore, we increase the weight of 7y to ¢ 4+ A.
This assignment of extra weight A is taken out from «, if « > A. Otherwise, we modify the
value of B to B — A to decrease the priority of execution history.

77

Database of Unexplored Events

4

Refine Guidance Parameters a, B8, y
a: weight for guidance by number of API calls
B: weight for guidance by exploration history
y: weight for guidance by API call starvation

v

Select Execution Trace, E

v

Start Monitoring Device

v

Execute Event Trace, E, on the smartphone

v

Stop Monitoring Device

v

Analyze E/U data to
detect Hotspots / Bugs

Time Budget Expired?

Test Suite

Contains Hotspot / Bug ? Update
Test Suite
Update Database
Re-rank all unexplored event traces <«

Figure 28: Flow chart for our test-generation framework

78

]

SQOIA SI0SUQS

ON | -19S punoiSyoeg snonoep B/U / ON ON] / Sox 76¥°C | JO sjuowaInseowr smoys | I9jowopaads

SOIA owre3 poolg

ON | -19S punoi3yoeg snondoep B/U / ON ON / SO oG | meIip pue yono) oidwig | pue aIL]
SQOIA UuoneI0]

ON | -19S punoi3yoeg Snondoep B/U / ON ON / S9K. TF | ® Ieou sjueIne)sal spurj | 1IN0D) Pooq

Surpuiq sao1nosax

rewmndoqng ‘SOOIAIRS NV

ON | punoidyoegq SNONJBA ON / SOk ON / Sox. 97 OIpEI QUITUO O} SUASIT | IS 09L
Sur uorn

ON | -puiq seoinosa1 fewndogng ON / SSk. B/U / ON 00C | -ewrojur oyyen sAerdsiq quodyg
mdino

ON 8nq Ayeyourwuy B/U / ON ON / SOK 008‘C | Iosuas s30[pue SIONUOIN | 1S9, JOSUS
SQOIA wruew?z

SOA | -10S punoIdyoeyg snondep B/U / ON ON / S9x. GO6 | oIemB-UOTIBOO] SMOUS wiuwey,
8nq Aelowrway ‘saoIA Iogeuew

SOX | -10S punoIdyoeyg snonoep B/U / ON ON / S3X. €€7 | uomornUaAL pojewIoY | PIOIPIUW()

3urpurq s90In0sax

rewndoqgng ‘SOOIAIOS UOTBULIOJUT JISURI} JOY)O JISueI],

ON | punoiSyoeg oarsuadxyg ou / SOx B/U / ON $9 | pue Aemqns ‘snq soydIof [eanuoN
S01A sjutod

ON | -I9S punoi3yoeg snondoep B/U / ON ON / SOk 70S | -Aem pue syoen) SpIoddy eondiry

ON N9 90IN0sY SO / SOX ON / Sox. I€1 [00} Suryoe20a3 Y pSey

dAnIsod IAnIsod
pajiod asfeq /| sred =21
- punoy punoy LERI AN
SNOIAIJ adAJ, 3ng /j0dsy1oH sjodsjof | sSng Jlqisedq uondrsaq | uonedrddy

(pazATeue am Jer) suoneordde (¢ ay3 jo no) suoneosrdde paysa) ur punoj s3ng/siodsioy AS1oug oy [[e I0J sonsnelS :/ dqeL

79

5.5 EXPERIMENTAL EVALUATION

We evaluated our framework to answer the following three research questions: (i) Efficacy
of our framework in uncovering energy bugs and hotspots in real-world applications, (ii)
How can an application developer benefit from the reports generated by our framework, and
(iii) Is guidance based on API call coverage more appropriate metric than code coverage for
uncovering energy bugs and hotspots? First, we describe our experimental setup and the set
of subject programs that we analysed in our experiments.

5.5.1 Experimental Setup

In our experiments, we use an LG Optimus L3 smartphone as the device to run our subject pro-
grams. The device has a single core processor and features standard I/O components such as
GPS, WiFi, 3G and Bluetooth. The device uses Android 2.3.3 (Gingerbread) operating system
(OS). To monitor energy consumption of the smartphone, we used a Yokogawa WT210[104]
digital power meter for precise power measurement. Our energy-testing framework runs on
top of a Desktop-pc that has an Intel Core i5 processor and 4 GB RAM. The OS used on our
Desktop-pc was Windows 7.

Power Meter

Battery
current
measurement(> o o
. Power Meter
-+ output over
3 — serial port
| voltage
) measuremen

communication
over adb

Smartphone Desktop PC

Figure 29: Our experimental setup

Figure 29 shows the setup for our experiments. For the purpose of this experiment we
created a special apparatus to house the smartphone battery, such that we could measure the
voltage and current flowing through the battery without any distortion. Note that contemporary
smartphone batteries may have more than two terminals. Additional terminals may be used
by the battery to report data such as internal temperature. However, for our experiments
only the positive and the negative terminals need to be monitored (as shown in Figure 29).
Any additional terminals may be directly connected to the smartphone. Our framework runs
on the Desktop-PC, which also serves as the global clock. All the measurements from the
power-meter (reporting power consumption data) and the smartphone (reporting utilization
data) are collected at the Desktop-PC. Each reading is recorded with a timestamp generated
on the Desktop-PC. Since the timestamps are generated by a single clock (the clock on the
Desktop-PC) we can use these timestamps to synchronize [105] the data from the power-meter
and the smartphone. Also note that we use the android debug bridge to communicate with
the smartphone. These communication includes sending event traces to the smartphone and
recording utilization data.

80

5.5.2 Choice of Subject Programs

The subject programs for our experiments are available on Google Play store/F-droid repos-
itory [106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122,
123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135]. We have analyzed a total
of 30 Android applications from different categories (e.g.tools, productivity, transportation)
as shown in Figure 30. The subject programs are diverse in terms of apk (Android application
package file) size. The largest application tested was 8.0MB in size while the smallest applica-
tion was 22KB in size. The average apk size of the subject programs was 1.1MB. The subject
programs also had varying GUI complexity. We measure GUI complexity of an application
by the number of feasible event traces that could be explored, starting from the main screen
of the application. By fixing the length of the event traces to explore (to a length of 4), we
observe that our chosen subject programs contain between 26 to 2,800 feasible event traces.
We also estimate the popularity of an application by observing the number of times it has been
downloaded, as well as its user ratings. These two statistics are only available for applications
on the Google Play store. As of March 10, 2014, the subject programs have an average user
rating of 4.0 out 5, with a minimum rating of 2.7 and a maximum rating of 4.6. The median
number of downloads for the subject programs is between 10,000 - 50,000, with a minimum
download count of 1,000 and a maximum download count of 10,000,000.

Travel/ Transportation

_—— Tools

13%
Photography / Media ——

10%

Lifestyle / Health

" Productivity

Entertainment Puzz